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Introduction

Ces notes proviennent d’un cours de Master premiere année donné a 'université
de Brest sur la période 2011-2014. Le cours était composé de douze séances de
deux heures et portait sur les théoremes de convergence en théorie des probabi-
lités. La frappe du texte a bénéficié de I'aide de Sabine Chanthara, je I’en remercie
vivement.

Ce cours est destiné a des étudiants ayant déja suivi un cours d’intégrale de
Lebesgue. Une annexe en fin d’ouvrage rappelle les résultats d’intégration qui
sont utilisés dans le corps de ce texte. Il est aussi important d’étre familier avec
les bases de la théorie hilbertienne que nous appliquons & I'espace L? & plusieurs
reprises, par exemple pour définir la notion d’espérance conditionnelle. Enfin, un
minimum de familiarité avec la théorie des probabilités discretes, comme on peut
la voir au lycée, est fortement conseillé.

On s’est concentré sur les théoremes de convergence classiques, essentiellement
dans le cadre indépendant : loi faible et forte des grands nombres, théoreme de
la limite centrée, convergence des martingales bornées dans L2, théoreme des
trois séries, loi du 0-1 de Kolmogorov. Un résumé des théoremes et des formules
présentés dans le cours se trouve en annexe.

Le texte est organisé de fagon a parvenir assez rapidement a la preuve de la loi
forte des grands nombres, au chapitre 4, qui est faite pour des variables de carré
intégrable. Le cas intégrable est traité plus tard, dans le chapitre concernant les
martingales, comme corollaire des théoremes de convergence pour ces martingales.
Le second objectif est le théoreme de la limite centrée, atteint au chapitre 6. Il
faut pour cela étudier en détail les différents types de convergence et les relations
qui s’établissent entre eux. On termine par la notion de martingale, qui permet
de démontrer quelques résultats classiques de convergence, comme le théoreme
des trois séries et la loi du 0-1 de Kolmogorov. La théorie des martingales et des
temps d’arrét est illustrée par une marche aléatoire symétrique sur 'espace des
entiers.

La théorie des chaines de Markov n’est pas abordée dans ce texte. De méme,
on ne parle pas de sous et de sur-martingales, et la notion de convergence étroite
est étudiée pour des mesures de probabilité définies sur R uniquement, ce qui
permet quelques simplifications dans les preuves.
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Notations

Les ensembles des nombres entiers, entiers relatifs, rationnels, réels et complexes
sont notés respectivement N, Z, Q, R, C.

On travaille en genéral sur un espace probabilisé (Q2, T, P).

5 fonction indicatrice de A
B(x,7) o boule ouverte de centre x de rayon r
C™ ensemble des fonctions indéfiniment différentiables
Cov(X,Y ) o covariance de X et Y
D+t e e mesure de Dirac au point w
B X ) espérance de X
EX|F) oo espérance conditionnelle de X sachant F
T o tribu
o fonction de répartition
L espace des classes de fonctions L
T R limite supérieure
I limite inférieure
L e e mesure
N nombres entiers non nuls
PP ensemble de résultats
O e composition
B ensemble vide
P mesure de probabilité
P o loi de la variable aléatoire X
PX,y) oo loi du couple (X,Y)
PA|F) o probabilité conditionnelle de A sachant F
PRQ produit des probabilités P et @)
DS e presque partout
PP somme de X; a X,
T X ) e écart-type de X
/2 tribu
T @ Ta o produit des tribus 77 et T
MU AT minimum de m et n
|2, € T variance de X
X variable aléatoire
(XY ) produit scalaire dans L?

DXl e norme L? de X



Chapitre 1

Formalisme de Kolmogorov

Nous désignons par épreuve une expérience ou une observation réalisée dans
des conditions bien définies (protocole expérimental) reproductible, et dont le
résultat est 'un des éléments d’'un ensemble déterminé (univers). Le but de la
théorie des probabilités est d’associer a certains sous-ensembles de cet univers,
appelés événements, un nombre réel compris entre 0 et 1, qui reflete notre degré
de confiance dans la réalisation de I’événement une fois que I’épreuve a eu lieu.

La théorie moderne des probabilités est formalisée par Kolmogorov en 1933, en
se basant sur la théorie de la mesure. La notion clef est celle d’espace probabilisé.

Définition 1 Un espace probabilisé (0, T, P) est la donnée :
— d’un ensemble  appelé univers, dont les éléments sont appelés résultats,
— d’une tribu T de parties de §2, dont les éléments sont appelés événements,

— d’une mesure P définie sur la tribu T, qui satisfait P(2) = 1.

Commencons par décrire trois exemples importants d’espaces probabilisés.

1.1 Le cas discret : ) fini ou dénombrable

Pour 7, on prend 'ensemble des parties de €2 : T = P(2). Se donner une proba-
bilité P : T — [0, 1] revient a se donner une famille de nombres réels p,,, w € €,
qui satisfait

-0 <p, <1 pour tout w € 2,
- Z Pu = L.
weN
La correspondance entre P et les p,, est donnée par

Pw = P({w})a P(A) = Z Puw-

wEA
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Notons d,, la mesure de Dirac au point w :

1 siwe A
0 sinon

VAET, 6,(A) = {

On peut exprimer la probabilité P comme une somme de Dirac : P = Z PO

On a alors, pour g : {2 — R mesurable, positif ou P-intégrable, we
/ gdP = Z Pw g(w).
Q weN
Exemples

e Loi uniforme sur Q = {1,2,...,n} :

_#4

=0

Le lancé d’un dé a 6 faces bien équilibré est modélisé par un tel espace probabilisé
(n=06).

Pw = 1/n, P(A)

e Loi binomiale de parametres n € N* | p € [0, 1], sur Q = {0,...,n} :
o = P({k}) = CF p*(1 —p)"*  pour k € {0, ...,n}.
pr est la probabilité d’obtenir £ succes exactement au cours de n tirages indé-
pendants, sachant que la probabilité de succes lors d'un tirage est égale a p.
e Loi de Poisson sur 2 = N de parametre A > 0 :

)\k
pr = P({k}) = o e pour k € N.

1.2 Le cas continu : 2 = R ou R

Ici T est la tribu engendrée par les intervalles de R ou les rectangles de R? . Ses
éléments sont appelés boréliens. On peut définir une mesure de probabilité sur €2
a partir d’'une densité f: 2 — R, satisfaisant les conditions suivantes :

— f est borélienne,
~YweQ, flw)>0,
— Jo fdA=1.

On a noté la mesure de Lebesgue sur 2 avec un . La mesure de probabilité P
associée a la densité f est donnée par

P(A) = /A fdx = /A fa)de.
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On a alors pour toute fonction mesurable g : 2 — R positive ou P-intégrable,

[gar= [ g@)f(@)do.

Exemples
— Probabilité uniforme sur [a, b], avec a,b € R, a <b:

1

-1,
/ b—q @

— Loi de Laplace-Gauss ou loi normale de parametres m € R, o0 > 0 :

1 (z—m)?
) = e 202
f(z) s

Elle est dite centrée si m =0 et o = 1.

— Probabilité exponentielle de parametre [ > 0 :

f(SL’) =1 lR+<x)

1.3 Le cas des espaces produits

On s’intéresse a une épreuve modélisée par un espace probabilisé (2, T, P) et on
veut répéter cette épreuve plusieurs fois de maniere indépendante, disons n fois,
n € N*. Pour cela, on considere :

e I'univers Q" = Q x Q x ... x ), ses éléments sont des multiplets (wq,ws, ..., w,) €
Q". L’élément wq est le résultat obtenu lors de la premiere épreuve, wy lors de la
seconde épreuve etc.

e La tribu produit 7 ® T ® ...T = T®". C’est la tribu engendrée par les parties
de Q™ de la forme A; x Ay X ... x A, , avec A; € T pour tout i.

e Dans le cas indépendant, la mesure produit P ® ... ® P sur cette tribu. Cette
mesure P®" est 'unique mesure vérifiant

P®n<A1 X AQ X ... X An) = P(Al)P<A2)P(An)
pour tout Aq,..., A, € T.

On va chercher a étudier le comportement asymptotique d’une répétition d’é-
preuves, effectuées de maniere indépendante, quand n tend vers I'infini. Pour cela,
nous introduisons un nouvel espace probabilisé.

e L’univers QN est 'ensemble de toutes les suites d’éléments de €).
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e On se place sur la tribu produit 7®N. C’est la tribu de parties de QN engendrée
par les cylindres de la forme

CAO,---,An = {(wi)ieN | Vi = 0...n, w; € A,}

avecn € N et Ag,..., A, € T.
e Dans le cas indépendant, on considere sur 7N la mesure produit PN, ca-

ractérisée de la fagon suivante :

Théoréme 1 (Kolmogorov) Soit (2, T, P) un espace probabilisé. Alors il existe
une unique mesure de probabilité sur TN | notée PN, qui satisfait

P(Ca,....a,) = P(Ag)P(A1)...P(A,)
pour tout n € N et Ag, ..., A, € T.

L’exemple le plus simple est donné par la répétition un nombre arbitrairement
grand de fois du lancer d’une piece de monnaie. L’univers est donné par ’ensemble
de toutes les suites de pile ou face : {pile, face}N. Cet ensemble est muni de la
tribu engendrée par tous les sous-ensembles de la forme

{(wi)ieN | wo € AQ, ey Win c Am}

avec m € N et A; € {pile, face} pour ¢ allant de 0 & m. Si la piece est bien
équilibrée, on peut prendre comme probabilité le produit PN, ot P({ face}) =
P({pile}) =1/2.
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1.4 Exercices

exercice 1
Soit (A, )nen une suite d’événements deux a deux disjoints sur un espace proba-
bilisé (€2, T, P). Montrer que li_)m P(A,) =0.

n o

exercice 2
Soit A, ..., A, des événements tels que P(Ag) > 1 — % pour tout k de 1 a n.
Montrer qu’il existe un résultat w € €2 qui appartient a tous les Ay.

Soit (Ag)ren une suite d’événements. Montrer que si P(Ay) ne converge pas vers
0, alors il existe un résultat qui appartient a une infinité de Ay.

exercice 3
Soit ¢ > 0 et Ay, ..., A, C Q des événements tels que P(A;) > ¢ pour tout i.
Montrer qu’il existe deux indices 7, k distincts tels que

ne? —c

P(A;N A > =

Indication : s’intéresser a lintégrale de (3" 14,)* et utiliser une inégalité fameuse.

exercice 4
Soit P une mesure de probabilité définie sur la tribu des boréliens de R® et B(z, r)
la boule euclidienne de rayon r centrée en z € R

— Montrer que P(B(0,r)) converge vers 1 quand r tend vers 'infini.

— Soit 7y > 0 et x, € R? une suite telle que ||z, || — > 00. Montrer que
n—oo

P(B(zp,19)) —— 0.

n—oo

exercice 5
Parmi ces fonctions, quelles sont celles qui sont des densités de probabilité ?

f@)=2mm  [flr) =e 1pu(2) f(x) = 2% 1p1(x)
f(z) = %e“x‘ f(x) =sin(z) Lpgr/g(z)  flx) = (1+ cos(x)) 1o (x)

exercice 6
Pour tout borélien A C R, on pose

u(A) = ﬁ/{qe‘”2 dx +1,4(0)/2

— Montrer que p est une mesure de probabilité.
On vérifiera en particulier qu’elle est bien o-additive.

—Soit f : R — R une fonction borélienne bornée. Donner une formule pour [ f dpu.
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Chapitre 2

Variables aléatoires

En pratique, on s’intéresse a certaines quantités numériques attachées aux résul-
tats obtenus a I'issue de notre épreuve. Pour modéliser cela, on introduit la notion
de variable aléatoire.

2.1 Définition d’une variable aléatoire

Définition 2 Soit (2, T, P) un espace probabilisé. Par définition, une variable
aléatoire X : Q) — R est une fonction mesurable définie sur €2, a valeurs réelles :
pour tout intervalle I C R, l'image réciproque X ~1(I) de cet intervalle est dans

T.

Pour A C R borélien, on pose

X4 = {weQ|X(w)ed}=(XceA
X7 Ya,0)) = (a<X <)
X7l ([a,00]) = (a<X)=(X2>a)

On a alors

P(X YA)) = P(X € A).

C’est la probabilité d’obtenir, a l'issue de 1’épreuve, un résultat pour lequel la
valeur de X est dans A. La quantité P(X € A) est bien définie dés que A est
borélien car I'image réciproque d’un borélien par une application mesurable est
mesurable (c’est-a-dire est dans T).

2.2 Espérance et variance

Définition 3 Une variable aléatoire X est dite intégrable si [ |X|dP < +oo.
Dans ce cas l'intégrale de X est bien définie, c’est 'espérance de X.

E(X) = /QXdP.

13
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La variable aléatoire X est dite de carré intégrable si [o X?dP < +oc.
Dans ce cas X est intégrable et on définit la variance de X par la formule

V(X) = E((X - E(X))?).
On remarque qu’une variable aléatoire de carré intégrable est intégrable en inté-

grant I'inégalité 2X < 14 X2. On peut aussi faire appel a I'inégalité de Cauchy-
Schwarz : pour toutes variables aléatoires X,Y : @ — R,

/|XY|dP§\// X2dP \// Y2dP.
Q Q Q

En prenant Y = 1 dans cette formule, on obtient la majoration E(|X|) < /E(X?2).

Développons le carré qui apparait dans la définition de la variance.
E((X — B(X))?) = B(X? - 2XE(X) + E(X)?) = B(X?) — 2E(X)* + E(X)*.
Nous avons obtenu la formule suivante, tres utile pour calculer V(X)) :
Proposition 1 V(X) = E(X?) — E(X)~

Dans le cas discret, la variable aléatoire X est intégrable si Z D] X (w)] < +o0
et dans ce cas we

B(X) = Y puX (@)

we

Dans le cas continu, en notant f la densité de P, la variable aléatoire X est
intégrable si [ga | X (w)|f(w)dw < 400 et dans ce cas

Propriétés :
Soit A € R et XY deux variables aléatoires intégrables.

- EMAX+Y)=)\EX)+ E(Y). (linéarité)
—S5i X <Y | cest-a-dire si pour tout w € Q, X(w) < Y (w), alors

E(X) < E(Y). (monotonie)
— Pour tout événement A € T, P(A) = E(14).

— Soit (X,,) une suite de variables aléatoires qui converge de maniere croissante
vers X : pour presque tout w € €2, (X, (w)), n est croissante et X, (w) — X (w).
Alors

E(X,) ——F (X).
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— Soit (X)) une suite de variable aléatoires qui converge vers X presque partout.
On suppose qu'il existe Y intégrable telle que | X,,| <Y pour tout n € N. Alors

E(X,) —— B(X).

n—oo

V(X)) = AV (X).
V(X 4Y) = V(X)+V(Y) +2C0ou(X,Y)

en notant

Cov(X,Y) = E(XY)— E(X)E(Y)

la covariance de X, Y qui est bien définie des que X, Y sont de carrés intégrables.

Ces propriétés sont des conséquences immédiates des définitions. Les deux
théoremes de passage a la limite découlent du théoreme de convergence crois-
sante et du théoreme de convergence dominée.

2.3 Inégalités

On s’intéresse maintenant a deux inégalités classiques qui donnent quelques in-
formations sur la maniere dont les valeurs d’une variable aléatoire se répartissent.

Théoréme 2 (Inégalité de Markov) Soit (2, T, P) un espace probabilisé, Y :
Q — R, une variable aléatoire positive. Alors, pour tout A > 0,

P s < B

Preuve
On a l'inégalité A1(y>y) <Y ce qui donne, par monotonie,

EMy>y) < E(Y).
On conclut en remarquant que

EAly>n) = AE(Lyzy) = AP 2 A).

Théoréme 3 (Inégalité de Bienaymé-Tchebichev) Soit (2, T, P) un espace
probabilisé, X : Q — R une variable aléatoire de carré intégrable. Alors, pour
tout t > 0,

V(X)

PIX - E(X) 2 1) < -
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Cette inégalité peut se récrire a laide de [’écart-type o(X) = /V(X) comme
suit : )
P(X ¢ | E(X) —to(X), B(X) +to(X)[) < 5
—to(X) +to(X)
-« —— —

B(X) — to(X) BE(X) E(X) + to(X)

Application
Si X est de carré intégrable, la probabilité d’obtenir a lissue de ’épreuve une
valeur a plus de 10 fois 'écart-type de 'espérance est inférieure a 1/100.

Preuve
L’égalité de Bienaymé-Tchebichev se déduit de I'inégalité de Markov en prenant
Y = (X — E(X))” et A = t* dans cette inégalité. On a alors

P(Y >)\) =P((X - E(X))?>)=P(|X - E(X)| >1),
E(YY) E(X-E(X))?) V(X)_

A 12 12
La formule est démontrée.

2.4 Loi d’une variable aléatoire

A chaque variable aléatoire X définie sur un espace probabilisé (€2, T, P), on peut
associer une probabilité Px qui rend compte de la distribution de ses valeurs, en
procédant de la facon suivante.

Définition 4 Soit (2, T, P) un espace probabilisé, X : Q@ — R une variable
aléatoire. La loi de X est la probabilité définie sur la tribu des boréliens de R par
la formule :

Px(4) = P(X € A) = P(X"(4))

pour tout A C R borélien.

La variable aléatoire X est dite discréte si sa loi Py est discréte : il existe un
ensemble fini ou dénombrable D C R tel que Px(D) = 1. Indigons ses éléments
par un ensemble I C N : D = {x;},¢;. On est presque sur d’obtenir un résultat
qui se trouve dans cet ensemble de valeurs {z;},c; et on peut écrire

el

ou p,, est la probabilité d’obtenir la valeur z; : P(X = ;) = pa,.
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La variable aléatoire X est dite continue si Px est une loi continue, auquel cas
sa densité est notée fx. C’est une fonction borélienne positive dont l'intégrale
vaut un. On a alors

Py(A) = P(X € A) = /A fx(x) dz

pour tout A C R borélien. Dans ce cas, la probabilité P(X = x) est bien sir
nulle pour tout z € R.

L’espérance et la variance d’une variable aléatoire peuvent s’exprimer en fonc-
tion de sa loi uniquement. En conséquence, deux variables qui ont méme loi ont
méme espérance et méme variance.

Proposition 2 5i X est intégrable,

E(X) = /Rx APy (z).
Si X est de carré intégrable,
V(X) = [ (o= B(X))? dPx(x).
Cette proposition se déduit de la formule de transfert.

Proposition 3 (formule de transfert) Soit g : R — R borélienne, positive
ou Px-intégrable. Alors

/ ) dP = / ) dPx (x

Preuve de la formule de transfert
— C’est vrai pour g = 14 , A borélien de R :

/1A(X) dP = P(X € A) = P(X"Y(A)),

/ 14(x) dPy(x) = Px(A) = P(X € A).

— C’est vrai pour les combinaisons linéaires de fonctions indicatrices g = >° c;14,
par linéarité de I'intégrale.

— Une combinaison linéaire de fonctions indicatrices s’appelle une fonction étagée.
Toute fonction positive mesurable peut étre approchée de maniere croissante par
une suite de fonctions étagées. Pour g > 0, borélienne, on prend g, — ¢ , gn
étagées, et on passe a la limite

/gn(X) dP—)/g(X P

n—oo
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[ 9u@) dPx(@) ———> [ glx) dPx(x)

en appliquant le théoréeme de convergence croissante, si bien que [ g(X) dP =
[ 9(x) dPx ().

— Pour ¢ intégrable, on écrit g comme la différence de deux fonctions positives
intégrables et on utilise la linéarité de l'intégrale pour conclure.

Exemple
Si X est variable aléatoire obéissant a une loi exponentielle de parametre [ > 0 |
Py est associée a la densité fx(z) =le "1g, (x) et on a :

Py([a,b]) = P(X € [a,b]) = /[a’b] () de = / 1t g

des que 0 < a < b.

Il est parfois plus pratique de travailler avec des fonctions plutot qu'avec des
lois de probabilité. Ceci nous amene a la notion de fonction de répartition.

Définition 5 La fonction de répartition de X est définie par

Fx(z) = P(X <uz).

On a alors 1’égalité, pour tout a,b € R,
P(X €la,b]) = Fx(b) — Fx(a).

Comme une mesure de probabilité définie sur la tribu des boréliens de R. est uni-
quement déterminée par ses valeurs sur les intervalles, la fonction de répartition
caractérise la loi de X de maniere unique : si deux variables aléatoires ont méme
fonction de répartition, elles ont méme loi.

Fx =Fy & Px = Py.

La fonction de répartition possede les propriétés suivantes :

— elle est croissante, a valeur dans l'intervalle [0, 1],

L Am Fxle) =0, lim Fx(o) =1,

— elle est continue a droite et possede une limite a gauche en tout point,

— I'ensemble des points de discontinuité de F'x est composé des z € R tels que
P(X =) > 0, il est donc dénombrable.
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2.5 Loi d’un multiplet de variables aléatoires

Les considérations précédentes se généralisent a des couples et des multiplets de
variables aléatoires. Soient X7, ...X,, des variables aléatoires a valeurs réelles. On
peut considérer ces variables comme une unique variable aléatoire a valeurs dans
R"™.

(Xl,XQ, 7Xn) :Q— R"
On pose, pour A borélien de R™ et Ay, ..., A, des boréliens de R,

(X1,...Xp) €A) ={we Q| (Xi(w), Xs(w), ..., Xp(w)) € A},
(X1 €A,..,X,€A) = (X1,.,X,) €A x...xA,)
= {we| Xi(w) € Ay,.. ,X,(w) e Ay}
= ﬂ (X; € Ay).

Définition 6 Soit (2, T, P) un espace probabilisé, X, ..., X,, des variables aléa-
toires. La loi du multiplet (X1, ..., X,,) est la mesure de probabilité définie sur la
tribu des boréliens de R™ par la formule :

..... xn)(A) = P((X1,.., Xp) € A) = P{w € Q| (Xi(w), ..., Xu(w)) € A})
pour tout A C R™ borélien.

La loi du multiplet est discrete si la loi de Px, .. x,) est discrete : il existe
un ensemble fini ou dénombrable D C R" tel que P, . x,) (D) = 1. Elle est
dite continue si P(x,, . x,) est une loi continue, auquel cas sa densité est notée
fx1...x,.- Cette densité est une fonction borélienne, définie de R" dans R, posi-
tive, d’intégrale 1, et nous avons la relation

P((Xl, 7Xn) & A) = P(X1 ..... Xn)(A) = le ..... Xn(l’l, ,l’n) dl’ldl’n
La formule de transfert se généralise a n variables.

Proposition 4 (Formule de transfert) Soit g : R" — R borélienne, positive
x,,)-intégrable. Alors

.....

/Qg(Xl,...,Xn) dP:/Rng(xl,...,xn) dPx, . x, (%1, ..., 2p).

La preuve est similaire a celle faite précédemment dans le cas d’une variable, on
procede en approchant g par une fonction étagée.

Les lois individuelles des X; peuvent se déduire de la loi du multiplet en re-
marquant que

P(X;eAd) = PXi€Q,..,.X;,1€Q,X,€A,X;1,€9Q,..,X, €Q)
X)X . xQXxAXxQx ... xQ).

.....
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On dit que les lois Py, sont les lois marginales de la distribution (X1, ..., X,,).

Dans le cas continu, la densité des X; se déduisent de celle du multiplet grace
a la formule suivante :

fXZ<.§UZ> = /Rn_1 le _____ Xn<'r17 ey l‘n) dl’l...dl'l',l d.ﬁUZJrld.Tn
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2.6 Exercices

exercice 1
Soit X une variable aléatoire strictement positive telle que X et 1/X sont intégrables.
Montrer que E(X)E(1/X) > 1.

exercice 2
Soit X une variable aléatoire de carré intégrable. Montrer que pour tout ¢ € R,

V(X) < B((X - ¢)?).
Soit a, b € R. Montrer que
E((X +b)%)
(a+ b)?
En déduire I'inégalité de Cantelli, valide pour tout ¢ > 0 :

1
1+

P(X >a) <

P(X - E(X) >to(X)) <

exercice 3
Soit X une variable aléatoire telle que 0 < X < 1. Montrer que V(X) < 1/4.
A quelle condition a-t-on égalité ?
exercice 4
Soit X une variable aléatoire satisfaisant P(X = x) = 0 pour tout x € R et Fx
sa fonction de répartition. Montrer que la variable aléatoire Fx(X) obéit a la loi
uniforme sur ]0, 1[.

Etant donnée une variable aléatoire Y de loi uniforme sur 10, 1[ et v une mesure
de probabilité sur la tribu des boréliens de R, construire une variable aléatoire
X de loi v en composant Y par une fonction bien choisie.

exercice 5
Soit X une variable aléatoire intégrable. Montrer les assertions suivantes.

~ lim | X|dP = 0.
)

N—oo (IX|>N
— Pour tout € > 0, il existe 6 > 0 tel que pour tout A € T,

P(A) < 6 implique /A | X|dP <e.

exercice 6
Soit X une variable aléatoire réelle positive, de fonction de répartition F'x. Mon-
trer que pour 0 < p < 00,

E(X?) = /Omptp—l P(X > t)dt = /Oooptp_l (1— Fx(1)) dt.

Soit X1, X, ...X,, des variables aléatoires indépendantes de loi uniforme sur [0, 1].
Calculez E(min(Xy, Xa,...X,)) et E(max(Xy, Xo,...X,)).



22

CHAPITRE 2. VARIABLES ALEATOIRES



Chapitre 3

Indépendance

On a vu comment modéliser une épreuve répétée un nombre fini ou infini de fois
de maniere indépendante, en prenant pour univers un espace produit et pour
probabilité une probabilité produit. On va préciser cette notion d’indépendance
en 'appliquant a des événements, des tribus ou des variables aléatoires.

3.1 Indépendance d’événements et de variables
aléatoires

On commence par définir la notion d’événements indépendants.

Définition 7 Soit (2, T, P) un espace probabilisé. Deux événements A, B € T
sont dits indépendants entre eux si

P(ANB) = P(A)P(B).

Soit (A;)ier une famille d’événements. Ces événements sont dits indépendants
dans leur ensemble si

VS C I fini, P(ﬂ Ai) = [ PA

ieS ieS
Exemple
Pour une famille de trois événements {A;, Ay, As}, I = {1,2,3},
S={1} P(Ay) = P(4)
5 ={2} P(As) = P(As)
5 ={3} P(A;3) = P(As)
S ={1,2} P(A; N Ay) = P(A;)P(Ay)
S ={1,3} P(A1 N Az) = P(A1)P(43)
S ={2,3} P(A; N A3) = P(As)P(A3)

S - {]., 2, 3} (A1 N A2 N Ag) - (Al)P(AQ)P(Ag)
sont les conditions a vérifier pour avoir I'indépendance de A;, Ay et A3 dans leur
ensemble.

23
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Définition 8 Deux variables aléatoires X,Y : Q0 — R sont indépendantes entre
elles si pour tous boréliens A, B C R, les événements (X € A) et (Y € B) sont
indépendants entre eux :

P((X € Ayn(Y € B)) = P(X € A) P(Y € B).

Soit (X;)ier une famille de variables aléatoires. Elle sont dites indépendantes
entre elles si pour tout sous-ensemble S C I fini et (A;)ies des boréliens de R,
les événements (X; € A;) sont indépendants dans leur ensemble :

P(N(Xi € A)) =[] P(X; € Ay,
€S €S
Introduisons les notations suivantes pour alléger les formules :
(XeAYeB) = (XeA)n((YeDBb)
= {weQ|X(w)eAetY(w) € B}
(Xi€AieS) =) (Xi€A)
€S

(Xl € Al,XQ € AQ, 7Xn € An) - <X1 c Al) N <X2 € AQ) N (Xn € An)

Définition 9 Deux tribus Ty C T, To C T sont indépendantes entre elles si pour
tout A€ T, et B €Ty, AetB sont indépendants entre eu.

Soit (T;)ier une famille de tribus incluses dans T . FElle sont dites indépendantes
entre elles si pour tout sous-ensemble S C I fini et toute famille (A;)ies satis-
faisant A; € T; pour tout i € S, les événements A; sont indépendants dans leur

ensemble :
P(N A) =TI P(A.

€S €S
3.2 Lemme de Borel-Cantelli

Voici une premiere application de la notion d’indépendance d’événements.
Lemme 1 (Borel-Cantelli) Soit (2,7, P) un espace probabilisé et (A;)ien une
suite d’événements.

Si Z P(A;) < 400, presque tout w € Q n'appartient qu’a un nombre fini de A;.
ieN

Si Z P(A;) = +oo, et si les A; sont indépendants dans leur ensemble, alors
1€EN

presque tout w € Q) appartient a une infinité de A;.

On définit la limite supérieure de la suite d’ensembles A; comme suit :

lim A; = ) ( U Ai) = {w € O | w appartient & une infinité de A;}.
i>N

iEN NeN
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Le lemme se reformule alors de la facon suivante :

Z P(A;) < 400 implique P(hm A) 0.
1€EN

Z P(A;) = 40 et (A;)ien indépendants implique P(@ Ai) =1.
1EN '€
Preuve du lemme
Nous avons la relation #{i € N |w € 4;} = Y 14 (w). Intégrons cette égalité :

1€EN
[#ieN|we A} aPw) = [ S 14, dP =% [14,dP = 3 P(4) < +o0.
1EN ieEN €N

La fonction w — #{i € N | w € A;} est intégrable, donc finie presque partout;
pour presque tout w € 0, #{i e N|w € A;} < +o0.

Supposons a présent les (A;) indépendants et M, N € N, N < M.

M

(1 - P(Ai)) < 6_21:1\7 P(A;)

P(f)4) -

%

P(A7) =

=B
=B

7

d’apres la majoration 1 —x < e™*, valide

pour tout x € R. Nous avons donc

M
PN A7) < e Bovre

=N

et en passant a la limite sur M,

P(ZQV A) =0, M 7 o \ ;

Ceci entraine P( U ﬂ AY) = 0 puis en passant au complémentaire,
NeNi>N

PTm A)=P( (N U 4) =

NeNi>N

N

3.3 Loid’un multiplet de variables indépendantes

Calculons 'espérance d’un produit de variables aléatoires indépendantes.

Proposition 5 Soit (2, T, P) un espace probabilisé, X,Y : Q — R deuzr va-
riables aléatoires. On se donne f,g: R — R des fonctions boréliennes telles que
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f(X) et g(Y) soient intégrables. On suppose X et'Y indépendantes entre elles.
Alors

E(f(X)g(Y)) = E(f(X))E(9(Y)).

Ceci se généralise a un nombre quelconque de variables aléatoires (X;)i=1.. n indé-
pendantes entre elles :

n

E(H fi(Xi)) = ﬁ[E(fz(Xz))

i=1

ot les f; + R — R sont des fonctions boréliennes telles que les f;(X;) sont
intégrables.

Preuve
Si f et g sont des fonctions indicatrices, f = 14, g = 1p,

E(f(X)g(Y)) = E(lA(X)lB(Y)) = E(l(xenliven)
( (XeA)n YeB)) E(l(XeA, YGB))
(X €AY € B)
P(X e A) (Y € B) par indépendance,
B(1La(X))E(15(Y))
_ (/X)) Eg(Y))

On procede ensuite comme pour la preuve de la formule de transfert : on vérifie
la formule pour les fonctions étagées, par linéarité, puis on vérifie la formule pour
fyg > 0 en les approchant de maniere croissante par des fonctions étagées, et
enfin pourf, g intégrables en les écrivant comme différence de fonctions positives
intégrables.

Le cas d’'un nombre quelconque de variables indépendantes s’en déduit de la
méme facon. Rappelons que la covariance de deux variables aléatoires est égale a
I’espérance du produit des variables moins le produit des espérances. On obtient
le corollaire suivant :

Corollaire 1 Soit Xy,..., X,, des variables aléatoires de carré intégrable, indé-
pendantes entre elles. Alors

Cov(X;, X;) =0 sii# j,

Complément
On montre que la loi d’un couple ou d’un multiplet de variables aléatoires indépen-
dantes entre elles est égale au produit des lois de chacune des variables aléatoires.
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Proposition 6 Soit X, Y deux variables aléatoires indépendantes entre elles.
Alors

Pxy)= Px ® Py,
B(h(x,v)) = [

[ n(X,y)ap = /R h(z,y) dPx(x) dPy (y)

pour toute fonction h : R* — R borélienne, positive ou Px y)-intégrable.
Soit X1,..., X,, des variables aléatoires indépendantes entre elles. Alors

Px,, . x,)=Px, ®Px,®..® Px,,

E(h(X, ..., X)) = /R h(zy, ..., ) APy, (21)...d Py, ()

pour toute fonction h : R" — R borélienne, positive ou P(x, .. x,)-intégrable.

La preuve se ramene a celle de la proposition précédente en utilisant le fait
que toute fonction borélienne bornée h : R? — R peut s’approcher en norme
L'(R?, Pxy)+ Px ® Py) par une combinaison linéaire de fonctions de la forme
(x,y) — f(x)g(y), avec f et g boréliennes bornées. On généralise ensuite aux
fonctions boréliennes positives en utilisant le théoreme de convergence croissante
puis aux fonctions intégrables. Le raisonnement est le méme pour un multiplet
de variables aléatoires.
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3.4 Exercices

exercice 1
Soit. X une variable aléatoire intégrable. Montrer que si X est indépendante
d’elle-méme, elle est constante p.s. : il existe un réel C' tel que P(X = C) = 1.

exercice 2
Soit A,,, n € N, des événements. Montrer que

fim 14, = Igm,,  Tim P(4,) < P(TmA,).

exercice 3
Soit X une variable aléatoire; la tribu associée a X est définie par

Tx = {X'(A) | A C R borélien}.

Montrer que deux variables aléatoires X et Y sont indépendantes si et seulement
si Tx et Ty sont indépendantes.

exercice 4
Montrer que si X et Y sont deux variables aléatoires indépendantes de densités
fx et fy, le couple (X,Y) admet pour densité la fonction (z,y) — fx(x)fy(y).

exercice 5

Soient X et Y deux variables aléatoires indépendantes. On suppose que X admet
une densité fx. Montrer que la somme X + Y admet aussi une densité qui est
égale a

x4y (t) :/fo(t—y)dPY(y)-

Montrer que si X et Y admettent des densités fx et fy, la densité de X +Y est
égale a la convolée de fx et fy : fxiv(t) = Jg fx(t —y) fr(y) dy.
exercice 6

Soit X7, ...X,, des variables aléatoires centrées, indépendantes entre elles, de cubes
intégrables. On pose S, = 37_; Xi. Montrer que E(S3) =37, X3.

exercice 7
Soient (X;);en une suite de variables aléatoires indépendantes. On suppose que
Px, = Px, pouri,j € N et P(X; =) =0 pour z € R et k € N. On pose

A, ={weQ|Vk<n, Xpw)<X,(w)}

Si A, est réalisé, on dit qu’on a obtenu un record a I’étape n.
— Montrer que P(X; = X;) =0sii# j.
— Montrer que les A, sont indépendants entre eux et que P(A,) = =.

— En déduire que presque surement, on observe une infinité de records.



Chapitre 4

Loi des grands nombres

On va s’intéresser au comportement asymptotique d’une suite de variables aléa-
toires. On se donne un espace probabilisé (€2, T, P) et pour chaque entier n € N
une variable aléatoire X, : 2 — R.

Définition 10 La suite de variables aléatoires (X;)ien est dite identiquement
distribuée si tous les X; ont méme loi :

Vi,j € N, Px, = Px;,.
En d’autres termes, pour tout borélien A C R,
P(X, € A)=P(X; €A
et pour toute f: R — R borélienne positive ou intégrable par rapport a Px,,
B(f(X) = B((X,).
En particulier, E(X;) = E(X;) si les X; sont intégrables, E(X}) = E(X?) et
V(X;) = V(Xj) siles X; sont de carrés intégrables.
4.1 Loi faible des grands nombres

Soit (X;)ien une suite de variables aléatoires indépendantes entre elles, identi-
quement distribuées (v.a i.i.d). On pose

Sn=> X, =X1+Xo+ ..+ X,
i=1

X1 (w)+Xo (w)Jr AXn(w)

Pour w € €, la quantité n”( w) = est la moyenne empirique
calculée sur I’échantillon donné par le resultat w € €. On cherche a étudier le
comportement asymptotique de la moyenne S"

29
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Théoréme 4 (loi faible des grands nombres) Soit (X;);en une suite de va-
riables aléatoires indépendantes entre elles, identiquement distribuées, de carrés
intégrables. Alors pour tout € > 0,

P(‘% — E(X)| > ¢) ——0.

n—o0

La preuve du théoreme repose sur le lemme suivant :

Lemme 2 Soit (X;);en une suite de variables aléatoires indépendantes, identi-
quement distribuées. Alors E(S,) = nE(Xy),V(S,) = nV(Xy).

Preuve du lemme
E(S,)=FEX1+Xo+..+X,) =E(X))+ E(Xs) + ... + E(X,,) par linéarité.

V(Sy) =V(Xi+ ..+ X,) =V(Xy) + ..+ V(X,) + 22, Cov(X;, X)),

La covariance de deux variables aléatoires est nulle dans le cas indépendant. D’ou
V(S,) =V(Xy)+ ...+ V(X,) =nV(Xy).

Preuve du théoréme
D’apres le lemme,

E(Sy/n) = E(Xy), V(Sa/n) =V(Xo)/n, 0o(Sa/n)=0(Xo)/vn.
On applique alors I'inégalité de Bienaymé-Tchebichev :

P(‘& _ E(&)‘ > g)g V(S,/n) _ U(X0)2

n n g2 nez  nooo

Remarque On peut montrer que la loi faible des grands nombres est encore
vraie pour des variables aléatoires indépendantes, identiquement distribuées, inté-
grables.

4.2 Loi forte des grands nombres

Théoréme 5 (loi forte des grands nombres) Soit (X;);en une suite de va-
riables aléatoires intégrables, indépendantes entre elles, identiquement distribuées
et S, = > X;. Alors pour presque tout w € 2,

50 () ——s B(Xy).

n n—00
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En d’autres termes, I'ensemble {w € Q | 22(w) mE(XO)} est un ensemble
dont la probabilité vaut 1.

Vocabulaire On dit qu’une propriété est vraie presque surement si elle est sa-
tisfaite pour presque tout w € €2. Nous utiliserons dans la suite ’abréviation p.s.
pour le terme presque surement.

Enongons un premier corollaire de la loi forte des grands nombres, qui sera
démontré dans la suite. Ce corollaire montre que la probabilité d'un événement
est presque sturement égale a la limite du nombre de fois ou il est réalisé sur le
nombre total de fois ou I’épreuve est répétée, lorsque le nombre de répétitions
tend vers I'infini.

Corollaire 2 Soit (X;);en une suite de variables aléatoires indépendantes iden-
tiguement distribuées et soit A un borélien de R. Alors

i < n| Xi(w) € A}

n n—oo

P(Xo € A) presque sturement.

[lustrons la loi forte des grands nombres sur un exemple avant de la démontrer.

Exemple

On lance une piece de monnaie bien équilibrée un grand nombre de fois de maniere
indépendante. Pour modéliser ces épreuves, on commence par considérer la pro-
babilité P définie sur P({pile, face}) par P({face}) = P({pile}) = 1/2 et on
pose :

— Q = {pile, face}N,

— T = P({pile, face})®N,

_ p — p®N.

Les éléments de () sont des suites infinies de pile ou face.

On définit maintenant une variable aléatoire X : {pile, face} — R par X (pile) =
0, X(face) =1 et on pose pour tout i € N :

1 st w; =pile

Xi((wn)ren) = X(wi) = {0 st w; = face

Soit w = (wk)ren € 2. L’élément wy, de la suite w est le résultat obtenu au jieme
lancer. La quantité Xj(w) vaut 1 si ce résultat est face, 0 si il est égal a pile.
Définissons également

O () = Xi(w) + .+ Xp(w)  X(wr) 4+ X(wa) + ... + X(wy)

n n n

C’est la moyenne des valeurs prises par X au cours des n premieres épreuves.
C’est le nombre moyen de fois ou Face a été obtenu au cours des n premiers
lancers.
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Proposition 7 Les variables aléatoires X; sont indépendantes dans leur en-
semble, identiquement distribuées, intégrables.

Preuve
P(Xo € Ay, ... Xp €A;) = PN{we Q| X(wp) € Ao, ..., X(wy) € Ay})
= P®N(Cx-1(49),..x-1(4n))
= [IP(X'(A)).
=0
De plus, P(Xy € Ag) = P(Cx-1(ay)) = P(X~'(Ap)). Nous avons également
P(X,€A) = PHweQ|w e X 1(4)})

P(Caq,.0x-1(a))
PN(Ca,..0.x-1(4))
(). PQP(X1(4)
= PX7I(4))
D’ou P(Xy € Ao, ..., X, € Ay) = P(Xy € Ap)...P(X,, € A,,) pour tout n € N.
On vient de démontrer que les X; sont indépendants.
On a aussi vu que P(X; € A) = P(X"'(A)). La loi Py, ne dépend donc pas de i
et Py, = Px; pour tout ¢, j. Ceci termine la démonstration de la proposition.

Dans notre exemple, nous avons Py, = %(50 + 01) ce qui implique 1'égalité
BE(X)) = / vdPy,(x) =0x1/2+1x1/2 =1/2.
R

On peut maintenant appliquer la loi forte des grands nombres : pour presque tout
w € €,
#{i <n|w; = face}

n n—oo

»1/2
ou encore
~ . 1 .
PEN({(wi)iew € {pile, face}™ | ~#{i <n|wi = face} ———=1/2}) = 1.

La fréquence d’apparition de face au cours d’'une infinité de lancers est égale a
1/2 presque strement, lorsque la piece est bien équilibrée.

Nous allons démontrer la loi forte des grands nombres a partir du lemme sui-
vant :

Lemme 3 Soit (Y;) une suite de variables aléatoires. Si pour tout € > 0,
o
Y P(lY;] > ¢) < o0
i=1

alors la suite (Y;)ien converge presque surement vers 0 :

pour presque tout w € Q, Y;(w) —— 0.
71— 00
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Le lemme montre que P({w € Q| Y;(w) ——0}) = 1.
1—00

Preuve du lemme
On applique le lemme de Borel-Cantelli. La quantité € étant fixée, on pose

Ai = (Vi > ¢).

Comme Y- P(A;) < oo, presque tout w € {2 n’appartient qu’a un nombre fini de
A;. Notons par C. cet ensemble. Nous avons P(C.) = 1.

VweC, AN N, Vn> N, wé¢ A, et |Y,(w)] <e.
On prend € = 1/k, k € N* et on considere l'intersection des C .

N Ciw, P(C) = 1.

keN*
Pour tout w € C et tout k € N*, le point w est dans (', si bien qu’il existe
N € N tel que pour tout n > N, |Y,(w)| < 1/k. Ceci montre que lim Y, (w) =0,
n—oo
comme souhaité.

Preuve de la loi forte des grands nombres

Pour simplifier, nous allons supposer que les X; sont de carré intégrable dans la
preuve. On donnera une preuve dans le cas intégrable plus tard, dans le chapitre
consacré a la convergence de séries de variables aléatoires.

Nous avons, pour tout i, F(X;) = F(X;). Quitte a remplacer les X; par X; —
E(X;), on peut supposer F(X;) = 0. On dit qu'on centre les variables aléatoires.
On veut montrer que 5= converge presque stirement vers 0. Essayons d’appliquer
le lemme précédent. Rappelons Iégalité & ( 1) = E(X;) =0.

P13 o)< VS V)

g2 g2

> 1
)< g L=

par Bienaymé-Tchebichev.

> S,
P
2 (5
La condltlon du lemme avec Y; = S;/i, n’est pas vérifiée. Remplacons i par 2
Y J—

8) < V<X1) 212

£ ;L

e

La série ) %2 est convergente (sa limite vaut 72/6). Le lemme précédent donne la
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Pour chaque n € N*, on prend i € N le plus grand possible, tel que i*> < n.
L’entier ¢ est égal a la partie entiere de \/n et on a les encadrements :

P<n<(i+1)?*-1, ?<n<i?+2i, 0<n—i*<2<2vn.

=Y X -y Xt Y X,
k=1 k=1 k=i%+1
Sy, S; 1 n
<] ’MZQHXIC’

Pour majorer le dernier terme, on raisonne comme précédemment :

(1 | Z Xk\>g> <— v ( Z Xk)_T;V(Xl)S%V(jl).

n k=i24+1 k=i241

La série > # est convergente. D’apres le lemme,

Le résultat est démontré.

Preuve du corollaire
On applique la loi des grands nombres a la suite (14 o Xj;).

E(lao X)) = BE(Ly1(4) = E(Lxen) = P(X; € A).

S 1 & 1
o LS 14 (Xew)) = = Ak € {1, n} | Xi(w) € A}
noonio n

Cette quantité converge vers E(14 o X;) d’apres la loi forte des grands nombres.

Complément
Donnons une généralisation aisée de la loi des grands nombres qui s’avere utile
en pratique.

Proposition 8 Soit (X;);en une suite de variables aléatoires indépendantes iden-
tiquement distribuées. Soit m € N* et f : R™ — R une fonction qui est
Pix, .. x.,)-intégrable. Alors pour presque tout w € €,

N
% > (X ooy Xim1) ~ BU(Xy e X))
k=1 =
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Preuve

On pose Yy = f(Xy, ... Xp1m—1); les variables Y} ne sont pas indépendantes dans
leur ensemble. Par contre, les variables Y7, Y,,11, Yomi1, Y3mye1... sont indépen-
dantes entre elles. Plus généralement, pour chaque r € {1,...,m}, les variables
(Yiuktr ) ken sont intégrables, indépendantes et identiquement distribuées. On peut
donc appliquer la loi des grands nombres a ces m suites de variables aléatoires et
faire la somme des résultats, ce qui donne

1 mn m
— Z Yy, WZE(YJ
no, i=1

Comme les variables X; sont indépendantes identiquement distribuées, nous avons

E(Y;)=E(f(Xi,.... Xmyiz1)) = [ f(z1,...,2) dPx,(21)...dPx,,,, ,(Tm)
= [ flxy,...,xy) dPx,(x1)...dPx, ()
= FE(f(Xy,...,Xn)).

Ceci montre le résultat pour N multiple de m. Si N n’est pas multiple de m, on
peut l'écrire sous la forme N = mn + ¢ avec 0 < ¢ < m. On remarque alors que
chacun des termes Y,,,1;/n converge vers 0 presque surement quand n tend vers
I'infini, d’apres la loi des grands nombres :

1 n—1
Z Ymk+i) oo E(Y;) — E(Y;) = 0.
k=1

M:(léymﬂ)_”;l(

n ni-

n—1
La proposition s’ensuit.

Application
On revient a ’exemple de pile ou face. Prenons

— Q = {pile, face}*N,
— T = P({pile, face})*N,
- P= (%5pile + %5face)®N~

D’apres la loi des grands nombres,

1 1
— #{ke{l,..,n} |wp = face} — 5  bour presque tout w € €.
n n—00

En particulier, pour presque tout w € €, face apparait une infinité de fois dans la
suite 2. Soit (ay, ..., an) € {pile, face}™. Prenons f = 1y, a,)}- Nous obtenons

E(f(X1, X)) = P(X1=ay,..Xm = an)
= P(X1 = al)P(Xn = am)
= 1/2m.
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Appliquons la proposition précédente.

1 1
- #{ke{l,...n} | (W, oo, Wkrm—1) = (a1, .0, @)} ——— — Pp.s.

n—oo 9m

Notons par (g, ,....q,,) 'ensemble des w € €2 pour lesquels on a cette convergence.
Cet ensemble est de probabilité 1. On en déduit

P( ﬂ ﬂ Q(al,...,am)) =1

MEN* (ay,....am) E{pile, face}™

Presque tout w € (2 appartient a tous les {2, .. q4,,)- Cela signifie que dans presque
toute suite w € €, tous les mots (ay, ..., a,,) apparaissent une infinité de fois dans
la suite w avec fréquence 1/2™, pour tout m € N*.

4.3 Illustration numérique

Pour illustrer la loi des grands nombres, on considere plusieurs suites numériques,
chacune consistant en mille chiffres obtenus de plusieurs facons.

La premiere a été obtenue en lancant mille fois un dé a dix faces.

96391780719553578499210251012733004808010463564311261327775
08710566025337052004044658227328720245496425106045558912359
73442861465840322867693940082489555780545828566845570701093
68630343665893427324354178603820006510716864313685528574097
17123957607983831695855719090328869515960919657877792486192
30816622523848230277347033769426996153764836577986812542498
91757217283321186701201118772422854693468058955802024982731
12400025268292483899233153153865579666899381728443471703321
63023726336377056031889326030432536551740633939798270214886
58399704346937960049924612787510262233542842794088551125312
12268011594548870449945002416018576076521668683525015169808
99910170795377907726081054570919067959412281905433201605383
56391974387450977314225620844679358206959139829553481766952
05847810086680544575138507344413589805372277351865759923877
39179338965823457469270391307645117082577701353674215957790
19285661907973709549767361654186458902349634039250639210527
80483357656373237561356720507209316694679109441467880686

La seconde est obtenue en utilisant un ordinateur et un générateur de nombres
aléatoires.

08483702459203329411307205500931342564246329216899747619022
49175347726723889762570712297649068406530229338485413919276
92717681139746660032768040277917405874869038759770975250162
88637552505982343510776820951805788983703446621354475159293
12457279681711349242192192384063950473619403431443187360073
89059166058422653243904345530057973416979923892501255923656
57556266206121372232898684172179852465634046429334609882244
08439605184080848243502587240402159238546787906659539668713
40702532176278999497987595490554883357769811170004995746809
60283972297230330375335777339197455163664734330082003688571
84755106972716828339169973098620478176720282220493013633595
99610148443736422872488601602161432270570233381180855302088
31891486531558053474405522003058869139125994156209260730079
79791219114311842990721893862490337610988254070152151177463
69146063009140719484471417727705919431951097573892137790456
64324332272107724668241781547214352553800206491957507491156
01026339878675571367879838239809354806954174212966077024
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La troisieme est constituée des mille premieres décimales de .

14159265358979323846264338327950288419716939937510582097494
45923078164062862089986280348253421170679821480865132823066
47093844609550582231725359408128481117450284102701938521105
55964462294895493038196442881097566593344612847564823378678
31652712019091456485669234603486104543266482133936072602491
41273724587006606315588174881520920962829254091715364367892
59036001133053054882046652138414695194151160943305727036575
95919530921861173819326117931051185480744623799627495673518
85752724891227938183011949129833673362440656643086021394946
39522473719070217986094370277053921717629317675238467481846
76694051320005681271452635608277857713427577896091736371787
21468440901224953430146549585371050792279689258923542019956
11212902196086403441815981362977477130996051870721134999999
83729780499510597317328160963185950244594553469083026425223
08253344685035261931188171010003137838752886587533208381420
61717766914730359825349042875546873115956286388235378759375
19577818577805321712268066130019278766111959092164201989

La quatrieme est obtenue en conservant les cing derniers chiffres de deux cents
numéros de téléphone successifs d'un annuaire téléphonique.

41014914015701623748961785122912753510354494191330879078842
30802059152517919833890169642799130952046823169744053392919
4059619027085 7777548423182646035211785649250967585665136917
98057659410685113859654858458955740985510007285594255899055
07397985298029040985100938373840645914493851595615916285676
94154582582172250984277115008654590827715757864245250155691
58504797434597105989592853593154206859227392279404559095948
49401153895826287549585920668364590035730201876568468543756
21759239845099698856442899544151527344899587406192839526845
76295936458039580335935602081891295938685385504368031964239
57856596130505857567589719458989562540698543456794592637926
38453355344980343774389367335686783052857924595608659381541
55820041101907575501499740451439106495263992457597448282138
57757313473130092089973543685437898920989299368661410250574
10563658743911415308546859537843326588222328923628431892758
59160049979486982205544815763176185816589437685776137285324
06019208958553782665752532830679143755719593059587659128

La cinquieme s’obtient en concaténant les nombres entiers dans ’ordre croissant
en partant de un.

12345678910111213141516171819202122232425262728293031323334
35363738394041424344454647484950515253545556575859606162636
46566676869707172737475767778798081828384858687888990919293
94959697989910010110210310410510610710810911011111211311411
51161171181191201211221231241251261271281291301311321331341
356136137138139140141142143144145146147148149150151152153154
15515615715815916016116216316416516616716816917017117217317
41751761771781791801811821831841851861871881891901911921931
94195196197198199200201202203204205206207208209210211212213
21421521621721821922022122222322422522622722822923023123223
32342352362372382392402412422432442452462472482492502512522
53254255256257258259260261262263264265266267268269270271272
27327427527627727827928028128228328428528628728828929029129
22932942952962972982993003013023033043053063073083093103113
12313314315316317318319320321322323324325326327328329330331
33233333433533633733833934034134234334434534634734834935035
13523533543553563573583593603613623633643653663673683693

La sixieme est obtenue en concaténant le nombre d’habitants de chacune des com-
munes de 1’ Ain, ordonnées par ordre alphabétique (2012, Abergement-Clémenciat
— Vonnas) et en conservant les mille premiers chiffres.
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79123914796166011625577583471087393319165356649742243221140
41218753159321189028905686808923845325911936929835054428173
84414747552714643556274831930296230995313421461279372499914
94561124880952593217627427174814854486302010122442119114518
61420812480709644836737368289942193335332141667516673065098
52218191597159167955138146514721771431187209312010945279557
01267546153122425012288710986796255142752721384379176620428
51300145873442742248869882122639547619291027221118179918938
15148754224294332589053652012147420196846081004959149109791
75836122176199980611953621420817406985314605115011917423832
13642217111103353255218920369601179267108127130215662723114
12691127315553888101158126303440643268210943121993225713216
21005102616502459640674131513312487516882214739221559274200
27801816548341124666824767172453910100335132462106625337475
85150616386532548154212895154413826323053659116737123716431
12438101441788505903867801385454502432164173427222315170288
08239222743240765915781802766814833711898444299597760114

La derniere est “faite maison”. On a demandé a une personne de réciter mille
chiffres successivement sans réfléchir. Voila le résultat.

14295784160145333287845244444214554124000000000100200300401
45015945785916740404405567881457914795332524542544422442544
25289567542115724013040246951452342510245679855242545651452
03542354245689105145610501201452414279831214241243911451212
45422149874978425129857642114010142541416999910524142452414
29578416014533328784256897421245448782333541061487592410142
02554302168910715450141245122015201620172018201920245810105
42745621498741452100250414252498765214521042125521516987975
43210590542000000000014297954217985431204217502415497941147
21424344450321021442451895211498724192495129856719249526142
51112131456789104212341259876414243444546474849410424680135
79698124521100024152172101987654321097959895241525100241628
93411142513218675412345679911425052421579421520522412541525
19675122415245687102452714124529875212517987915245216891011
12543521624844420070425179242178912543210280320380264856789
10421724125794152149679847521414251514976215242152494552142
14245234241268934672416522416242592324165003472164219671

Le tableau qui suit donne, pour chacune des suites qui viennent d’étre présentées,
le nombre d’occurrences de chacun des dix chiffres dans la suite ainsi que de
quelques nombres a deux chiffres pris au hasard : 00, 11, 32, 66, 69 et 77.

0 1 2 3 4 5 6 7 8 9 00 |11 |32 |66 [69 |77

11104 | 89 | 98 |107 | 86 |112 |100 |108 | 99 | 97 10 [ 8 |11 |11 |12 |16
2 |107 | 94 |108 {106 | 99 | 92 | 87 (112 | 89 |106 12 {10 {9 |11 |9 |13
3193 |116 |103 |102 | 93 | 97 | 94 | 95 |101 |106 71169 |11 16 |9

48 |82 |80 |87 |96 |164 | 80 | 83 |113 |130 8 |6 [4 |4 |8 |8
5|66 |177 |177 |148 | 77 | 77 | 77 | 67 | 67 | 67 3 |25 (25|65 |5 |4
6 |73 |171 |132 | 95 |104 | 93 | 83 | 83 | 84 | 82 5 |25 (16 |10 | 5 | 3

7192 |161 |167 | 39 |183 |131 | 45 | 61 | 51 | 70 2613|110 0| 410

1 dé a dix faces 5 nombres entiers par ordre croissant
2 générateur de nombres aléatoires 6 nombre d’habitants par commune
3 décimales de 7 7  récitation

4 numéros de téléphone
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Pour les trois premieres suites, les occurrences sont proches des valeurs asymp-
totiques produites par une suite indépendante identiquement distribuée. Chaque
chiffre apparait avec une fréquence proche du dixieme, tandis que les mots de
deux lettres ont une fréquence proche du centieme. On n’est pas surpris que les
deux premieres suites se comportent conformément a la loi des grands nombres.
La question reste ouverte de démontrer qu’il en va vraiment de méme pour la
troisieme suite constituée par les décimales de 7. On ne sait méme pas si tous les
chiffres apparaissent une infinité de fois dans le développement décimal de 7.

Les chiffres 5 et 9 sont sur-représentés dans la quatrieme suite, sans qu’il soit
possible d’en déterminer la raison. On pourrait s’attendre a ce que l'annuaire
produise des valeurs aléatoires uniformément distribuées mais cet exemple ne
permet pas de confirmer cette intuition. Il faudrait une analyse plus fine pour
déterminer si c¢’est I’échantillon qui est particulier ou si un ordre se cache derriere
la répartition des numéros.

La cinquieme suite présente des disparités importantes, avec le chiffre 1 tres
largement représenté tandis que le 0 est peu fréquent. On n’est pas surpris que
le chiffre 1 apparaisse souvent dans la liste des premiers entiers naturels. Le
nombre dont les décimales sont obtenues en faisant la liste de tous les entiers par
ordre croissant s’appelle la constante de Champernowne. On peut montrer que la
fréquence de chacun des chiffres finit par converger vers un dixieme, contraire-
ment a ce que pourrait laisser penser les premiers termes de la suite. De maniere
étonnante, on peut méme montrer que la constante de Champernowne est un
nombre normal : pour tout entier n > 0, tous les mots constitués de n chiffres
apparaissent dans la suite de ses décimales avec une fréquence égale a 107",

La sixieme suite présente aussi des variations importantes avec le chiffre 1 qui
apparait le plus fréquemment. Ce phénomene est parfois observé quand on étudie
des données statistiques concernant des populations humaines et provient de la
croissance exponentielle de ces populations. Il est relié a la loi de Benford. Cette
loi est bien vérifiée par le nombre d’habitants des trente six mille communes de
France et on 'observe déja sur I’échantillon que nous avons considéré.

Finalement, la septieme suite est loin d’étre uniformément répartie, avec le
chiffre 3 sous-représenté tandis que le 4 revient fréquemment. Elle montre a quel
point il est difficile pour un étre humain de simuler le hasard. L’absence de certains
mots de longueur deux est typique dans ce genre d’expérimentation et permet de
repérer aisément les suites qui sont le produit d’une intervention humaine plutot
que d’un procédé aléatoire.
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4.4 Exercices

Dans les exercices qui suivent, (X,),en est une suite de variables aléatoires in-
dépendantes identiquement distribuées et S,, = > 27 Xj.
exercice 1

Xn
On suppose les (X,,) intégrables. Montrer que — — 0 p.s.
n n—oo

Si de plus l'espérance des X, est strictement positive, alors S, %) ~+00.
n oo

exercice 2
On suppose les (X,) de carrés intégrables. Montrer que les suites suivantes
convergent presque strement vers une limite qu’on calculera.

1 1 2 . ¢
=N X? N X, X S X, X, k=1
nk;l k> nz k< E+1, n<n_1> Z R

n 2°
k=1 1<i<j<n Zkzl Xk

exercice 3 1
Soit z € R. Montrer la convergence —#{1 <k <n | Xy(w) < z} % Fx, ().
n n—00

exercice 4
Soit f : [0,1] — R continue. Montrer que la suite

Uy = /01 .../01 f(@) dz,...dx,

admet une limite que I'on précisera.

exercice 5

Soit (pk)k=1., des nombres réels strictement positifs tels que - pp = 1. On suppose
que la loi des X, est donnée par P(X; = k) = p. On considere les variables
aléatoires I1,(w) = Px, (@) PXs(w)---PXn(w)- Montrer que

1 T
— In(TL,) m;pk In(py)  p.s.

exercice 6

On suppose les X, centrés de carrés intégrables. En inspectant la preuve de la

loi forte des grands nombres, montrer qu’on peut trouver v > 0 tel que

nl—a n—o00 0
Xyl 1 !
Montrer 'égalité — = P R — O
ontrer 'égalité 2 Z<k k—i—l) k +n—i—1

k=1

En déduire que la série Y % converge presque strement.



Chapitre 5

Convergence de suites de
variables aléatoires

5.1 Les différents types de convergence.

Les résultats précédents font appel a différentes notions de convergence. On va
préciser ces notions et étudier les relations qu’elles entretiennent entre elles. Rap-
pelons la définition des normes L?, p > 1.

Soit (€2, T, P) un espace probabilisé. Pour p € [1, +00[, la norme L? de la variable
aléatoire Y : 2 — R est définie par

1Yl = ([ 1y apy.

La norme L% de Y est définie par
1Y ]|oo = inf{C > 0|3 Q tel que P(Q) =1 et |Y(w)| <C pour tout w € Q'}

Définition 11 Soient Y,,Y des variables aléatoires définies sur (Q, T, P) etp €
1, +00].
— La suite Y,, converge en norme LP vers Y si

Yo = ¥l =0
— La suite Y,, converge en probabilité vers Y si
Ve>0, P(Y,-Y]|> 5)m>0.
— La suite Y,, converge presque surement vers Y si
pour presque tout w € Q, Y, (w) — Y(w).

— La suite Y,, converge en loi vers Y si

pour toute fonction f: R — R continue bornée, /fdPy" m)/fdPy.

41
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Proposition 9 Soient p,q € R tels que 1 < p < q < 0. On a les implications
CV L®=CV L1=CV L¥ = CV L'= CV en proba = CV en loi.

CV L>* = CV p.s.= CV en proba.
CV L>® = CV en proba = CV p.s. d’une sous-suite.
Remarque
La convergence L? implique la convergence en probabilité. C’est comme cela
que nous avons démontré la loi faible des grands nombres. Celle-ci affirme que S"

converge vers F(Xj) en probabilité, si les (X;) sont indépendantes, 1dent1quement
distribuées. On avait obtenu ce résultat en montrant que V(%) — 0. D’apres
n—oo

la relation suivante, cela est équivalent & la convergence L? :

Sh Sh Sh
v(2)= (2 - (2)f)= 52 - Bt = |22 - o
Démonstration de la proposition

e CV 1= CV LPsip<q.

Démontrons 1’égalité
Y1l < 1Yl

en utilisant I'inégalité de Holder : pour tout p,q > 1 tels que 1/p+1/q =1,
[1vz1ap <y, 121,

On prend Y constant égal a 1 dans cette inégalité, auquel cas ||V, = 1 et
1 Z]]1 < ||Z]|4- Ceci démontre le résultat pour p = 1. Pour p général, on remplace
q par q/p et Z par YP, ce qui donne :

/WM</W%®M

Yl < 1Y 1lq-
o C'V L>® = CV LP.
On a pour presque tout w € Q, |Y(w)| < ||Y||o. En intégrant, on obtient

IYlE = [ @)l dPw) < [ 1Y)z aP = |YIE.

e OV L' = CV en proba
1
C’est une conséquence de l'inégalité de Markov. Si Y, ni—@) Y,

E(Y,~Y]) _ [Ya= Y

& I n—o0

P(lY,=Y|>¢) <
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o OV L® = CV ps.

SiY, %) Y, il existe €' C 2 de probabilité 1 tel que

sup |Y,(w) —Y(w)] —— 0.

weY n—oo

On en déduit, pour tout w € ', ¥y (w) ——¥(w).
e C'V en proba = CV p.s. d'une sous-suite

Nous savons que pour tout € > 0, P(|Y,, — Y| > ¢) — 0.

Pour tout £ € N, on peut donc trouver ny € N aussi grand qu’on veut, tel que
P(|Y,, = Y|>1/k) <1/2* On a alors

S P(|Y,, —Y|>1/k) < oo
k=0

On applique le lemme de Borel-Cantelli : pour presque tout w € €2, hormis pour
un nombre fini d’indices k, |Y,,, (w) — Y (w)| < 1/k. La suite Y,,, converge vers Y
presque surement.

e C'V p.s. = CV en proba
Nous avons les deux conditions suivantes :
= 1(y,—y|>¢)(w) ——> 0 pour presque tout w € Q car |V, (w) — Y (w)| ——0.

— | L(vu-v|>e)| < 1q et 1q est intégrable, ne dépend pas de n.

On peut appliquer le théoreme de convergence dominée :

n—oo

lim P(Y, =Y > &) = lim [ 1y, v dP = [ Jim 14y, e dP =0

L’implication CV en proba = CV en loi sera démontrée dans la suite.

5.2 Fonction caractéristique et transformée de
Fourier

Pour étudier plus en détail la convergence en loi, on va utiliser la notion de fonc-
tion caractéristique d’une variable aléatoire et de transformée de Fourier d’une
mesure de probabilité.

Définition 12 La fonction caractéristique d’une variable aléatoire Y : Q@ — R
est définie par

ovit) = B(e™) = [

™ dP :/ e dPy(y).
Q R
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La transformée de Fourier d’une mesure de probabilité p définie sur la tribu des
boréliens de R est définie par

at) = | e du().

~

On a donc l'égalité ¢y (t) = Py ().

Propriétés

— |y (t)] <1 pour tout t € R,

—ev(0) =1,

—t — py(t) est continue sur R,

— 81 Y est intégrable, alors ¢t — py (t) est dérivable et ¢4 (0) = iE(Y),

—si Y est de carré intégrable, t — py(t) est de classe C? et ©}-(0) = —E(Y?).

La continuité et la dérivabilité découlent des théoremes de continuité et de dériva-
bilité sous le signe intégrable. Par exemple, si X est intégrable, on a la majoration

’%Giﬂ/‘ _ |'iY6itY| < |Y|

ce qui implique ¢} (t) = %(fn ity dP) = fo %eitY dP = [,iVe™ dP.

La loi d’une variable aléatoire est completement caractérisée par sa fonction
caractéristique.

Proposition 10 Deux variables aléatoires qui ont méme fonction caractéristique
ont méme loi : ¢ox = py implique Px = Py.

Ce théoreme est admis et ne sera pas utilisé dans la suite. On passe maintenant
a quelques calculs explicites de fonctions caractéristiques.

Cas discret
La variable aléatoire Y prend un nombre fini ou dénombrable de valeurs yy, k € I,
avec [ ={1,....,n} oul =N.

py(t) = E(e") =>_ " P(Y = yp).

kel

e Loi de Bernoulli de parametre p € [0, 1]

Si Y obéit a une telle loi, P(Y =0) =1—p, P(Y =1) =p. On a alors
oy (t) = e>'P(Y =0) + 1 P(Y = 1),

ey (t) =1—p+pe.

e Loi uniforme sur {1,...,n} , n € N*
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Si Y obéit a une telle loi, P(Y = k) = 1/n pour k € {1,...,n}, ce qui implique
Pr(t) = Ty @P(Y = k) = Tjey L) = et i) (e

1= itn

et =% it ¢ 2nZ.

1
t) == :
er(t) n 1—et

Cas continu
La variable aléatoire Y est associée a la densité fy : R — R, si bien que

P(Y € 4) = [, fv(y) dy.
pv(t) = B(e™) = [ aPe(y) = [ fy(y) dy.

e Loi uniforme sur [a, b], a < b.

oy (t) = fp ™11y (y) dy = 75 [P e™ dy = - [<]0.

eitb _ ita

:m sit#0.

ey (1)
e Loi exponentielle de parametre [ > 0
oy (t) = [ge®™ le7W 1r(y) dy = [;F 1D dy = [1e@=Dv (it — 1)]§>.

o
=t

oy (t)

Remarque on utilise parfois a la place de la fonction caractéristique la notion
de fonction génératrice.

Définition 13 On considére l'ensemble des z € C pour lesquels la fonction z¥
est intégrable. La fonction génératrice d’une variable aléatoire Y est définie sur
cet ensemble par [’expression

2z B(2Y)

Attention, elle n’est pas forcément définie pour tout z € C, la fonction z — 2V
n’étant pas forcément intégrable. Lorsque z = e, elle est bien intégrable et on
retrouve la fonction caractéristique de la variable Y.

5.3 Convergence en loi

Rappelons que Y, converge en loi vers Y si pour toute fonction f : R — R
continue bornée,

/fdPynm/fdPy.
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Définition 14 Soit u, et p des mesures de probabilité définies sur la tribu des
boréliens de R. Nous dirons que p, converge étroitement vers p si pour toute

fonction f: R — R continue bornée, [ fdu, m/fd,u.

La suite Y,, converge en loi vers Y si et seulement si Py, converge étroitement
vers Py. On va relier la convergence en loi a la convergence simple des fonctions
caractéristiques, dans le but de démontrer le théoreme de la limite centrée.

Théoreme 6 Soit p, i1, n € N, des mesures de probabilité définies sur la tribu
des boréliens de R. Les propriétés suivantes sont équivalentes :

- /fd,unm/fdu pour toute fonction f continue bornée,
- /fd,unm/fdu pour toute fonction f C* a support compact,
- /fd,un m/fdu pour toute fonction f de la forme e, t € R.

Le premier point correspond a la convergence étroite des p, vers u. Le dernier
point correspond a la convergence des transformées de Fourier des p,. On en
déduit le corollaire suivant.

Corollaire 3 Soit p, i, des mesures de probabilité définies sur la tribu des boré-
liens de R. Si pour tout t € R, [i,(t) mﬂ(t) , alors p, converge vers p
étroitement.

Soit (Y,,) une suite de variables aléatoires. Si pour toutt € R, vy, (t) ——— @y (t),

. n—o0
alors 'Y, converge versY en loi.

Rappelons que f : R — R est a support compact 8’1l existe A > 0 tel que f est
nulle hors de [—A, A]. Un exemple de fonction C*° & support compact est donné

par
1

f(l') = e_m 1[_171]<LE).

0.
0.4
0.
0.2

0.1
! | | !

‘1 -(;.5 -0~\lI 0T5 i
Pour démontrer le théoreme, nous allons avoir besoin de la formule d’inversion
de Fourier. Soit f : R — R une fonction intégrable par rapport a la mesure de
Lebesgue. Sa transformée de Fourier est définie par

o = [ e ) dr.

On montre que cette fonction est continue en appliquant le théoreme de continuité
sous le signe intégral.
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Théoréme 7 (formule d’inversion de Fourier) Soit f une fonction C* a
support compact. Alors

1

f(x) = —/ e f(t)dt  pour tout x € R.
2m JR

La preuve du théoreme est donnée en annexe, sous des hypotheses un peu plus
générales. La formule d’inversion de Fourier implique la relation suivante entre u
et sa transformée de Fourier.

Corollaire 4 Soit u une mesure de probabilité définie sur la tribu des boréliens
de R et f: R — R une fonction C* a support compact. Alors

[ 1) duta 2/fﬁ

Preuve du corollaire
[t auto) = [ 5= [ e fde duta)
= o [ [ e dute) a
= o [ ([ eauto)

= o [0 o)

Ici on a utilisé le théoreme de Fubini pour intervertir les deux intégrales. Pour
justifier "emploi de ce théoreme, remarquons que U'intégrale [[g2 [ f(¢)| du(z) dt
est finie :

| [1ef@lan@ydt = [ an@) [ 1F01de= [ 170)]dt < .
La preuve est terminée.

On commence par démontrer que [ fdu, — [ fdu pour toute f C'*° a support
compact si fi,(t) — [i(t) pour tout ¢t € R.

D’apres le corollaire précédent,

[ @y dunte) = 5 [ 7
[ @) dutr) = 5~ [ Fioyi

Il suffit d’appliquer le théoreme de convergence dominée pour conclure :

[ 70 @y dt—— [ (0 ate) e

n—oo
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L’emploi du théoreme de convergence dominée est justifié ici car fi, (t) — a(t)
n—oo

pour tout ¢ € R par hypothese et f [, est majorée par f qui est intégrable.

On cherche a présent a démontrer que si [ fdu, — [ fdu pour toute fonction
C* a support compact, il en va de méme pour toute fonction continue bornée.

Lemme 4 Pour tout € > 0, il existe A > 0 tel que pour tout n € N,
n([FA,A]) > 1 —e.

Une suite de mesures de probabilité qui vérifie cette propriété est dite tendue.

Preuve du lemme
Soit g une fonction C* telle que

e 0<g<1,
e g=1lsur[-A+1,A—1],
e g=0sur[-A, A —A —A41° A-1 A

Fixons € > 0. Comme p([—A+1,A—1]) - 1(R) =1, on peut choisir Ay tel
—00
que pu[—Ag+ 1,4 —1] > 1—¢.

fin([—Ao, Ao]) = /gdﬂnm/gdu > p([-Ag+ 1,4 —1]) > 1—=c.

On peut donc trouver ng € N tel que pour tout n > ng, p,([— Ao, Ag]) > 1 — €.

De plus, pour chaque k € {0,...,np}, on peut trouver un ensemble Ay tel que
pr([— Ak, Ax]) > 1 — e. Pour tout A supérieur a max{Ay, ..., An,}, on a

Vn €N, u,([-4,4])>1—e¢.
Le lemme est démontré.

Soit f continue bornée. Sur [—A—2, A+2] , on peut approcher f uniformément
par une fonction C* en faisant appel au théoreme de Stone-Weierstrafi ou en
convolant avec une fonction C'*°. Cette approximation peut étre prolongée en
une fonction C'*° a support compact définie sur R tout entier en la multipliant
par une fonction de classe C*°, comprise entre 0 et 1, qui vaut 1 sur [—A, A] et 0
hors de [-A — 1, A 4 1]. Pour tout € > 0 on peut donc trouver f C> & support
compact telle que

sup [ f(2) — f(a)] <e.

z€[—A,A]
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On veut montrer que | [ fdu, — [ fdu| est inférieur a & pour tout n suffisamment
grand. On décompose comme suit :

[t = [ gdn| < |[ fgn— [ Fgun|+| [ i~ [ Fau|+| [ Fee— [ s
e Comme f est C* & support compact, fj:cgun — [ fdu. On peut trouver
N € N tel que pour tout n > N, | [ fdu, — [ fdp| < e.
o | [ fdun— fdu,| < f[—A,A] |f = fldun + f[_A,A}c |f = fldpn

< e pn([=A, A]) + (supg | f| + supg |f]) ([ A, A]%)

< e+ (supg | f| + supg |f]) .
Cette majoration est valide pour tout n € N.
e Le terme | [ f — f du| se majore de la méme facon.

Finalement, on remarque que sup|f| < sup|f| + ¢ < sup|f| + 1 sur R par
construction. On a donc, pour tout n > N,

[ Fdun = [ Fau| < @+ 250 1)) 2.
Le théoreme est démontré.

Proposition 11 Soient p,, @ des mesures de probabilités définies sur la tribu
des boréliens de R. On suppose que ., converge étroitement vers j. Alors pour
tout a, b € R tels que p({a}) =0 et u({b}) =0, on a

pin([a; b)) ——=—= n([a, ]).

n—oo

De méme, pour tout x € R tel que p({x}) =0,
(i, +00]) ——> ([, +00))
(] = 00, 2)) —— (] — 00,2]).

Appliquons cette proposition a une suite de variables aléatoires.

Corollaire 5 Soient (X,,),en et X des variables aléatoires définies sur un espace
probabilisé (Q, T, P) telles que X,, converge en loi vers X. Alors pour tout a,b € R
tels que P(X =a) = P(X =b) =0,

De plus, les fonctions de répartition des X,, convergent vers la fonction de répartition
de X en tout point x € R tel que P(X =x) =0 :

Fx, (v) —— Fx(x) st P(X =x)=0.

n—o0
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Remarque On peut démontrer que la convergence des fonctions de répartition
en tout point z tel que P(X = z) = 0 est en fait équivalente a la convergence en
loi de la suite X, vers X.

Preuve

Il s’agit d’approcher 11, par des fonctions continues bornées. Soit h,, la fonction
continue bornée, affine par morceaux telle que :

® hy =1sur ja+ = b— L],

e h,, =0 hors de [a, b].

e la pente de h,, vaut m sur [a,a + =] et —m sur [b— =, b].

Soit g,, la fonction continue bornée, affine par morceaux, telle que

e g, = 1sur [a,bl,

® g =0hors de [a — =, b+ L],

e la pente de g,, vaut m sur [a — -, a] et —m sur [b,b+ .

P A

aat+i b-21p a—2L a b b+ L

m m m m

F : \ - : : -
‘ Ll >

Nous avons la majoration 0 < gp, — hm < 1j_1 a7+ 15 1,14 sl bien que

m’

o [ tun (- bt M) ea(p- Lo 2)

Ce dernier terme converge vers u({a}) + pn({b}), quantité qui est nulle par hy-
pothese. Fixons ¢ > 0 et choisissons n € N tel que [ g, — hydp < €.

La suite p, converge vers p étroitement et h,, < 1y < gm, nous avons donc
pour tout n suffisamment grand,

/hmd/i_gg/hmd/inglun([avb]) S/gmdﬂng/gmdﬂ"'_g-

Nous avons aussi, en vertu des inégalités h, < 1y < gm et [ gm — hmdp < e,

/gmdu—e < /hmdu < u(la, b)) < /gmdu < /hmdu+e,
ce qui donne le résultat recherché :

M([a’a b]) —2 < Mn([av b]) < :u([av b]) + 2e.

On termine ce chapitre par la preuve d’un résultat énoncé précédemment.
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Théoreme 8 Soit X,,, X des variables aléatoires. Si X,, converge vers X en
probabilité, alors X,, converge vers X en loi.

Preuve
Soit f : R — R C* a support compact. Par le théoreme des valeurs in-
termédiaires, pour tout x,y € R,

(@) = f)l <suplf] |z —yl.
On veut montrer que la différence [ fdPx, — [ fdPx tend vers 0 quand n — oo.

| [ fdPx, — | fdPx]|
| [ f(Xn)dP — [ f(X)dP|

< [If(Xn) = f(X)|dP
< Jixxpss [ (Xn) = FXO[AP + [ix, —x|<s |[(Xn) = f(X)]dP
< 2supg |f| P(| X — X| > 9) + supg | f'| 6.

Comme X, converge vers X en probabilité, P(|X;, — X[ > §) ——0.
Pour tout € > 0, on choisit § telle que sup | f'| § < /2. Il existe alors N € N tel
que pour tout n > N,

9
P(IX, — X|>08) < ——
{ >9) 4supg |f]

ce qui implique | [ fdPx, — | fdPx| < €. Le théoreme est démontré.
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5.4 Exercices

exercice 1
Montrer qu’une suite de variables aléatoires (X,,) converge en loi vers zéro si et
seulement si les lois Py, convergent étroitement vers la mesure de Dirac en zéro.

exercice 2
Soit ¢ une fonction C! & support compact et X une variable aléatoire. Montrer que

_ /R Fx(t) g'(t) dt

Soit (X,,) une suite de variables aléatoires telle que Fx, (x) converge vers Fx(z)
pour tout z satisfaisant P(X = z) = 0. Montrer que X,, converge en loi vers X.

exercice 3
Soit (€2, T, P) un espace probabilisé. On considere sur 1’ensemble des couples de

fonctions mesurables de 2 dans R 'expression d(X,Y) = E(lf‘();:'/‘)

Montrer que cela définit une distance si on identifie les fonctions qui coincident
presque partout. Montrer que la convergence relativement a cette distance est

PN e d(Xy, X) —— 0.

équivalente a la convergence en loi : X, ——

exercice 4
Soit (A;) une suite d’événements indépendants dans leur ensemble.

— Montrer que 14, LObm> 0 si et seulement si P(A;) — 0.

— Montrer que 14, —> 0 si et seulement si la série Z P(A;) est convergente.

€N
exercice 5
Etudier la convergence en loi des suites (X,,),en+ suivantes :
- P(X,=1+3)=3=P(X,=1-1).
- P(X,=0)=1-1 et P(X,=1)=1
— X, de loi uniforme sur {0, le, = "T_l, 1}.
exercice 6

Soit S, , une variable aléatoire qui obéit a une loi binomiale de parametres n, p.
— Calculer la fonction caractéristique de .S, ,. Cette fonction est notée ¢y, ,.

— La suite ¢,, 1 converge-t-elle simplement lorsque n tend vers +oo?

~ Calculer la fonction caractéristique de la loi de Poisson de parametre A > 0.
— Que peut-on dire de la suite Sm% ?

exercice 7
Soit (X,,) et (Y,,) deux suites de variables aléatoires et a € R. Montrer que

loi . . proba
X, ———a si et seulement si X,
n—oo n—oo

X, nl_%)X et Yn%)() implique X, +Y, %)X.



Chapitre 6

Théoreme de la limite centrée

Pour démontrer le théoreme de la limite centrée, nous allons utiliser la caractéri-
sation de la convergence en loi par le biais des fonctions caractéristiques. On
commence par calculer la fonction caractéristique de la loi normale.

6.1 Fonction caractéristique de la loi normale

Théoreme 9 Soit Y une variable aléatoire qui obéit a une loi normale centrée
normalisée (m = 0,0 = 1). Sa densité est donnée par fy(y) = \/%e_?ﬂﬂ et sa
fonction caractéristique vaut

py(t) =e "2
Preuve
Par définition, ¢y (t) = Jp eity\/%_ﬂ e V2 dy.
On sait que e = 3,2 Zty) pour y € R. Remplacons dans I'intégrale précédente.
/ ity ,~y*/2 g / Zty e Y2/2
ee dy
R R =0

+o0 it k B
.
k=0 '

_Z k:' / k—y/2dy

Pour justifier l’mterverswn signe somme intégrale, il faut vérifier que la quantité
1\
Jr 220 |%6y2/2| dy est finie.

o0 k; OO0
/ —*/2 Z |ty\ /+ e~V /2yl dy < +00.

23
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1l faut maintenant calculer Iy = [ y¥e™¥ 22 dy.

Lorsque k est impair, la fonction y — y*e~y%/2 est une fonction impaire, si bien
que son intégrale est nulle : 5,1 = 0 pour tout [ € N. Pour k pair, k = 2/ , on
fait une intégration par partie pour obtenir une relation de récurrence.

Iyyo = / Y lye v 2 dy = [P (—e V)T 4 / 20+ 1)y%e v 2dy = (2041) Iy

Nous savons que Iy = [g e‘yz/Zdy = /2m, si bien que
Iy =(20-1)(2l —3)..3 x 1 x V2.
La quantité I est divisée par (20)! dans 'expression de la fonction caractéristique.

Iy (20— 1)(20 —3)...1
(20! (20)(20 — 1)(21 — 2)(21 — 3)...1

(21 )..2\/%

V2r

Nous pouvons calculer ¢y :

1 . 2 iy Iy 2
t e /eltyefy /2d — E 'lt 21 j : _ ,t /2

La formule est démontrée.

6.2 Théoréme de la limite centrée

Théoréme 10 Soit (2, T, P) un espace probabilité, (X, )nen une suite de va-
riables aléatoires indépendantes, identiquement distribuées, de carrés intégrables
et de variance non nulle. On pose S, = > X;. Alors la loi de la variable
aléatoire /A
n /Sy
— — E(X,
%)~ EC)

converge étroitement vers une loi normale d’espérance nulle et d’écart-type 1. En
particulier, pour tout intervalle [a,b] € R,

P<a < &i)(s— —E(Xo)) < b) — \/%_W/abe_”&gﬂdx.
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Remarque
L’événement ci-dessus peut s’écrire comme suit :

(0 228 - BXG0) <b) = (25(5 - B(X)) € [a,1)
o(X o(X
— (E(XO) +a (\/ﬁo) < %2 < B(Xo) + 0 (\/50))
,tL\;%J) tg(\j%)>
e —
B(X,) — 25 E(Xo) B(Xo) + 1272

Lorsque n est grand, la probabilité que S—; soit dans l'intervalle

B o(Xo) o(Xo)
E(X)) t\/ﬁ L E(Xo) +t NG

est proche de \/Lz_w It e 2dy.

e Pour t = 1,96, - [*, e /2dx = 0, 95.
e Pour t = 2,58, \/% I, e~ 2dy = 0, 99.

Il y a donc a peu pres 99% de chance, lorsque n est grand, d’avoir une moyenne
empirique = dans l'intervalle [E(XO) — 2,58 2500 B(X,) +2,58 2501 .

Il est d’usage de noter la convergence des lois d'une suite de variables aléatoires
Y,, vers la loi normale de parametres m, ¢ comme suit :

y
Yo S Nm.o?)

Dans le cas ou les X; sont indépendantes identiquement distribuées d’espérance
nulle et d’écart-type égal a un, le théoreme de la limite centrée peut se résumer
comme suit :

Sn loi
— 1).
T o MO

Preuve du théoréeme
Quitte a remplacer les X; par X; — E(X;), on peut supposer que les X; sont
centrées : F(X;) = 0. Quitte a diviser par o(X;), on peut aussi supposer que
o(X;) = 1. On veut montrer que la loi de % converge vers la loi normale. 11 suffit
donc de montrer que

—t2/2

s (t) ——se
\/ﬁ n—oo

% pour tout ¢t € R.

Calculons :
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= H E( N ) par indépendance,
it

3

k=1
Xo\™ . .
= E(e\/_ 0) car les X; sont de méme loi,
n

_ t

- on(3)"
Pour calculer la limite de cette expression quand n tend vers 4+oo , on fait un
développement limité. Comme X, est de carré intégrable, oy, est C? et on a :

Ox,(t) = /ez‘txodp, @, () = /iXO X0dP, Gy (1) = /_Xg ¢t Xogp

pxo(0) =1, ¢y, (0) =iE(Xy) =0, %, (0)=-E(Xg)=~1.

D’apres la formule de Taylor, ¢x,(z) = 1— %2 +a? go(x), avec g9(x) — 0 lorsque
x — 0. Ceci implique :

(t) = <t)n_(1 t2+t2€(t))n
(ps_\/% — PXo N on ' on om0
2 2 t 2 2 t 1 1 t2 1
1 1—— — = _— — B — — B — = —— B —
" n( on + neo(\/ﬁ)) n( on + néfo( n) + nEl( n)) 2 & n)’

Le théoreme de la limite centrée est démontré.

6.3 Illustration numérique

Nous allons illustrer le théoreme de la limite centrée a l'aide des graphes des
fréquences de la suite S,,.

Soit X une variable aléatoire discrete. Le graphe des fréquences de X corres-
pond au graphe de la fonction x — P(X = x), ou = varie parmi les nombres réels
tels que P(X =) > 0.

Considérons le lancer d'un dé a six faces, modélisé par une variable aléatoire
X qui suit une loi uniforme sur l'ensemble {1,2,3,4,5,6} : P(Xo = k) = 1/6
pour k entier compris entre 1 et 6. On répete le lancer n fois, n € N*, ce qui se
décrit par une suite de variables aléatoires X, ... X,, indépendantes entre elles et
ayant meéme loi que Xy. On pose S,, = > 1_; X. Voici les graphes des fréquences
de Xy et S5 = X + Xo.
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On calcule le graphe des fréquences de S,, pour tout n par récurrence en utilisant
la formule

P(Sni = k) = 32 P(Xoi1 = DP(Sy = k — 1)

ou la somme porte sur 'ensemble des valeurs [ que prend X, 1. Si n est suffi-
samment grand, le graphe des fréquences devrait se rapprocher d’une gaussienne,
pour peu qu’il soit convenablement renormalisé. Dans les figures qui suivent, on
s’est restreint sur l'axe des abscisses aux valeurs de k qui sont a moins de trois
fois I’écart-type de l'espérance de 5,,.
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Des n = 5, on voit les probabilités s’ordonner selon la fameuse courbe en cloche,
dont la densité est donnée par la gaussienne.

Il est intéressant de regarder ce qu’on obtient lorsqu’on part d’une loi qui

présente plusieurs maxima. Prenons pour Xy la loi P(X, = k) = % pour k
compris entre —10 et 10. Le graphe des fréquences de X est ci-dessous.
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La gaussienne met plus de temps a apparaitre. Les premiers graphes présentent

des oscillations qui s’amortissent quand n devient grand.

Un autre cas intéressant est donné par une loi fortement dissymétrique. Con-
sidérons un X, pour lequel

P(Xo=1)=0,95
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Comme nous pouvons le voir sur ces graphiques, la dissymétrie est encore présente
pour n = 100. Cet exemple doit donc inciter a la prudence quant aux valeurs de
n pour lesquelles I'approximation donnée par la loi normale est pertinente. Il est
d’usage en statistique de faire cette approximation des que n = 30, mais cela
n’est pas toujours valide en pratique.
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6.4 Exercices

exercice 1
Soit X} une suite de variables aléatoires indépendantes suivant chacune une loi
de Poisson de parametre un. Quelle est la loi de la somme 37y <<, Xz ?

Considérons pour chaque n € N* une variable aléatoire Y,, suivant une loi de
Poisson de parametre n € N*. Montrer que

Yn —n loi
— 0,1).
\/ﬁ n— 00 N( ’ )

exercice 2

Soit Y, Y, et Z,, des variables aléatoires telles que Y,, converge en loi vers Y et Z,
converge presque surement vers une constante ¢ € R. Montrer que Y,,Z,, converge
en loi vers ¢Y. Indication : Y, et Z, sont tendues.

Soit (X, ),>1 une suite de variables aléatoires indépendantes identiquement
distribuées, de carrés intégrables, centrées. Montrer que

ixk/(ixg)w —— N(0,1),

k=1 k=1
exercice 3
Soit (X,)n>1 une suite de variables aléatoires indépendantes identiquement dis-
tribuées, positives, de carrés intégrables et telles que E(X,) = 1, o(X,) = 1.
Montrer que

2150 V) s N0
exercice 4

Soit (X,,) une suite de variables aléatoires indépendantes, S,, = >.p_; Xj. Etudier
la convergence en loi de S,,/0(5,) dans les cas suivants :

- P(Xy=Vk)=PXy=-Vk)=1

CP(Xy = k) = P(X, = —k) = L

~P(Xp=5)=PXi=-7)=3 -

~ P(Xi = a;) = P(Xy = —ay) = 1, olt (ax)ren~ est bornée et > aj = +oc.
exercice 5 k=t

Soit ¢ la fonction caractéristique d’une variable aléatoire réelle X non constante.
On suppose que ¢ est réelle et positive.

— Montrer que ¢(t) = [ cos(tz) dPx(x).

— Montrer que pour tout u € R, cos(u ) — “7 5—4
— Montrer la minoration pour t € R : 1= f 117 ( 1— t2 ’ ) dPx(z).
— Montrer qu’il existe > 0 et e > 0 tels que pour tout t € ]—46,4[, |g0( )| < 1—et?

— En déduire que pour tout p > 2, la fonction ¢t — e " n’est la fonction ca-
ractéristique d’aucune mesure de probabilité.
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Chapitre 7

Espérance conditionnelle

Nous allons introduire un nouveau concept pour mesurer I'indépendance de deux
variables aléatoires ou d’'une variable aléatoire et d’une tribu.

7.1 Définition de la notion d’espérance condi-
tionnelle

Définition 15 Soit (2, T, P) un espace probabilisé, X : Q@ — R wune variable
aléatoire intégrable et F C T wune tribu. Alors il existe une unique fonction
intégrable E(X | F), appelée l'espérance conditionnelle de X sachant F, qui
satisfait les deux conditions suivantes :

- E(X | F) est F-mesurable,

— pour toute variable aléatoire Y qui est F-mesurable bornée,
E(E(X|F)Y)=EXY).

L’unicité est a comprendre “presque partout”. Deux fonctions qui satisfont les
conditions précédentes sont égales presque partout.

Définition 16 La probabilité conditionnelle d’un événement A C ) relativement
a la tribu F est la fonction définie par

PA]F)=E@14|F).

Attention, P(A | F) est une fonction définie presque partout sur €2. Il n’est pas
garanti qu’il y ait, pour presque tout w € {2, une mesure de probabilité p,, définie
sur 7 telle que p,(A) = P(A | F)(w).

63
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Preuve de l’existence de E(X | F)
On commence par le cas olt X est de carré intégrable. L’espace L2(Q, T, P) est
muni d'un produit scalaire :

(X,Y) = /XYdP — B(XY).

On a donc une notion d’orthogonalité et de projection orthogonale. Considérons
le sous-espace fermé L?(), F, P) constitué des fonctions de carré intégrable qui
sont F-mesurables. L’espérance conditionnelle de X est la projection orthogonale
de X sur ce sous-espace. Cette projection orthogonale appartient au sous-espace
si bien que F(X | F) est F-mesurable. C’est la premiere condition.

La variable aléatoire X — E(X | F) est orthogonale & tous les éléments Y de
L*(Q,F,P):
(X =BEX|F),Y)=0

Autrement dit, E(X — E(X | F)) Y) = 0. C’est la seconde condition. Ces deux
conditions caractérisent de maniere unique la projection orthogonale.

On peut généraliser cela aux variables aléatoires positives. Soit X > 0, on pose
X; = min(X, ). La variable aléatoire X; est borné donc de carré intégrable et X
converge en croissant vers X. On va vérifier dans la suite que E(X; | F) est une
fonction positive et que la suite E(X; | F) est croissante. On définit alors

E(X | F) = lim B(X; | F) € [0,+00].

En utilisant le théoreme de convergence croissante, on montre que E(X | F)
satisfait les conditions voulues pour tout Y > 0.

Pour les variables aléatoires intégrables, on les écrit comme différence de va-
riables aléatoires intégrables positives, pour lesquelles on a vu comment définir
I’espérance conditionnelle.

Le passage du cadre L? au cadre des variables aléatoires positives puis inté-
grables est justifié par les propriétés de 'espérance conditionnelle qui vont étre
détaillées apres les exemples qui suivent.

7.2 Exemples

Tribu associée a une partition finie

On considére une partition finie (E;);=1., de Q :

o=UE
i=1

— E; N E; = ¢ pour tout 4, j tels que ¢ # 7.
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— P(E;) # 0 pour tout i.

On peut associer a cette partition une tribu

={UE|S5c{l,...n}}.

€S

C’est ’ensemble des parties de 2 qui peuvent s’écrire comme union d’éléments
de la partition.

Proposition 12

B(X | Fw) = 2

E(X1g) e
) IPIOEDY (P(Ei) EiXdP) 1p,(w)

P(A| F)(w)=>_ P(A| E)1p,(w)

i=1
avec la notation P(A | B) = Pg(‘g])g).

On a donc P(A | F)(w)=P(A| E;) siw € E;.

Preuve de la proposition

On montre que la variable aléatoire > Tli)l g, satisfait les deux propriétés qui

définissent 1’espérance conditionnelle.

Commencons par vérifier que toute fonction F-mesurable est combinaison
linéaire des fonctions indicatrices des F;. Pour cela, montrons qu’une telle fonc-
tion f est constante sur chacun des E;. Soit x, y € E;, ensemble f~'({f(x)}) est
dans F et contient x, il contient donc F;. Le point y € E; est dans cet ensemble,

par conséquent f(y) = f(z).

L’espérance conditionnelle E(X | F) est F-mesurable, nous venons de voir
qu'elle est de la forme E(X | F) = > ¢xlpg,, ou les ¢ restent a déterminer.
On utilise la deuxieme propriété définissant I’espérance conditionnelle en prenant
Y = 1p, pour un certain ¢.

EEX|F)Y) = E(Xalp)ls)
= E(culg,)
E(XY) = FE(X1g).

B;) s
mm haité.
PE) co e souhaité

Ces deux expressions sont égales, ce qui donne ¢; =

Le cas d’un espace produit

On considere I'espace produit 2 = 7 x €25 muni de la probabilité P = P, ® P,
et la tribu F = {A x Qs | A C O }. Vérifions quune fonction f est mesurable
par rapport a F si et seulement si elle ne dépend que de la premiere coordonnée.
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Soit (wy,ws) € Q; posons f(wy,ws) = t. Nous avons (wy,ws) € f1({t}) € F. 1l
existe donc A C Q; tel que f~1({t}) = AxQy. Le résultat (w, ws) est dans A x Qy
et w; est dans A. Pour tout w € s, (wy,w) appartient & A x Qo = f71({t}), si
bien que f(wi,w)=1t= f(wy,ws).

Calculons 'espérance conditionnelle d’une variable aléatoire X relativement a
la tribu F.
Proposition 13 E(X | F)(w1) = [ X (w1, w2) dPsy(ws).

Preuve
Nous savons que E(X | F)(wy,ws) est de la forme f(w;) pour une certaine fonc-
tion f par F-mesurabilité. On doit avoir de plus pour tout Y : Oy — R

EEX|F)Y) = [fw)Y(w)dPi(w)dPs(ws)
= [ [(w)Y (wi) dPi(wr).

Ceci doit étre égal a E(XY) = [ X(wy,w2)Y (wy1) dPi(wy) dPs(w2). Nous avons
donc I'égalité, pour tout Y,

[ 1@)Y @) dPi(wn) = [([ X (@i w2)dPs(wa))Y (@) dPy ()

ce qui implique f(w;y) = [ X (w1, ws) dPs(ws).

7.3 Propriétés de ’espérance conditionnelle

L’espérance conditionnelle jouit d’un certain nombre de propriétés proches de
celles de I'intégrale. Soient X, Y deux variables aléatoires intégrables ou positives
et F une tribu.

Proposition 14

-E(X |{0,Q})=F(X), EX|T)=X, EQ|F)=1.

- E(E(X | F)) = E(X).

- 51 X est F-mesurable, alors E(X | F) = X.

- 81 X est indépendante de F, alors E(X | F) = E(X).

— Linéarité : pour tout A€ R, EQX +Y | F) = E(X | F)+EY | F).
— Positivité : si X >0 alors E(X | F) > 0.

— Monotonie : si X <Y alors E(X | F) < E(Y | F).

— Pour tout Y F-mesurable, positive si X est positive, bornée si X est intégrable,

E(YX | F)=YE(X | F).
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- Si X est dans LP et 1 < p < oo, alors |[E(X | F)l, < | X]|,-
- Si F1 C Fa, alors

E(E(X|]—“1)|]-"2):E(X|]—“1),
E<E<X‘f2)‘fl):E<X‘fl)'

Preuve

Toutes ces propriétés sont d’abord démontrées pour des variables aléatoires de
carré intégrables en utilisant le fait que 'espérance conditionnelle est une pro-
jection orthogonale. Elles sont ensuite généralisées aux variables aléatoires posi-
tives par un argument de convergence croissante, et enfin aux variables aléatoires
intégrables en les décomposant comme différence de deux fonctions croissantes
intégrables.

— La variable E(X | T) est la projection de X sur L*(Q2, T, P), cette projection
est égale a l'identité. Pour E(X | {g,}), toute fonction mesurable relativement
a la tribu {g, Q} est constante. La variable E(X | {9,}) est donc constante.
Prenons Y = 1, nous avons E(E(X | F)) = E(X), cette constante vaut donc
E(X).

—Si X est F-mesurable, X est dans L?(Q, F, P), elle est donc égale a sa projection
sur L2(Q, F,P): E(X | F) = X.

— Si X est indépendante de F, elle est indépendante de toute variable aléatoire
Y F-mesurable. Nous avons alors

B(E(X|F)Y)=E(XY) = BE(X)E(Y) = E(E(X | F)) E(Y).
Prenons Y = E(X | F) qui est bien F-mesurable. Nous avons
E(B(X | F)?) = E(B(X | F))’
ou encore V(E(X | F)) = 0. Ceci montre que F(X | F) est constante p.s. En
conséquence, F(X | F) = E(X).
— Linéarité : c’est la linéarité de la projection orthogonale.

— Positwité : soit X > 0; on prend Y = 1(g(x|F)<0)-
E(E(X | F)Y) = E(EX | F) LpxF<g) <0

E(XY) = B(X1( >0

E(X|]—')<O)) =
Ces deux expressions sont égales, elles sont donc toutes les deux nulles, ce qui

implique E(X | F) 1(E(X|f)<0) = 0 p.s. et par conséquent E(X | F) >0 p.s.
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— Monotonie : soit Y, Z tels que Y > Z. D’apres le point précédent,
EY|F)—EZ|F)=EY -Z|F)=>0.

— Soit Y F-mesurable. La fonction YE(X | F) est aussi F-mesurable. De plus
pour tout Z F-mesurable,

E(ZYE(X | F)) = E(ZYX)

car ZY est F-mesurable. La fonction Y E(X | F) satisfait donc les deux propriétés
caractérisant F(Y X | F) et nous avons ’égalité

EYX | F)=YE(X | F) pas.
— Soit F; C Fa. La fonction E(X | 1) est Fo-mesurable si bien que
E(E(X | F) | F)=EX|F).

Démontrons Iégalité E(E(X | F) | F1) = E(X | Fy).

La fonction E(E(X | F2) | .7:1) est Fi-mesurable. De plus, pour tout Y Fi-
mesurable, Y est a la fois F; et Fo-mesurable et d’apres la propriété précédente,

E(YE(E(X|F2)|F1)) = E<E(E(YX|f2)|f1))
= E(E(YX|F))
E(Y X)

Ce sont les deux propriétés qui caractérisent E(X | Fy).

La majoration de la norme L” de E(X | F) découle de l'inégalité de Jensen,
qui fait 'objet de la proposition qui suit.

Proposition 15 (Inégalité de Jensen) Soit (0, T, P) un espace probabilisé,
X : Q — R une variable aléatoire et ¢ : R — R wune fonction convezre. On
suppose que X et p(X) sont intégrables ou positives. Alors

go(E(X | .7:)) < E((p(X) | .7-") presque surement.

Preuve
Une fonction convexe est continue, admet des T
dérivées a gauche et a droite en chaque point
et on a l'inégalité pour tout =, xy € R,

(@) > (o) + ¢ (z0)(z — x0)

ol ¢’ (zp)est la dérivée a droite en . Le graphe /
de ¢ se trouve au-dessus de ses tangentes. -
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Appliquons cette inégalité pour x = X (w) et g = E(X | F)(w).
p(X) Z @(B(X [ F)) + ¢\ (BE(X | F))(X = E(X | F))

On prend maintenant ’espérance conditionnelle des deux termes de cette inégalité.

E(p(X) | F) 2 B(p(BCX | F) | F)+B((X-BX | F)g, (B(X | ) | F)

Les fonctions go(E(X | .7:)) et ¢, (E(X | .7:)) sont F-mesurables si bien que
E(¢(E(X | F) | F) = o(E(X | 7).

B((X—BOX | P)e, (BX | 7)) =6, (BX | F)B(X-B(X | F)| F) =0
L’inégalité est démontrée.

Exemple
Les fonctions = +— |z|, © — €*, z + |z|P pour p > 1 sont convexes. Appliquons
'inégalité de Jensen a la fonction = — |z|P.

[E(X | AP < E(XP[F).
Utilisons la monotonie de 1'espérance :
IE(X | F)Ip = E(IE(X | F)P) < E(BE(X)”| F)) = E(X]") = | X].

Nous avons démontré l'inégalité recherchée entre la norme LP d’une variable
aléatoire et celle de son espérance conditionnelle.

7.4 Conditionnement relativement a une variable
aléatoire

On commence par associer a toute variable aléatoire X une tribu dont les éléments
sont composés d'union de lignes de niveau de X.

Définition 17 Soit (0, T, P) un espace probabilisé, X : Q@ — R wune variable
aléatoire. La tribu associée a X, notée Tx ou &(X), est définie par :

Tx =&(X) = {X YA) € T| A borélien de R}

Proposition 16 Une variable aléatoire Y : Q0 — R est Tx-mesurable si et seule-
ment si il existe une fonction f: R — R borélienne telle que

Y =foX.
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Preuve
Si Y = f(X), pour tout A borélien, I'ensemble Y ~'(A) = X~!1(f71(A)) est bien
dans Tx.

Soit Y une variable aléatoire Tx-mesurable. Montrons que Y est de la forme
f(X) pour une certaine fonction f borélienne.

e Traitons le cas ou Y est étagée :
n
Y = ZCilAm Az c TX.
i=1

Pour chaque i, on peut trouver un borélien B; C R tel que A; = X 1(B;).

Y = Zcilel(Bi) = ZCilBi oX = (Z Ci]-Bi) oX
La variable aléatoire Y est bien de la forme h o X avec h = ¢;1p,.

e Passons au cas ou Y > 0. On peut 'approcher de maniere croissante par une
suite de fonctions étagées (Y),)nen qui sont Tx-mesurables, donc de la forme
h,, o X. Nous avons :

Y,=h,oX < (suph,)o X =sup(h,oX)=supY, =Y

Comme Y,, converge vers Y, on en déduit Y = (sup, h,) o X et Y est bien une
fonction de X.

e Toute variable aléatoire Ty-mesurable peut s’écrire comme différence de deux
fonctions Tx-mesurables positives de la forme ho X. La proposition est démontrée.

Nous somme en mesure de définir I'espérance conditionnelle d’'une variable
aléatoire relativement a une autre variable aléatoire.

Définition 18 Soit XY deuz variables aléatoires définies sur ). L’espérance
conditionnelle de Y relativement a X, notée E(Y | X), est définie par

E(Y | X)=E(Y|Tx)
Soit A € T. La probabilité conditionnelle de A relativement a X est définie par
PA|X)=FEQ1a|X)=FEQa| Tx).

La fonction E(Y | X) est Tx-mesurable. Elle peut donc s’exprimer comme une
fonction de X. Cette fonction est notée E(Y | X = x). C’est 'espérance de YV
sachant que X a pris la valeur x et on a pour P-presque tout w € €2,

E(Y | X)(w)=E(Y | X = X(w)),
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P(A| X)(w) =P(A] X = X(w)).

Notons que 'espérance conditionnelle E(Y | X = x) est une fonction de R dans
R qui est définie Px-presque partout. De fait, deux fonctions f et g sont égales
Px-presque partout si et seulement si foX et goX sont égales P-presque partout,
d’apres la formule de transfert.

On peut exprimer E(Y | X) en fonction de la loi du couple (X,Y"). Rappelons
que cette loi est donnée par la formule

Pixy)(A) = P((X,Y) € A) = P({w € Q| (X(w), Y (w)) € A})
pour tout sous-ensemble borélien A C R?. La mesure Pxy) est une mesure de

probabilité définie sur la tribu des boréliens de R?. Elle est dite & densité si on
peut trouver fyy : R* = R, d’'intégrale un sur R?, telle que

Pixy)(A) = /A fxy(z,y)dedy, ACR>

Soit g : R — R une fonction borélienne telle que g(y) est positive ou intégrable.
L’espérance conditionnelle E(g(Y) | X) est uniquement déterminée par le fait
qu’elle est Tx-mesurable et qu’elle satisfait 1’égalité

E(E(g(Y)| X) Z) = E(g(Y) 2)

pour tout Z Tx-mesurable, ¢’est-a-dire pour tout Z de la forme f(X). La fonction
x— E(g(Y)| X = x) est donc uniquement déterminée par la relation :

[ 1@ Bg(¥) | X =2)dPx(@) = [ 1(X) ()P = [ J(z) g(y) APy (2,0).
Cas d’une loi P xy) a densité

Cherchons a donner une expression pour l'espérance conditionnelle dans le cas a
densité. Lorsque P(xy) admet une densité fxy, la loi Px admet la densité

- /RfX,Y(%y) dy.

En remplacant dans ’expression précédente, on doit avoir pour tout f : R -+ R
borélienne bornée,

/f Y)[ X =z) /fXY z,y)dy d:z:—/f /g(y)fxy(:c,y)dy)dx.

Comme cette relation doit étre vérifiée pour toute fonction f, on en déduit la
proposition suivante.
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Proposition 17 Soit X, Y deux variables aléatoires telles que le couple (X,Y)
admette une densité fxy et soit g : R — R une fonction borélienne positive ou
Py -intégrable. Alors, pour Px-presque tout r € R,

Jr9W) [xy(z,y) d?/.

BlyN) | X =) = Jr fxy(z,y) dy

Cas d’une loi Px discreéte

Etudions maintenant le cas ou P(X = xy) > 0 pour un certain z5 € R, ce qui se
produit par exemple si X est une variable aléatoire discrete. Prenons pour f la
fonction indicatrice du singleton {xo}. Nous avons la relation :

P(X =x20)E(g(Y) | X =x0) = [y E@(Y)[X =x)d
= Jog(Y(w)) Lx=ap)(w) d
= Jix=s) 9(Y (w)) dP(w).

On retrouve I'expression habituelle de I'espérance conditionnelle pour les variables
aléatoires discretes.

Proposition 18 Soit X, Y deux variables aléatoires et g : R — R une fonction
borélienne positive ou Py-intégrable. Pour tout x € R tel que P(X = x) > 0,

EgM) Ix=n) 1

Blo(V) | X =) = =5 O = o /(MW) dP.

On termine par une formule qui permet de calculer la probabilité d'un événement
a partir des probabilités conditionnelles.

Proposition 19 Soit X une variable aléatoire, A € T et I C R un intervalle
ou un borélien de R. Alors

P(ANX (1)) = /IP(A | X = ) dPx(2),

P(A) :/ P(A| X = 2)dPx(x).
R
Ces formules découlent des égalités

JTEQQa | X =x)dPx(z) = E(lixenE(la|X))
= FE(l(xer1a)
= PAN(X e)).
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Généralisation a n variables
Les considérations précédentes se généralisent a un nombre quelconque de va-
riables aléatoires.

Définition 19 Soient X4, ..., X,, des variables aléatoires définies sur 2. La tribu
engendrée par les X; est notée Tx, . x, ou&(Xy, ..., X,).

.....

Tx,...x, = S(Xy, ... X,,) = {(Xq, ...,Xn)’l(A) | A C R" borélien}

On pose

.....

On démontre comme précédemment que toute fonction Ty, x,... x,-mesurable est
de la forme f(Xi,Xs,...,X,) ou f : R® — R est borélienne. On a donc une
fonction (z1,...,z,) = E(Y | Xj = x1,..., X, = x,) définie de R™ dans R qui,
composée avec (X1, Xo, ..., X,,), redonne E(Y | X1, Xo, ..., X,).
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7.5 Exercices

exercice 1
On considere un espace probabilisé (€2, T, P), une tribu F C T et deux événements
A e T, F e F. Montrer la formule suivante :

Jp P(A| F)dP

PF]4) = Jo P(A| F)dP

Quelle formule obtient-on lorsque F est associée a une partition [ F; = Q7

exercice 2
Soit X une variable aléatoire de carré intégrable. Montrer que F(X?| X+1) = X2

exercice 3
Soit X : 2 — R, une variable aléatoire positive définie sur (2,7, P) et F C T
une tribu. Montrer que presque strement, X > 0 implique E(X | F) > 0.

exercice 4
Soit X, Y deux variables aléatoires telle que le couple (X, Y") suit une loi uniforme
sur le disque unité : fxy(2,y) = = 1p(a® +y?). Calculer E(X?|Y).

exercice 5
Soit X une variable aléatoire de densité fx. On considere sa valeur absolue | X].

— Montrer que |X| admet la densité fix|(z) = (fX(x) + fX(—:zc))lR+ (x).

fx (@) + 9(=2) fx (=)
fx () + fx (=)

- Montrer que E(g(X) | |X| =) = g(z)

exercice 6
On considere une variable aléatoire suivant une loi exponentielle de parametre .
Sa densité est donc donnée par : f(z) = A e 1 oo((2)

— Pour s,t > 0, calculez P(X >t) et P(X >t+s| X > s). On dit que la loi
exponentielle est sans mémoire.

— Montrer que cette propriété est aussi vraie pour une variable aléatoire discrete
suivant une loi géométrique de parametre p.

exercice 7
Soit X une variable aléatoire de carré intégrable définie sur (Q2,7,P), F C T
une tribu et un nombre réel ¢ > 0. Montrer que P(|X| >t | F) < E()iij\f)

exercice 8
Soit X une variable aléatoire de carré intégrable définie sur (2,7, P) et F C T
une tribu. On définit la variance conditionnelle de X relativement a F comme
suit :

V(X |F)=EX*|F)-EX|F)?

Montrer que V(X) = E(V(X | F)) + V(E(X | F)).



Chapitre 8

Théorie des martingales

Pour obtenir des théoremes de convergence pour les séries de variables aléatoires
indépendantes, nous allons introduire le concept de martingale.

8.1 La notion de martingale

Définition 20 Soit (2, T, P) un espace probabilisé, F, C T des tribus, n € N.
On dit que les F,, forment une filtration si elles constituent une suite croissante
pour l'inclusion : F,, C F,41 pour tout n € N.

Une suite de variables aléatoires (M,) est dite adaptée a la filtration F,, si M,
est F,-mesurable pour tout n € N.

La suite (M,)n,en est une martingale relativement a la filtration F,, si

— les M, sont intégrables,

— la suite (M,) est adaptée a F,,

- E(M,+1 | Fn) = M, pour tout n € N.

Si la filtration F,, n’est pas spécifiée, on prend F,, = Tar,.,... ., -

Lorsque la suite est composée de fonctions de carrés intégrables, la variable M,

s’obtient en projetant orthogonalement M, sur L?(Q, F,). Montrons que la
projection de M, 1, k > 0, sur L*(2, F,,) est aussi égale & M,,.

Proposition 20 Pour tout k > 0, E(M,.x | Fn) = M,.

Cette proposition se démontre par récurrence sur k. Supposons la vérifiée pour
k > 0 et démontrons la pour k£ + 1. Comme F,, C F 1k,

E(Mn—i—k—f—l | -Fn) - E(E(Mn+k+1 | ]:n-i-k) | ‘Fn) = E(Mn—I—k | ‘Fn) = M,.

La proposition est démontrée.

75
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Donnons quelques exemples de martingales.

Premier exemple

Soit (X )ren une suite de variables aléatoires indépendantes entre elles et centrées
(E(X,) = 0 pour tout n € N). Posons S,, = X; + X5 + ... + X,,. Alors la suite
(Sn)nen est une martingale relativement a la filtration F,, = Tx, x,... x,-

Preuve
La variable aléatoire S,, est bien intégrable et JF,,-mesurable.
E(Sn+1 | fn) - E(Sn—H | Xl, ,Xn)
= EX,u1+ S| Xy, X0)
== E(XnJrl ‘ Xl,,Xn)—FE(Sn | X17...,Xn)
= E<Xn+1) + Sn
= S,

C’est la relation voulue.

Remarquons qu’on a 1'égalité Tx, x,.. x, = Ts,.5,....s, car les X; s’expriment en
fonction des S; et réciproquement. La suite (S,,) est une martingale aussi bien
par rapport aux (X;) quaux (.5;).

Second exemple
Soit M une variable aléatoire intégrable et (F,,) une filtration. La suite

M, = E(M | F,)

est une martingale.

Preuve
E(Myy1 | F) = B(E(M | Fopr) | Fo) = BE(M | F) = M,

Troisieme exemple
On considere sur I'espace €2 = [0, 1], muni

. 271
de la mesure de Lebesgue, les fonctions

Mn<$) =2" 1[071/271[(1').
2= 1
2m—1
E k+1
On prend pour F,, la tribu associée a la partition [0, 1[= H [Q—n, Qin {
k=0
La suite (M,,) est une martingale relativement a la filtration F,.

Preuve .
Les fonctions M,, sont intégrables : / | M, (x)| dx = 1.
0
La variable aléatoire M,, est mesurable relativement a la tribu F,, car elle est

constante sur chacun des éléments de la partition associée a F,,. On a vu précédem-
ment une formule explicite pour I’espérance conditionnelle relativement aux JF,,.
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Notons [, = {2%, %[ e Fn.

M,11
E(M,,, | F,) Z “ fk> 1, = QnE(2"+11[

[) 1;, = 2"1;, = M,.
k

1
07 on+1

La suite M,, satisfait bien les propriétés qui définissent les martingales.

Quatrieme exemple
Voici un autre exemple en lien avec les jeux de hasard.

Proposition 21 Soit (M,),en une martingale et (Hy,)nen une suite de variables
aléatoires telle que H,, est F,,_i-mesurable pour tout n > 1. On suppose que H,
est bornée pour chaque n € N. On pose Gy = 0 et

Gn = Z Hm<Mm - Mmfl)

Alors (Gp)nen est une martingale.

Preuve

E(Guyi | Fo) = B(ZP Hn(Myy, Mm 1| Fn)
= E(Hpp1(Mpyr — M) | Fo) + BT Hy (M, — M) | Fr)
- Hn+1E(Mn+1 - Mn | ‘Fn) ( n | ]: )
= G,

De plus G,, est bien F,,-mesurable et GG,, est intégrable.

Prenons (X,,),en+ une suite de variables aléatoires indépendantes identique-
ment distribuées telle que P(X,, = —1) = P(X,, = 1) = 1/2 et définissons

n
My=0, M,=> X, H =1,
i=1
o, = {QHnl s% X, 1=-1
1 sinon.

Il s’agit ici de modéliser une succession de mises a la roulette. On suppose que
rouge et noir sortent chacun avec probabilité 1/2. La variable X,, vaut 1 si le
joueur gagne au tlrage n et vaut —1 sinon. La quantité H, est la mise engagée
par le joueur au pieme tirage, elle est fonction des résultats observés au cours des
précédents tirages. Dans la martingale classique, le joueur double sa mise s’il a
perdu au tirage précédent ; sinon il mise 1 euro. La valeur G,, représente le gain
(ou la perte) a I’étape n. Notons Fj la fortune initiale du joueur. Apres avoir joué
n fois, sa fortune vaut F,, = G, + Fy. C’est une martingale.

Proposition 22 Soit M,, une martingale. Alors

E(M,) = E(M,_,) = ... = E(M,) = E(M,).
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Preuve
E(M,) = E(E(M,41 | Fn)) = E(M,41) pour tout n € N.

Dans l'exemple précédent, nous avons E(F,) = E(F,). Le joueur ne peut pas
augmenter I'espérance de sa fortune par une stratégie H,, judicieuse.

8.2 Convergence des martingales

On va montrer qu’une martingale est convergente des qu’elle est bornée en norme
L2
Définition 21 Une martingale (M,,) est dite bornée dans L? si il existe C' > 0

telle que pour tout n € N, || M,l|ls < C.

Théoréme 11 (convergence L?) Toute martingale bornée dans L* converge
au sens de la norme L? et presque strement : il existe une variable aléatoire M
de carré intégrable telle que

1.2
M, —— M,

n—o0

M, —22 5 M.

n—o0

Remarque On a alors M,, = E(M | F,). On peut montrer que ce théoreme se
généralise & LP pour p €]1, o0l.

Preuve de la convergence >
Posons Y; = M; — M;_ si bien que

M, =Y"Y; + M.

=1

Vérifions que la famille des Y; est orthogonale. Comme M,, est une martingale,
EY; | Fii1) = E(M; | Fica) + E(Mi 1 | Fioq) = My — M;_1 =0
La variable Y} est F;_;-mesurable pour tout j <4, ce qui donne
(Yi,Yj) = E(YiY)) = E(E(Y; | Fie1) ;) = E(0) = 0.
On a donc :

iE(Yf) - E(Z Y2) = B((M, — Mo)?) = EQM2) — E(ME) < C.

Cette série a termes positifs est bornée, elle converge. Elle est donc de Cauchy.
On en déduit que la suite M; est aussi de Cauchy pour la norme L? :

I3, — Mol = B, - M) = B(( X %)) = 3 B0

i=m+1 m+1



8.2. CONVERGENCE DES MARTINGALES 79

pour n € N et m > n. La série 3> E(Y}?) étant de Cauchy, la derniére somme est
inférieure a ¢ des que m et n sont suffisamment grands. La suite (M,,) est bien
de Cauchy pour la norme L?, elle converge donc.

Pour démontrer la convergence presque stire, on utilise le lemme suivant :

Lemme 5 (inégalité maximale) Soit (M, )n,en une martingale. Alors pour tout
N € N et tout A > 0,

) < E(va)'

P(max |M;] > A 2

0<i<N

Preuve du lemme
On s’intéresse au premier indice pour lequel la martingale dépasse .

Ag = (|Mo| = A)
Ay = (Mo] < M 3,] > 2)
Aj = (|M0| < )\, ceey |Mj_1| < )\, |M]| > )\)

Nous avons alors
N
(max [M;] > A) = ]T 4;.
0<i<N :
J=0
Cherchons & minorer E(MZ1,4,) en insérant le terme M; dans le carré.

E(MR1a,) = E(My — M;)?14,) + E(M? 14,) + 2E((My — M;)M;1,,).

Le premier terme a droite de 1'égalité est positif, tandis que le second terme est
supérieur & E(X*1y4;) car M; est supérieur a X sur A;. Vérifions que le dernier
terme est nul en utilisant le fait que M,, est une martingale :

E(MyMjla,) = E(E(MyM;jla, | Fj)) = E(M;1a, E(My | Fj)) = E(M;14,M;)

car M; et 1,4, sont F;-mesurables. On en déduit £((My—M;)M;1y,) = 0 comme
souhaité. Au final,

E(MR14,) = N E(14,) = N>P(4;).
On conclut en faisant la somme pour j allant de 0 a n.

E(ME) > E(MZY. 1)) = XP([] Aj) = NP(max [Mi] > A).

Preuve de la convergence presque sure
On a vu que pour tout € > 0, il existe N tel que pour tout m,n > N

E(M, — M,,)?) < e.
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On peut donc construire par récurrence une suite croissante n; telle que ng = 0
et

E((Mm - Mni—l)Q) < 1/2Z

Soit n € N et ¢ le plus grand entier tel que n; < n. Nous avons ’encadrement
n; < n < n;y1. Décomposons la martingale M,, comme suit :

M, = (M, — M,,) + Z(Mng — M,,_,) + M.

j=1

Appliquons l'inégalité maximale & la martingale M, = M,in,, N=mn,41 —n; et
A= %2 :
Mni+1

1/i?

P( max |[M, - M,|>1/i®) < B

n;<n<n;t1

La série de terme général i?/2° converge, on peut appliquer le lemme de Borel-
Cantelli : presque strement, pour 7 assez grand,

1
max M, — M,,| < - ——0.
i

n<nniiq i—00
En particulier, pour n = n;,; et ¢ supérieur a un certain ¢y € N dépendant de w,

1

- M,,| < =

| M,

nit1

La série s | M,y — My,| < 324, 1/4% est de nature convergente, ce qui montre
que la série 3° M,,, ., —M,,, est absolument convergente. Le théoreme est démontré.

8.3 Séries de variables aléatoires indépendantes

Le premier résultat que nous pouvons déduire du théoreme de convergence des
martingales bornées dans L? est un critére pour la convergence presque stire d une
série de variables aléatoires indépendantes.

Corollaire 6 Soit (X;) une suite de variables aléatoires indépendantes centrées
(E(X;) = 0 pour tout i) et de carrés intégrables. On suppose que

> V(X;) < oo

1€EN

Alors la série 3. X; converge presque sirement et en norme L?.
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Preuve
Nous avons vu précédemment que sous les hypotheses du corollaire, la suite S,, =
> X; est une martingale. Remarquons que l'espérance de .S,, est nulle :

~ Y B(X

Sa variance est donc égale au carré de sa norme L? que nous évaluons comme
suit :

15,3 = B(S?) = V(S,) = vé X)) = iwxi) < ivo@).

La martingale S, est bornée dans L?, elle converge presque siirement et dans L.

Exemple
La série harmonique > % est divergente. La série alternée ) % est convergente.
Qu’en est-il lorsque nous choisissons les signes des termes de la série de maniere
aléatoire ?

Proposition 23 Soit (¢) une suite de variables aléatoires indépendantes iden-
tiquement distribuées telles que

.. €k A
Alors la série Z ? converge presque surement.
k

Cela se déduit du corollaire. Il suffit de remarquer d’abord que E(%) = 0 puis
que

Vi{— — Vier) = ')
kz::l (%)= Z k:2 (€) 2 2
Comme exemple d’une telle suite de variables aléatoires, on peut prendre

1
Q={-1,1}°N  P=(:

25_1 + %51)®N’ Ei((xk)keN) = ;.

On a alors

P({(%’)ieN € ‘ > % converge }) =1.

k>1

On se pose maintenant la question générale de la convergence d’une série > X;
lorsque les X; sont indépendantes entre elles. Le théoreme suivant est du a A.
Kolmogorov.



82 CHAPITRE 8. THEORIE DES MARTINGALES

Théoréme 12 (théoréme des trois séries) Soit (X;);en une suite de variables
aléatoires indépendantes entre elles. Posons Y; = X;1(x,|<1). Alors la série 3° X,
converge presque surement si et seulement si les trois séries suivantes convergent :

- Y P(Xi| > 1),
- Y E(Y),
- V(Y).

Preuve

Ce théoreme se déduit du corollaire précédent. On se contente de démontrer que
la convergence des trois séries implique la convergence presque stre de > X;.
Comme Y- P(|X;| > 1) converge, nous pouvons appliquer le lemme de Borel-
Cantelli : pour presque tout w, il existe ig tel que pour tout i > ig, | X;(w)| < 1.
On a alors Y;(w) = X;(w). Les séries 3- X; et 3 Y; sont donc de méme nature.

Posons Y; = Y; — E(Y;). Comme > E(Y;) converge, il suffit de démontrer la
convergence presque stre de S Y;. Les Y; sont centrées et leur variance est égale
a celle des Y; :

IYill3 = V(¥;) = V(Y)).

On sait que la série 3° V(Y;) = X V(Y;) converge. Le corollaire s’applique, la série
> Y; est convergente presque stirement et le théoreme est démontré.

Complément

Donnons une preuve de la loi des grands nombres dérivée des théoremes précédents
et valide pour toute suite de variables aléatoires (X, ),en indépendantes identi-
quement distribuées intégrables.

Yk)

On considere les variables Y, = X;1(|x,|<x). Montrons que la série - est

convergente.

>

k>1

E(Yy)
L2

S X
=> k,g/ 7" 1acnydPlx, (1) = /0 (Z@l{kzx}) 7 dP x| (2)-

E>1 k>1

La somme qui apparait sous l'intégrale dans le dernier terme est majorée par
23 1 k% pour x € [0,2]. Pour x > 2, on effectue une comparaison série-intégrale.

<2

o
hd Ldr <
Zk21{k>$} Z//~c1752dt /x1t2dt_

E>1 L=

Nous avons de plus V(Y — E(Y3)) = V(Yi) < E(Y?), si bien que la série
ZV(Y‘“ () est convergente. La série 3 ﬂ
rement, en vertu du théoreme vu precedemment

converge donc presque si-
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De maniere générale, pour toute suite (z) telle que 3° % converge, la moyenne
% > xy, converge vers (. Cela découle de la formule suivante
n % 1.
- Z (Z )=y Y
(i =t oI

qui se démontre en intervertissant les deux signes sommes. On en déduit

Z (Ve — E(Yy)) ———= 0.
Par convergence dominée, la suite E(Yj) = [a1fg<idPx,(r) converge vers

E(Xp). I en va donc de méme pour + 3> E(Y},). Il reste a remarquer que

o0

gjpm # Xi) = > P(Xol 2 k) = | f: Lipsa) APl (@) < [ @ dPlxy(x) < o0

D’apres le lemme de Borel-Cantelli, pour presque tout w, les suites Xy (w) et Y (w)
coincident & partir d'un certain rang et la différence + 3~ X (w) — £ 3 Vj(w) tend
vers 0. Le résultat est démontré.

8.4 Convergence des espérances conditionnelles

Théoreme 13 Soit (2, T, P) un espace probabilisé et F,, C T une suite de tribus
croissante pour l'inclusion telle que T soit engendrée par tous les F,,. Alors pour
tout X : 2 — R de carré intégrable,

E(X | F,) —— X presque siirement et en norme L*.
n—oo
Remarque Ce théoreme est encore vrai si X est juste intégrable, on a alors
convergence presque siirement et en norme L.

Preuve

On a vu précédemment que la suite E(X|F,) est une martingale. On sait aussi
quelle est bornée dans L? : ||E(X | F)ll2 < [| X ||

Elle converge donc presque sirement et en norme L2, notons X sa limite et
montrons que X = X. Soit ng € N et n > ng.

On a donc pour tout ng € N et A € F,,, E(X — X | F,,) = 0. Ceci implique :
/AX—XdP:E(1A(X—)?)):E(1AE(X—X|Fn0)):0.

On en déduit que X = X en posant A = Unen Fn et en appliquant le résultat
d’intégration suivant.
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Proposition 24 Soit (2,7, P) un espace probabilisé, Y : Q — R intégrable,
A C T une algébre de parties de T. Si [, YdP = 0 pour tout A € A, alorsY =0
presque strement.

Donnons deux applications du théoreme de convergence précédent. Notons
T(x,, k>N) OU & (X, k > N) la tribu engendrée par toutes les variables X, k > N.

Théoréme 14 (Loi du 0-1 de Kolmogorov) Soit (X)ken une suite de va-
riables aléatoires indépendantes et

A€ (] Toxren):
NeN
Alors la probabilité de I’événement A vaut 0 ou 1 : P(A) € {0, 1}.
Preuve

Pour n € N, I'événement A appartient a la tribu 7 x, x>n+1)- Il est donc indépendant
de Xy, X1, ..., X;,. On en déduit

P(A) = P(A]| X, ..., X,.).

Les tribus F,, = Tx,,..x, sont croissantes et engendrent 7 = 7(x, r>0). On peut
appliquer le théoreme précédent en se plagant sur I'espace (2, F, P) :

P(A) :P(A | XOa---aXn) :E(]-A | fn)mlfl p.S.

On peut donc trouver w € € tel que P(A) = 14(w) € {0, 1}.

Exemple
Soit (X, )nen une suite de variables aléatoires indépendantes et A = {w € Q |
k>0 X converge}. On peut écrire A sous la forme suivante, pour tout N € N :

A={we Q]| > X converge} € T(x, k>N)-

k>N

D’apres la loi du 0-1, I’événement A a pour probabilité 0 ou 1. Par conséquent, ou
bien pour presque tout w € 2, la série - Xj(w) converge, ou bien pour presque
tout w € Q, la série Y- Xy (w) diverge.

Posons S,, = >°1_; Xi. Par le méme raisonnement, I’ensemble
{w € Q] la suite (S5, (w))nen+ est bornée}

a comme probabilité 0 ou 1. De fait, N étant donné, la suite (S, (w)),>1 est bornée
si et seulement si la suite (37_y Xk(w))n>n est bornée et cette derniere suite ne
dépend que de X pour k > N.

Comme autre application, montrons qu’on peut approcher presque partout
toute fonction de carré intégrable définie sur [0, 1] par des fonctions en escalier
explicites.
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Proposition 25 Soit f € L*([0, 1[,dx). Alors

on_1 k1
n " p.s.
> (2 /ﬁ fe)de) L g < f
k=0 PIg
Preuve 2n—1
On prend pour F,, la tribu associée & la partition [0,1] = J] [2, 5. Onavu
précédemment que k=0
o1 k1
BUINF) =3 (2" ), f@)dw) 1y s
k=0 b

De plus, les intervalles de la forme [2%, %[, n € Netke{0,..,2"—1}, en-
gendrent la tribu des boréliens. Le théoreme précédent montre que E(f | F,) — f

p.s. et en norme L2.

Complément
Une martingale (M,,) est dite bornée dans L! §'il existe C' > 0 tel que pour tout
n € N, ||M,||y < C. On peut montrer qu'une telle martingale converge presque
slirement mais on n’a pas forcément la convergence en norme L.
Cette convergence a lieu en norme L' si et seulement si (M,,) satisfait la condi-

tion suivante :

sup E(|Mn| 1jag,123) =—— 0.

neN A—00
Une suite de variable aléatoires (M,,) qui satisfait cette condition est dite équi-
intégrable.

Voici un exemple d’une telle suite. Considérons une variable aléatoire X inté-
grable et F,, une filtration. Alors la suite E(X | F,,) est une martingale équi-
intégrable. C’est une conséquence du calcul suivant.

Jueximaey [EX T FI AP < [ipqx) zosy EUX] | Fn) dP
B(x|| Fzx [ X dP
Juxizvm 1X1dP + VXP(E(X|| F.) > )

B(x))
Joxpvn XTdP + =3

ININIA
-5

La premiere inégalité provient de la majoration |E(X | F)| < E(|X]| | F) et
de la croissance de la fonction z +— x1,>). La derniére majoration provient de
I'inégalité de Markov.

Comme application, on peut montrer que la suite E(X | F,,) converge vers X
aussi bien en norme L' que presque stirement lorsque les F,, engendrent toute la
tribu T et que X est intégrable.
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8.5 Temps d’arrét

Définition 22 Soit (F,,) une filtration. Une variable aléatoire 7 : 2 — N U{oo}
est un temps d’arrét relativement a la filtration F,, si l’événement (T = n) est
dans F,, pour tout n € N.

Remarque
On a alors (1 < n) € F, pour tout n € N car

(r<n)= ] =k e | Fu=Fu

0<k<n 0<k<n
Théoréme 15 Soit (M,,) une martingale et T un temps d’arrét. On pose

(n AT)(w) = min(n, 7(w)),

Alors (My,n,) est une martingale.

Remarque
Considérons un résultat w € Q pour lequel 7(w) est fini. Nous avons

B Mn(w) sin S T(w)
Mpr (W) = {M’T(UJ)(W) sin > 7(w)

Nous voyons que si 7(w) < oo, la suite (Mp,rr)(w) est stationnaire, c’est-a-dire
constante a partir d'un certain rang. La suite (M, )nen converge sur I’ensemble
(1 < o0) vers la variable aléatoire w +— M,(,)(w), notée M,. Sur I'ensemble
(T = 00), elle coincide avec la suite (M,,).

Exemple

On revient a 'exemple de la fortune F,, d’'un joueur qui joue au casino. On a
vu que c’est une martingale et que E(F,) = E(F}). Le joueur peut-il augmenter
I’espérance de sa fortune en s’arrétant de jouer au bon moment ?

Reprenons 'exemple de la martingale consistant a doubler la mise si on est per-
dant. Plutot que de jouer un nombre de fois n fixé, le joueur décide de s’arréter au
premier gain s’il y a effectivement un gain qui se produit au cours des n tirages.
La variable

7(w) = min{k € N* | Xj(w) =1}

est un temps d’arrét :
(7— = TL) = (Xl = _17 ---aXn—l = _17Xn = 1) € TXl,...,Xn-

La fortune du joueur est maintenant égale a F),,,. C’est une martingale, nous
avons donc E(F,n,) = E(Fyrr) = E(Fy) = Fy. On ne peut pas améliorer les
gains par cette méthode.
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Preuve du théoréme
On pose H,, = 1(;>,). Cette fonction est J,_;-mesurable :

(r>n)=(r<n)=(r<n-1)€F, 1

Posons G, = Y0 1 Hy (Mo, — Mp—1) = 301 Lner) (M, — Mp—1).
Nous avons
Gpw) = Mw(w)— My(w) si n>r71(w),
= M,(w) — My(w) si n<7(w).
ce qui montre que G,, = M,»» — My et nous avons vu plus haut que G,, est une
martingale.

8.6 Illustration par une marche aléatoire

On se donne une suite de variables aléatoires (Xj)ren+ indépendantes identique-
ment distribuées telle que

P(X,=1)=P(X; = —1) = 1/2.

Posons S, = Yj_; Xj. La suite (S,(w)),,cn st ici interprétée comme un dépla-
cement sur I’ensemble des entiers Z. L’entier S,,(w) correspond a la position de
la marche au temps n, en considérant que nous sommes a l’origine au temps 0.

11
2 2
FN/N

-3-2-1 0 1 2 3 4 5
Si nous sommes a la position S,, au temps n, nous avons une chance sur deux de
nous déplacer d’un pas vers la droite au temps n + 1, et une chance sur deux de
nous déplacer d'un pas vers la gauche :

P(Sn+1 == Sn+1) :P(Xn+1 = 1) - 1/2,

On parle ici d’'une marche aléatoire symétrique sur Z.

—a eee —1 0 1 9 e b

Voici une présentation imagée de cette marche aléatoire et des problématiques as-
sociées. Un individu passablement éméché se déplace sur un chemin, de réverberes
en réverberes, de maniere aléatoire, avec probabilité 1/2 de partir vers la gauche
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ou la droite a chaque étape. Sa maison se trouve en —a, le bar en b avec a,b € N*.
Deux questions se posent :

- Parviendra-t-il & atteindre sa maison ou a retourner au bar ?

- Quelle est la probabilité qu’il atteigne la maison avant le bar?

Théoreme 16 Presque sirement, la marche atteint —a ou b :

P{weQ|3IneN"tel que S, = —a ou S,, =b}) = 1.

_b

La probabilité que la marche atteigne —a avant b est égale a — -

b
a+b

P({w|3dn € N* tel que —a < Sg(w) < b pour tout k < n et S,(w) = —a}) =

preuve
Posons 7(w) = inf{k € N* | S, = —a ou Sy = b} si la suite (S5,(w)) atteint
effectivement —a ou b et 7(w) = +o0 sinon. Cette variable aléatoire 7 est un
temps d’arrét a valeurs dans N U {oo}. La preuve du théoreme se fait en deux
temps. On commence par vérifier que 7 est fini presque stirement :

P(r <o0) =1.

La variable aléatoire w +— S;(,)(w) est alors bien définie, on la note S-, elle ne
prend que les deux valeurs —a et b. On montre ensuite que cette variable est
d’espérance nulle :

E(S;)=0.
On a alors le systeme de deux équations
{ P(S;=—-a) + P(S;=b) =1
—aP(S.=—-a) + bP(S;,=b) = E(S;)=0

qu’il suffit de résoudre pour trouver la probabilité P(S, = —a).

Montrons que 7 est fini presque stirement. On a vu précédemment que I’événement
{w e Q] lasuite (S,(w)),cn- €st bornée}

a pour probabilité 0 ou 1. C’est une conséquence de la loi du 0-1. On veut montrer
que cette probabilité vaut 0. Si cela n’est pas le cas, pour presque tout w € €, la
suite (S, (w)) est bornée, ce qui implique

Sn(CU) O,

\/ﬁ n—r00

et pour toute f continue bornée, par convergence dominée,

J1aPsy = [ H(SE@)dPe) = [ 10)aP = (0 = [ i
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La suite S—’;L converge en loi vers la mesure de Dirac en zéro, ce qui contredit
le théoreme de la limite centrée. La suite n’est pas bornée, elle atteint —a ou b
presque sturement.

Nous savons maintenant que la variable S, est bien définie, montrons que son
espérance est nulle.

Snar % S, et —a < S,ar < bpour tout n € N*.

Appliquons le théoreme de convergence dominée :

E(S:) = lim E(Shar).
Comme (S,5,) est une martingale, nous avons E(S,r;) = E(Siar) = E(S1) =0,
ce qui montre que F(S;) = 0. Le théoreme est démontré.

Complément

Donnons une autre preuve des deux résultats P(7 < o) = 1 et E(S;) = 0 en
utilisant le théoreme de convergence des martingales plutot que la loi du 0-1.
Nous savons que la suite (S,4,) est une martingale dont 1’espérance est nulle et
qui est toujours comprise entre —a et b. Elle est donc bornée dans L? et converge
en norme L? vers une certaine variable aléatoire Y. Par l'inégalité de Cauchy-
Schwarz, la convergence L? implique la convergence des espérances :

E(Y)= lim E(S,\) =0.

n—oo

Sur I'ensemble (7 = 00), nous avons pour presque tout w et pour tout n,
Sonr(w) = Sp(w), —a < Sp(w) <b.

La suite S, converge donc vers Y en norme L? sur (7 = 00) et la suite |.S,, 41 — S,
doit converger vers 0 sur cet ensemble. Comme elle est constante égale a un, on
en déduit que l'ensemble (7 = 00) est négligeable et Y = S, presque surement.
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8.7 Exercices

exercice 1

Soit (X,) une suite de variables aléatoires indépendantes identiquement dis-
. , / ;. 7 _ n

tribuées centrées de carrés intégrables. On pose S, = >;_; X;. Montrer que

pour tout € > 0, la série suivante converge presque strement :

VEIn(k)/2+e

k>2

En déduire que la suite a7z est bornée, puis qu’elle converge vers zéro.

Vnln ( )

exercice 2

Soit (Mp)ren une martingale relativement a une filtration (Fj). On suppose les
M. de carrés intégrables. Montrer que si les M) sont indépendants entre eux,
chacun des M), est constant presque partout.

exercice 3
Soit (X;);en une suite de variables aléatoires positives, indépendantes entre elles,
telles que F(X;) = 1 pour tout i. On pose M,, = X;X5...X,,.

— Montrer que M,, est une martingale.
— En déduire que M,, converge presque stirement. La limite est notée M.
On suppose maintenant que P(X; =1/2) = P(X; = 3/2) = 1/2. Posons

To(w) = Card{l <k <n| Xi(w) =3/2}.
— Montrer que " converge presque surement vers une limite qu’on calculera.
— Vérifier que M,, = 3™ /2".

[e.e] o0
— En déduire que M = 0 presque stirement puis que F <H Xi> + H E(X;)
exercice 4 i
Soit a un entier strictement positif, (X;);en+~ une suite de variables aléatoires
indépendantes identiquement distribuées, telles que P(X; =1) = P(X; = —1) =
1/2. On pose S, = Y1y X, Fr = Tx,,... x,, et on s’intéresse au premier entier 7
tel que S, est égal a a en valeur absolue :

T(w) =inf{k € N | |Sk(w)| = a}.
— Montrer que la suite M,, = (S,,)? —n est une martingale relativement aux (F,).
— Montrer que 7 est un temps d’arrét relativement aux (F,).
— Montrer que E(M,,) = 0 pour tout n € N*.
— Montrer la convergence E(n A T)——— E(7).
— Montrer que pour presque tout w € €, il existe k € N* tel que |Sk(w)| = a.

En déduire que |S,n,| < a pour tout n € N* et (Sn/\T)2m> a’® p.s.

— Déduire de ce qui précede que E(7) = a?.



Annexe A

Rappels d’intégration

On rappelle dans cette annexe un certain nombre de résultats d’intégration uti-
lisés dans le cours. Le cadre est 'intégrale de Lebesgue. On adopte les notations
probabilistes : (€2, T, P) est un espace probabilisé, c’est-a-dire un espace mesuré
pour lequel P(€2) = 1.

A.1 Théoremes de convergence

Théoréme 17 (convergence croissante) Soit f,, : Q2 — R, une suite de fonc-
tions mesurables positives. On suppose que pour presque tout w € €1, la suite
(fn(w))nen est croissante et on note f(w) la limite de cette suite. Alors

lim/fn ) dP(w /f ) dP(w

n—oo

Commentaire : la valeur des intégrales peut étre égale a 4o00.

Cas particulier : en appliquant ce théoreme a une suite de fonctions indicatrices
14,, ou (A,)nen est une suite d’ensembles croissante pour l'inclusion, alors

P(GAn) = lim P(4,).

Théoréme 18 (lemme de Fatou) Soit f, : Q@ — R, une suite de fonctions
mesurables positives. Alors

/ liminf f,(w) dP(w) < lim inf / fo(w) dP(w
Q

n—oo n—oo

Théoréme 19 (convergence dominée) Soit f, : 0 — R une suite de fonc-
tions mesurables qui converge presque partout vers une fonction f. On suppose que
pour presque tout w € ), la suite f,(w) est dominée par une fonction g : Q@ — Ry
intégrable :

|fo(w)] < g(w)  pour presque tout w € S).

91
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Alors
lim / fulw) dP(w / f(w) dP(w

n—oo
Commentaire : Nous avons supposé P(2) = 1 si bien que toute suite f,, bornée

est dominée par une fonction constante, qui est intégrable. Le théoreme s’applique
donc a une telle suite.

Théoréme 20 (interversion somme intégrale, cas positif) Soit f, : Q@ —
R, une suite de fonctions mesurables positives. Alors

[ ¥ fulw) dP@) = Y [ fulw) dP(w)
f—; n=0 7%
Commentaire : la somme de la série peut étre égale a +oo.

Théoréme 21 (interversion somme intégrale, cas intégrable) Soit f, : ) —
R une suite de fonctions mesurables. On suppose que

i [ 1) dP(w) < +o0.

Alors

/an ) dP(w Z/fn ) dP(w

Commentaire : la série qui apparait dans le second terme est convergente.

A.2 Intégrales dépendant d’un parametre

Théoréme 22 (continuité sous le signe intégral) Soit I un intervalle de R.
Soit f: I x Q — R une fonction mesurable telle que

— pour P-presque tout w € €, t — f(t,w) est continue sur I,

— 1l existe une fonction intégrable g : @ — R telle que pour tout t € I,
|f(t,w)] < g(w) pour presque tout w € Q.

Alors la fonction t — [q, f(t,w) dP(w) est continue sur I : pour tout ty € I

lim/ftde /fto, ) dP(w).

t—to
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Théoréme 23 (dérivée sous le signe intégral) Soit [ un intervalle de R et
f I xQ — R une fonction mesurable telle que

— pour tout t € I, w— f(t,w) est intégrable,
— pour P-presque tout w € ), t — f(t,w) est dérivable en tout point t € I,
— 1l existe une fonction intégrable g : 0 — R telle que pour tout t € I,

0
o ()| <

Alors en tout pointt € 1,

dt/ftde /a (t,w) dP(w).

A.3 Intégrales multiples

g(w)  pour presque tout w € Q.

Ici, (1,71, P1) et (Qo, T2, Py) sont des espaces probabilisés.

Théoréme 24 (Fubini, cas positif) Soit f : Q; x Q3 — Ry une fonction
T1 ® Ta-mesurable positive. Alors

S foyxas f(@r,w2) APy ® Po(wi,wa) = Jo, (Jo, f(wr,ws) dPi(wr)) dPy(ws)
= Jo, (Jo, F(wr,wn) dPy(ws) ) dPi(wn)
Commentaire : les intégrales peuvent valoir +oo.
Théoréme 25 (Fubini, cas intégrable) Soit f : Q; x Q3 — R une fonction
T1 ® Ta-mesurable. On suppose que
[ 1wl AP @ Pafuor,wa) < +oo.
Ql XQQ

Alors
S Joyxos f(@1,w2) APy ® Po(wi,wa) = fo, (Jo, f(wr,wa)dPi(wn)) dPs(ws)
= Jou (Jo, F(wr,w)dPa(ws) ) dPi(wn).
Commentaire : la fonction f est dans L'(€; x Q).

Théoréme 26 (changement de variables) Soient U,V deuz ouverts de R?,
o : U — V un difféomorphisme de classe Ct, f : V. — R une application
mesurable relativement a la mesure de Lebesque sur V. On suppose [ positive ou

intégrable. Alors
| Fetw)e() du= [ f(v)d

ot Jp(u) est le jacobien de ¢ : Jp(u) = |det(d,p)|.

Commentaire : pour le changement de variables en coordonnées polaires, u =

(r,0), v=p(u) = @(r,0) = (rcos(d),rsin(d)), du = drdf et Jp(r,0) =r.
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A.4 Espaces L7
Rappel :
I fll, = (/Q|f|de)1/p pour 1 < p < oo.

|| floc = inf{M > 0| pour presque tout w € Q, |f(w)| < M}.

Théoréme 27 (convergence normale dans L) Soit p € [1,00] et (f,) une
suite de fonctions dans LP(Q2). On suppose que

Z | fullp < 00

neN
Alors la série Y f,, converge presque partout et en morme LP vers une certaine

fonction f e LP(Q2).

Théoréme 28 (inclusion des espaces L?) Soitp,q € R tels que 1 <p <q <
00. Alors
L>(Q) C LY(Q) C LP(Q) C LY(Q).

De plus, pour tout f: 2 — R mesurable,

A < 111l < 11 1lg < 11 1o
Commentaire : le cas p = 2 est important : L>(Q) C L?(Q) C LY(Q).
Théoréme 29 (extraction de sous-suites) Soit (f,)nen une suite de fonc-
tions de LP(Q)) qui converge au sens de la norme LP vers une certaine fonction

[ dans LP(2). Alors il existe une sous-suite ny telle que f,, converge presque
partout vers f.

Commentaire : en général, la convergence LP n’implique pas la convergence
presque partout.

A.5 Inégalités

Théoréme 30 (inégalité de Minkowski) Soit p € [1,00] et f,g € LP(Q).
Alors

1F =+ gllo < 111+ 1gllp-

Commentaire : c’est 'inégalité triangulaire pour les normes LP.
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Théoréme 31 (inégalité de Cauchy-Schwarz) Soit f,g € L*(Q). Alors fg
est intégrable et

| faap <Iifllz llgll-

Commentaire : on a égalité si et seulement si f et g sont proportionnelles.

Théoréme 32 (inégalité de Holder) Soit p,q € [1,00] tels que 1/p+ 1/q =
1/r ainsi que f € LP(QY), g € LY(R2). Alors fg est dans L"(2) et

gl < 11l lgllo-

Commentaire : I'inégalité de Cauchy-Schwarz correspond a p=¢q¢ =2, r = 1.

Théoréme 33 (inégalité de Jensen) Rappelons que P(2) = 1. Soit ¢ : R —
R une fonction convexe et f : 2 — R telle que f et po f sont intégrables. Alors

o([rar)< [porar

A.6 Formule d’inversion de Fourier

Le théoreme suivant est une version ponctuelle de la formule d’inversion de Fou-
rier ; ¢’est 'analogue du théoreme de Dirichlet pour les séries de Fourier. On donne
un énoncé est un peu plus général que celui utilisé dans le cours. La convention
utilisée pour la transformée de Fourier est la suivante :

fo) = [ e f(a)de.

Lorsque f est intégrable, sa transformée f est continue. Elle tend vers 0 en I'infini,
en vertu du lemme de Riemann-Lebesgue.

Lemme 6 (Riemann-Lebesgue) Soit f € L'. Alors tlim e " f(x) dx = 0.
— 00 R

Ce lemme se démontre par un calcul explicite lorsque f est la fonction indicatrice

d'un intervalle. Dans le cas général, il suffit d’approcher en norme L' la fonction

f par une combinaison linéaire de fonctions indicatrices.

Théoréme 34 (formule d’inversion de Fourier) Soit f € L'(R) et t € R.
On suppose que f admet une limite a gauche et une limite a droite en t, notées
f(t7) et f(t1). On suppose également que f est dérivable a droite et a gauche en

t. Alors,

A4
S () +£67) = Jim [* e fa) 57
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Lorsque f est intégrable de classe C* et que f est intégrable, la formule devient

1

f(t) = —/ '™ f(x)dx pour tout t € R.
2m JR

Remarquons que f est intégrable deés que f est C? et f” est mtegrable En effet,

f est alors continue et majorée par une constante multipliée par tQ, comme le
montre 1’égalité

~

f) = — F(), teR,

qui s’obtient par une intégration par partie. En particulier, la formule d’inversion
est vraie pour toute fonction C'*° a support compact.

Preuve de la formule d’inversion
Quitte a translater la variable, on peut supposer t = 0. On a

/1[ A4 ( f /1[ A4( )@I/RQSHIAJIj f(z) @

21 €T 2T

o 2sin A 1
On va montrer que  lim (/ ST f(x) dv_ —f(0+)> =
0

A—o00 X 2T 2

Faisons le changement de variable y = Ax et remarquons que

/OOSiIlAZL’ dx:/oosiny dy:z,
0 z 0 Y 2

o 2sin 00 — +
et qu’ainsi /0 2sin A f(x) dr — —f(0+) /0 ZSin(Ax)M d_:z:

T 2T T 2T

Sans le facteur 1/z, il suffirait d’appliquer le lemme de Riemann-Lebesgue. On
découpe en deux l'intégrale pour analyser ce qui se passe pres de 0 et loin de 0.

Pres de 0, on utilise I'hypothese suivante :

f(x) = f(0) +zf(07) + 2 e(x), avec lime(z) = 0.

z—0

fz)—f(0F)

Par conséquent, il existe 6 > 0 tel que est borné sur |0, §]. La fonction

w 1)o51(x) est intégrable et par le lemme de Riemann-Lebesgue,
5. f(x) = f(0T)

lim sin(Ax)
A—+o00 Jo €T

dxr = 0.

Loin de 0, sur [0, +oo[, on a 0 < 1/x < 1/0, et la fonction @ 1j5.00(2) est
intégrable. Par Riemann-Lebesgue,
> f ()

lim sin(Az) —— dz = 0.
A—+o0 J§ x
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Enfin, par définition des intégrales généralisées, on a :

o sin(Ax)

% siny

li Ndr = li d 07) =0.
Airilw 5 x f<0 ) v Airilm AS Y Y f( )
0 2sin A d 1
On démontre de méme que lim e f(z) o2 f(07), ce qui termine
A—oo J 0o xX 2T 2

la preuve.



98 ANNEXE A. RAPPELS D'INTEGRATION

A.7 Exercices

exercice 1 " on
Calculer lim (1 — —) dx.
0

n—o0

exercice 2 . .
Soit f:[0,1] — R une fonction mesurée. Calculer lim [ —————— dux.
oo 140 f(z)”

exercice 3
Montrer 1’égalité / /

exercice 4
Soit ¢ > 0, calculer 'intégrale

© sinxr\2
/ ( ) e dr.
0 T

En déduire la valeur de fé”(%f dzx.

exercice 5

[e.9]

dx y—z

1—2ay -

1
)(1+2%y)

Calculer de deux manieres différentes l'intégrale / / T dxdy.
0o Jo Yy

En déduire la valeur de l'intégrale [5° f; ml dz.

exercice 6
On considere la série suivante, pour = € [0, 1],

>

Montrer qu’elle converge pour presque tout x € [0, 1], mais qu’elle diverge pour
un ensemble dense de z € [0, 1].

27 /|z — sin(n)| .

exercice 7
Calculer I'intégrale / / dx dy en effectuant le changement de variables

{ xr = cosf—t

y = cosO+t
exercice 8
On se place sur R, muni de la mesure de Lebesgue et on considere
1
flz) =

z (14 [In(z)[)?
Montrer que :

~ fe L' ([1,00]) et f ¢ LP([1,00[) sip < 1.

~ fe L'([0,1]) et f ¢ LP([0,1]) sip > 1.

~ e LM([0,00]) et f ¢ L7([0, 00]) si p # 1.
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A.8 Contre-exemples

Vérifier les assertions suivantes en calculant les deux termes de chacune des
inégalités. Expliquer pourquoi les théoremes classiques ne s’appliquent pas dans
chacun des cas.

Linéarité :
1 1 1 1 1 1]
[l gy [ [y
o z(z+1) = o z(x+1) 0T

Interversion limite intégrale :

1 1
lim nz" dr # / lim nx" dz
0

n—oo 0 n—oo
Interversion somme intégrale :
1 Fo0 too 1
/ DD A L PR o / LR g2k 2kl g
0 k=0 k=0 70
Continuité sous le signe intégral :
e lt]
i [ w s [T
=0 Jo 14 22 7 0 1 + t2x2

Intégrales multiples :

[ </100 maz (3:3 7 )dy A </1 maz ( x3yy3) dy) o
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Annexe B

Formulaire

On collecte dans cette annexe les formules vues dans le cours.

B.1 Loi d’une variable aléatoire
Loi d’une variable aléatoire X

Px(A) = P(X € 4) = P(X~}(A))

Espérance
:/QXdP:/RdeX(x)
Variance
V(X) = E((X - B(X))*) = /( )2dP = / v — B(X))?dPy(z)

V(X) = B(X?)—E(X)? :/QdeP—(/QXdP) :/R:czdPX(:c)—(/R:chX(x))Q

Formule de transfert
E(g(X)) / ) dP = / ) dPy(z
Fonction de répartition
Fx(e)=P(X <o) = [ ; dPx (z)
Fonction caractéristique

px(t) = (™) = [ ¢ aP = | ¢ dPx(a)
Q R

101
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Cas discret

PX - Zpa:kaxka PX(A) = Z Dz,

E(X)= .T}dPX SL’k
() = [ rdPxa) =% )
V(X) = Y (o — B(X)PP(X =) = Y0l P(X = a) — (L P(X =)’
Blo(X) = [ oX)dP = [ gl@)aPx(e) = T (o) P(X = )
=2 P(x=

l‘k<$
Z et P(X = xy,)

Cas continu

B.2 Inégalités

Inégalité de Cauchy-Schwarz

BXY) = [ 1xviar <[ [ xeap [ [ veap =X 17,
Q Q Q

Inégalité de Markov

B(Y
PY >\ < &> sid>0, Y >0.
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Inégalité de Bienaymé-Tchebichev

V(X)

PIX -EX)|>t) < 2

sit>0, B(X?) < oc.
Majoration LP, 1 < p < oo, pour l’espérance conditionnelle
|E(X | F)ll, < || X|l, siX estdans LP.
Inégalité de Jensen conditionnelle
go(E(X | .7:)) < E(go(X) | f) p.s.  si @ est convexe et X, p(X) intégrables.

Inégalité maximale pour les martingales

EOB) |
P(Orgniz%% |M;| > )\) < e si (M,) est une martingale.

B.3 Couples de variables aléatoires
Soit X et Y deux variables aléatoires. La loi du couple (X,Y") est donnée par
Py (A) = P((X,Y) € 4) = P({w € Q| (X(w), Y (w)) € A})
Covariance
Cov(X,Y) = BE(XY) — E(X)E(Y :/XYdP— /XdP /YdP.
ou(X,Y) = BXY) = BX)E(Y) = [ ([ xap)([ v ap)
VIX4+Y)=V(X)+ V() +2Cou(X,Y)
Formule de transfert

Blg(X.Y) = [ g(X,Y)dP = [ g(e.y) dPicy(a.y)

Espérance d’un produit de variables indépendantes

Loi d’un couple de variables indépendantes

Bl(X.Y)) = [ o(e.v) dPicy (@.y) = [ glw.y) dPx(x) dPy(y)

Cas discret
P(X,Y) = Zpll?i,yj 5(%'721]')
i.J

Pixy)(A) = > P(X ==z,Y =vy;)

i,j tels que (x4,y;)€EA
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Blo(X,Y)) = [, 9(e) dPoc (@) = Loan ) PX = a1 =)

P(X =)=} P(X =u;,Y =)

Cas continu

dPxy)(z,y) = fxy(z,y) dedy, Pxy)(A)= /Afx,y(ilf,y) dxdy

E(9(X,Y)) = /PLQQ(J:,y) dPxyy(,y) = /Rgg(:c,y) fxy(z,y) dedy

fx, (1) :/fol,xz(fﬁlal’z) do

B.4 Convergence de variables aléatoires
Convergence presque stre

Xo——=X si P{we Q] X,(w)——= X} =1

n—oo

Convergence LP
X, —=—=X s X, — X[, ——0.

n—oo

Convergence en probabilité
Xn :i% X st P(X,— X[ > s)mo pour tout € > 0.

Convergence en loi

X, %)X si /fdPXn m/fdPX pour toute f continue bornée.

B.5 Théorémes limites

On pose S,, = Z Xp. Alors E(S Z . De plus,

k=1

=Y V(Xy) siles X; sont indépendantes.
k=1
Loi faible des grands nombres

S’n 700a
Si les X; sont i.i.d. intégrables, — _broba , E(Xy)
n

n—oo
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Lot forte des grands nombres

Sn .S.
Si les X; sont i.i.d. intégrables, — 2" F(X))
n

n—oo

Théoreme de la limite centrée

Si les X; sont i.i.d. centrées telles que 0 < o(X;)? < oo, S LW\/'(O o?)

\/ﬁ n—r00

Convergence des martingales bornées dans L?
Si M, est une martingale et ||M, | < C, M, converge p.s. et L?

Convergence de la somme dans le cas de variance bornée
Si les X; sont indépendantes centrées et Z V(X;) < o0, S, converge p.s. et L?
Théoreme des trois séries
Soit Y; = X;1(x,<1)- Si les X; sont indépendantes,

S, converge p.s. < > P(|X;| >1), Y E(Y;), > V(Y;) convergent.
Convergence des espérances conditionnelles

Si X est de carré intégrable et les F; sont croissantes et engendrent T,

E(X | fn)p.s. et L2X

n—oo

B.6 Espérance conditionnelle

Caractérisation de l’espérance conditionnelle
E(X | F) est F-mesurable
E(E(X | F)Y)=E(XY) pour tout Y F-mesurable
Propriétés
E(E(X | F)) = E(X)
EYX|F)=YE(X |F) siY est F-mesurable
Conditionnement relativement a une variable aléatoire

/f Y)| X =x)dPx(z /f y) dPxyy(x,y) si f est bornée

Cas discret
BloV) ) _ 1
PX=2) PX=u) /(Xx> ') db

E@Y) | X =)=

Cas continu )
EglY)| X =x) = Jr9W) fxy(z,y)dy

Jr [xy(z,y) dy
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B.7 Martingales
Caractérisation
M, est F, — mesurable, E(M,1 | F,) = M, pour tout n.

Propriétés
E(M,1y | F) = M,, pour tout k > 0.

E(M,) = E(My) pour tout n.
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