
Cours de probabilités, master 1

Yves Coudène

19 janvier 2015



2



Table des matières

Introduction 5

Notations 6

1 Formalisme de Kolmogorov 7
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A.1 Théorèmes de convergence . . . . . . . . . . . . . . . . . . . . . . 91
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Introduction

Ces notes proviennent d’un cours de Master première année donné à l’université
de Brest sur la période 2011-2014. Le cours était composé de douze séances de
deux heures et portait sur les théorèmes de convergence en théorie des probabi-
lités. La frappe du texte a bénéficié de l’aide de Sabine Chanthara, je l’en remercie
vivement.

Ce cours est destiné à des étudiants ayant déjà suivi un cours d’intégrale de
Lebesgue. Une annexe en fin d’ouvrage rappelle les résultats d’intégration qui
sont utilisés dans le corps de ce texte. Il est aussi important d’être familier avec
les bases de la théorie hilbertienne que nous appliquons à l’espace L2 à plusieurs
reprises, par exemple pour définir la notion d’espérance conditionnelle. Enfin, un
minimum de familiarité avec la théorie des probabilités discrètes, comme on peut
la voir au lycée, est fortement conseillé.

On s’est concentré sur les théorèmes de convergence classiques, essentiellement
dans le cadre indépendant : loi faible et forte des grands nombres, théorème de
la limite centrée, convergence des martingales bornées dans L2, théorème des
trois séries, loi du 0-1 de Kolmogorov. Un résumé des théorèmes et des formules
présentés dans le cours se trouve en annexe.

Le texte est organisé de façon à parvenir assez rapidement à la preuve de la loi
forte des grands nombres, au chapitre 4, qui est faite pour des variables de carré
intégrable. Le cas intégrable est traité plus tard, dans le chapitre concernant les
martingales, comme corollaire des théorèmes de convergence pour ces martingales.
Le second objectif est le théorème de la limite centrée, atteint au chapitre 6. Il
faut pour cela étudier en détail les différents types de convergence et les relations
qui s’établissent entre eux. On termine par la notion de martingale, qui permet
de démontrer quelques résultats classiques de convergence, comme le théorème
des trois séries et la loi du 0-1 de Kolmogorov. La théorie des martingales et des
temps d’arrêt est illustrée par une marche aléatoire symétrique sur l’espace des
entiers.

La théorie des châınes de Markov n’est pas abordée dans ce texte. De même,
on ne parle pas de sous et de sur-martingales, et la notion de convergence étroite
est étudiée pour des mesures de probabilité définies sur R uniquement, ce qui
permet quelques simplifications dans les preuves.
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Notations

Les ensembles des nombres entiers, entiers relatifs, rationnels, réels et complexes
sont notés respectivement N,Z,Q,R,C.

On travaille en genéral sur un espace probabilisé (Ω, T , P ).

1A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . fonction indicatrice de A
B(x, r) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . boule ouverte de centre x de rayon r
C∞ . . . . . . . . . . . . . . . . . . . . . . . . . ensemble des fonctions indéfiniment différentiables
Cov(X, Y ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . covariance de X et Y
δω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .mesure de Dirac au point ω
E(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . espérance de X
E(X | F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . espérance conditionnelle de X sachant F
F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . tribu
FX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . fonction de répartition
Lp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .espace des classes de fonctions Lp

lim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . limite supérieure
lim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . limite inférieure
µ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mesure
N∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . nombres entiers non nuls
Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ensemble de résultats
◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . composition
ø . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ensemble vide
P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mesure de probabilité
PX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . loi de la variable aléatoire X
P(X,Y ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . loi du couple (X, Y )
P (A | F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . probabilité conditionnelle de A sachant F
P ⊗Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .produit des probabilités P et Q
p.s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . presque partout
Sn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . somme de X1 à Xn

σ(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . écart-type de X
T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . tribu
T1 ⊗ T2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . produit des tribus T1 et T2

m ∧ n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .minimum de m et n
V (X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . variance de X
X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . variable aléatoire
〈X, Y 〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . produit scalaire dans L2

‖X‖p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . norme Lp de X



Chapitre 1

Formalisme de Kolmogorov

Nous désignons par épreuve une expérience ou une observation réalisée dans
des conditions bien définies (protocole expérimental) reproductible, et dont le
résultat est l’un des éléments d’un ensemble déterminé (univers). Le but de la
théorie des probabilités est d’associer à certains sous-ensembles de cet univers,
appelés événements, un nombre réel compris entre 0 et 1, qui reflète notre degré
de confiance dans la réalisation de l’événement une fois que l’épreuve a eu lieu.

La théorie moderne des probabilités est formalisée par Kolmogorov en 1933, en
se basant sur la théorie de la mesure. La notion clef est celle d’espace probabilisé.

Définition 1 Un espace probabilisé (Ω, T , P ) est la donnée :

– d’un ensemble Ω appelé univers, dont les éléments sont appelés résultats,

– d’une tribu T de parties de Ω, dont les éléments sont appelés événements,

– d’une mesure P définie sur la tribu T , qui satisfait P (Ω) = 1.

Commençons par décrire trois exemples importants d’espaces probabilisés.

1.1 Le cas discret : Ω fini ou dénombrable

Pour T , on prend l’ensemble des parties de Ω : T = P(Ω). Se donner une proba-
bilité P : T → [0, 1] revient à se donner une famille de nombres réels pω, ω ∈ Ω,
qui satisfait

– 0 ≤ pω ≤ 1 pour tout ω ∈ Ω,

–
∑

ω∈Ω
pω = 1.

La correspondance entre P et les pω est donnée par

pω = P ({ω}), P (A) =
∑

ω∈A
pω.
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8 CHAPITRE 1. FORMALISME DE KOLMOGOROV

Notons δω la mesure de Dirac au point ω :

∀A ∈ T , δω(A) =
{
1 si ω ∈ A
0 sinon

On peut exprimer la probabilité P comme une somme de Dirac : P =
∑

ω∈Ω
pωδω.

On a alors, pour g : Ω → R mesurable, positif ou P -intégrable,

∫

Ω
g dP =

∑

ω∈Ω
pω g(ω).

Exemples

• Loi uniforme sur Ω = {1, 2, ..., n} :

pω = 1/n, P (A) =
#A

#Ω
.

Le lancé d’un dé à 6 faces bien équilibré est modélisé par un tel espace probabilisé
( n = 6).

• Loi binomiale de paramètres n ∈ N∗ , p ∈ [0, 1], sur Ω = {0, ..., n} :

pk = P ({k}) = Ck
n pk(1− p)n−k pour k ∈ {0, ..., n}.

pk est la probabilité d’obtenir k succès exactement au cours de n tirages indé-
pendants, sachant que la probabilité de succès lors d’un tirage est égale à p.

• Loi de Poisson sur Ω = N de paramètre λ > 0 :

pk = P ({k}) = λk

k!
e−λ pour k ∈ N.

1.2 Le cas continu : Ω = R ou Rd

Ici T est la tribu engendrée par les intervalles de R ou les rectangles de Rd . Ses
éléments sont appelés boréliens. On peut définir une mesure de probabilité sur Ω
à partir d’une densité f : Ω → R+ satisfaisant les conditions suivantes :

– f est borélienne,

– ∀ω ∈ Ω, f(ω) ≥ 0,

–
∫
Ω fdλ = 1.

On a noté la mesure de Lebesgue sur Ω avec un λ. La mesure de probabilité P
associée à la densité f est donnée par

P (A) =
∫

A
fdλ =

∫

A
f(x)dx.
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On a alors pour toute fonction mesurable g : Ω → R positive ou P -intégrable,

∫

Ω
g dP =

∫

Ω
g(x)f(x) dx.

Exemples
– Probabilité uniforme sur [a, b], avec a, b ∈ R , a < b :

f =
1

b− a
1[a,b]

– Loi de Laplace-Gauss ou loi normale de paramètres m ∈ R , σ > 0 :

f(x) =
1√
2πσ2

e−
(x−m)2

2σ2

Elle est dite centrée si m = 0 et σ = 1.

– Probabilité exponentielle de paramètre l > 0 :

f(x) = l elx 1R+(x)

1.3 Le cas des espaces produits

On s’intéresse à une épreuve modélisée par un espace probabilisé (Ω, T , P ) et on
veut répéter cette épreuve plusieurs fois de manière indépendante, disons n fois,
n ∈ N∗. Pour cela, on considère :

• l’univers Ωn = Ω×Ω× ...×Ω, ses éléments sont des multiplets (ω1, ω2, ..., ωn) ∈
Ωn. L’élément ω1 est le résultat obtenu lors de la première épreuve, ω2 lors de la
seconde épreuve etc.

• La tribu produit T ⊗ T ⊗ ...T = T ⊗n. C’est la tribu engendrée par les parties
de Ωn de la forme A1 ×A2 × ...× An , avec Ai ∈ T pour tout i.

• Dans le cas indépendant, la mesure produit P ⊗ ... ⊗ P sur cette tribu. Cette
mesure P⊗n est l’unique mesure vérifiant

P⊗n(A1 ×A2 × ...× An) = P (A1)P (A2)...P (An)

pour tout A1, ..., An ∈ T .

On va chercher à étudier le comportement asymptotique d’une répétition d’é-
preuves, effectuées de manière indépendante, quand n tend vers l’infini. Pour cela,
nous introduisons un nouvel espace probabilisé.

• L’univers ΩN est l’ensemble de toutes les suites d’éléments de Ω.
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• On se place sur la tribu produit T ⊗N. C’est la tribu de parties de ΩN engendrée
par les cylindres de la forme

CA0,...,An = {(ωi)i∈N | ∀i = 0...n, ωi ∈ Ai}

avec n ∈ N et A0, ..., An ∈ T .

• Dans le cas indépendant, on considère sur T ⊗N la mesure produit P⊗N, ca-
ractérisée de la façon suivante :

Théorème 1 (Kolmogorov) Soit (Ω, T , P ) un espace probabilisé. Alors il existe

une unique mesure de probabilité sur T ⊗N , notée P⊗N, qui satisfait

P (CA0,...,An) = P (A0)P (A1)...P (An)

pour tout n ∈ N et A0, ..., An ∈ T .

L’exemple le plus simple est donné par la répétition un nombre arbitrairement
grand de fois du lancer d’une pièce de monnaie. L’univers est donné par l’ensemble
de toutes les suites de pile ou face : {pile, face}N. Cet ensemble est muni de la
tribu engendrée par tous les sous-ensembles de la forme

{(ωi)i∈N | ω0 ∈ A0, ..., ωm ∈ Am}

avec m ∈ N et Ai ∈ {pile, face} pour i allant de 0 à m. Si la pièce est bien
équilibrée, on peut prendre comme probabilité le produit P⊗N, où P ({face}) =
P ({pile}) = 1/2.
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1.4 Exercices

exercice 1
Soit (An)n∈N une suite d’événements deux à deux disjoints sur un espace proba-
bilisé (Ω, T , P ). Montrer que lim

n→∞
P (An) = 0.

exercice 2
Soit A1, ..., An des événements tels que P (Ak) > 1 − 1

n
pour tout k de 1 à n.

Montrer qu’il existe un résultat ω ∈ Ω qui appartient à tous les Ak.

Soit (Ak)k∈N une suite d’événements. Montrer que si P (Ak) ne converge pas vers
0, alors il existe un résultat qui appartient à une infinité de Ak.

exercice 3
Soit c > 0 et A1, ..., An ⊂ Ω des événements tels que P (Ai) ≥ c pour tout i.
Montrer qu’il existe deux indices j, k distincts tels que

P (Aj ∩ Ak) ≥
nc2 − c

n− 1
.

Indication : s’intéresser à l’intégrale de (
∑

1Ai
)2 et utiliser une inégalité fameuse.

exercice 4
Soit P une mesure de probabilité définie sur la tribu des boréliens deRd et B(x, r)
la boule euclidienne de rayon r centrée en x ∈ Rd.

– Montrer que P (B(0, r)) converge vers 1 quand r tend vers l’infini.

– Soit r0 ≥ 0 et xn ∈ Rd une suite telle que ‖xn‖−−−−→
n→∞

∞. Montrer que

P (B(xn, r0))−−−−→
n→∞

0.

exercice 5
Parmi ces fonctions, quelles sont celles qui sont des densités de probabilité ?

f(x) = 1
π

1
1+x2 f(x) = e−x 1[0,∞[(x) f(x) = x2 1[0,1](x)

f(x) = 1
2
e−|x| f(x) = sin(x) 1[0,3π/2](x) f(x) = (1 + cos(x)) 1[0,π](x)

exercice 6
Pour tout borélien A ⊂ R, on pose

µ(A) =
1

2
√
π

∫

A
e−x2

dx+ 1A(0)/2

– Montrer que µ est une mesure de probabilité.
On vérifiera en particulier qu’elle est bien σ-additive.

– Soit f : R → R une fonction borélienne bornée. Donner une formule pour
∫
f dµ.
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Chapitre 2

Variables aléatoires

En pratique, on s’intéresse à certaines quantités numériques attachées aux résul-
tats obtenus à l’issue de notre épreuve. Pour modéliser cela, on introduit la notion
de variable aléatoire.

2.1 Définition d’une variable aléatoire

Définition 2 Soit (Ω, T , P ) un espace probabilisé. Par définition, une variable

aléatoire X : Ω → R est une fonction mesurable définie sur Ω, à valeurs réelles :

pour tout intervalle I ⊂ R, l’image réciproque X−1(I) de cet intervalle est dans

T .

Pour A ⊂ R borélien, on pose

X−1(A) = {ω ∈ Ω | X(ω) ∈ A} = (X ∈ A)
X−1([a, b]) = (a ≤ X ≤ b)
X−1([a,∞[) = (a ≤ X) = (X ≥ a)

On a alors
P (X−1(A)) = P (X ∈ A).

C’est la probabilité d’obtenir, à l’issue de l’épreuve, un résultat pour lequel la
valeur de X est dans A. La quantité P (X ∈ A) est bien définie dès que A est
borélien car l’image réciproque d’un borélien par une application mesurable est
mesurable (c’est-à-dire est dans T ).

2.2 Espérance et variance

Définition 3 Une variable aléatoire X est dite intégrable si
∫
Ω |X| dP < +∞.

Dans ce cas l’intégrale de X est bien définie, c’est l’espérance de X.

E(X) =
∫

Ω
X dP.

13



14 CHAPITRE 2. VARIABLES ALÉATOIRES

La variable aléatoire X est dite de carré intégrable si
∫
Ω X2 dP < +∞.

Dans ce cas X est intégrable et on définit la variance de X par la formule

V (X) = E
(
(X − E(X))2

)
.

On remarque qu’une variable aléatoire de carré intégrable est intégrable en inté-
grant l’inégalité 2X ≤ 1 +X2. On peut aussi faire appel à l’inégalité de Cauchy-
Schwarz : pour toutes variables aléatoires X, Y : Ω → R,

∫

Ω
|XY | dP ≤

√∫

Ω
X2 dP

√∫

Ω
Y 2 dP .

En prenant Y = 1 dans cette formule, on obtient la majoration E(|X|) ≤
√
E(X2).

Développons le carré qui apparâıt dans la définition de la variance.

E
(
(X − E(X))2

)
= E

(
X2 − 2XE(X) + E(X)2

)
= E(X2)− 2E(X)2 + E(X)2.

Nous avons obtenu la formule suivante, très utile pour calculer V (X) :

Proposition 1 V (X) = E(X2)− E(X)2.

Dans le cas discret, la variable aléatoire X est intégrable si
∑

ω∈Ω
pω|X(ω)| < +∞

et dans ce cas

E(X) =
∑

ω∈Ω
pωX(ω).

Dans le cas continu, en notant f la densité de P , la variable aléatoire X est
intégrable si

∫
Rd |X(ω)|f(ω)dω < +∞ et dans ce cas

E(X) =
∫

Rd
X(ω)f(ω)dω.

Propriétés :
Soit λ ∈ R et X, Y deux variables aléatoires intégrables.

– E(λX + Y ) = λE(X) + E(Y ). (linéarité)

– Si X ≤ Y , c’est-à-dire si pour tout ω ∈ Ω, X(ω) ≤ Y (ω), alors

E(X) ≤ E(Y ). (monotonie)

– Pour tout événement A ∈ T , P (A) = E(1A).

– Soit (Xn) une suite de variables aléatoires qui converge de manière croissante
vers X : pour presque tout ω ∈ Ω, (Xn(ω))n∈N est croissante et Xn(ω) → X(ω).
Alors

E(Xn)−−−−→
n→∞

E(X).
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– Soit (Xn) une suite de variable aléatoires qui converge vers X presque partout.
On suppose qu’il existe Y intégrable telle que |Xn| ≤ Y pour tout n ∈ N. Alors

E(Xn)−−−−→
n→∞

E(X).

– V (λX) = λ2V (X).

– V (X + Y ) = V (X) + V (Y ) + 2Cov(X, Y )

en notant

Cov(X, Y ) = E(XY )−E(X)E(Y )

la covariance de X, Y qui est bien définie dès que X, Y sont de carrés intégrables.

Ces propriétés sont des conséquences immédiates des définitions. Les deux
théorèmes de passage à la limite découlent du théorème de convergence crois-
sante et du théorème de convergence dominée.

2.3 Inégalités

On s’intéresse maintenant à deux inégalités classiques qui donnent quelques in-
formations sur la manière dont les valeurs d’une variable aléatoire se répartissent.

Théorème 2 (Inégalité de Markov) Soit (Ω, T , P ) un espace probabilisé, Y :
Ω → R+ une variable aléatoire positive. Alors, pour tout λ > 0,

P (Y ≥ λ) ≤ E(Y )

λ
.

Preuve

On a l’inégalité λ1(Y≥λ) ≤ Y ce qui donne, par monotonie,

E(λ1(Y≥λ)) ≤ E(Y ).

On conclut en remarquant que

E(λ1(Y≥λ)) = λE(1(Y≥λ)) = λP (Y ≥ λ).

Théorème 3 (Inégalité de Bienaymé-Tchebichev) Soit (Ω, T , P ) un espace

probabilisé, X : Ω → R une variable aléatoire de carré intégrable. Alors, pour

tout t > 0,

P (|X − E(X)| ≥ t) ≤ V (X)

t2
.
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Cette inégalité peut se récrire à l’aide de l’écart-type σ(X) =
√
V (X) comme

suit :

P
(
X /∈ ]E(X)− tσ(X), E(X) + tσ(X) [

)
≤ 1

t2

Application
Si X est de carré intégrable, la probabilité d’obtenir à l’issue de l’épreuve une
valeur à plus de 10 fois l’écart-type de l’espérance est inférieure à 1/100.

Preuve
L’égalité de Bienaymé-Tchebichev se déduit de l’inégalité de Markov en prenant
Y = (X − E(X))2 et λ = t2 dans cette inégalité. On a alors

P (Y ≥ λ) = P ((X − E(X))2 ≥ t2) = P (|X − E(X)| ≥ t),

E(Y )

λ
=

E((X −E(X))2)

t2
=

V (X)

t2
.

La formule est démontrée.

2.4 Loi d’une variable aléatoire

À chaque variable aléatoire X définie sur un espace probabilisé (Ω, T , P ), on peut
associer une probabilité PX qui rend compte de la distribution de ses valeurs, en
procédant de la façon suivante.

Définition 4 Soit (Ω, T , P ) un espace probabilisé, X : Ω → R une variable

aléatoire. La loi de X est la probabilité définie sur la tribu des boréliens de R par

la formule :

PX(A) = P (X ∈ A) = P (X−1(A))

pour tout A ⊂ R borélien.

La variable aléatoire X est dite discrète si sa loi PX est discrète : il existe un
ensemble fini ou dénombrable D ⊂ R tel que PX(D) = 1. Indiçons ses éléments
par un ensemble I ⊂ N : D = {xi}x∈I . On est presque sûr d’obtenir un résultat
qui se trouve dans cet ensemble de valeurs {xi}i∈I et on peut écrire

PX =
∑

i∈I
pxi

δxi

où pxi
est la probabilité d’obtenir la valeur xi : P (X = xi) = pxi

.
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La variable aléatoire X est dite continue si PX est une loi continue, auquel cas
sa densité est notée fX . C’est une fonction borélienne positive dont l’intégrale
vaut un. On a alors

PX(A) = P (X ∈ A) =
∫

A
fX(x) dx

pour tout A ⊂ R borélien. Dans ce cas, la probabilité P (X = x) est bien sûr
nulle pour tout x ∈ R.

L’espérance et la variance d’une variable aléatoire peuvent s’exprimer en fonc-
tion de sa loi uniquement. En conséquence, deux variables qui ont même loi ont
même espérance et même variance.

Proposition 2 Si X est intégrable,

E(X) =
∫

R

x dPX(x).

Si X est de carré intégrable,

V (X) =
∫

R

(x−E(X))2 dPX(x).

Cette proposition se déduit de la formule de transfert.

Proposition 3 (formule de transfert) Soit g : R → R borélienne, positive

ou PX-intégrable. Alors

∫

Ω
g(X) dP =

∫

R

g(x) dPX(x).

Preuve de la formule de transfert
– C’est vrai pour g = 1A , A borélien de R :

∫
1A(X) dP = P (X ∈ A) = P (X−1(A)),

∫
1A(x) dPX(x) = PX(A) = P (X ∈ A).

– C’est vrai pour les combinaisons linéaires de fonctions indicatrices g =
∑

ci1Ai

par linéarité de l’intégrale.

– Une combinaison linéaire de fonctions indicatrices s’appelle une fonction étagée.
Toute fonction positive mesurable peut être approchée de manière croissante par
une suite de fonctions étagées. Pour g ≥ 0, borélienne, on prend gn → g , gn
étagées, et on passe à la limite

∫
gn(X) dP −−−−→

n→∞

∫
g(X) dP
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∫
gn(x) dPX(x)−−−−→

n→∞

∫
g(x) dPX(x)

en appliquant le théorème de convergence croissante, si bien que
∫
g(X) dP =∫

g(x) dPX(x).

– Pour g intégrable, on écrit g comme la différence de deux fonctions positives
intégrables et on utilise la linéarité de l’intégrale pour conclure.

Exemple

Si X est variable aléatoire obéissant à une loi exponentielle de paramètre l > 0 ,
PX est associée à la densité fX(x) = le−lx1R+(x) et on a :

PX([a, b]) = P (X ∈ [a, b]) =
∫

[a,b]
fX(x) dx =

∫ b

a
lelxdx

dès que 0 ≤ a ≤ b.

Il est parfois plus pratique de travailler avec des fonctions plutôt qu’avec des
lois de probabilité. Ceci nous amène à la notion de fonction de répartition.

Définition 5 La fonction de répartition de X est définie par

FX(x) = P (X ≤ x).

On a alors l’égalité, pour tout a, b ∈ R,

P (X ∈ ]a, b]) = FX(b)− FX(a).

Comme une mesure de probabilité définie sur la tribu des boréliens de R est uni-
quement déterminée par ses valeurs sur les intervalles, la fonction de répartition
caractérise la loi de X de manière unique : si deux variables aléatoires ont même
fonction de répartition, elles ont même loi.

FX = FY ⇔ PX = PY .

La fonction de répartition possède les propriétés suivantes :

– elle est croissante, à valeur dans l’intervalle [0, 1],

– lim
x→−∞

FX(x) = 0, lim
x→+∞

FX(x) = 1,

– elle est continue à droite et possède une limite à gauche en tout point,

– l’ensemble des points de discontinuité de FX est composé des x ∈ R tels que
P (X = x) > 0, il est donc dénombrable.
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2.5 Loi d’un multiplet de variables aléatoires

Les considérations précédentes se généralisent à des couples et des multiplets de
variables aléatoires. Soient X1, ...Xn des variables aléatoires à valeurs réelles. On
peut considérer ces variables comme une unique variable aléatoire à valeurs dans
Rn.

(X1, X2, ..., Xn) : Ω → Rn.

On pose, pour A borélien de Rn et A1, ..., An des boréliens de R,

((X1, ..., Xn) ∈ A) = {ω ∈ Ω | (X1(ω), X2(ω), ..., Xn(ω)) ∈ A},
(X1 ∈ A1, ..., Xn ∈ An) = ((X1, ..., Xn) ∈ A1 × ...× An)

= {ω ∈ Ω | X1(ω) ∈ A1, ..., Xn(ω) ∈ An}
=

⋂

1≤i≤n

(Xi ∈ Ai).

Définition 6 Soit (Ω, T , P ) un espace probabilisé, X1, ..., Xn des variables aléa-

toires. La loi du multiplet (X1, ..., Xn) est la mesure de probabilité définie sur la

tribu des boréliens de Rn par la formule :

P(X1,...,Xn)(A) = P ((X1, ..., Xn) ∈ A) = P ({ω ∈ Ω | (X1(ω), ..., Xn(ω)) ∈ A})

pour tout A ⊂ Rn borélien.

La loi du multiplet est discrète si la loi de P(X1,...,Xn) est discrète : il existe
un ensemble fini ou dénombrable D ⊂ Rn tel que P(X1,...,Xn)(D) = 1. Elle est
dite continue si P(X1,...,Xn) est une loi continue, auquel cas sa densité est notée
fX1,...,Xn. Cette densité est une fonction borélienne, définie de Rn dans R+, posi-
tive, d’intégrale 1, et nous avons la relation

P ((X1, ..., Xn) ∈ A) = P(X1,...,Xn)(A) =
∫

A
fX1,...,Xn(x1, ..., xn) dx1...dxn.

La formule de transfert se généralise à n variables.

Proposition 4 (Formule de transfert) Soit g : Rn → R borélienne, positive

ou P(X1,...,Xn)-intégrable. Alors

∫

Ω
g(X1, ..., Xn) dP =

∫

Rn
g(x1, ..., xn) dPX1,...,Xn(x1, ..., xn).

La preuve est similaire à celle faite précédemment dans le cas d’une variable, on
procède en approchant g par une fonction étagée.

Les lois individuelles des Xi peuvent se déduire de la loi du multiplet en re-
marquant que

P (Xi ∈ A) = P (X1 ∈ Ω, ..., Xi−1 ∈ Ω, Xi ∈ A,Xi+1 ∈ Ω, ..., Xn ∈ Ω)
= P(X1,...,Xn)(Ω× ...× Ω× A× Ω× ...× Ω).
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On dit que les lois PXi
sont les lois marginales de la distribution (X1, ..., Xn).

Dans le cas continu, la densité des Xi se déduisent de celle du multiplet grâce
à la formule suivante :

PXi
(I) =

∫

I

(∫

Rn−1
fX1,...,Xn(x1, ..., xn) dx1...dxi−1dxi+1...dxn)

)
dxi

où I est un intervalle ou un borélien de R, si bien que

fXi
(xi) =

∫

Rn−1
fX1,...,Xn(x1, ..., xn) dx1...dxi−1 dxi+1...dxn.
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2.6 Exercices

exercice 1
SoitX une variable aléatoire strictement positive telle queX et 1/X sont intégrables.
Montrer que E(X)E(1/X) ≥ 1.

exercice 2
Soit X une variable aléatoire de carré intégrable. Montrer que pour tout c ∈ R,

V (X) ≤ E((X − c)2).

Soit a, b ∈ R. Montrer que

P (X ≥ a) ≤ E((X + b)2)

(a+ b)2

En déduire l’inégalité de Cantelli, valide pour tout t > 0 :

P
(
X −E(X) ≥ t σ(X)

)
≤ 1

1 + t2
.

exercice 3
Soit X une variable aléatoire telle que 0 ≤ X ≤ 1. Montrer que V (X) ≤ 1/4.
À quelle condition a-t-on égalité ?

exercice 4
Soit X une variable aléatoire satisfaisant P (X = x) = 0 pour tout x ∈ R et FX

sa fonction de répartition. Montrer que la variable aléatoire FX(X) obéit à la loi
uniforme sur ]0, 1[.

Étant donnée une variable aléatoire Y de loi uniforme sur ]0, 1[ et ν une mesure
de probabilité sur la tribu des boréliens de R, construire une variable aléatoire
X de loi ν en composant Y par une fonction bien choisie.

exercice 5
Soit X une variable aléatoire intégrable. Montrer les assertions suivantes.

– lim
N→∞

∫

(|X|>N)
|X| dP = 0.

– Pour tout ε > 0, il existe δ > 0 tel que pour tout A ∈ T ,

P (A) ≤ δ implique
∫

A
|X| dP ≤ ε.

exercice 6
Soit X une variable aléatoire réelle positive, de fonction de répartition FX . Mon-
trer que pour 0 < p < ∞,

E(Xp) =
∫ ∞

0
p tp−1 P (X > t) dt =

∫ ∞

0
p tp−1 (1− FX(t)) dt.

Soit X1, X2, ...Xn des variables aléatoires indépendantes de loi uniforme sur [0, 1].
Calculez E(min(X1, X2, ...Xn)) et E(max(X1, X2, ...Xn)).
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Chapitre 3

Indépendance

On a vu comment modéliser une épreuve répétée un nombre fini ou infini de fois
de manière indépendante, en prenant pour univers un espace produit et pour
probabilité une probabilité produit. On va préciser cette notion d’indépendance
en l’appliquant à des événements, des tribus ou des variables aléatoires.

3.1 Indépendance d’événements et de variables

aléatoires

On commence par définir la notion d’événements indépendants.

Définition 7 Soit (Ω, T , P ) un espace probabilisé. Deux événements A,B ∈ T
sont dits indépendants entre eux si

P (A ∩ B) = P (A)P (B).

Soit (Ai)i∈I une famille d’événements. Ces événements sont dits indépendants

dans leur ensemble si

∀S ⊂ I fini, P
(⋂

i∈S
Ai

)
=
∏

i∈S
P (Ai).

Exemple
Pour une famille de trois événements {A1, A2, A3}, I = {1, 2, 3},
S = {1} P (A1) = P (A1)
S = {2} P (A2) = P (A2)
S = {3} P (A3) = P (A3)
S = {1, 2} P (A1 ∩A2) = P (A1)P (A2)
S = {1, 3} P (A1 ∩A3) = P (A1)P (A3)
S = {2, 3} P (A2 ∩A3) = P (A2)P (A3)
S = {1, 2, 3} P (A1 ∩A2 ∩A3) = P (A1)P (A2)P (A3)

sont les conditions à vérifier pour avoir l’indépendance de A1, A2 et A3 dans leur
ensemble.

23
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Définition 8 Deux variables aléatoires X, Y : Ω → R sont indépendantes entre

elles si pour tous boréliens A,B ⊂ R, les événements (X ∈ A) et (Y ∈ B) sont

indépendants entre eux :

P
(
(X ∈ A) ∩ (Y ∈ B)

)
= P (X ∈ A)P (Y ∈ B).

Soit (Xi)i∈I une famille de variables aléatoires. Elle sont dites indépendantes

entre elles si pour tout sous-ensemble S ⊂ I fini et (Ai)i∈S des boréliens de R,

les événements (Xi ∈ Ai) sont indépendants dans leur ensemble :

P
(⋂

i∈S
(Xi ∈ Ai)

)
=
∏

i∈S
P (Xi ∈ Ai).

Introduisons les notations suivantes pour alléger les formules :

(X ∈ A, Y ∈ B) = (X ∈ A) ∩ (Y ∈ B)
= {ω ∈ Ω | X(ω) ∈ A et Y (ω) ∈ B}(

Xi ∈ Ai, i ∈ S
)
=
⋂

i∈S
(Xi ∈ Ai)

(X1 ∈ A1, X2 ∈ A2, ..., Xn ∈ An) = (X1 ∈ A1) ∩ (X2 ∈ A2)... ∩ (Xn ∈ An)

Définition 9 Deux tribus T1 ⊂ T , T2 ⊂ T sont indépendantes entre elles si pour

tout A ∈ T1 et B ∈ T2, A et B sont indépendants entre eux.

Soit (Ti)i∈I une famille de tribus incluses dans T . Elle sont dites indépendantes

entre elles si pour tout sous-ensemble S ⊂ I fini et toute famille (Ai)i∈S satis-

faisant Ai ∈ Ti pour tout i ∈ S, les événements Ai sont indépendants dans leur

ensemble :

P
(⋂

i∈S
Ai

)
=
∏

i∈S
P (Ai).

3.2 Lemme de Borel-Cantelli

Voici une première application de la notion d’indépendance d’événements.

Lemme 1 (Borel-Cantelli) Soit (Ω, T , P ) un espace probabilisé et (Ai)i∈N une

suite d’événements.

Si
∑

i∈N
P (Ai) < +∞, presque tout ω ∈ Ω n’appartient qu’à un nombre fini de Ai.

Si
∑

i∈N
P (Ai) = +∞, et si les Ai sont indépendants dans leur ensemble, alors

presque tout ω ∈ Ω appartient à une infinité de Ai.

On définit la limite supérieure de la suite d’ensembles Ai comme suit :

lim
i∈N

Ai =
⋂

N∈N

( ⋃

i≥N

Ai

)
= {ω ∈ Ω | ω appartient à une infinité de Ai}.
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Le lemme se reformule alors de la façon suivante :

∑

i∈N
P (Ai) < +∞ implique P

(
lim
i∈N

Ai

)
= 0.

∑

i∈N
P (Ai) = +∞ et (Ai)i∈N indépendants implique P

(
lim
i∈N

Ai

)
= 1.

Preuve du lemme
Nous avons la relation #{i ∈ N | ω ∈ Ai} =

∑

i∈N
1Ai

(ω). Intégrons cette égalité :

∫
#{i ∈ N | ω ∈ Ai} dP (ω) =

∫ ∑

i∈N
1Ai

dP =
∑

i∈N

∫
1Ai

dP =
∑

i∈N
P (Ai) < +∞.

La fonction ω 7→ #{i ∈ N | ω ∈ Ai} est intégrable, donc finie presque partout ;
pour presque tout ω ∈ Ω, #{i ∈ N | ω ∈ Ai} < +∞.

Supposons à présent les (Ai) indépendants et M,N ∈ N, N ≤ M .

P
( M⋂

i=N

Ac
i

)
=

M∏

i=N

P (Ac
i) =

M∏

i=N

(1− P (Ai)) ≤ e−
∑M

i=N
P (Ai)

d’après la majoration 1−x ≤ e−x, valide
pour tout x ∈ R. Nous avons donc

P
( M⋂

i=N

Ac
i

)
≤ e−

∑M

i=N
P (Ai)

et en passant à la limite sur M ,

P
( ⋂

i≥N

Ac
i

)
= 0.
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Ceci entrâıne P (
⋃

N∈N

⋂

i≥N

Ac
i) = 0 puis en passant au complémentaire,

P (lim Ai) = P
( ⋂

N∈N

⋃

i≥N

Ai

)
= 1.

3.3 Loi d’un multiplet de variables indépendantes

Calculons l’espérance d’un produit de variables aléatoires indépendantes.

Proposition 5 Soit (Ω, T , P ) un espace probabilisé, X, Y : Ω → R deux va-

riables aléatoires. On se donne f, g : R → R des fonctions boréliennes telles que
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f(X) et g(Y ) soient intégrables. On suppose X et Y indépendantes entre elles.

Alors

E(f(X)g(Y )) = E(f(X))E(g(Y )).

Ceci se généralise à un nombre quelconque de variables aléatoires (Xi)i=1...n indé-

pendantes entre elles :

E
( n∏

i=1

fi(Xi)
)
=

n∏

i=1

E(fi(Xi))

où les fi : R → R sont des fonctions boréliennes telles que les fi(Xi) sont

intégrables.

Preuve
Si f et g sont des fonctions indicatrices, f = 1A, g = 1B,

E(f(X)g(Y )) = E(1A(X)1B(Y )) = E(1(X∈A)1(Y ∈B))
= E(1(X∈A)∩(Y ∈B)) = E(1(X∈A, Y ∈B))
= P (X ∈ A, Y ∈ B)
= P (X ∈ A)P (Y ∈ B) par indépendance,
= E(1A(X))E(1B(Y ))
= E(f(X))E(g(Y )).

On procède ensuite comme pour la preuve de la formule de transfert : on vérifie
la formule pour les fonctions étagées, par linéarité, puis on vérifie la formule pour
f, g ≥ 0 en les approchant de manière croissante par des fonctions étagées, et
enfin pourf, g intégrables en les écrivant comme différence de fonctions positives
intégrables.

Le cas d’un nombre quelconque de variables indépendantes s’en déduit de la
même façon. Rappelons que la covariance de deux variables aléatoires est égale à
l’espérance du produit des variables moins le produit des espérances. On obtient
le corollaire suivant :

Corollaire 1 Soit X1,..., Xn des variables aléatoires de carré intégrable, indé-

pendantes entre elles. Alors

Cov(Xi, Xj) = 0 si i 6= j,

V
( n∑

i=1

Xi

)
=

n∑

i=1

V (Xi).

Complément
Onmontre que la loi d’un couple ou d’un multiplet de variables aléatoires indépen-
dantes entre elles est égale au produit des lois de chacune des variables aléatoires.



3.3. LOI D’UN MULTIPLET DE VARIABLES INDÉPENDANTES 27

Proposition 6 Soit X, Y deux variables aléatoires indépendantes entre elles.

Alors

P(X,Y ) = PX ⊗ PY ,

E(h(X, Y )) =
∫

Ω
h(X, Y ) dP =

∫

R2
h(x, y) dPX(x) dPY (y)

pour toute fonction h : R2 → R borélienne, positive ou P(X,Y )-intégrable.

Soit X1,..., Xn des variables aléatoires indépendantes entre elles. Alors

P(X1,...,Xn) = PX1 ⊗ PX2 ⊗ ...⊗ PXn,

E(h(X1, ..., Xn)) =
∫

Rn
h(x1, ..., xn) dPX1(x1)...dPXn(xn)

pour toute fonction h : Rn → R borélienne, positive ou P(X1,...,Xn)-intégrable.

La preuve se ramène à celle de la proposition précédente en utilisant le fait
que toute fonction borélienne bornée h : R2 → R peut s’approcher en norme
L1(R2, P(X,Y ) + PX ⊗ PY ) par une combinaison linéaire de fonctions de la forme
(x, y) 7→ f(x)g(y), avec f et g boréliennes bornées. On généralise ensuite aux
fonctions boréliennes positives en utilisant le théorème de convergence croissante
puis aux fonctions intégrables. Le raisonnement est le même pour un multiplet
de variables aléatoires.
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3.4 Exercices

exercice 1
Soit X une variable aléatoire intégrable. Montrer que si X est indépendante
d’elle-même, elle est constante p.s. : il existe un réel C tel que P (X = C) = 1.

exercice 2
Soit An, n ∈ N, des événements. Montrer que

lim 1An = 1limAn
, lim P (An) ≤ P

(
limAn

)
.

exercice 3
Soit X une variable aléatoire ; la tribu associée à X est définie par

TX = {X−1(A) | A ⊂ R borélien}.

Montrer que deux variables aléatoires X et Y sont indépendantes si et seulement
si TX et TY sont indépendantes.

exercice 4
Montrer que si X et Y sont deux variables aléatoires indépendantes de densités
fX et fY , le couple (X, Y ) admet pour densité la fonction (x, y) 7→ fX(x)fY (y).

exercice 5
Soient X et Y deux variables aléatoires indépendantes. On suppose que X admet
une densité fX . Montrer que la somme X + Y admet aussi une densité qui est
égale à

fX+Y (t) =
∫

R

fX(t− y) dPY (y).

Montrer que si X et Y admettent des densités fX et fY , la densité de X + Y est
égale à la convolée de fX et fY : fX+Y (t) =

∫
R
fX(t− y) fY (y) dy.

exercice 6
SoitX1, ...Xn des variables aléatoires centrées, indépendantes entre elles, de cubes
intégrables. On pose Sn =

∑n
k=1Xk. Montrer que E(S3

n) =
∑n

k=1X
3
k .

exercice 7
Soient (Xi)i∈N une suite de variables aléatoires indépendantes. On suppose que
PXi

= PXj
pour i, j ∈ N et P (Xk = x) = 0 pour x ∈ R et k ∈ N. On pose

An = {ω ∈ Ω | ∀ k < n, Xk(ω) < Xn(ω)}.

Si An est réalisé, on dit qu’on a obtenu un record à l’étape n.

– Montrer que P (Xi = Xj) = 0 si i 6= j.

– Montrer que les An sont indépendants entre eux et que P (An) =
1
n
.

– En déduire que presque sûrement, on observe une infinité de records.



Chapitre 4

Loi des grands nombres

On va s’intéresser au comportement asymptotique d’une suite de variables aléa-
toires. On se donne un espace probabilisé (Ω, T , P ) et pour chaque entier n ∈ N
une variable aléatoire Xn : Ω → R.

Définition 10 La suite de variables aléatoires (Xi)i∈N est dite identiquement
distribuée si tous les Xi ont même loi :

∀i, j ∈ N, PXi
= PXj

.

En d’autres termes, pour tout borélien A ⊂ R,

P (Xi ∈ A) = P (Xj ∈ A)

et pour toute f : R → R borélienne positive ou intégrable par rapport à PX0 ,

E(f(Xi)) = E(f(Xj)).

En particulier, E(Xi) = E(Xj) si les Xi sont intégrables, E(X2
i ) = E(X2

j ) et
V (Xi) = V (Xj) si les Xi sont de carrés intégrables.

4.1 Loi faible des grands nombres

Soit (Xi)i∈N une suite de variables aléatoires indépendantes entre elles, identi-
quement distribuées (v.a i.i.d). On pose

Sn =
n∑

i=1

Xi = X1 +X2 + ...+Xn.

Pour ω ∈ Ω, la quantité Sn

n
(ω) = X1(ω)+X2(ω)+...+Xn(ω)

n
est la moyenne empirique

calculée sur l’échantillon donné par le résultat ω ∈ Ω. On cherche à étudier le
comportement asymptotique de la moyenne Sn

n
.

29
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Théorème 4 (loi faible des grands nombres) Soit (Xi)i∈N une suite de va-

riables aléatoires indépendantes entre elles, identiquement distribuées, de carrés

intégrables. Alors pour tout ε > 0,

P
(∣∣∣
Sn

n
− E(X0)

∣∣∣ > ε
)
−−−−→
n→∞

0.

La preuve du théorème repose sur le lemme suivant :

Lemme 2 Soit (Xi)i∈N une suite de variables aléatoires indépendantes, identi-

quement distribuées. Alors E(Sn) = nE(X0), V (Sn) = nV (X0).

Preuve du lemme

E(Sn) = E(X1 +X2 + ... +Xn) = E(X1) + E(X2) + ...+ E(Xn) par linéarité.

V (Sn) = V (X1 + ...+Xn) = V (X1) + ... + V (Xn) + 2
∑

i<j Cov(Xi, Xj),

où Cov(Xi, Xj) = E(XiXj)− E(Xi)E(Xj).

La covariance de deux variables aléatoires est nulle dans le cas indépendant. D’où
V (Sn) = V (X1) + ...+ V (Xn) = nV (X0).

Preuve du théorème

D’après le lemme,

E(Sn/n) = E(X0), V (Sn/n) = V (X0)/n, σ(Sn/n) = σ(X0)/
√
n.

On applique alors l’inégalité de Bienaymé-Tchebichev :

P
(∣∣∣
Sn

n
−E(

Sn

n
)
∣∣∣ > ε

)
≤ V (Sn/n)

ε2
=

σ(X0)
2

nε2
−−−−→
n→∞ 0.

Remarque On peut montrer que la loi faible des grands nombres est encore
vraie pour des variables aléatoires indépendantes, identiquement distribuées, inté-
grables.

4.2 Loi forte des grands nombres

Théorème 5 (loi forte des grands nombres) Soit (Xi)i∈N une suite de va-

riables aléatoires intégrables, indépendantes entre elles, identiquement distribuées

et Sn =
∑n

i=1Xi. Alors pour presque tout ω ∈ Ω ,

Sn

n
(ω)−−−−→

n→∞
E(X0).
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En d’autres termes, l’ensemble {ω ∈ Ω | Sn

n
(ω)−−−−→

n→∞
E(X0)} est un ensemble

dont la probabilité vaut 1.

Vocabulaire On dit qu’une propriété est vraie presque sûrement si elle est sa-
tisfaite pour presque tout ω ∈ Ω. Nous utiliserons dans la suite l’abréviation p.s.

pour le terme presque sûrement.

Énonçons un premier corollaire de la loi forte des grands nombres, qui sera
démontré dans la suite. Ce corollaire montre que la probabilité d’un événement
est presque sûrement égale à la limite du nombre de fois où il est réalisé sur le
nombre total de fois où l’épreuve est répétée, lorsque le nombre de répétitions
tend vers l’infini.

Corollaire 2 Soit (Xi)i∈N une suite de variables aléatoires indépendantes iden-

tiquement distribuées et soit A un borélien de R. Alors

#{i ≤ n | Xi(ω) ∈ A}
n

−−−−→
n→∞ P (X0 ∈ A) presque sûrement.

Illustrons la loi forte des grands nombres sur un exemple avant de la démontrer.

Exemple
On lance une pièce de monnaie bien équilibrée un grand nombre de fois de manière
indépendante. Pour modéliser ces épreuves, on commence par considérer la pro-
babilité P̃ définie sur P({pile, face}) par P̃ ({face}) = P̃ ({pile}) = 1/2 et on
pose :

– Ω = {pile, face}N,
– T = P({pile, face})⊗N,

– P = P̃⊗N.

Les éléments de Ω sont des suites infinies de pile ou face.

On définit maintenant une variable aléatoire X : {pile, face} → R par X(pile) =
0, X(face) = 1 et on pose pour tout i ∈ N :

Xi((ωk)k∈N) = X(ωi) =
{
1 si ωi = pile
0 si ωi = face

Soit ω = (ωk)k∈N ∈ Ω. L’élément ωk de la suite ω est le résultat obtenu au kième

lancer. La quantité Xk(ω) vaut 1 si ce résultat est face, 0 si il est égal à pile.
Définissons également

Sn

n
(ω) =

X1(ω) + ...+Xn(ω)

n
=

X(ω1) +X(ω2) + ... +X(ωn)

n
.

C’est la moyenne des valeurs prises par X au cours des n premières épreuves.
C’est le nombre moyen de fois où Face a été obtenu au cours des n premiers
lancers.
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Proposition 7 Les variables aléatoires Xi sont indépendantes dans leur en-

semble, identiquement distribuées, intégrables.

Preuve

P (X0 ∈ A0, ..., Xn ∈ An) = P̃⊗N({ω ∈ Ω | X(ω0) ∈ A0, ..., X(ωn) ∈ An})
= P̃⊗N(CX−1(A0),...,X−1(An))

=
n∏

i=0

P̃ (X−1(Ai)).

De plus, P (X0 ∈ A0) = P (CX−1(A0)) = P̃ (X−1(A0)). Nous avons également

P (Xi ∈ Ai) = P ({ω ∈ Ω | ωi ∈ X−1(Ai)})
= P (CΩ,...,Ω,X−1(Ai))

= P̃⊗N(CΩ,...,Ω,X−1(Ai))

= P̃ (Ω)...P̃ (Ω)P̃ (X−1(Ai))
= P̃ (X−1(Ai))

D’où P (X0 ∈ A0, ..., Xn ∈ An) = P (X0 ∈ A0)...P (Xn ∈ An) pour tout n ∈ N.
On vient de démontrer que les Xi sont indépendants.

On a aussi vu que P (Xi ∈ A) = P̃ (X−1(A)). La loi PXi
ne dépend donc pas de i

et PXi
= PXj

pour tout i, j. Ceci termine la démonstration de la proposition.

Dans notre exemple, nous avons PXi
= 1

2
(δ0 + δ1) ce qui implique l’égalité

E(X1) =
∫

R

x dPX1(x) = 0× 1/2 + 1× 1/2 = 1/2.

On peut maintenant appliquer la loi forte des grands nombres : pour presque tout
ω ∈ Ω,

#{i ≤ n | ωi = face}
n

−−−−→
n→∞

1/2

ou encore

P̃⊗N
({

(ωi)i∈N ∈ {pile, face}N | 1
n
#{i ≤ n | ωi = face}−−−−→

n→∞ 1/2
})

= 1.

La fréquence d’apparition de face au cours d’une infinité de lancers est égale à
1/2 presque sûrement, lorsque la pièce est bien équilibrée.

Nous allons démontrer la loi forte des grands nombres à partir du lemme sui-
vant :

Lemme 3 Soit (Yi) une suite de variables aléatoires. Si pour tout ε > 0,

∞∑

i=1

P (|Yi| > ε) < ∞

alors la suite (Yi)i∈N converge presque sûrement vers 0 :

pour presque tout ω ∈ Ω, Yi(ω)−−−−→
i→∞

0.
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Le lemme montre que P ({ω ∈ Ω | Yi(ω)−−−−→
i→∞

0}) = 1.

Preuve du lemme
On applique le lemme de Borel-Cantelli. La quantité ε étant fixée, on pose

Ai = (|Yi| > ε).

Comme
∑

P (Ai) < ∞, presque tout ω ∈ Ω n’appartient qu’à un nombre fini de
Ai. Notons par Cε cet ensemble. Nous avons P (Cε) = 1.

∀ω ∈ Cε, ∃N ∈ N, ∀n ≥ N, ω /∈ An et |Yn(ω)| < ε.

On prend ε = 1/k, k ∈ N∗ et on considère l’intersection des C1/k.

C =
⋂

k∈N∗

C1/k, P (C) = 1.

Pour tout ω ∈ C et tout k ∈ N∗, le point ω est dans C1/k, si bien qu’il existe
N ∈ N tel que pour tout n ≥ N , |Yn(ω)| < 1/k. Ceci montre que lim

n→∞
Yn(ω) = 0,

comme souhaité.

Preuve de la loi forte des grands nombres
Pour simplifier, nous allons supposer que les Xi sont de carré intégrable dans la
preuve. On donnera une preuve dans le cas intégrable plus tard, dans le chapitre
consacré à la convergence de séries de variables aléatoires.

Nous avons, pour tout i, E(Xi) = E(X1). Quitte à remplacer les Xi par Xi −
E(Xi), on peut supposer E(Xi) = 0. On dit qu’on centre les variables aléatoires.
On veut montrer que Sn

n
converge presque sûrement vers 0. Essayons d’appliquer

le lemme précédent. Rappelons l’égalité E(Si

i
) = E(X1) = 0.

P
(∣∣∣
Si

i

∣∣∣ > ε
)
≤ V (Si/i)

ε2
=

V (X1)

i ε2
par Bienaymé-Tchebichev.

∞∑

n=1

P
(∣∣∣
Si

i

∣∣∣ > ε
)

≤ V (X1)

ε2

∞∑

i=1

1

i
= +∞.

La condition du lemme, avec Yi = Si/i, n’est pas vérifiée. Remplaçons i par i2 :
Yi =

Si2

i2
. Nous avons maintenant

∑

i

P
(∣∣∣
Si2

i2

∣∣∣ > ε
)
≤ V (X1)

ε

∑

i

1

i2
.

La série
∑ 1

i2
est convergente (sa limite vaut π2/6). Le lemme précédent donne la

convergence de la suite
Si2

i2
:

Si2

i2
−−−−→
i→∞

0 p.s.
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Pour chaque n ∈ N∗, on prend i ∈ N le plus grand possible, tel que i2 ≤ n.
L’entier i est égal à la partie entière de

√
n et on a les encadrements :

i2 ≤ n ≤ (i+ 1)2 − 1, i2 ≤ n ≤ i2 + 2i, 0 ≤ n− i2 ≤ 2i ≤ 2
√
n.

Sn =
n∑

k=1

Xk =
i2∑

k=1

Xk +
n∑

k=i2+1

Xk

∣∣∣
Sn

n

∣∣∣ ≤
∣∣∣
Si2

i2

∣∣∣+
1

n

∣∣∣
n∑

k=i2+1

Xk

∣∣∣.

Pour majorer le dernier terme, on raisonne comme précédemment :

P

(
1

n

∣∣∣
n∑

k=i2+1

Xk

∣∣∣ > ε

)
≤ 1

n2ε2
V
( n∑

k=i2+1

Xk

)
≤ n− i2

n2ε2
V (X1) ≤

2

n3/2

V (X1)

ε2
.

La série
∑ 1

n3/2 est convergente. D’après le lemme,

1

n

n∑

k=i2+1

Xk −−−−→
i→∞

0 p.s.

Le résultat est démontré.

Preuve du corollaire

On applique la loi des grands nombres à la suite (1A ◦Xi).

E(1A ◦X1) = E(1X−1
1 (A)) = E(1(X1∈A)) = P (X1 ∈ A).

Sn

n
=

1

n

n∑

k=1

1A(Xk(ω)) =
1

n
#{k ∈ {1, ..., n} | Xk(ω) ∈ A}

Cette quantité converge vers E(1A ◦X1) d’après la loi forte des grands nombres.

Complément
Donnons une généralisation aisée de la loi des grands nombres qui s’avère utile
en pratique.

Proposition 8 Soit (Xi)i∈N une suite de variables aléatoires indépendantes iden-

tiquement distribuées. Soit m ∈ N∗ et f : Rm → R une fonction qui est

P(X1,...,Xm)-intégrable. Alors pour presque tout ω ∈ Ω,

1

N

N∑

k=1

f(Xk, ..., Xk+m−1) −−−−→
N→∞

E(f(X1, ..., Xm)).
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Preuve
On pose Yk = f(Xk, ...Xk+m−1) ; les variables Yk ne sont pas indépendantes dans
leur ensemble. Par contre, les variables Y1, Ym+1, Y2m+1, Y3m+1... sont indépen-
dantes entre elles. Plus généralement, pour chaque r ∈ {1, ..., m}, les variables
(Ymk+r)k∈N sont intégrables, indépendantes et identiquement distribuées. On peut
donc appliquer la loi des grands nombres à ces m suites de variables aléatoires et
faire la somme des résultats, ce qui donne

1

n

mn∑

k=1

Yk −−−−→
n→∞

m∑

i=1

E(Yi).

Comme les variablesXi sont indépendantes identiquement distribuées, nous avons

E(Yi) = E(f(Xi, ..., Xm+i−1)) =
∫
f(x1, ..., xm) dPXi

(x1)...dPXm+i−1
(xm)

=
∫
f(x1, ..., xm) dPX1(x1)...dPX1(xm)

= E(f(X1, ..., Xm)).

Ceci montre le résultat pour N multiple de m. Si N n’est pas multiple de m, on
peut l’écrire sous la forme N = mn + i avec 0 < i < m. On remarque alors que
chacun des termes Ymn+i/n converge vers 0 presque sûrement quand n tend vers
l’infini, d’après la loi des grands nombres :

Ymn+i

n
=
( 1
n

n∑

k=1

Ymk+i

)
− n− 1

n

( 1

n− 1

n−1∑

k=1

Ymk+i

)
−−−−→
n→∞

E(Yi)− E(Yi) = 0.

La proposition s’ensuit.

Application
On revient à l’exemple de pile ou face. Prenons

– Ω = {pile, face}⊗N,

– T = P({pile, face})⊗N,

– P = (1
2
δpile +

1
2
δface)

⊗N.

D’après la loi des grands nombres,

1

n
#{k ∈ {1, ..., n} | ωk = face}−−−−→

n→∞
1

2
pour presque tout ω ∈ Ω.

En particulier, pour presque tout ω ∈ Ω, face apparâıt une infinité de fois dans la
suite Ω. Soit (a1, ..., am) ∈ {pile, face}m. Prenons f = 1{(a1,...,am)}. Nous obtenons

E(f(X1, ..., Xm)) = P (X1 = a1, ..., Xm = am)
= P (X1 = a1)...P (Xn = am)
= 1/2m.
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Appliquons la proposition précédente.

1

n
#{k ∈ {1, ..., n} | (ωk, ..., ωk+m−1) = (a1, ..., am)}−−−−→

n→∞
1

2m
p.s.

Notons par Ω(a1,...,am) l’ensemble des ω ∈ Ω pour lesquels on a cette convergence.
Cet ensemble est de probabilité 1. On en déduit

P
( ⋂

m∈N∗

⋂

(a1,...,am)∈{pile,face}m
Ω(a1,...,am)

)
= 1

Presque tout ω ∈ Ω appartient à tous les Ω(a1,...,am). Cela signifie que dans presque
toute suite ω ∈ Ω, tous les mots (a1, ..., am) apparaissent une infinité de fois dans
la suite ω avec fréquence 1/2m, pour tout m ∈ N∗.

4.3 Illustration numérique

Pour illustrer la loi des grands nombres, on considère plusieurs suites numériques,
chacune consistant en mille chiffres obtenus de plusieurs façons.

La première a été obtenue en lançant mille fois un dé à dix faces.
9 6 3 9 1 7 8 0 7 1 9 5 5 3 5 7 8 4 9 9 2 1 0 2 5 1 0 1 2 7 3 3 0 0 4 8 0 8 0 1 0 4 6 3 5 6 4 3 1 1 2 6 1 3 2 7 7 7 5
0 8 7 1 0 5 6 6 0 2 5 3 3 7 0 5 2 0 0 4 0 4 4 6 5 8 2 2 7 3 2 8 7 2 0 2 4 5 4 9 6 4 2 5 1 0 6 0 4 5 5 5 8 9 1 2 3 5 9
7 3 4 4 2 8 6 1 4 6 5 8 4 0 3 2 2 8 6 7 6 9 3 9 4 0 0 8 2 4 8 9 5 5 5 7 8 0 5 4 5 8 2 8 5 6 6 8 4 5 5 7 0 7 0 1 0 9 3
6 8 6 3 0 3 4 3 6 6 5 8 9 3 4 2 7 3 2 4 3 5 4 1 7 8 6 0 3 8 2 0 0 0 6 5 1 0 7 1 6 8 6 4 3 1 3 6 8 5 5 2 8 5 7 4 0 9 7
1 7 1 2 3 9 5 7 6 0 7 9 8 3 8 3 1 6 9 5 8 5 5 7 1 9 0 9 0 3 2 8 8 6 9 5 1 5 9 6 0 9 1 9 6 5 7 8 7 7 7 9 2 4 8 6 1 9 2
3 0 8 1 6 6 2 2 5 2 3 8 4 8 2 3 0 2 7 7 3 4 7 0 3 3 7 6 9 4 2 6 9 9 6 1 5 3 7 6 4 8 3 6 5 7 7 9 8 6 8 1 2 5 4 2 4 9 8
9 1 7 5 7 2 1 7 2 8 3 3 2 1 1 8 6 7 0 1 2 0 1 1 1 8 7 7 2 4 2 2 8 5 4 6 9 3 4 6 8 0 5 8 9 5 5 8 0 2 0 2 4 9 8 2 7 3 1
1 2 4 0 0 0 2 5 2 6 8 2 9 2 4 8 3 8 9 9 2 3 3 1 5 3 1 5 3 8 6 5 5 7 9 6 6 6 8 9 9 3 8 1 7 2 8 4 4 3 4 7 1 7 0 3 3 2 1
6 3 0 2 3 7 2 6 3 3 6 3 7 7 0 5 6 0 3 1 8 8 9 3 2 6 0 3 0 4 3 2 5 3 6 5 5 1 7 4 0 6 3 3 9 3 9 7 9 8 2 7 0 2 1 4 8 8 6
5 8 3 9 9 7 0 4 3 4 6 9 3 7 9 6 0 0 4 9 9 2 4 6 1 2 7 8 7 5 1 0 2 6 2 2 3 3 5 4 2 8 4 2 7 9 4 0 8 8 5 5 1 1 2 5 3 1 2
1 2 2 6 8 0 1 1 5 9 4 5 4 8 8 7 0 4 4 9 9 4 5 0 0 2 4 1 6 0 1 8 5 7 6 0 7 6 5 2 1 6 6 8 6 8 3 5 2 5 0 1 5 1 6 9 8 0 8
9 9 9 1 0 1 7 0 7 9 5 3 7 7 9 0 7 7 2 6 0 8 1 0 5 4 5 7 0 9 1 9 0 6 7 9 5 9 4 1 2 2 8 1 9 0 5 4 3 3 2 0 1 6 0 5 3 8 3
5 6 3 9 1 9 7 4 3 8 7 4 5 0 9 7 7 3 1 4 2 2 5 6 2 0 8 4 4 6 7 9 3 5 8 2 0 6 9 5 9 1 3 9 8 2 9 5 5 3 4 8 1 7 6 6 9 5 2
0 5 8 4 7 8 1 0 0 8 6 6 8 0 5 4 4 5 7 5 1 3 8 5 0 7 3 4 4 4 1 3 5 8 9 8 0 5 3 7 2 2 7 7 3 5 1 8 6 5 7 5 9 9 2 3 8 7 7
3 9 1 7 9 3 3 8 9 6 5 8 2 3 4 5 7 4 6 9 2 7 0 3 9 1 3 0 7 6 4 5 1 1 7 0 8 2 5 7 7 7 0 1 3 5 3 6 7 4 2 1 5 9 5 7 7 9 0
1 9 2 8 5 6 6 1 9 0 7 9 7 3 7 0 9 5 4 9 7 6 7 3 6 1 6 5 4 1 8 6 4 5 8 9 0 2 3 4 9 6 3 4 0 3 9 2 5 0 6 3 9 2 1 0 5 2 7
8 0 4 8 3 3 5 7 6 5 6 3 7 3 2 3 7 5 6 1 3 5 6 7 2 0 5 0 7 2 0 9 3 1 6 6 9 4 6 7 9 1 0 9 4 4 1 4 6 7 8 8 0 6 8 6

La seconde est obtenue en utilisant un ordinateur et un générateur de nombres
aléatoires.
0 8 4 8 3 7 0 2 4 5 9 2 0 3 3 2 9 4 1 1 3 0 7 2 0 5 5 0 0 9 3 1 3 4 2 5 6 4 2 4 6 3 2 9 2 1 6 8 9 9 7 4 7 6 1 9 0 2 2
4 9 1 7 5 3 4 7 7 2 6 7 2 3 8 8 9 7 6 2 5 7 0 7 1 2 2 9 7 6 4 9 0 6 8 4 0 6 5 3 0 2 2 9 3 3 8 4 8 5 4 1 3 9 1 9 2 7 6
9 2 7 1 7 6 8 1 1 3 9 7 4 6 6 6 0 0 3 2 7 6 8 0 4 0 2 7 7 9 1 7 4 0 5 8 7 4 8 6 9 0 3 8 7 5 9 7 7 0 9 7 5 2 5 0 1 6 2
8 8 6 3 7 5 5 2 5 0 5 9 8 2 3 4 3 5 1 0 7 7 6 8 2 0 9 5 1 8 0 5 7 8 8 9 8 3 7 0 3 4 4 6 6 2 1 3 5 4 4 7 5 1 5 9 2 9 3
1 2 4 5 7 2 7 9 6 8 1 7 1 1 3 4 9 2 4 2 1 9 2 1 9 2 3 8 4 0 6 3 9 5 0 4 7 3 6 1 9 4 0 3 4 3 1 4 4 3 1 8 7 3 6 0 0 7 3
8 9 0 5 9 1 6 6 0 5 8 4 2 2 6 5 3 2 4 3 9 0 4 3 4 5 5 3 0 0 5 7 9 7 3 4 1 6 9 7 9 9 2 3 8 9 2 5 0 1 2 5 5 9 2 3 6 5 6
5 7 5 5 6 2 6 6 2 0 6 1 2 1 3 7 2 2 3 2 8 9 8 6 8 4 1 7 2 1 7 9 8 5 2 4 6 5 6 3 4 0 4 6 4 2 9 3 3 4 6 0 9 8 8 2 2 4 4
0 8 4 3 9 6 0 5 1 8 4 0 8 0 8 4 8 2 4 3 5 0 2 5 8 7 2 4 0 4 0 2 1 5 9 2 3 8 5 4 6 7 8 7 9 0 6 6 5 9 5 3 9 6 6 8 7 1 3
4 0 7 0 2 5 3 2 1 7 6 2 7 8 9 9 9 4 9 7 9 8 7 5 9 5 4 9 0 5 5 4 8 8 3 3 5 7 7 6 9 8 1 1 1 7 0 0 0 4 9 9 5 7 4 6 8 0 9
6 0 2 8 3 9 7 2 2 9 7 2 3 0 3 3 0 3 7 5 3 3 5 7 7 7 3 3 9 1 9 7 4 5 5 1 6 3 6 6 4 7 3 4 3 3 0 0 8 2 0 0 3 6 8 8 5 7 1
8 4 7 5 5 1 0 6 9 7 2 7 1 6 8 2 8 3 3 9 1 6 9 9 7 3 0 9 8 6 2 0 4 7 8 1 7 6 7 2 0 2 8 2 2 2 0 4 9 3 0 1 3 6 3 3 5 9 5
9 9 6 1 0 1 4 8 4 4 3 7 3 6 4 2 2 8 7 2 4 8 8 6 0 1 6 0 2 1 6 1 4 3 2 2 7 0 5 7 0 2 3 3 3 8 1 1 8 0 8 5 5 3 0 2 0 8 8
3 1 8 9 1 4 8 6 5 3 1 5 5 8 0 5 3 4 7 4 4 0 5 5 2 2 0 0 3 0 5 8 8 6 9 1 3 9 1 2 5 9 9 4 1 5 6 2 0 9 2 6 0 7 3 0 0 7 9
7 9 7 9 1 2 1 9 1 1 4 3 1 1 8 4 2 9 9 0 7 2 1 8 9 3 8 6 2 4 9 0 3 3 7 6 1 0 9 8 8 2 5 4 0 7 0 1 5 2 1 5 1 1 7 7 4 6 3
6 9 1 4 6 0 6 3 0 0 9 1 4 0 7 1 9 4 8 4 4 7 1 4 1 7 7 2 7 7 0 5 9 1 9 4 3 1 9 5 1 0 9 7 5 7 3 8 9 2 1 3 7 7 9 0 4 5 6
6 4 3 2 4 3 3 2 2 7 2 1 0 7 7 2 4 6 6 8 2 4 1 7 8 1 5 4 7 2 1 4 3 5 2 5 5 3 8 0 0 2 0 6 4 9 1 9 5 7 5 0 7 4 9 1 1 5 6
0 1 0 2 6 3 3 9 8 7 8 6 7 5 5 7 1 3 6 7 8 7 9 8 3 8 2 3 9 8 0 9 3 5 4 8 0 6 9 5 4 1 7 4 2 1 2 9 6 6 0 7 7 0 2 4
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La troisième est constituée des mille premières décimales de π.
1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6 4 3 3 8 3 2 7 9 5 0 2 8 8 4 1 9 7 1 6 9 3 9 9 3 7 5 1 0 5 8 2 0 9 7 4 9 4
4 5 9 2 3 0 7 8 1 6 4 0 6 2 8 6 2 0 8 9 9 8 6 2 8 0 3 4 8 2 5 3 4 2 1 1 7 0 6 7 9 8 2 1 4 8 0 8 6 5 1 3 2 8 2 3 0 6 6
4 7 0 9 3 8 4 4 6 0 9 5 5 0 5 8 2 2 3 1 7 2 5 3 5 9 4 0 8 1 2 8 4 8 1 1 1 7 4 5 0 2 8 4 1 0 2 7 0 1 9 3 8 5 2 1 1 0 5
5 5 9 6 4 4 6 2 2 9 4 8 9 5 4 9 3 0 3 8 1 9 6 4 4 2 8 8 1 0 9 7 5 6 6 5 9 3 3 4 4 6 1 2 8 4 7 5 6 4 8 2 3 3 7 8 6 7 8
3 1 6 5 2 7 1 2 0 1 9 0 9 1 4 5 6 4 8 5 6 6 9 2 3 4 6 0 3 4 8 6 1 0 4 5 4 3 2 6 6 4 8 2 1 3 3 9 3 6 0 7 2 6 0 2 4 9 1
4 1 2 7 3 7 2 4 5 8 7 0 0 6 6 0 6 3 1 5 5 8 8 1 7 4 8 8 1 5 2 0 9 2 0 9 6 2 8 2 9 2 5 4 0 9 1 7 1 5 3 6 4 3 6 7 8 9 2
5 9 0 3 6 0 0 1 1 3 3 0 5 3 0 5 4 8 8 2 0 4 6 6 5 2 1 3 8 4 1 4 6 9 5 1 9 4 1 5 1 1 6 0 9 4 3 3 0 5 7 2 7 0 3 6 5 7 5
9 5 9 1 9 5 3 0 9 2 1 8 6 1 1 7 3 8 1 9 3 2 6 1 1 7 9 3 1 0 5 1 1 8 5 4 8 0 7 4 4 6 2 3 7 9 9 6 2 7 4 9 5 6 7 3 5 1 8
8 5 7 5 2 7 2 4 8 9 1 2 2 7 9 3 8 1 8 3 0 1 1 9 4 9 1 2 9 8 3 3 6 7 3 3 6 2 4 4 0 6 5 6 6 4 3 0 8 6 0 2 1 3 9 4 9 4 6
3 9 5 2 2 4 7 3 7 1 9 0 7 0 2 1 7 9 8 6 0 9 4 3 7 0 2 7 7 0 5 3 9 2 1 7 1 7 6 2 9 3 1 7 6 7 5 2 3 8 4 6 7 4 8 1 8 4 6
7 6 6 9 4 0 5 1 3 2 0 0 0 5 6 8 1 2 7 1 4 5 2 6 3 5 6 0 8 2 7 7 8 5 7 7 1 3 4 2 7 5 7 7 8 9 6 0 9 1 7 3 6 3 7 1 7 8 7
2 1 4 6 8 4 4 0 9 0 1 2 2 4 9 5 3 4 3 0 1 4 6 5 4 9 5 8 5 3 7 1 0 5 0 7 9 2 2 7 9 6 8 9 2 5 8 9 2 3 5 4 2 0 1 9 9 5 6
1 1 2 1 2 9 0 2 1 9 6 0 8 6 4 0 3 4 4 1 8 1 5 9 8 1 3 6 2 9 7 7 4 7 7 1 3 0 9 9 6 0 5 1 8 7 0 7 2 1 1 3 4 9 9 9 9 9 9
8 3 7 2 9 7 8 0 4 9 9 5 1 0 5 9 7 3 1 7 3 2 8 1 6 0 9 6 3 1 8 5 9 5 0 2 4 4 5 9 4 5 5 3 4 6 9 0 8 3 0 2 6 4 2 5 2 2 3
0 8 2 5 3 3 4 4 6 8 5 0 3 5 2 6 1 9 3 1 1 8 8 1 7 1 0 1 0 0 0 3 1 3 7 8 3 8 7 5 2 8 8 6 5 8 7 5 3 3 2 0 8 3 8 1 4 2 0
6 1 7 1 7 7 6 6 9 1 4 7 3 0 3 5 9 8 2 5 3 4 9 0 4 2 8 7 5 5 4 6 8 7 3 1 1 5 9 5 6 2 8 6 3 8 8 2 3 5 3 7 8 7 5 9 3 7 5
1 9 5 7 7 8 1 8 5 7 7 8 0 5 3 2 1 7 1 2 2 6 8 0 6 6 1 3 0 0 1 9 2 7 8 7 6 6 1 1 1 9 5 9 0 9 2 1 6 4 2 0 1 9 8 9

La quatrième est obtenue en conservant les cinq derniers chiffres de deux cents
numéros de téléphone successifs d’un annuaire téléphonique.
4 1 0 1 4 9 1 4 0 1 5 7 0 1 6 2 3 7 4 8 9 6 1 7 8 5 1 2 2 9 1 2 7 5 3 5 1 0 3 5 4 4 9 4 1 9 1 3 3 0 8 7 9 0 7 8 8 4 2
3 0 8 0 2 0 5 9 1 5 2 5 1 7 9 1 9 8 3 3 8 9 0 1 6 9 6 4 2 7 9 9 1 3 0 9 5 2 0 4 6 8 2 3 1 6 9 7 4 4 0 5 3 3 9 2 9 1 9
4 0 5 9 6 1 9 0 2 7 0 8 5 7 7 7 7 5 4 8 4 2 3 1 8 2 6 4 6 0 3 5 2 1 1 7 8 5 6 4 9 2 5 0 9 6 7 5 8 5 6 6 5 1 3 6 9 1 7
9 8 0 5 7 6 5 9 4 1 0 6 8 5 1 1 3 8 5 9 6 5 4 8 5 8 4 5 8 9 5 5 7 4 0 9 8 5 5 1 0 0 0 7 2 8 5 5 9 4 2 5 5 8 9 9 0 5 5
0 7 3 9 7 9 8 5 2 9 8 0 2 9 0 4 0 9 8 5 1 0 0 9 3 8 3 7 3 8 4 0 6 4 5 9 1 4 4 9 3 8 5 1 5 9 5 6 1 5 9 1 6 2 8 5 6 7 6
9 4 1 5 4 5 8 2 5 8 2 1 7 2 2 5 0 9 8 4 2 7 7 1 1 5 0 0 8 6 5 4 5 9 0 8 2 7 7 1 5 7 5 7 8 6 4 2 4 5 2 5 0 1 5 5 6 9 1
5 8 5 0 4 7 9 7 4 3 4 5 9 7 1 0 5 9 8 9 5 9 2 8 5 3 5 9 3 1 5 4 2 0 6 8 5 9 2 2 7 3 9 2 2 7 9 4 0 4 5 5 9 0 9 5 9 4 8
4 9 4 0 1 1 5 3 8 9 5 8 2 6 2 8 7 5 4 9 5 8 5 9 2 0 6 6 8 3 6 4 5 9 0 0 3 5 7 3 0 2 0 1 8 7 6 5 6 8 4 6 8 5 4 3 7 5 6
2 1 7 5 9 2 3 9 8 4 5 0 9 9 6 9 8 8 5 6 4 4 2 8 9 9 5 4 4 1 5 1 5 2 7 3 4 4 8 9 9 5 8 7 4 0 6 1 9 2 8 3 9 5 2 6 8 4 5
7 6 2 9 5 9 3 6 4 5 8 0 3 9 5 8 0 3 3 5 9 3 5 6 0 2 0 8 1 8 9 1 2 9 5 9 3 8 6 8 5 3 8 5 5 0 4 3 6 8 0 3 1 9 6 4 2 3 9
5 7 8 5 6 5 9 6 1 3 0 5 0 5 8 5 7 5 6 7 5 8 9 7 1 9 4 5 8 9 8 9 5 6 2 5 4 0 6 9 8 5 4 3 4 5 6 7 9 4 5 9 2 6 3 7 9 2 6
3 8 4 5 3 3 5 5 3 4 4 9 8 0 3 4 3 7 7 4 3 8 9 3 6 7 3 3 5 6 8 6 7 8 3 0 5 2 8 5 7 9 2 4 5 9 5 6 0 8 6 5 9 3 8 1 5 4 1
5 5 8 2 0 0 4 1 1 0 1 9 0 7 5 7 5 5 0 1 4 9 9 7 4 0 4 5 1 4 3 9 1 0 6 4 9 5 2 6 3 9 9 2 4 5 7 5 9 7 4 4 8 2 8 2 1 3 8
5 7 7 5 7 3 1 3 4 7 3 1 3 0 0 9 2 0 8 9 9 7 3 5 4 3 6 8 5 4 3 7 8 9 8 9 2 0 9 8 9 2 9 9 3 6 8 6 6 1 4 1 0 2 5 0 5 7 4
1 0 5 6 3 6 5 8 7 4 3 9 1 1 4 1 5 3 0 8 5 4 6 8 5 9 5 3 7 8 4 3 3 2 6 5 8 8 2 2 2 3 2 8 9 2 3 6 2 8 4 3 1 8 9 2 7 5 8
5 9 1 6 0 0 4 9 9 7 9 4 8 6 9 8 2 2 0 5 5 4 4 8 1 5 7 6 3 1 7 6 1 8 5 8 1 6 5 8 9 4 3 7 6 8 5 7 7 6 1 3 7 2 8 5 3 2 4
0 6 0 1 9 2 0 8 9 5 8 5 5 3 7 8 2 6 6 5 7 5 2 5 3 2 8 3 0 6 7 9 1 4 3 7 5 5 7 1 9 5 9 3 0 5 9 5 8 7 6 5 9 1 2 8

La cinquième s’obtient en concaténant les nombres entiers dans l’ordre croissant
en partant de un.
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1 3 2 3 3 3 4
3 5 3 6 3 7 3 8 3 9 4 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 5 0 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 6 0 6 1 6 2 6 3 6
4 6 5 6 6 6 7 6 8 6 9 7 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 9 0 9 1 9 2 9 3
9 4 9 5 9 6 9 7 9 8 9 9 1 0 0 1 0 1 1 0 2 1 0 3 1 0 4 1 0 5 1 0 6 1 0 7 1 0 8 1 0 9 1 1 0 1 1 1 1 1 2 1 1 3 1 1 4 1 1
5 1 1 6 1 1 7 1 1 8 1 1 9 1 2 0 1 2 1 1 2 2 1 2 3 1 2 4 1 2 5 1 2 6 1 2 7 1 2 8 1 2 9 1 3 0 1 3 1 1 3 2 1 3 3 1 3 4 1
3 5 1 3 6 1 3 7 1 3 8 1 3 9 1 4 0 1 4 1 1 4 2 1 4 3 1 4 4 1 4 5 1 4 6 1 4 7 1 4 8 1 4 9 1 5 0 1 5 1 1 5 2 1 5 3 1 5 4
1 5 5 1 5 6 1 5 7 1 5 8 1 5 9 1 6 0 1 6 1 1 6 2 1 6 3 1 6 4 1 6 5 1 6 6 1 6 7 1 6 8 1 6 9 1 7 0 1 7 1 1 7 2 1 7 3 1 7
4 1 7 5 1 7 6 1 7 7 1 7 8 1 7 9 1 8 0 1 8 1 1 8 2 1 8 3 1 8 4 1 8 5 1 8 6 1 8 7 1 8 8 1 8 9 1 9 0 1 9 1 1 9 2 1 9 3 1
9 4 1 9 5 1 9 6 1 9 7 1 9 8 1 9 9 2 0 0 2 0 1 2 0 2 2 0 3 2 0 4 2 0 5 2 0 6 2 0 7 2 0 8 2 0 9 2 1 0 2 1 1 2 1 2 2 1 3
2 1 4 2 1 5 2 1 6 2 1 7 2 1 8 2 1 9 2 2 0 2 2 1 2 2 2 2 2 3 2 2 4 2 2 5 2 2 6 2 2 7 2 2 8 2 2 9 2 3 0 2 3 1 2 3 2 2 3
3 2 3 4 2 3 5 2 3 6 2 3 7 2 3 8 2 3 9 2 4 0 2 4 1 2 4 2 2 4 3 2 4 4 2 4 5 2 4 6 2 4 7 2 4 8 2 4 9 2 5 0 2 5 1 2 5 2 2
5 3 2 5 4 2 5 5 2 5 6 2 5 7 2 5 8 2 5 9 2 6 0 2 6 1 2 6 2 2 6 3 2 6 4 2 6 5 2 6 6 2 6 7 2 6 8 2 6 9 2 7 0 2 7 1 2 7 2
2 7 3 2 7 4 2 7 5 2 7 6 2 7 7 2 7 8 2 7 9 2 8 0 2 8 1 2 8 2 2 8 3 2 8 4 2 8 5 2 8 6 2 8 7 2 8 8 2 8 9 2 9 0 2 9 1 2 9
2 2 9 3 2 9 4 2 9 5 2 9 6 2 9 7 2 9 8 2 9 9 3 0 0 3 0 1 3 0 2 3 0 3 3 0 4 3 0 5 3 0 6 3 0 7 3 0 8 3 0 9 3 1 0 3 1 1 3
1 2 3 1 3 3 1 4 3 1 5 3 1 6 3 1 7 3 1 8 3 1 9 3 2 0 3 2 1 3 2 2 3 2 3 3 2 4 3 2 5 3 2 6 3 2 7 3 2 8 3 2 9 3 3 0 3 3 1
3 3 2 3 3 3 3 3 4 3 3 5 3 3 6 3 3 7 3 3 8 3 3 9 3 4 0 3 4 1 3 4 2 3 4 3 3 4 4 3 4 5 3 4 6 3 4 7 3 4 8 3 4 9 3 5 0 3 5
1 3 5 2 3 5 3 3 5 4 3 5 5 3 5 6 3 5 7 3 5 8 3 5 9 3 6 0 3 6 1 3 6 2 3 6 3 3 6 4 3 6 5 3 6 6 3 6 7 3 6 8 3 6 9 3

La sixième est obtenue en concaténant le nombre d’habitants de chacune des com-
munes de l’Ain, ordonnées par ordre alphabétique (2012, Abergement-Clémenciat
→ Vonnas) et en conservant les mille premiers chiffres.
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7 9 1 2 3 9 1 4 7 9 6 1 6 6 0 1 1 6 2 5 5 7 7 5 8 3 4 7 1 0 8 7 3 9 3 3 1 9 1 6 5 3 5 6 6 4 9 7 4 2 2 4 3 2 2 1 1 4 0
4 1 2 1 8 7 5 3 1 5 9 3 2 1 1 8 9 0 2 8 9 0 5 6 8 6 8 0 8 9 2 3 8 4 5 3 2 5 9 1 1 9 3 6 9 2 9 8 3 5 0 5 4 4 2 8 1 7 3
8 4 4 1 4 7 4 7 5 5 2 7 1 4 6 4 3 5 5 6 2 7 4 8 3 1 9 3 0 2 9 6 2 3 0 9 9 5 3 1 3 4 2 1 4 6 1 2 7 9 3 7 2 4 9 9 9 1 4
9 4 5 6 1 1 2 4 8 8 0 9 5 2 5 9 3 2 1 7 6 2 7 4 2 7 1 7 4 8 1 4 8 5 4 4 8 6 3 0 2 0 1 0 1 2 2 4 4 2 1 1 9 1 1 4 5 1 8
6 1 4 2 0 8 1 2 4 8 0 7 0 9 6 4 4 8 3 6 7 3 7 3 6 8 2 8 9 9 4 2 1 9 3 3 3 5 3 3 2 1 4 1 6 6 7 5 1 6 6 7 3 0 6 5 0 9 8
5 2 2 1 8 1 9 1 5 9 7 1 5 9 1 6 7 9 5 5 1 3 8 1 4 6 5 1 4 7 2 1 7 7 1 4 3 1 1 8 7 2 0 9 3 1 2 0 1 0 9 4 5 2 7 9 5 5 7
0 1 2 6 7 5 4 6 1 5 3 1 2 2 4 2 5 0 1 2 2 8 8 7 1 0 9 8 6 7 9 6 2 5 5 1 4 2 7 5 2 7 2 1 3 8 4 3 7 9 1 7 6 6 2 0 4 2 8
5 1 3 0 0 1 4 5 8 7 3 4 4 2 7 4 2 2 4 8 8 6 9 8 8 2 1 2 2 6 3 9 5 4 7 6 1 9 2 9 1 0 2 7 2 2 1 1 1 8 1 7 9 9 1 8 9 3 8
1 5 1 4 8 7 5 4 2 2 4 2 9 4 3 3 2 5 8 9 0 5 3 6 5 2 0 1 2 1 4 7 4 2 0 1 9 6 8 4 6 0 8 1 0 0 4 9 5 9 1 4 9 1 0 9 7 9 1
7 5 8 3 6 1 2 2 1 7 6 1 9 9 9 8 0 6 1 1 9 5 3 6 2 1 4 2 0 8 1 7 4 0 6 9 8 5 3 1 4 6 0 5 1 1 5 0 1 1 9 1 7 4 2 3 8 3 2
1 3 6 4 2 2 1 7 1 1 1 1 0 3 3 5 3 2 5 5 2 1 8 9 2 0 3 6 9 6 0 1 1 7 9 2 6 7 1 0 8 1 2 7 1 3 0 2 1 5 6 6 2 7 2 3 1 1 4
1 2 6 9 1 1 2 7 3 1 5 5 5 3 8 8 8 1 0 1 1 5 8 1 2 6 3 0 3 4 4 0 6 4 3 2 6 8 2 1 0 9 4 3 1 2 1 9 9 3 2 2 5 7 1 3 2 1 6
2 1 0 0 5 1 0 2 6 1 6 5 0 2 4 5 9 6 4 0 6 7 4 1 3 1 5 1 3 3 1 2 4 8 7 5 1 6 8 8 2 2 1 4 7 3 9 2 2 1 5 5 9 2 7 4 2 0 0
2 7 8 0 1 8 1 6 5 4 8 3 4 1 1 2 4 6 6 6 8 2 4 7 6 7 1 7 2 4 5 3 9 1 0 1 0 0 3 3 5 1 3 2 4 6 2 1 0 6 6 2 5 3 3 7 4 7 5
8 5 1 5 0 6 1 6 3 8 6 5 3 2 5 4 8 1 5 4 2 1 2 8 9 5 1 5 4 4 1 3 8 2 6 3 2 3 0 5 3 6 5 9 1 1 6 7 3 7 1 2 3 7 1 6 4 3 1
1 2 4 3 8 1 0 1 4 4 1 7 8 8 5 0 5 9 0 3 8 6 7 8 0 1 3 8 5 4 5 4 5 0 2 4 3 2 1 6 4 1 7 3 4 2 7 2 2 2 3 1 5 1 7 0 2 8 8
0 8 2 3 9 2 2 2 7 4 3 2 4 0 7 6 5 9 1 5 7 8 1 8 0 2 7 6 6 8 1 4 8 3 3 7 1 1 8 9 8 4 4 4 2 9 9 5 9 7 7 6 0 1 1 4

La dernière est “faite maison”. On a demandé à une personne de réciter mille
chiffres successivement sans réfléchir. Voilà le résultat.
1 4 2 9 5 7 8 4 1 6 0 1 4 5 3 3 3 2 8 7 8 4 5 2 4 4 4 4 4 2 1 4 5 5 4 1 2 4 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 3 0 0 4 0 1
4 5 0 1 5 9 4 5 7 8 5 9 1 6 7 4 0 4 0 4 4 0 5 5 6 7 8 8 1 4 5 7 9 1 4 7 9 5 3 3 2 5 2 4 5 4 2 5 4 4 4 2 2 4 4 2 5 4 4
2 5 2 8 9 5 6 7 5 4 2 1 1 5 7 2 4 0 1 3 0 4 0 2 4 6 9 5 1 4 5 2 3 4 2 5 1 0 2 4 5 6 7 9 8 5 5 2 4 2 5 4 5 6 5 1 4 5 2
0 3 5 4 2 3 5 4 2 4 5 6 8 9 1 0 5 1 4 5 6 1 0 5 0 1 2 0 1 4 5 2 4 1 4 2 7 9 8 3 1 2 1 4 2 4 1 2 4 3 9 1 1 4 5 1 2 1 2
4 5 4 2 2 1 4 9 8 7 4 9 7 8 4 2 5 1 2 9 8 5 7 6 4 2 1 1 4 0 1 0 1 4 2 5 4 1 4 1 6 9 9 9 9 1 0 5 2 4 1 4 2 4 5 2 4 1 4
2 9 5 7 8 4 1 6 0 1 4 5 3 3 3 2 8 7 8 4 2 5 6 8 9 7 4 2 1 2 4 5 4 4 8 7 8 2 3 3 3 5 4 1 0 6 1 4 8 7 5 9 2 4 1 0 1 4 2
0 2 5 5 4 3 0 2 1 6 8 9 1 0 7 1 5 4 5 0 1 4 1 2 4 5 1 2 2 0 1 5 2 0 1 6 2 0 1 7 2 0 1 8 2 0 1 9 2 0 2 4 5 8 1 0 1 0 5
4 2 7 4 5 6 2 1 4 9 8 7 4 1 4 5 2 1 0 0 2 5 0 4 1 4 2 5 2 4 9 8 7 6 5 2 1 4 5 2 1 0 4 2 1 2 5 5 2 1 5 1 6 9 8 7 9 7 5
4 3 2 1 0 5 9 0 5 4 2 0 0 0 0 0 0 0 0 0 0 1 4 2 9 7 9 5 4 2 1 7 9 8 5 4 3 1 2 0 4 2 1 7 5 0 2 4 1 5 4 9 7 9 4 1 1 4 7
2 1 4 2 4 3 4 4 4 5 0 3 2 1 0 2 1 4 4 2 4 5 1 8 9 5 2 1 1 4 9 8 7 2 4 1 9 2 4 9 5 1 2 9 8 5 6 7 1 9 2 4 9 5 2 6 1 4 2
5 1 1 1 2 1 3 1 4 5 6 7 8 9 1 0 4 2 1 2 3 4 1 2 5 9 8 7 6 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 4 1 0 4 2 4 6 8 0 1 3 5
7 9 6 9 8 1 2 4 5 2 1 1 0 0 0 2 4 1 5 2 1 7 2 1 0 1 9 8 7 6 5 4 3 2 1 0 9 7 9 5 9 8 9 5 2 4 1 5 2 5 1 0 0 2 4 1 6 2 8
9 3 4 1 1 1 4 2 5 1 3 2 1 8 6 7 5 4 1 2 3 4 5 6 7 9 9 1 1 4 2 5 0 5 2 4 2 1 5 7 9 4 2 1 5 2 0 5 2 2 4 1 2 5 4 1 5 2 5
1 9 6 7 5 1 2 2 4 1 5 2 4 5 6 8 7 1 0 2 4 5 2 7 1 4 1 2 4 5 2 9 8 7 5 2 1 2 5 1 7 9 8 7 9 1 5 2 4 5 2 1 6 8 9 1 0 1 1
1 2 5 4 3 5 2 1 6 2 4 8 4 4 4 2 0 0 7 0 4 2 5 1 7 9 2 4 2 1 7 8 9 1 2 5 4 3 2 1 0 2 8 0 3 2 0 3 8 0 2 6 4 8 5 6 7 8 9
1 0 4 2 1 7 2 4 1 2 5 7 9 4 1 5 2 1 4 9 6 7 9 8 4 7 5 2 1 4 1 4 2 5 1 5 1 4 9 7 6 2 1 5 2 4 2 1 5 2 4 9 4 5 5 2 1 4 2
1 4 2 4 5 2 3 4 2 4 1 2 6 8 9 3 4 6 7 2 4 1 6 5 2 2 4 1 6 2 4 2 5 9 2 3 2 4 1 6 5 0 0 3 4 7 2 1 6 4 2 1 9 6 7 1

Le tableau qui suit donne, pour chacune des suites qui viennent d’être présentées,
le nombre d’occurrences de chacun des dix chiffres dans la suite ainsi que de
quelques nombres à deux chiffres pris au hasard : 00, 11, 32, 66, 69 et 77.

0 1 2 3 4 5 6 7 8 9 00 11 32 66 69 77

1 104 89 98 107 86 112 100 108 99 97 10 8 11 11 12 16

2 107 94 108 106 99 92 87 112 89 106 12 10 9 11 9 13

3 93 116 103 102 93 97 94 95 101 106 7 16 9 11 6 9

4 85 82 80 87 96 164 80 83 113 130 8 6 4 4 8 8

5 66 177 177 148 77 77 77 67 67 67 3 25 25 5 5 4

6 73 171 132 95 104 93 83 83 84 82 5 25 16 10 5 3

7 92 161 167 39 183 131 45 61 51 70 26 13 10 0 4 0

1 dé à dix faces
2 générateur de nombres aléatoires
3 décimales de π
4 numéros de téléphone

5 nombres entiers par ordre croissant
6 nombre d’habitants par commune
7 récitation
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Pour les trois premières suites, les occurrences sont proches des valeurs asymp-
totiques produites par une suite indépendante identiquement distribuée. Chaque
chiffre apparâıt avec une fréquence proche du dixième, tandis que les mots de
deux lettres ont une fréquence proche du centième. On n’est pas surpris que les
deux premières suites se comportent conformément à la loi des grands nombres.
La question reste ouverte de démontrer qu’il en va vraiment de même pour la
troisième suite constituée par les décimales de π. On ne sait même pas si tous les
chiffres apparaissent une infinité de fois dans le développement décimal de π.

Les chiffres 5 et 9 sont sur-représentés dans la quatrième suite, sans qu’il soit
possible d’en déterminer la raison. On pourrait s’attendre à ce que l’annuaire
produise des valeurs aléatoires uniformément distribuées mais cet exemple ne
permet pas de confirmer cette intuition. Il faudrait une analyse plus fine pour
déterminer si c’est l’échantillon qui est particulier ou si un ordre se cache derrière
la répartition des numéros.

La cinquième suite présente des disparités importantes, avec le chiffre 1 très
largement représenté tandis que le 0 est peu fréquent. On n’est pas surpris que
le chiffre 1 apparaisse souvent dans la liste des premiers entiers naturels. Le
nombre dont les décimales sont obtenues en faisant la liste de tous les entiers par
ordre croissant s’appelle la constante de Champernowne. On peut montrer que la
fréquence de chacun des chiffres finit par converger vers un dixième, contraire-
ment à ce que pourrait laisser penser les premiers termes de la suite. De manière
étonnante, on peut même montrer que la constante de Champernowne est un
nombre normal : pour tout entier n > 0, tous les mots constitués de n chiffres
apparaissent dans la suite de ses décimales avec une fréquence égale à 10−n.

La sixième suite présente aussi des variations importantes avec le chiffre 1 qui
apparâıt le plus fréquemment. Ce phénomène est parfois observé quand on étudie
des données statistiques concernant des populations humaines et provient de la
croissance exponentielle de ces populations. Il est relié à la loi de Benford. Cette
loi est bien vérifiée par le nombre d’habitants des trente six mille communes de
France et on l’observe déjà sur l’échantillon que nous avons considéré.

Finalement, la septième suite est loin d’être uniformément répartie, avec le
chiffre 3 sous-représenté tandis que le 4 revient fréquemment. Elle montre à quel
point il est difficile pour un être humain de simuler le hasard. L’absence de certains
mots de longueur deux est typique dans ce genre d’expérimentation et permet de
repérer aisément les suites qui sont le produit d’une intervention humaine plutôt
que d’un procédé aléatoire.
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4.4 Exercices

Dans les exercices qui suivent, (Xn)n∈N est une suite de variables aléatoires in-
dépendantes identiquement distribuées et Sn =

∑n
k=1Xk.

exercice 1

On suppose les (Xn) intégrables. Montrer que
Xn

n
−−−−→
n→∞ 0 p.s.

Si de plus l’espérance des Xk est strictement positive, alors Sn
p.s.−−−−→

n→∞
+∞.

exercice 2
On suppose les (Xn) de carrés intégrables. Montrer que les suites suivantes
convergent presque sûrement vers une limite qu’on calculera.

1

n

n∑

k=1

X2
k ,

1

n

n∑

k=1

XkXk+1,
2

n(n− 1)

∑

1≤i<j≤n

XiXj,

∑n
k=1Xk∑n
k=1X

2
k

.

exercice 3

Soit x ∈ R. Montrer la convergence
1

n
#{1 ≤ k ≤ n | Xk(ω) ≤ x} p.s.−−−−→

n→∞
FX0(x).

exercice 4
Soit f : [0, 1] → R continue. Montrer que la suite

un =
∫ 1

0
...
∫ 1

0
f
(x1 + ...+ xn

n

)
dx1...dxn

admet une limite que l’on précisera.

exercice 5
Soit (pk)k=1..r des nombres réels strictement positifs tels que

∑
pk = 1. On suppose

que la loi des Xn est donnée par P (Xi = k) = pk. On considère les variables
aléatoires Πn(ω) = pX1(ω)pX2(ω)...pXn(ω). Montrer que

1

n
ln(Πn)−−−−→

n→∞

r∑

k=1

pk ln(pk) p.s.

exercice 6
On suppose les Xn centrés de carrés intégrables. En inspectant la preuve de la
loi forte des grands nombres, montrer qu’on peut trouver α > 0 tel que

Sn

n1−α

p.s.−−−−→
n→∞

0.

Montrer l’égalité
n∑

k=1

Xk

k
=

n∑

k=1

(1
k
− 1

k + 1

)
Sk +

1

n+ 1
Sn.

En déduire que la série
∑ Xk

k
converge presque sûrement.



Chapitre 5

Convergence de suites de
variables aléatoires

5.1 Les différents types de convergence.

Les résultats précédents font appel à différentes notions de convergence. On va
préciser ces notions et étudier les relations qu’elles entretiennent entre elles. Rap-
pelons la définition des normes Lp, p ≥ 1.

Soit (Ω, T , P ) un espace probabilisé. Pour p ∈ [1,+∞[, la norme Lp de la variable
aléatoire Y : Ω → R est définie par

‖Y ‖p = (
∫

|Y |p dP )1/p.

La norme L∞ de Y est définie par

‖Y ‖∞ = inf{C > 0 | ∃ Ω′ tel que P (Ω′) = 1 et |Y (ω)| ≤ C pour tout ω ∈ Ω′}
Définition 11 Soient Yn, Y des variables aléatoires définies sur (Ω, T , P ) et p ∈
[1,+∞].

– La suite Yn converge en norme Lp vers Y si

‖Yn − Y ‖p−−−−→
n→∞

0.

– La suite Yn converge en probabilité vers Y si

∀ ε > 0, P (|Yn − Y | > ε)−−−−→
n→∞

0.

– La suite Yn converge presque sûrement vers Y si

pour presque tout ω ∈ Ω, Yn(ω)−−−−→
n→∞

Y (ω).

– La suite Yn converge en loi vers Y si

pour toute fonction f : R → R continue bornée,

∫
f dPYn −−−−→n→∞

∫
f dPY .

41
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Proposition 9 Soient p, q ∈ R tels que 1 ≤ p ≤ q ≤ ∞. On a les implications

CV L∞ ⇒ CV Lq ⇒ CV Lp ⇒ CV L1 ⇒ CV en proba ⇒ CV en loi.

CV L∞ ⇒ CV p.s. ⇒ CV en proba.

CV L∞ ⇒ CV en proba ⇒ CV p.s. d’une sous-suite.

Remarque
La convergence L2 implique la convergence en probabilité. C’est comme cela
que nous avons démontré la loi faible des grands nombres. Celle-ci affirme que Sn

n

converge vers E(X0) en probabilité, si les (Xi) sont indépendantes, identiquement
distribuées. On avait obtenu ce résultat en montrant que V (Sn

n
)−−−−→

n→∞
0. D’après

la relation suivante, cela est équivalent à la convergence L2 :

V
(
Sn

n

)
= E

(∣∣∣
Sn

n
−E

(Sn

n

)∣∣∣
2)
= E

(∣∣∣
Sn

n
− E(X0)

∣∣∣
2)

=
∥∥∥
Sn

n
− E(X0)

∥∥∥
2

2
.

Démonstration de la proposition

• CV Lq ⇒ CV Lp si p ≤ q.

Démontrons l’égalité
‖Y ‖p ≤ ‖Y ‖q

en utilisant l’inégalité de Hölder : pour tout p, q ≥ 1 tels que 1/p+ 1/q = 1,
∫
|Y Z| dP ≤ ‖Y ‖p ‖Z‖q.

On prend Y constant égal à 1 dans cette inégalité, auquel cas ‖Y ‖p = 1 et
‖Z‖1 ≤ ‖Z‖q. Ceci démontre le résultat pour p = 1. Pour p général, on remplace
q par q/p et Z par Y p, ce qui donne :

∫
Y p dP ≤

(∫
Y pq/pdP

)p/q
,

‖Y ‖p ≤ ‖Y ‖q.
• CV L∞ ⇒ CV Lp.

On a pour presque tout ω ∈ Ω, |Y (ω)| ≤ ‖Y ‖∞. En intégrant, on obtient

‖Y ‖pp =
∫

|Y (ω)|p dP (ω) ≤
∫
‖Y ‖p∞ dP = ‖Y ‖p∞.

• CV L1 ⇒ CV en proba

C’est une conséquence de l’inégalité de Markov. Si Yn
L1−−−−→

n→∞
Y ,

P (|Yn − Y | > ε) ≤ E(|Yn − Y |)
ε

=
‖Yn − Y ‖1

ε
−−−−→
n→∞

0
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• CV L∞ ⇒ CV p.s.

Si Yn
L∞−−−−→

n→∞
Y , il existe Ω′ ⊂ Ω de probabilité 1 tel que

sup
ω∈Ω′

|Yn(ω)− Y (ω)| −−−−→
n→∞

0.

On en déduit, pour tout ω ∈ Ω′, Yn(ω)−−−−→
n→∞

Y (ω).

• CV en proba ⇒ CV p.s. d’une sous-suite

Nous savons que pour tout ε > 0, P (|Yn − Y | > ε)−−−−→
n→∞

0.

Pour tout k ∈ N, on peut donc trouver nk ∈ N aussi grand qu’on veut, tel que
P (|Ynk

− Y | > 1/k) ≤ 1/2k. On a alors

∞∑

k=0

P (|Ynk
− Y | > 1/k) < ∞

On applique le lemme de Borel-Cantelli : pour presque tout ω ∈ Ω, hormis pour
un nombre fini d’indices k, |Ynk

(ω)− Y (ω)| < 1/k. La suite Ynk
converge vers Y

presque sûrement.

• CV p.s. ⇒ CV en proba

Nous avons les deux conditions suivantes :

– 1(|Yn−Y |>ε)(ω)−−−−→
n→∞

0 pour presque tout ω ∈ Ω car |Yn(ω)− Y (ω)| −−−−→
n→∞

0.

– |1(|Yn−Y |>ε)| ≤ 1Ω et 1Ω est intégrable, ne dépend pas de n.

On peut appliquer le théorème de convergence dominée :

lim
n→∞

P (|Yn − Y | > ε) = lim
n→∞

∫
1(|Yn−Y |>ε) dP =

∫
lim
n→∞

1(|Yn−Y |>ε) dP = 0

L’implication CV en proba ⇒ CV en loi sera démontrée dans la suite.

5.2 Fonction caractéristique et transformée de

Fourier

Pour étudier plus en détail la convergence en loi, on va utiliser la notion de fonc-
tion caractéristique d’une variable aléatoire et de transformée de Fourier d’une
mesure de probabilité.

Définition 12 La fonction caractéristique d’une variable aléatoire Y : Ω → R
est définie par

ϕY (t) = E(eitY ) =
∫

Ω
eitY dP =

∫

R

eity dPY (y).
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La transformée de Fourier d’une mesure de probabilité µ définie sur la tribu des

boréliens de R est définie par

µ̂(t) =
∫

R

eitx dµ(x).

On a donc l’égalité ϕY (t) = P̂Y (t).

Propriétés

– |ϕY (t)| ≤ 1 pour tout t ∈ R,

– ϕY (0) = 1,

– t 7→ ϕY (t) est continue sur R,

– si Y est intégrable, alors t 7→ ϕY (t) est dérivable et ϕ′
Y (0) = iE(Y ),

– si Y est de carré intégrable, t 7→ ϕY (t) est de classe C2 et ϕ′′
Y (0) = −E(Y 2).

La continuité et la dérivabilité découlent des théorèmes de continuité et de dériva-
bilité sous le signe intégrable. Par exemple, si X est intégrable, on a la majoration

∣∣∣
∂

∂t
eitY

∣∣∣ = |iY eitY | ≤ |Y |

ce qui implique ϕ′
Y (t) =

d
dt

(∫
Ω eitY dP

)
=
∫
Ω

∂
∂t
eitY dP =

∫
Ω iY eitY dP.

La loi d’une variable aléatoire est complètement caractérisée par sa fonction
caractéristique.

Proposition 10 Deux variables aléatoires qui ont même fonction caractéristique

ont même loi : ϕX = ϕY implique PX = PY .

Ce théorème est admis et ne sera pas utilisé dans la suite. On passe maintenant
à quelques calculs explicites de fonctions caractéristiques.

Cas discret
La variable aléatoire Y prend un nombre fini ou dénombrable de valeurs yk, k ∈ I,
avec I = {1, ..., n} ou I = N.

ϕY (t) = E(eitY ) =
∑

k∈I
eitykP (Y = yk).

• Loi de Bernoulli de paramètre p ∈ [0, 1]

Si Y obéit à une telle loi, P (Y = 0) = 1− p, P (Y = 1) = p. On a alors
ϕY (t) = eit×0P (Y = 0) + eit×1P (Y = 1),

ϕY (t) = 1− p+ peit.

• Loi uniforme sur {1, ..., n} , n ∈ N∗
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Si Y obéit à une telle loi, P (Y = k) = 1/n pour k ∈ {1, ..., n}, ce qui implique
ϕY (t) =

∑n
k=1 eitkP (Y = k) =

∑n
k=1

1
n
(eit)k = 1

n
eit

∑n−1
k=0 (e

it)k.

ϕY (t) =
1

n
eit

1− eitn

1− eit
si t /∈ 2πZ.

Cas continu
La variable aléatoire Y est associée à la densité fY : R → R+ si bien que
P (Y ∈ A) =

∫
A fY (y) dy.

ϕY (t) = E(eitY ) =
∫
eity dPY (y) =

∫
eityfY (y) dy.

• Loi uniforme sur [a, b], a < b.

ϕY (t) =
∫
R
eity 1

b−a
1[a,b](y) dy = 1

b−a

∫ b
a e

ity dy = 1
b−a

[ e
ity

it
]ba.

ϕY (t) =
eitb − eita

it (b− a)
si t 6= 0.

• Loi exponentielle de paramètre l > 0

ϕY (t) =
∫
R
eity le−ly 1R(y) dy =

∫+∞
0 le(it−l)y dy = [le(it−l)y/(it− l)]+∞

0 .

ϕY (t) =
l

l − it
.

Remarque on utilise parfois à la place de la fonction caractéristique la notion
de fonction génératrice.

Définition 13 On considère l’ensemble des z ∈ C pour lesquels la fonction zY

est intégrable. La fonction génératrice d’une variable aléatoire Y est définie sur

cet ensemble par l’expression

z 7→ E(zY )

Attention, elle n’est pas forcément définie pour tout z ∈ C, la fonction z 7→ zY

n’étant pas forcément intégrable. Lorsque z = eit, elle est bien intégrable et on
retrouve la fonction caractéristique de la variable Y .

5.3 Convergence en loi

Rappelons que Yn converge en loi vers Y si pour toute fonction f : R → R
continue bornée, ∫

f dPYn −−−−→n→∞

∫
f dPY .
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Définition 14 Soit µn et µ des mesures de probabilité définies sur la tribu des

boréliens de R. Nous dirons que µn converge étroitement vers µ si pour toute

fonction f : R → R continue bornée,
∫
f dµn−−−−→

n→∞

∫
f dµ.

La suite Yn converge en loi vers Y si et seulement si PYn converge étroitement
vers PY . On va relier la convergence en loi à la convergence simple des fonctions
caractéristiques, dans le but de démontrer le théorème de la limite centrée.

Théorème 6 Soit µ, µn, n ∈ N, des mesures de probabilité définies sur la tribu

des boréliens de R. Les propriétés suivantes sont équivalentes :

–

∫
fdµn−−−−→

n→∞

∫
fdµ pour toute fonction f continue bornée,

–

∫
fdµn−−−−→

n→∞

∫
fdµ pour toute fonction f C∞ à support compact,

–

∫
fdµn−−−−→

n→∞

∫
fdµ pour toute fonction f de la forme eitx, t ∈ R.

Le premier point correspond à la convergence étroite des µn vers µ. Le dernier
point correspond à la convergence des transformées de Fourier des µn. On en
déduit le corollaire suivant.

Corollaire 3 Soit µ, µn des mesures de probabilité définies sur la tribu des boré-

liens de R. Si pour tout t ∈ R , µ̂n(t)−−−−→
n→∞

µ̂(t) , alors µn converge vers µ

étroitement.

Soit (Yn) une suite de variables aléatoires. Si pour tout t ∈ R, ϕYn(t)−−−−→n→∞
ϕY (t),

alors Yn converge vers Y en loi.

Rappelons que f : R → R est à support compact s’il existe A > 0 tel que f est
nulle hors de [−A,A]. Un exemple de fonction C∞ à support compact est donné
par

f(x) = e
− 1

1−x2 1[−1,1](x).

-0.1

0

0.1

0.2

0.3

0.4

0.5

-1 -0.5 0 0.5 1

Pour démontrer le théorème, nous allons avoir besoin de la formule d’inversion
de Fourier. Soit f : R → R une fonction intégrable par rapport à la mesure de
Lebesgue. Sa transformée de Fourier est définie par

f̂(t) =
∫

R

e−itxf(x) dx.

On montre que cette fonction est continue en appliquant le théorème de continuité
sous le signe intégral.
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Théorème 7 (formule d’inversion de Fourier) Soit f une fonction C∞ à

support compact. Alors

f(x) =
1

2π

∫

R

eitxf̂(t) dt pour tout x ∈ R.

La preuve du théorème est donnée en annexe, sous des hypothèses un peu plus
générales. La formule d’inversion de Fourier implique la relation suivante entre µ
et sa transformée de Fourier.

Corollaire 4 Soit µ une mesure de probabilité définie sur la tribu des boréliens

de R et f : R → R une fonction C∞ à support compact. Alors

∫
f(x) dµ(x) =

1

2π

∫
f̂(t) µ̂(t) dt.

Preuve du corollaire
∫

R

f(x) dµ(x) =
∫

R

1

2π

∫

R

eitxf̂(t) dt dµ(x)

=
1

2π

∫

R

∫

R

eitxf̂(t) dµ(x) dt

=
1

2π

∫

R

f̂(t)
(∫

R

eitxdµ(x)
)
dt

=
1

2π

∫

R

f̂(t) µ̂n(t) dt.

Ici on a utilisé le théorème de Fubini pour intervertir les deux intégrales. Pour
justifier l’emploi de ce théorème, remarquons que l’intégrale

∫∫
R2 |eitxf̂(t)| dµ(x) dt

est finie :
∫

R

∫

R

|eitxf̂(t)| dµ(x) dt =
∫

R

dµ(x)
∫

R

|f̂(t)| dt =
∫

R

|f̂(t)| dt < ∞.

La preuve est terminée.

On commence par démontrer que
∫
fdµn −→ ∫

fdµ pour toute f C∞ à support
compact si µ̂n(t) −→ µ̂(t) pour tout t ∈ R.

D’après le corollaire précédent,
∫

f(x) dµn(x) =
1

2π

∫
f̂(t) µ̂n(t) dt,

∫
f(x) dµ(x) =

1

2π

∫
f̂(t) µ̂(t) dt.

Il suffit d’appliquer le théorème de convergence dominée pour conclure :
∫
f̂(t) µ̂n(t) dt−−−−→

n→∞

∫
f̂(t) µ̂(t) dt.
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L’emploi du théorème de convergence dominée est justifié ici car µ̂n(t)−−−−→
n→∞

µ̂(t)

pour tout t ∈ R par hypothèse et f̂ µ̂n est majorée par f̂ qui est intégrable.

On cherche à présent à démontrer que si
∫
fdµn −→ ∫

fdµ pour toute fonction
C∞ à support compact, il en va de même pour toute fonction continue bornée.

Lemme 4 Pour tout ε > 0, il existe A > 0 tel que pour tout n ∈ N,

µn([−A,A]) ≥ 1− ε.

Une suite de mesures de probabilité qui vérifie cette propriété est dite tendue.

Preuve du lemme
Soit g une fonction C∞ telle que

• 0 ≤ g ≤ 1,

• g = 1 sur [−A + 1, A− 1],

• g = 0 sur [−A,A]c. 0

1

Fixons ε > 0. Comme µ([−A+1, A− 1])−−−−→
A→∞

µ(R) = 1, on peut choisir A0 tel

que µ[−A0 + 1, A0 − 1] > 1− ε.

µn([−A0, A0]) ≥
∫
gdµn−−−−→

n→∞

∫
gdµ ≥ µ([−A0 + 1, A0 − 1]) > 1− ε.

On peut donc trouver n0 ∈ N tel que pour tout n ≥ n0, µn([−A0, A0]) ≥ 1− ε.

De plus, pour chaque k ∈ {0, ..., n0}, on peut trouver un ensemble Ak tel que
µk([−Ak, Ak]) ≥ 1− ε. Pour tout A supérieur à max{A0, ..., An0}, on a

∀n ∈ N, µn([−A,A]) ≥ 1− ε.

Le lemme est démontré.

Soit f continue bornée. Sur [−A−2, A+2] , on peut approcher f uniformément
par une fonction C∞ en faisant appel au théorème de Stone-Weierstraß ou en
convolant avec une fonction C∞. Cette approximation peut être prolongée en
une fonction C∞ à support compact définie sur R tout entier en la multipliant
par une fonction de classe C∞, comprise entre 0 et 1, qui vaut 1 sur [−A,A] et 0
hors de [−A − 1, A + 1]. Pour tout ε > 0 on peut donc trouver f̃ C∞ à support
compact telle que

sup
x∈[−A,A]

|f(x)− f̃(x)| < ε.
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On veut montrer que | ∫ fdµn−
∫
fdµ| est inférieur à ε pour tout n suffisamment

grand. On décompose comme suit :

∣∣∣
∫
fdµn −

∫
fdµ

∣∣∣ ≤
∣∣∣
∫

fdµn−
∫

f̃dµn

∣∣∣+
∣∣∣
∫

f̃dµn −
∫

f̃dµ
∣∣∣+

∣∣∣
∫

f̃dµ−
∫

fdµ
∣∣∣

• Comme f̃ est C∞ à support compact,
∫
f̃ dµn −→ ∫

f̃ dµ. On peut trouver
N ∈ N tel que pour tout n ≥ N, | ∫ f̃dµn −

∫
f̃dµ| < ε.

• | ∫ fdµn − f̃dµn| ≤ ∫
[−A,A] |f − f̃ | dµn +

∫
[−A,A]c |f − f̃ | dµn

≤ ε µn([−A,A]) + (sup
R
|f |+ sup

R
|f̃ |)µn([−A,A]c)

≤ ε+ (supR |f |+ supR |f̃ |) ε.
Cette majoration est valide pour tout n ∈ N.

• Le terme | ∫ f − f̃ dµ | se majore de la même façon.

Finalement, on remarque que sup |f̃ | ≤ sup |f | + ε ≤ sup |f | + 1 sur R par
construction. On a donc, pour tout n ≥ N,

∣∣∣
∫

f dµn −
∫

f dµ
∣∣∣ ≤ (4 + 2 sup |f |) ε.

Le théorème est démontré.

Proposition 11 Soient µn, µ des mesures de probabilités définies sur la tribu

des boréliens de R. On suppose que µn converge étroitement vers µ. Alors pour

tout a, b ∈ R tels que µ({a}) = 0 et µ({b}) = 0, on a

µn([a, b])−−−−→
n→∞

µ([a, b]).

De même, pour tout x ∈ R tel que µ({x}) = 0,

µn([x,+∞[)−−−−→
n→∞

µ([x,+∞[),

µn(]−∞, x])−−−−→
n→∞

µ(]−∞, x]).

Appliquons cette proposition à une suite de variables aléatoires.

Corollaire 5 Soient (Xn)n∈N et X des variables aléatoires définies sur un espace

probabilisé (Ω, T , P ) telles que Xn converge en loi vers X. Alors pour tout a, b ∈ R
tels que P (X = a) = P (X = b) = 0,

P (a ≤ Xn ≤ b)−−−−→
n→∞ P (a ≤ X ≤ b).

De plus, les fonctions de répartition desXn convergent vers la fonction de répartition

de X en tout point x ∈ R tel que P (X = x) = 0 :

FXn(x)−−−−→n→∞
FX(x) si P (X = x) = 0.
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Remarque On peut démontrer que la convergence des fonctions de répartition
en tout point x tel que P (X = x) = 0 est en fait équivalente à la convergence en
loi de la suite Xn vers X .

Preuve
Il s’agit d’approcher 1[a,b] par des fonctions continues bornées. Soit hm la fonction
continue bornée, affine par morceaux telle que :

• hm = 1 sur [a+ 1
m
, b− 1

m
],

• hm = 0 hors de [a, b].
• la pente de hm vaut m sur [a, a+ 1

m
] et −m sur [b− 1

m
, b].

Soit gm la fonction continue bornée, affine par morceaux, telle que

• gm = 1 sur [a, b],
• gm = 0 hors de [a− 1

m
, b+ 1

m
],

• la pente de gm vaut m sur [a− 1
m
, a] et −m sur [b, b+ 1

m
].

Nous avons la majoration 0 ≤ gm − hm ≤ 1[a− 1
m
,a+ 1

m
] + 1[b− 1

m
,b+ 1

m
] si bien que

0 ≤
∫

gm − hm dµ ≤ µ
([

a− 1

m
, a+

1

m

])
+ µ

([
b− 1

m
, b+

1

m

])

Ce dernier terme converge vers µ({a}) + µ({b}), quantité qui est nulle par hy-
pothèse. Fixons ε > 0 et choisissons n ∈ N tel que

∫
gm − hm dµ ≤ ε.

La suite µn converge vers µ étroitement et hm ≤ 1[a,b] ≤ gm, nous avons donc
pour tout n suffisamment grand,

∫
hm dµ− ε ≤

∫
hm dµn ≤ µn([a, b]) ≤

∫
gm dµn ≤

∫
gm dµ+ ε.

Nous avons aussi, en vertu des inégalités hm ≤ 1[a,b] ≤ gm et
∫
gm − hm dµ ≤ ε,

∫
gm dµ− ε ≤

∫
hm dµ ≤ µ([a, b]) ≤

∫
gm dµ ≤

∫
hm dµ+ ε,

ce qui donne le résultat recherché :

µ([a, b])− 2ε ≤ µn([a, b]) ≤ µ([a, b]) + 2ε.

On termine ce chapitre par la preuve d’un résultat énoncé précédemment.
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Théorème 8 Soit Xn, X des variables aléatoires. Si Xn converge vers X en

probabilité, alors Xn converge vers X en loi.

Preuve
Soit f : R → R C∞ à support compact. Par le théorème des valeurs in-
termédiaires, pour tout x, y ∈ R,

|f(x)− f(y)| ≤ sup
R

|f ′| |x− y|.

On veut montrer que la différence
∫
fdPXn −

∫
fdPX tend vers 0 quand n −→ ∞.

| ∫ f dPXn −
∫
f dPX |
= | ∫ f(Xn) dP − ∫

f(X) dP |

≤ ∫ |f(Xn)− f(X)| dP

≤ ∫
|Xn−X|>δ |f(Xn)− f(X)| dP +

∫
|Xn−X|<δ |f(Xn)− f(X)| dP

≤ 2 supR |f |P (|Xn −X| > δ) + supR |f ′| δ.

Comme Xn converge vers X en probabilité, P (|Xn −X| > δ)−−−−→
n→∞

0.

Pour tout ε > 0 , on choisit δ telle que sup |f ′| δ < ε/2. Il existe alors N ∈ N tel
que pour tout n ≥ N ,

P (|Xn −X| > δ) ≤ ε

4 supR |f |

ce qui implique | ∫ fdPXn −
∫
fdPX| < ε. Le théorème est démontré.
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5.4 Exercices

exercice 1
Montrer qu’une suite de variables aléatoires (Xn) converge en loi vers zéro si et
seulement si les lois PXn convergent étroitement vers la mesure de Dirac en zéro.

exercice 2
Soit g une fonction C1 à support compact etX une variable aléatoire. Montrer que

E(g(X)) = −
∫

R

FX(t) g
′(t) dt.

Soit (Xn) une suite de variables aléatoires telle que FXn(x) converge vers FX(x)
pour tout x satisfaisant P (X = x) = 0. Montrer que Xn converge en loi vers X .

exercice 3
Soit (Ω, T , P ) un espace probabilisé. On considère sur l’ensemble des couples de

fonctions mesurables de Ω dans R l’expression d(X, Y ) = E
(

|X−Y |
1+|X−Y |

)
.

Montrer que cela définit une distance si on identifie les fonctions qui cöıncident
presque partout. Montrer que la convergence relativement à cette distance est

équivalente à la convergence en loi : Xn
proba−−−−→
n→∞

X ⇔ d(Xn, X)−−−−→
n→∞

0.

exercice 4
Soit (Ai) une suite d’événements indépendants dans leur ensemble.

– Montrer que 1Ai

proba−−−−→
i→∞

0 si et seulement si P (Ai) → 0.

– Montrer que 1Ai

p.s.−−−−→
i→∞

0 si et seulement si la série
∑

i∈N
P (Ai) est convergente.

exercice 5
Étudier la convergence en loi des suites (Xn)n∈N∗ suivantes :

– P (Xn = 1 + 1
n
) = 1

2
= P (Xn = 1− 1

n
).

– P (Xn = 0) = 1− 1
n

et P (Xn = 1) = 1
n
.

– Xn de loi uniforme sur {0, 1
n
, 2
n
, ..., n−1

n
, 1}.

exercice 6
Soit Sn,p une variable aléatoire qui obéit à une loi binomiale de paramètres n, p.

– Calculer la fonction caractéristique de Sn,p. Cette fonction est notée ϕn,p.

– La suite ϕn, 1
n
converge-t-elle simplement lorsque n tend vers +∞ ?

– Calculer la fonction caractéristique de la loi de Poisson de paramètre λ > 0.

– Que peut-on dire de la suite Sn, 1
n
?

exercice 7
Soit (Xn) et (Yn) deux suites de variables aléatoires et a ∈ R. Montrer que

Xn
loi−−−−→

n→∞
a si et seulement si Xn

proba−−−−→
n→∞

a.

Xn
loi−−−−→

n→∞
X et Yn

loi−−−−→
n→∞

0 implique Xn + Yn
loi−−−−→

n→∞
X.



Chapitre 6

Théorème de la limite centrée

Pour démontrer le théorème de la limite centrée, nous allons utiliser la caractéri-
sation de la convergence en loi par le biais des fonctions caractéristiques. On
commence par calculer la fonction caractéristique de la loi normale.

6.1 Fonction caractéristique de la loi normale

Théorème 9 Soit Y une variable aléatoire qui obéit à une loi normale centrée

normalisée (m = 0, σ = 1). Sa densité est donnée par fY (y) = 1√
2π
e−y2/2 et sa

fonction caractéristique vaut

ϕY (t) = e−t2/2.

Preuve
Par définition, ϕY (t) =

∫
R
eity 1√

2π
e−y2/2 dy.

On sait que eity =
∑+∞

k=0
(ity)k

k!
pour y ∈ R. Remplaçons dans l’intégrale précédente.

∫

R

eitye−y2/2 dy =
∫

R

+∞∑

k=0

(ity)k

k!
e−y2/2 dy

=
+∞∑

k=0

∫

R

(it)k

k!
yk e−y2/2 dy

=
+∞∑

k=0

(it)k

k!

∫

R

yk e−y2/2 dy.

Pour justifier l’interversion signe somme intégrale, il faut vérifier que la quantité∫
R

∑∞
0 | (ity)k

k!
ey

2/2| dy est finie.

∫ +∞

−∞
e−y2/2

∞∑

0

|ty|k
k!

dy =
∫ +∞

−∞
e−y2/2e|ty| dy < +∞.

53
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Il faut maintenant calculer Ik =
∫
R
yke−y2/2 dy.

Lorsque k est impair, la fonction y 7→ yke−y2/2 est une fonction impaire, si bien
que son intégrale est nulle : I2l+1 = 0 pour tout l ∈ N. Pour k pair, k = 2l , on
fait une intégration par partie pour obtenir une relation de récurrence.

I2l+2 =
∫
y2l+1ye−y2/2dy = [y2l+1(−e−y2/2)]+∞

−∞+
∫
(2l+1)y2le−y2/2dy = (2l+1)I2l

Nous savons que I0 =
∫
R
e−y2/2dy =

√
2π, si bien que

I2l = (2l − 1)(2l − 3)...3× 1×
√
2π.

La quantité I2l est divisée par (2l)! dans l’expression de la fonction caractéristique.

I2l
(2l)!

=
(2l − 1)(2l− 3)...1

(2l)(2l − 1)(2l − 2)(2l − 3)...1

√
2π

=
1

(2l)(2l − 2)(2l − 4)...2

√
2π

=
1

2l
1

l(l − 1)(l − 2)...1

√
2π

=
1

2ll!

√
2π.

Nous pouvons calculer ϕY :

ϕY (t) =
1√
2π

∫
eitye−y2/2dy =

+∞∑

l=0

(it)2l
I2l

(2l)!
√
2π

=
∞∑

l=0

(−t2)l

2l l!
= e−t2/2.

La formule est démontrée.

6.2 Théorème de la limite centrée

Théorème 10 Soit (Ω, T , P ) un espace probabilité, (Xn)n∈N une suite de va-

riables aléatoires indépendantes, identiquement distribuées, de carrés intégrables

et de variance non nulle. On pose Sn =
∑n

i=1Xi. Alors la loi de la variable

aléatoire √
n

σ(X0)

(Sn

n
− E(X0)

)

converge étroitement vers une loi normale d’espérance nulle et d’écart-type 1. En

particulier, pour tout intervalle [a, b] ∈ R,

P
(
a ≤

√
n

σ(X0)

(Sn

n
−E(X0)

)
≤ b

)
−−−−→
n→∞

1√
2π

∫ b

a
e−x2/2dx.
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Remarque
L’événement ci-dessus peut s’écrire comme suit :

(
a ≤

√
n

σ(X0)
(Sn

n
−E(X0)) ≤ b

)
=

( √
n

σ(X0)
(Sn

n
− E(X0)) ∈ [a, b]

)

=
(
E(X0) + a σ(X0)√

n
≤ Sn

n
≤ E(X0) + b σ(X0)√

n

)

Lorsque n est grand, la probabilité que Sn

n
soit dans l’intervalle

[
E(X0)− t

σ(X0)√
n

,E(X0) + t
σ(X0)√

n

]

est proche de 1√
2π

∫ t
−t e

−x2/2dx.

• Pour t = 1, 96, 1√
2π

∫ t
−t e

−x2/2dx = 0, 95.

• Pour t = 2, 58, 1√
2π

∫ t
−t e

−x2/2dx = 0, 99.

Il y a donc à peu près 99% de chance, lorsque n est grand, d’avoir une moyenne
empirique Sn

n
dans l’intervalle

[
E(X0)− 2, 58 σ(X0)√

n
, E(X0) + 2, 58 σ(X0)√

n

]
.

Il est d’usage de noter la convergence des lois d’une suite de variables aléatoires
Yn vers la loi normale de paramètres m, σ comme suit :

Yn
loi−−−−→

n→∞
N (m, σ2)

Dans le cas où les Xi sont indépendantes identiquement distribuées d’espérance
nulle et d’écart-type égal à un, le théorème de la limite centrée peut se résumer
comme suit :

Sn√
n

loi−−−−→
n→∞

N (0, 1).

Preuve du théorème
Quitte à remplacer les Xi par Xi − E(Xi), on peut supposer que les Xi sont
centrées : E(Xi) = 0. Quitte à diviser par σ(Xi), on peut aussi supposer que
σ(Xi) = 1. On veut montrer que la loi de Sn√

n
converge vers la loi normale. Il suffit

donc de montrer que

ϕ Sn√
n
(t)−−−−→

n→∞
e−t2/2 pour tout t ∈ R.

Calculons :
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ϕ Sn√
n
(t) = E

(
e
it Sn√

n

)

= E
(
e

it√
n

∑n

1
Xk
)

= E
( n∏

k=1

e
it√
n
Xk
)

=
n∏

k=1

E
(
e

it√
n
Xk
)

par indépendance,

= E
(
e

it√
n
X0
)n

car les Xi sont de même loi,

= ϕX0

(
t√
n

)n
.

Pour calculer la limite de cette expression quand n tend vers +∞ , on fait un
développement limité. Comme X0 est de carré intégrable, ϕX0 est C2 et on a :

ϕX0(t) =
∫
eitX0dP, ϕ′

X0
(t) =

∫
iX0 e

itX0dP, ϕ′′
X0
(t) =

∫
−X2

0 e
itX0dP,

ϕX0(0) = 1, ϕ′
X0
(0) = iE(X0) = 0, ϕ′′

X0
(0) = −E(X2

0 ) = −1.

D’après la formule de Taylor, ϕX0(x) = 1− x2

2
+x2 ε0(x), avec ε0(x) −→ 0 lorsque

x → 0. Ceci implique :

ϕ Sn√
n
(t) = ϕX0

( t√
n

)n
=
(
1− t2

2n
+

t2

2n
ε0(

t√
n
)
)n
,

n ln
(
1− t2

2n
+

t2

n
ε0(

t√
n
)
)
= n

(
− t2

2n
+

t2

n
ε0(

t√
n
) +

1

n
ε1(

1√
n
)
)
= −t2

2
+ ε2(

1√
n
),

ϕ Sn√
n
(t) =

(
1− t2

2n
+

t2

n
ε0(

t√
n
)
)n

= e
− t2

2
+ε2(

1√
n
)−−−−→

n→∞ e−
t2

2 .

Le théorème de la limite centrée est démontré.

6.3 Illustration numérique

Nous allons illustrer le théorème de la limite centrée à l’aide des graphes des
fréquences de la suite Sn.

Soit X une variable aléatoire discrète. Le graphe des fréquences de X corres-
pond au graphe de la fonction x 7→ P (X = x), où x varie parmi les nombres réels
tels que P (X = x) > 0.

Considérons le lancer d’un dé à six faces, modélisé par une variable aléatoire
X0 qui suit une loi uniforme sur l’ensemble {1, 2, 3, 4, 5, 6} : P (X0 = k) = 1/6
pour k entier compris entre 1 et 6. On répète le lancer n fois, n ∈ N∗, ce qui se
décrit par une suite de variables aléatoires X1, ... Xn indépendantes entre elles et
ayant même loi que X0. On pose Sn =

∑n
k=1Xk. Voici les graphes des fréquences

de X0 et S2 = X1 +X2.
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On calcule le graphe des fréquences de Sn pour tout n par récurrence en utilisant
la formule

P (Sn+1 = k) =
∑

j

P (Xn+1 = l)P (Sn = k − l)

où la somme porte sur l’ensemble des valeurs l que prend Xn+1. Si n est suffi-
samment grand, le graphe des fréquences devrait se rapprocher d’une gaussienne,
pour peu qu’il soit convenablement renormalisé. Dans les figures qui suivent, on
s’est restreint sur l’axe des abscisses aux valeurs de k qui sont à moins de trois
fois l’écart-type de l’espérance de Sn.
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Dès n = 5, on voit les probabilités s’ordonner selon la fameuse courbe en cloche,
dont la densité est donnée par la gaussienne.

Il est intéressant de regarder ce qu’on obtient lorsqu’on part d’une loi qui
présente plusieurs maxima. Prenons pour X0 la loi P (X0 = k) = k2

770
pour k

compris entre −10 et 10. Le graphe des fréquences de X0 est ci-dessous.

P (X0 = k) =
k2

770
, k ∈ {−10,−9, .., 9, 10}
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La gaussienne met plus de temps à apparâıtre. Les premiers graphes présentent
des oscillations qui s’amortissent quand n devient grand.

Un autre cas intéressant est donné par une loi fortement dissymétrique. Con-
sidérons un X0 pour lequel

P (X0 = 1) = 0, 95

P (X0 = 2) = P (X0 = 3) = P (X0 = 4) = P (X0 = 5) = P (X0 = 6) = 0, 01.
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Comme nous pouvons le voir sur ces graphiques, la dissymétrie est encore présente
pour n = 100. Cet exemple doit donc inciter à la prudence quant aux valeurs de
n pour lesquelles l’approximation donnée par la loi normale est pertinente. Il est
d’usage en statistique de faire cette approximation dès que n = 30, mais cela
n’est pas toujours valide en pratique.
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6.4 Exercices

exercice 1
Soit Xk une suite de variables aléatoires indépendantes suivant chacune une loi
de Poisson de paramètre un. Quelle est la loi de la somme

∑
1≤k≤nXk ?

Considérons pour chaque n ∈ N∗ une variable aléatoire Yn suivant une loi de
Poisson de paramètre n ∈ N∗. Montrer que

Yn − n√
n

loi−−−−→
n→∞ N (0, 1).

exercice 2
Soit Y , Yn et Zn des variables aléatoires telles que Yn converge en loi vers Y et Zn

converge presque sûrement vers une constante c ∈ R. Montrer que YnZn converge
en loi vers cY . Indication : Yn et Zn sont tendues.

Soit (Xn)n≥1 une suite de variables aléatoires indépendantes identiquement
distribuées, de carrés intégrables, centrées. Montrer que

n∑

k=1

Xk

/( n∑

k=1

X2
k

)1/2 −−−−→
n→∞

N (0, 1).

exercice 3
Soit (Xn)n≥1 une suite de variables aléatoires indépendantes identiquement dis-
tribuées, positives, de carrés intégrables et telles que E(Xn) = 1, σ(Xn) = 1.
Montrer que

2
(√

Sn −
√
n
)

loi−−−−→
n→∞

N (0, 1).

exercice 4
Soit (Xn) une suite de variables aléatoires indépendantes, Sn =

∑n
k=1Xk. Étudier

la convergence en loi de Sn/σ(Sn) dans les cas suivants :

– P (Xk =
√
k ) = P (Xk = −

√
k ) = 1

2

– P (Xk = k) = P (Xk = −k) = 1
2

– P (Xk =
1√
k
) = P (Xk = − 1√

k
) = 1

2

– P (Xk = ak) = P (Xk = −ak) =
1
2
, où (ak)k∈N∗ est bornée et

∞∑

k=1

a2k = +∞.

exercice 5
Soit ϕ la fonction caractéristique d’une variable aléatoire réelle X non constante.
On suppose que ϕ est réelle et positive.

– Montrer que ϕ(t) =
∫
R
cos(tx) dPX(x).

– Montrer que pour tout u ∈ R, cos(u) ≤ 1− u2

2
+ u4

24
.

– Montrer la minoration pour t ∈ R : 1−ϕ(t)
t2

≥ 1
2

∫
[− 1

t
, 1
t
] x

2
(
1− t2x2

12

)
dPX(x).

– Montrer qu’il existe δ > 0 et ǫ > 0 tels que pour tout t ∈ ]−δ, δ[ , |ϕ(t)| ≤ 1−εt2.

– En déduire que pour tout p > 2, la fonction t 7→ e−|t|p n’est la fonction ca-
ractéristique d’aucune mesure de probabilité.
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Chapitre 7

Espérance conditionnelle

Nous allons introduire un nouveau concept pour mesurer l’indépendance de deux
variables aléatoires ou d’une variable aléatoire et d’une tribu.

7.1 Définition de la notion d’espérance condi-

tionnelle

Définition 15 Soit (Ω, T , P ) un espace probabilisé, X : Ω → R une variable

aléatoire intégrable et F ⊂ T une tribu. Alors il existe une unique fonction

intégrable E(X | F), appelée l’espérance conditionnelle de X sachant F , qui

satisfait les deux conditions suivantes :

– E(X | F) est F-mesurable,

– pour toute variable aléatoire Y qui est F-mesurable bornée,

E(E(X | F) Y ) = E(XY ).

L’unicité est à comprendre “presque partout”. Deux fonctions qui satisfont les
conditions précédentes sont égales presque partout.

Définition 16 La probabilité conditionnelle d’un événement A ⊂ Ω relativement

à la tribu F est la fonction définie par

P (A | F) = E(1A | F).

Attention, P (A | F) est une fonction définie presque partout sur Ω. Il n’est pas
garanti qu’il y ait, pour presque tout ω ∈ Ω, une mesure de probabilité µω définie
sur T telle que µω(A) = P (A | F)(ω).
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Preuve de l’existence de E(X | F)
On commence par le cas où X est de carré intégrable. L’espace L2(Ω, T , P ) est
muni d’un produit scalaire :

〈X, Y 〉 =
∫

X Y dP = E(XY ).

On a donc une notion d’orthogonalité et de projection orthogonale. Considérons
le sous-espace fermé L2(Ω,F , P ) constitué des fonctions de carré intégrable qui
sont F -mesurables. L’espérance conditionnelle de X est la projection orthogonale
de X sur ce sous-espace. Cette projection orthogonale appartient au sous-espace
si bien que E(X | F) est F -mesurable. C’est la première condition.

La variable aléatoire X − E(X | F) est orthogonale à tous les éléments Y de
L2(Ω,F , P ) :

〈X − E(X | F), Y 〉 = 0

Autrement dit, E((X −E(X | F)) Y ) = 0. C’est la seconde condition. Ces deux
conditions caractérisent de manière unique la projection orthogonale.

On peut généraliser cela aux variables aléatoires positives. Soit X ≥ 0, on pose
Xl = min(X, l). La variable aléatoire Xl est borné donc de carré intégrable et Xl

converge en croissant vers X . On va vérifier dans la suite que E(Xl | F) est une
fonction positive et que la suite E(Xl | F) est croissante. On définit alors

E(X | F) = lim
l→∞

E(Xl | F) ∈ [0,+∞].

En utilisant le théorème de convergence croissante, on montre que E(X | F)
satisfait les conditions voulues pour tout Y ≥ 0.

Pour les variables aléatoires intégrables, on les écrit comme différence de va-
riables aléatoires intégrables positives, pour lesquelles on a vu comment définir
l’espérance conditionnelle.

Le passage du cadre L2 au cadre des variables aléatoires positives puis inté-
grables est justifié par les propriétés de l’espérance conditionnelle qui vont être
détaillées après les exemples qui suivent.

7.2 Exemples

Tribu associée à une partition finie

On considère une partition finie (Ei)i=1..n de Ω :

– Ω =
n⋃

i=1

Ei

– Ei ∩ Ej = ø pour tout i, j tels que i 6= j.
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– P (Ei) 6= 0 pour tout i.

On peut associer à cette partition une tribu

F =
{⋃

i∈S
Ei | S ⊂ {1, ..., n}

}
.

C’est l’ensemble des parties de Ω qui peuvent s’écrire comme union d’éléments
de la partition.

Proposition 12

E(X | F)(ω) =
n∑

i=1

E(X 1Ei
)

P (Ei)
1Ei

(ω) =
n∑

i=1

( 1

P (Ei)

∫

Ei

X dP
)
1Ei

(ω)

P (A | F)(ω) =
n∑

i=1

P (A | Ei) 1Ei
(ω)

avec la notation P (A | B) = P (A∩B)
P (B)

.

On a donc P (A | F)(ω) = P (A | Ei) si ω ∈ Ei.

Preuve de la proposition

On montre que la variable aléatoire
∑ E(X 1Ei

)

P (Ei)
1Ei

satisfait les deux propriétés qui
définissent l’espérance conditionnelle.

Commençons par vérifier que toute fonction F -mesurable est combinaison
linéaire des fonctions indicatrices des Ei. Pour cela, montrons qu’une telle fonc-
tion f est constante sur chacun des Ei. Soit x, y ∈ Ei, l’ensemble f−1({f(x)}) est
dans F et contient x, il contient donc Ei. Le point y ∈ Ei est dans cet ensemble,
par conséquent f(y) = f(x).

L’espérance conditionnelle E(X | F) est F -mesurable, nous venons de voir
qu’elle est de la forme E(X | F) =

∑
ck1Ek

, où les ck restent à déterminer.
On utilise la deuxième propriété définissant l’espérance conditionnelle en prenant
Y = 1Ei

pour un certain i.

E(E(X | F) Y ) = E((
∑

ck1Ek
)1Ei

)
= E(ci1Ei

)
= ci P (Ei)

E(XY ) = E(X 1Ei
).

Ces deux expressions sont égales, ce qui donne ci =
E(X 1Ei

)

P (Ei)
comme souhaité.

Le cas d’un espace produit

On considère l’espace produit Ω = Ω1 × Ω2 muni de la probabilité P = P1 ⊗ P2

et la tribu F = {A × Ω2 | A ⊂ Ω1}. Vérifions qu’une fonction f est mesurable
par rapport à F si et seulement si elle ne dépend que de la première coordonnée.
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Soit (ω1, ω2) ∈ Ω ; posons f(ω1, ω2) = t. Nous avons (ω1, ω2) ∈ f−1({t}) ∈ F . Il
existe donc A ⊂ Ω1 tel que f

−1({t}) = A×Ω2. Le résultat (ω1, ω2) est dans A×Ω2

et ω1 est dans A. Pour tout ω ∈ Ω2, (ω1, ω) appartient à A × Ω2 = f−1({t}), si
bien que f(ω1, ω) = t = f(ω1, ω2).

Calculons l’espérance conditionnelle d’une variable aléatoire X relativement à
la tribu F .

Proposition 13 E(X | F)(ω1) =
∫
X(ω1, ω2) dP2(ω2).

Preuve
Nous savons que E(X | F)(ω1, ω2) est de la forme f(ω1) pour une certaine fonc-
tion f par F -mesurabilité. On doit avoir de plus pour tout Y : Ω1 → R

E(E(X | F) Y ) =
∫
f(ω1)Y (ω1) dP1(ω1) dP2(ω2)

=
∫
f(ω1)Y (ω1) dP1(ω1).

Ceci doit être égal à E(XY ) =
∫
X(ω1, ω2)Y (ω1) dP1(ω1) dP2(ω2). Nous avons

donc l’égalité, pour tout Y ,

∫
f(ω1)Y (ω1) dP1(ω1) =

∫ (∫
X(ω1, ω2)dP2(ω2)

)
Y (ω1) dP1(ω1)

ce qui implique f(ω1) =
∫
X(ω1, ω2) dP2(ω2).

7.3 Propriétés de l’espérance conditionnelle

L’espérance conditionnelle jouit d’un certain nombre de propriétés proches de
celles de l’intégrale. Soient X , Y deux variables aléatoires intégrables ou positives
et F une tribu.

Proposition 14
– E(X | {ø,Ω}) = E(X), E(X | T ) = X, E(1 | F) = 1.

– E(E(X | F)) = E(X).

– Si X est F-mesurable, alors E(X | F) = X.

– Si X est indépendante de F , alors E(X | F) = E(X).

– Linéarité : pour tout λ ∈ R, E(λX + Y | F) = λE(X | F) + E(Y | F).

– Positivité : si X ≥ 0 alors E(X | F) ≥ 0.

– Monotonie : si X ≤ Y alors E(X | F) ≤ E(Y | F).

– Pour tout Y F-mesurable, positive si X est positive, bornée si X est intégrable,

E(Y X | F) = Y E(X | F).
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– Si X est dans Lp et 1 ≤ p ≤ ∞, alors ‖E(X | F)‖p ≤ ‖X‖p.
– Si F1 ⊂ F2, alors

E(E(X | F1) | F2) = E(X | F1),

E(E(X | F2) | F1) = E(X | F1).

Preuve
Toutes ces propriétés sont d’abord démontrées pour des variables aléatoires de
carré intégrables en utilisant le fait que l’espérance conditionnelle est une pro-
jection orthogonale. Elles sont ensuite généralisées aux variables aléatoires posi-
tives par un argument de convergence croissante, et enfin aux variables aléatoires
intégrables en les décomposant comme différence de deux fonctions croissantes
intégrables.

– La variable E(X | T ) est la projection de X sur L2(Ω, T , P ), cette projection
est égale à l’identité. Pour E(X | {ø,Ω}), toute fonction mesurable relativement
à la tribu {ø,Ω} est constante. La variable E(X | {ø,Ω}) est donc constante.
Prenons Y = 1, nous avons E(E(X | F)) = E(X), cette constante vaut donc
E(X).

– SiX est F -mesurable,X est dans L2(Ω,F , P ), elle est donc égale à sa projection
sur L2(Ω,F , P ) : E(X | F) = X .

– Si X est indépendante de F , elle est indépendante de toute variable aléatoire
Y F -mesurable. Nous avons alors

E(E(X | F) Y ) = E(XY ) = E(X)E(Y ) = E(E(X | F))E(Y ).

Prenons Y = E(X | F) qui est bien F -mesurable. Nous avons

E(E(X | F)2) = E(E(X | F))2

ou encore V (E(X | F)) = 0. Ceci montre que E(X | F) est constante p.s. En
conséquence, E(X | F) = E(X).

– Linéarité : c’est la linéarité de la projection orthogonale.

– Positivité : soit X ≥ 0 ; on prend Y = 1(E(X|F)<0).

E(E(X | F) Y ) = E(E(X | F) 1(E(X|F)<0)) ≤ 0

E(XY ) = E(X1(E(X|F)<0)) ≥ 0

Ces deux expressions sont égales, elles sont donc toutes les deux nulles, ce qui
implique E(X | F) 1(E(X|F)<0) = 0 p.s. et par conséquent E(X | F) ≥ 0 p.s.
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– Monotonie : soit Y, Z tels que Y ≥ Z. D’après le point précédent,

E(Y | F)− E(Z | F) = E(Y − Z | F) ≥ 0.

– Soit Y F -mesurable. La fonction Y E(X | F) est aussi F -mesurable. De plus
pour tout Z F -mesurable,

E(ZY E(X | F)) = E(ZY X)

car ZY est F -mesurable. La fonction Y E(X | F) satisfait donc les deux propriétés
caractérisant E(Y X | F) et nous avons l’égalité

E(Y X | F) = Y E(X | F) p.s.

– Soit F1 ⊂ F2. La fonction E(X | F1) est F2-mesurable si bien que

E
(
E(X | F1) | F2

)
= E(X | F1).

Démontrons l’égalité E
(
E(X | F2) | F1

)
= E(X | F1).

La fonction E
(
E(X | F2) | F1

)
est F1-mesurable. De plus, pour tout YF1-

mesurable, Y est à la fois F1 et F2-mesurable et d’après la propriété précédente,

E
(
Y E

(
E(X | F2) | F1

))
= E

(
E
(
E(Y X | F2) | F1

))

= E
(
E(Y X | F2)

)

= E(Y X)

Ce sont les deux propriétés qui caractérisent E(X | F1).

La majoration de la norme Lp de E(X | F) découle de l’inégalité de Jensen,
qui fait l’objet de la proposition qui suit.

Proposition 15 (Inégalité de Jensen) Soit (Ω, T , P ) un espace probabilisé,

X : Ω → R une variable aléatoire et ϕ : R → R une fonction convexe. On

suppose que X et ϕ(X) sont intégrables ou positives. Alors

ϕ
(
E(X | F)

)
≤ E

(
ϕ(X) | F

)
presque sûrement.

Preuve
Une fonction convexe est continue, admet des
dérivées à gauche et à droite en chaque point
et on a l’inégalité pour tout x, x0 ∈ R,

ϕ(x) ≥ ϕ(x0) + ϕ
′

+(x0)(x− x0)

où ϕ′
+(x0)est la dérivée à droite en x0. Le graphe

de ϕ se trouve au-dessus de ses tangentes. -�
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Appliquons cette inégalité pour x = X(ω) et x0 = E(X | F)(ω).

ϕ(X) ≥ ϕ(E(X | F)) + ϕ′
+(E(X | F))(X − E(X | F))

On prend maintenant l’espérance conditionnelle des deux termes de cette inégalité.

E
(
ϕ(X) | F

)
≥ E

(
ϕ
(
E(X | F)

)
| F

)
+E

((
X−E(X | F)

)
ϕ′
+

(
E(X | F)

)
| F

)

Les fonctions ϕ
(
E(X | F)

)
et ϕ

′

+

(
E(X | F)

)
sont F -mesurables si bien que

E
(
ϕ
(
E(X | F) | F

)
= ϕ

(
E(X | F)

)
,

E
((

X−E(X | F)
)
ϕ

′

+

(
E(X | F)

))
= ϕ

′

+

(
E(X | F)

)
E
(
X−E(X | F) | F

)
= 0.

L’inégalité est démontrée.

Exemple
Les fonctions x 7→ |x|, x 7→ ex, x 7→ |x|p pour p ≥ 1 sont convexes. Appliquons
l’inégalité de Jensen à la fonction x 7→ |x|p.

|E(X | F)|p ≤ E(|X|p | F).

Utilisons la monotonie de l’espérance :

‖E(X | F)‖pp = E
(
|E(X | F)|p

)
≤ E

(
E(|X|p | F)

)
= E(|X|p) = ‖X‖pp.

Nous avons démontré l’inégalité recherchée entre la norme Lp d’une variable
aléatoire et celle de son espérance conditionnelle.

7.4 Conditionnement relativement à une variable

aléatoire

On commence par associer à toute variable aléatoireX une tribu dont les éléments
sont composés d’union de lignes de niveau de X .

Définition 17 Soit (Ω, T , P ) un espace probabilisé, X : Ω → R une variable

aléatoire. La tribu associée à X, notée TX ou S(X), est définie par :

TX = S(X) = {X−1(A) ∈ T | A borélien de R}

Proposition 16 Une variable aléatoire Y : Ω → R est TX-mesurable si et seule-

ment si il existe une fonction f : R → R borélienne telle que

Y = f ◦X.
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Preuve
Si Y = f(X), pour tout A borélien, l’ensemble Y −1(A) = X−1(f−1(A)) est bien
dans TX .

Soit Y une variable aléatoire TX -mesurable. Montrons que Y est de la forme
f(X) pour une certaine fonction f borélienne.

• Traitons le cas où Y est étagée :

Y =
n∑

i=1

ci1Ai
, Ai ∈ TX .

Pour chaque i, on peut trouver un borélien Bi ⊂ R tel que Ai = X−1(Bi).

Y =
∑

ci1X−1(Bi) =
∑

ci1Bi
◦X = (

∑
ci1Bi

) ◦X

La variable aléatoire Y est bien de la forme h ◦X avec h =
∑

ci1Bi
.

• Passons au cas où Y ≥ 0. On peut l’approcher de manière croissante par une
suite de fonctions étagées (Yn)n∈N qui sont TX-mesurables, donc de la forme
hn ◦X . Nous avons :

Yn = hn ◦X ≤ (sup
n

hn) ◦X = sup
n
(hn ◦X) = supYn = Y

Comme Yn converge vers Y , on en déduit Y = (supn hn) ◦X et Y est bien une
fonction de X .

• Toute variable aléatoire TX -mesurable peut s’écrire comme différence de deux
fonctions TX-mesurables positives de la forme h◦X . La proposition est démontrée.

Nous somme en mesure de définir l’espérance conditionnelle d’une variable
aléatoire relativement à une autre variable aléatoire.

Définition 18 Soit X, Y deux variables aléatoires définies sur Ω. L’espérance
conditionnelle de Y relativement à X, notée E(Y | X), est définie par

E(Y | X) = E
(
Y | TX

)
.

Soit A ∈ T . La probabilité conditionnelle de A relativement à X est définie par

P (A | X) = E(1A | X) = E(1A | TX).

La fonction E(Y | X) est TX-mesurable. Elle peut donc s’exprimer comme une
fonction de X . Cette fonction est notée E(Y | X = x). C’est l’espérance de Y
sachant que X a pris la valeur x et on a pour P -presque tout ω ∈ Ω,

E(Y | X)(ω) = E
(
Y | X = X(ω)

)
,
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P (A | X)(ω) = P
(
A | X = X(ω)

)
.

Notons que l’espérance conditionnelle E(Y | X = x) est une fonction de R dans
R qui est définie PX-presque partout. De fait, deux fonctions f et g sont égales
PX-presque partout si et seulement si f ◦X et g◦X sont égales P -presque partout,
d’après la formule de transfert.

On peut exprimer E(Y | X) en fonction de la loi du couple (X, Y ). Rappelons
que cette loi est donnée par la formule

P(X,Y )(A) = P
(
(X, Y ) ∈ A

)
= P

(
{ω ∈ Ω | (X(ω), Y (ω)) ∈ A}

)

pour tout sous-ensemble borélien A ⊂ R2. La mesure P(X,Y ) est une mesure de
probabilité définie sur la tribu des boréliens de R2. Elle est dite à densité si on
peut trouver fX,Y : R2 → R+, d’intégrale un sur R2, telle que

P(X,Y )(A) =
∫

A
fX,Y (x, y) dxdy, A ⊂ R2.

Soit g : R → R une fonction borélienne telle que g(y) est positive ou intégrable.
L’espérance conditionnelle E(g(Y ) | X) est uniquement déterminée par le fait
qu’elle est TX -mesurable et qu’elle satisfait l’égalité

E
(
E(g(Y ) | X) Z

)
= E

(
g(Y ) Z

)

pour tout Z TX -mesurable, c’est-à-dire pour tout Z de la forme f(X). La fonction
x 7→ E(g(Y ) | X = x) est donc uniquement déterminée par la relation :

∫
f(x)E(g(Y ) | X = x) dPX(x) =

∫
f(X) g(Y )dP =

∫
f(x) g(y) dP(X,Y )(x, y).

Cas d’une loi P(X,Y ) à densité
Cherchons à donner une expression pour l’espérance conditionnelle dans le cas à
densité. Lorsque P(X,Y ) admet une densité fX,Y , la loi PX admet la densité

fX(x) =
∫

R

fX,Y (x, y) dy.

En remplaçant dans l’expression précédente, on doit avoir pour tout f : R → R
borélienne bornée,

∫
f(x)E(g(Y ) | X = x)

( ∫
fX,Y (x, y)dy

)
dx =

∫
f(x)

(∫
g(y) fX,Y (x, y) dy

)
dx.

Comme cette relation doit être vérifiée pour toute fonction f , on en déduit la
proposition suivante.
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Proposition 17 Soit X, Y deux variables aléatoires telles que le couple (X, Y )
admette une densité fX,Y et soit g : R → R une fonction borélienne positive ou

PY -intégrable. Alors, pour PX-presque tout x ∈ R,

E(g(Y ) | X = x) =

∫
R
g(y)fX,Y (x, y) dy∫
R
fX,Y (x, y) dy

.

Cas d’une loi PX discrète
Étudions maintenant le cas où P (X = x0) > 0 pour un certain x0 ∈ R, ce qui se
produit par exemple si X est une variable aléatoire discrète. Prenons pour f la
fonction indicatrice du singleton {x0}. Nous avons la relation :

P (X = x0)E(g(Y ) | X = x0) =
∫
{x0}E(g(Y ) | X = x) dPX(x)

=
∫
Ω g(Y (ω)) 1(X=x0)(ω) dP (ω)

=
∫
(X=x0)

g(Y (ω)) dP (ω).

On retrouve l’expression habituelle de l’espérance conditionnelle pour les variables
aléatoires discrètes.

Proposition 18 Soit X, Y deux variables aléatoires et g : R → R une fonction

borélienne positive ou PY -intégrable. Pour tout x ∈ R tel que P (X = x) > 0,

E(g(Y ) | X = x) =
E(g(Y ) 1(X=x))

P (X = x)
=

1

P (X = x)

∫

(X=x)
g(Y ) dP.

On termine par une formule qui permet de calculer la probabilité d’un événement
à partir des probabilités conditionnelles.

Proposition 19 Soit X une variable aléatoire, A ∈ T et I ⊂ R un intervalle

ou un borélien de R. Alors

P
(
A ∩X−1(I)

)
=
∫

I
P (A | X = x) dPX(x),

P (A) =
∫

R

P (A | X = x) dPX(x).

Ces formules découlent des égalités

∫
I E(1A | X = x) dPX(x) = E(1(X∈I)E(1A | X))

= E(1(X∈I) 1A)

= P (A ∩ (X ∈ I)).
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Généralisation à n variables
Les considérations précédentes se généralisent à un nombre quelconque de va-
riables aléatoires.

Définition 19 Soient X1, ..., Xn des variables aléatoires définies sur Ω. La tribu

engendrée par les Xi est notée TX1,...,Xn ou S(X1, ..., Xn).

TX1,...,Xn = S(X1, ..., Xn) = {(X1, ..., Xn)
−1(A) | A ⊂ Rn borélien}

On pose
E(Y | X1, X2, ..., Xn) = E

(
Y | TX1,X2,...,Xn

)
.

On démontre comme précédemment que toute fonction TX1,X2,...,Xn-mesurable est
de la forme f(X1, X2, ..., Xn) où f : Rn → R est borélienne. On a donc une
fonction (x1, ..., xn) 7→ E(Y | X1 = x1, ..., Xn = xn) définie de Rn dans R qui,
composée avec (X1, X2, ..., Xn), redonne E(Y | X1, X2, ..., Xn).
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7.5 Exercices

exercice 1
On considère un espace probabilisé (Ω, T , P ), une tribu F ⊂ T et deux événements
A ∈ T , F ∈ F . Montrer la formule suivante :

P (F | A) =
∫
F P (A | F) dP
∫
Ω P (A | F) dP

.

Quelle formule obtient-on lorsque F est associée à une partition
∐
Ei = Ω?

exercice 2
SoitX une variable aléatoire de carré intégrable. Montrer que E(X2 |X+1) = X2.

exercice 3
Soit X : Ω → R+ une variable aléatoire positive définie sur (Ω, T , P ) et F ⊂ T
une tribu. Montrer que presque sûrement, X > 0 implique E(X | F) > 0.

exercice 4
SoitX , Y deux variables aléatoires telle que le couple (X, Y ) suit une loi uniforme
sur le disque unité : fX,Y (x, y) =

1
π
1[0,1](x

2 + y2). Calculer E(X2 | Y ).

exercice 5
Soit X une variable aléatoire de densité fX . On considère sa valeur absolue |X|.
– Montrer que |X| admet la densité f|X|(x) =

(
fX(x) + fX(−x)

)
1R+(x).

– Montrer que E
(
g(X) | |X| = x

)
=

g(x)fX(x) + g(−x)fX(−x)

fX(x) + fX(−x)
p.s.

exercice 6
On considère une variable aléatoire suivant une loi exponentielle de paramètre λ.
Sa densité est donc donnée par : f(x) = λ e−λx 1[0,∞[(x)

– Pour s, t > 0, calculez P (X ≥ t) et P (X ≥ t + s | X ≥ s). On dit que la loi
exponentielle est sans mémoire.

– Montrer que cette propriété est aussi vraie pour une variable aléatoire discrète
suivant une loi géométrique de paramètre p.

exercice 7
Soit X une variable aléatoire de carré intégrable définie sur (Ω, T , P ), F ⊂ T
une tribu et un nombre réel t > 0. Montrer que P (|X| ≥ t | F) ≤ E(X2|F)

t2
.

exercice 8
Soit X une variable aléatoire de carré intégrable définie sur (Ω, T , P ) et F ⊂ T
une tribu. On définit la variance conditionnelle de X relativement à F comme
suit :

V (X | F) = E(X2 | F)−E(X | F)2

Montrer que V (X) = E(V (X | F)) + V (E(X | F)).



Chapitre 8

Théorie des martingales

Pour obtenir des théorèmes de convergence pour les séries de variables aléatoires
indépendantes, nous allons introduire le concept de martingale.

8.1 La notion de martingale

Définition 20 Soit (Ω, T , P ) un espace probabilisé, Fn ⊂ T des tribus, n ∈ N.

On dit que les Fn forment une filtration si elles constituent une suite croissante

pour l’inclusion : Fn ⊂ Fn+1 pour tout n ∈ N.

Une suite de variables aléatoires (Mn) est dite adaptée à la filtration Fn si Mn

est Fn-mesurable pour tout n ∈ N.

La suite (Mn)n∈N est une martingale relativement à la filtration Fn si

– les Mn sont intégrables,

– la suite (Mn) est adaptée à Fn,

– E(Mn+1 | Fn) = Mn pour tout n ∈ N.

Si la filtration Fn n’est pas spécifiée, on prend Fn = TM1,...,Mn.

Lorsque la suite est composée de fonctions de carrés intégrables, la variable Mn

s’obtient en projetant orthogonalement Mn+1 sur L2(Ω,Fn). Montrons que la
projection de Mn+k, k > 0, sur L2(Ω,Fn) est aussi égale à Mn.

Proposition 20 Pour tout k > 0, E(Mn+k | Fn) = Mn.

Cette proposition se démontre par récurrence sur k. Supposons là vérifiée pour
k > 0 et démontrons là pour k + 1. Comme Fn ⊂ Fn+k,

E(Mn+k+1 | Fn) = E(E(Mn+k+1 | Fn+k) | Fn) = E(Mn+k | Fn) = Mn.

La proposition est démontrée.
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Donnons quelques exemples de martingales.

Premier exemple
Soit (Xk)k∈N une suite de variables aléatoires indépendantes entre elles et centrées
(E(Xn) = 0 pour tout n ∈ N). Posons Sn = X1 +X2 + ... +Xn. Alors la suite
(Sn)n∈N est une martingale relativement à la filtration Fn = TX1,X2,...,Xn.

Preuve
La variable aléatoire Sn est bien intégrable et Fn-mesurable.

E(Sn+1 | Fn) = E(Sn+1 | X1, ..., Xn)
= E(Xn+1 + Sn | X1, ..., Xn)
= E(Xn+1 | X1, ..., Xn) + E(Sn | X1, ..., Xn)
= E(Xn+1) + Sn

= Sn

C’est la relation voulue.

Remarquons qu’on a l’égalité TX1,X2,...,Xn = TS1,S2,...,Sn car les Xi s’expriment en
fonction des Si et réciproquement. La suite (Sn) est une martingale aussi bien
par rapport aux (Xi) qu’aux (Si).

Second exemple
Soit M une variable aléatoire intégrable et (Fn) une filtration. La suite

Mn = E(M | Fn)

est une martingale.

Preuve
E(Mn+1 | Fn) = E

(
E(M | Fn+1) | Fn

)
= E(M | Fn) = Mn.

Troisième exemple
On considère sur l’espace Ω = [0, 1[, muni
de la mesure de Lebesgue, les fonctions

Mn(x) = 2n 1[0,1/2n[(x).

On prend pour Fn la tribu associée à la partition [0, 1[=
2n−1∐

k=0

[ k
2n

,
k + 1

2n

[
.

La suite (Mn) est une martingale relativement à la filtration Fn.

Preuve

Les fonctions Mn sont intégrables :
∫ 1

0
|Mn(x)| dx = 1.

La variable aléatoire Mn est mesurable relativement à la tribu Fn car elle est
constante sur chacun des éléments de la partition associée à Fn. On a vu précédem-
ment une formule explicite pour l’espérance conditionnelle relativement aux Fn.
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Notons Ik =
[

k
2n
, k+1

2n

[
∈ Fn.

E(Mn+1 | Fn) =
∑

k

E(Mn+11Ik)

P (Ik)
1Ik = 2nE

(
2n+11[0, 1

2n+1 [

)
1I0 = 2n1I0 = Mn.

La suite Mn satisfait bien les propriétés qui définissent les martingales.

Quatrième exemple
Voici un autre exemple en lien avec les jeux de hasard.

Proposition 21 Soit (Mn)n∈N une martingale et (Hn)n∈N une suite de variables

aléatoires telle que Hn est Fn−1-mesurable pour tout n ≥ 1. On suppose que Hn

est bornée pour chaque n ∈ N. On pose G0 = 0 et

Gn =
n∑

m=1

Hm(Mm −Mm−1)

Alors (Gn)n∈N est une martingale.

Preuve

E(Gn+1 | Fn) = E(
∑n+1

1 Hm(Mm −Mm−1 | Fn)
= E(Hn+1(Mn+1 −Mn) | Fn) + E(

∑n
1 Hm(Mm −Mm−1) | Fn)

= Hn+1E(Mn+1 −Mn | Fn) + E(Gn | Fn)
= Gn.

De plus Gn est bien Fn-mesurable et Gn est intégrable.

Prenons (Xn)n∈N∗ une suite de variables aléatoires indépendantes identique-
ment distribuées telle que P (Xn = −1) = P (Xn = 1) = 1/2 et définissons

M0 = 0, Mn =
n∑

i=1

Xi, H1 = 1,

Hn =
{
2Hn−1 si Xn−1 = −1

1 sinon.

Il s’agit ici de modéliser une succession de mises à la roulette. On suppose que
rouge et noir sortent chacun avec probabilité 1/2. La variable Xn vaut 1 si le
joueur gagne au tirage n et vaut −1 sinon. La quantité Hn est la mise engagée

par le joueur au nième tirage, elle est fonction des résultats observés au cours des
précédents tirages. Dans la martingale classique, le joueur double sa mise s’il a
perdu au tirage précédent ; sinon il mise 1 euro. La valeur Gn représente le gain
(ou la perte) à l’étape n. Notons F0 la fortune initiale du joueur. Après avoir joué
n fois, sa fortune vaut Fn = Gn + F0. C’est une martingale.

Proposition 22 Soit Mn une martingale. Alors

E(Mn) = E(Mn−1) = ... = E(M1) = E(M0).
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Preuve
E(Mn) = E(E(Mn+1 | Fn)) = E(Mn+1) pour tout n ∈ N.

Dans l’exemple précédent, nous avons E(Fn) = E(F0). Le joueur ne peut pas
augmenter l’espérance de sa fortune par une stratégie Hn judicieuse.

8.2 Convergence des martingales

On va montrer qu’une martingale est convergente dès qu’elle est bornée en norme
L2.

Définition 21 Une martingale (Mn) est dite bornée dans L2 si il existe C > 0
telle que pour tout n ∈ N, ‖Mn‖2 ≤ C.

Théorème 11 (convergence L2) Toute martingale bornée dans L2 converge

au sens de la norme L2 et presque sûrement : il existe une variable aléatoire M
de carré intégrable telle que

Mn
L2−−−−→

n→∞
M,

Mn
p.s.−−−−→

n→∞ M.

Remarque On a alors Mn = E(M | Fn). On peut montrer que ce théorème se
généralise à Lp pour p ∈]1,∞[.

Preuve de la convergence L2

Posons Yi = Mi −Mi−1 si bien que

Mn =
n∑

i=1

Yi +M0.

Vérifions que la famille des Yi est orthogonale. Comme Mn est une martingale,

E(Yi | Fi−1) = E(Mi | Fi−1) + E(Mi−1 | Fi−1) = Mi−1 −Mi−1 = 0

La variable Yj est Fi−1-mesurable pour tout j < i, ce qui donne

〈Yi, Yj〉 = E(YiYj) = E(E(Yi | Fi−1) Yj) = E(0) = 0.

On a donc :
n∑

i=1

E(Y 2
i ) = E

( n∑

i=1

Y 2
i

)
= E

(
(Mn −M0)

2
)
= E(M2

n)− E(M2
0 ) ≤ C.

Cette série à termes positifs est bornée, elle converge. Elle est donc de Cauchy.
On en déduit que la suite Mi est aussi de Cauchy pour la norme L2 :

‖Mn −Mm‖22 = E((Mn −Mm)
2) = E

(( n∑

i=m+1

Yi

)2)
=

n∑

m+1

E(Y 2
i )
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pour n ∈ N et m ≥ n. La série
∑

E(Y 2
i ) étant de Cauchy, la dernière somme est

inférieure à ε dès que m et n sont suffisamment grands. La suite (Mn) est bien
de Cauchy pour la norme L2, elle converge donc.

Pour démontrer la convergence presque sûre, on utilise le lemme suivant :

Lemme 5 (inégalité maximale) Soit (Mn)n∈N une martingale. Alors pour tout

N ∈ N et tout λ > 0,

P
(
max
0≤i≤N

|Mi| ≥ λ
)
≤ E(M2

N )

λ2
.

Preuve du lemme
On s’intéresse au premier indice pour lequel la martingale dépasse λ.

A0 = (|M0| ≥ λ)
A1 = (|M0| < λ, |M1| ≥ λ)
Aj = (|M0| < λ, ..., |Mj−1| < λ, |Mj | ≥ λ)

Nous avons alors
(
max
0≤i≤N

|Mi| ≥ λ
)
=

N∐

j=0

Aj.

Cherchons à minorer E(M2
N1Aj

) en insérant le terme Mj dans le carré.

E(M2
N1Aj

) = E((MN −Mj)
2 1Aj

) + E(M2
j 1Aj

) + 2E((MN −Mj)Mj1Aj
).

Le premier terme à droite de l’égalité est positif, tandis que le second terme est
supérieur à E(λ2 1Aj

) car Mj est supérieur à λ sur Aj . Vérifions que le dernier
terme est nul en utilisant le fait que Mn est une martingale :

E(MNMj1Aj
) = E(E(MNMj1Aj

| Fj)) = E(Mj1Aj
E(MN | Fj)) = E(Mj1Aj

Mj)

car Mj et 1Aj
sont Fj-mesurables. On en déduit E((MN−Mj)Mj1Aj

) = 0 comme
souhaité. Au final,

E(M2
N1Aj

) ≥ λ2E(1Aj
) = λ2P (Aj).

On conclut en faisant la somme pour j allant de 0 à n.

E(M2
N ) ≥ E(M2

N

∑
1Aj

) ≥ λ2P (
∐

Aj) = λ2P (max |Mi| ≥ λ).

Preuve de la convergence presque sûre
On a vu que pour tout ε > 0, il existe N tel que pour tout m,n ≥ N

E((Mn −Mm)
2) < ε.
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On peut donc construire par récurrence une suite croissante ni telle que n0 = 0
et

E((Mni
−Mni−1

)2) ≤ 1/2i.

Soit n ∈ N et i le plus grand entier tel que ni ≤ n. Nous avons l’encadrement
ni ≤ n < ni+1. Décomposons la martingale Mn comme suit :

Mn = (Mn −Mni
) +

i∑

j=1

(Mnj
−Mnj−1

) +M0.

Appliquons l’inégalité maximale à la martingale M̃n = Mn+ni
, N = ni+1 − ni et

λ = 1
i2

:

P
(

max
ni≤n≤ni+1

|Mn −Mni
| ≥ 1/i2

)
≤ E((Mni+1

−Mni
)2)

1/i2
≤ i2

2i
.

La série de terme général i2/2i converge, on peut appliquer le lemme de Borel-
Cantelli : presque sûrement, pour i assez grand,

max
ni≤n≤ni+1

|Mn −Mni
| ≤ 1

i2
−−−−→
i→∞

0.

En particulier, pour n = ni+1 et i supérieur à un certain i0 ∈ N dépendant de ω,

|Mni+1
−Mni

| ≤ 1

i2
.

La série
∑

i≥i0 |Mni+1
−Mni

| ≤ ∑
i0 1/i

2 est de nature convergente, ce qui montre
que la série

∑
Mni+1

−Mni
est absolument convergente. Le théorème est démontré.

8.3 Séries de variables aléatoires indépendantes

Le premier résultat que nous pouvons déduire du théorème de convergence des
martingales bornées dans L2 est un critère pour la convergence presque sûre d’une
série de variables aléatoires indépendantes.

Corollaire 6 Soit (Xi) une suite de variables aléatoires indépendantes centrées

(E(Xi) = 0 pour tout i) et de carrés intégrables. On suppose que

∑

i∈N
V (Xi) < ∞.

Alors la série
∑

Xi converge presque sûrement et en norme L2.
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Preuve
Nous avons vu précédemment que sous les hypothèses du corollaire, la suite Sn =∑n

i=1Xi est une martingale. Remarquons que l’espérance de Sn est nulle :

E(Sn) =
n∑

1

E(Xi) = 0.

Sa variance est donc égale au carré de sa norme L2 que nous évaluons comme
suit :

‖Sn‖22 = E(S2
n) = V (Sn) = V (

n∑

1

Xi) =
n∑

1

V (Xi) ≤
∞∑

1

V (Xi).

La martingale Sn est bornée dans L2, elle converge presque sûrement et dans L2.

Exemple

La série harmonique
∑ 1

k
est divergente. La série alternée

∑ (−1)k

k
est convergente.

Qu’en est-il lorsque nous choisissons les signes des termes de la série de manière
aléatoire ?

Proposition 23 Soit (εk) une suite de variables aléatoires indépendantes iden-

tiquement distribuées telles que

P (εk = 1) = P (εk = −1) = 1/2.

Alors la série
∑

k

εk
k

converge presque sûrement.

Cela se déduit du corollaire. Il suffit de remarquer d’abord que E( εi
i
) = 0 puis

que
∞∑

k=1

V
(εk
k

)
=

∞∑

k=1

1

k2
V (εk) =

∞∑

k=1

1

k2
< ∞.

Comme exemple d’une telle suite de variables aléatoires, on peut prendre

Ω = {−1, 1}⊗N, P =
(1
2
δ−1 +

1

2
δ1
)⊗N

, εi
(
(xk)k∈N

)
= xi.

On a alors

P
({

(xi)i∈N ∈ Ω
∣∣∣
∑

k≥1

xk

k
converge

})
= 1.

On se pose maintenant la question générale de la convergence d’une série
∑

Xi

lorsque les Xi sont indépendantes entre elles. Le théorème suivant est dû à A.
Kolmogorov.
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Théorème 12 (théorème des trois séries) Soit (Xi)i∈N une suite de variables

aléatoires indépendantes entre elles. Posons Yi = Xi1(|Xi|≤1). Alors la série
∑

Xi

converge presque sûrement si et seulement si les trois séries suivantes convergent :

–
∑

P (|Xi| ≥ 1),

–
∑

E(Yi),

–
∑

V (Yi).

Preuve
Ce théorème se déduit du corollaire précédent. On se contente de démontrer que
la convergence des trois séries implique la convergence presque sûre de

∑
Xi.

Comme
∑

P (|Xi| ≥ 1) converge, nous pouvons appliquer le lemme de Borel-
Cantelli : pour presque tout ω, il existe i0 tel que pour tout i ≥ i0, |Xi(ω)| ≤ 1.
On a alors Yi(ω) = Xi(ω). Les séries

∑
Xi et

∑
Yi sont donc de même nature.

Posons Ỹi = Yi − E(Yi). Comme
∑

E(Yi) converge, il suffit de démontrer la
convergence presque sûre de

∑
Ỹi. Les Ỹi sont centrées et leur variance est égale

à celle des Yi :

‖Ỹi‖22 = V (Ỹi) = V (Yi).

On sait que la série
∑

V (Ỹi) =
∑

V (Yi) converge. Le corollaire s’applique, la série∑
Ỹi est convergente presque sûrement et le théorème est démontré.

Complément

Donnons une preuve de la loi des grands nombres dérivée des théorèmes précédents
et valide pour toute suite de variables aléatoires (Xn)n∈N indépendantes identi-
quement distribuées intégrables.

On considère les variables Yk = Xk1(|Xk|≤k). Montrons que la série
∑ V (Yk)

k2
est

convergente.

∑

k≥1

E(Y 2
k )

k2
=
∑

k≥1

1

k2

∫ ∞

0
x21{x≤k}dP|Xk|(x) =

∫ ∞

0

(∑

k≥1

x

k2
1{k≥x}

)
x dP|X0|(x).

La somme qui apparâıt sous l’intégrale dans le dernier terme est majorée par
2
∑

k≥1
1
k2

pour x ∈ [0, 2]. Pour x ≥ 2, on effectue une comparaison série-intégrale.

∑

k≥1

x

k2
1{k≥x} ≤

∑

k≥x

∫ k

k−1

x

t2
dt ≤

∫ ∞

x−1

x

t2
dt ≤ x

x− 1
≤ 2.

Nous avons de plus V (Yk − E(Yk)) = V (Yk) ≤ E(Y 2
k ), si bien que la série∑

V (Yk−E(Yk)
k

) est convergente. La série
∑ Yk−E(Yk)

k
converge donc presque sû-

rement, en vertu du théorème vu précédemment.
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De manière générale, pour toute suite (xk) telle que
∑ xi

i
converge, la moyenne

1
n

∑
xk converge vers 0. Cela découle de la formule suivante

1

n

n∑

k=1

( k∑

i=1

xi

i

)
=

n∑

i=1

xi

i
− 1

n

n∑

i=1

xi

qui se démontre en intervertissant les deux signes sommes. On en déduit

1

n

n∑

k=1

(Yk − E(Yk))
p.s.−−−−→

n→∞
0.

Par convergence dominée, la suite E(Yk) =
∫
x1{|x|≤k}dPX0(x) converge vers

E(X0). Il en va donc de même pour 1
n

∑
E(Yk). Il reste à remarquer que

∞∑

k=1

P (Yk 6= Xk) =
∞∑

k=1

P (|X0| ≥ k) =
∫ ∞∑

k=1

1{k≤x} dP|X0|(x) ≤
∫

x dP|X0|(x) < ∞

D’après le lemme de Borel-Cantelli, pour presque tout ω, les suites Xk(ω) et Yk(ω)
cöıncident à partir d’un certain rang et la différence 1

n

∑
Xk(ω)− 1

n

∑
Yk(ω) tend

vers 0. Le résultat est démontré.

8.4 Convergence des espérances conditionnelles

Théorème 13 Soit (Ω, T , P ) un espace probabilisé et Fn ⊂ T une suite de tribus

croissante pour l’inclusion telle que T soit engendrée par tous les Fn. Alors pour

tout X : Ω → R de carré intégrable,

E(X | Fn)−−−−→
n→∞

X presque sûrement et en norme L2.

Remarque Ce théorème est encore vrai si X est juste intégrable, on a alors
convergence presque sûrement et en norme L1.

Preuve
On a vu précédemment que la suite E(X|Fn) est une martingale. On sait aussi
qu’elle est bornée dans L2 : ‖E(X | Fn)‖2 ≤ ‖X‖2.
Elle converge donc presque sûrement et en norme L2, notons X̃ sa limite et
montrons que X̃ = X . Soit n0 ∈ N et n ≥ n0.

‖E(X − X̃ | Fn0)‖2 = ‖E(E(X | Fn)− X̃ | Fn0)‖2 ≤ ‖E(X | Fn)− X̃‖2−−−−→
n→∞

0

On a donc pour tout n0 ∈ N et A ∈ Fn0, E(X − X̃ | Fn0) = 0. Ceci implique :
∫

A
X − X̃ dP = E(1A(X − X̃)) = E(1AE(X − X̃ | Fn0)) = 0.

On en déduit que X = X̃ en posant A =
⋃

n∈N Fn et en appliquant le résultat
d’intégration suivant.
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Proposition 24 Soit (Ω, T , P ) un espace probabilisé, Y : Ω → R intégrable,

A ⊂ T une algèbre de parties de T . Si
∫
A Y dP = 0 pour tout A ∈ A, alors Y = 0

presque sûrement.

Donnons deux applications du théorème de convergence précédent. Notons
T(Xk , k≥N) ou S(Xk, k ≥ N) la tribu engendrée par toutes les variables Xk, k ≥ N .

Théorème 14 (Loi du 0-1 de Kolmogorov) Soit (Xk)k∈N une suite de va-

riables aléatoires indépendantes et

A ∈
⋂

N∈N
T(Xk , k≥N).

Alors la probabilité de l’événement A vaut 0 ou 1 : P (A) ∈ {0, 1}.

Preuve
Pour n ∈ N, l’événement A appartient à la tribu T(Xk,k≥n+1). Il est donc indépendant
de X0, X1, ..., Xn. On en déduit

P (A) = P (A | X0, ..., Xn).

Les tribus Fn = TX0,...,Xn sont croissantes et engendrent F = T(Xk , k≥0). On peut
appliquer le théorème précédent en se plaçant sur l’espace (Ω,F , P ) :

P (A) = P (A | X0, ..., Xn) = E(1A | Fn)−−−−→
n→∞

1A p.s.

On peut donc trouver ω ∈ Ω tel que P (A) = 1A(ω) ∈ {0, 1}.
Exemple
Soit (Xn)n∈N une suite de variables aléatoires indépendantes et A = {ω ∈ Ω |∑

k≥0Xk converge}. On peut écrire A sous la forme suivante, pour tout N ∈ N :

A = {ω ∈ Ω |
∑

k≥N

Xk converge} ∈ T(Xk ,k≥N).

D’après la loi du 0-1, l’événement A a pour probabilité 0 ou 1. Par conséquent, ou
bien pour presque tout ω ∈ Ω, la série

∑
Xk(ω) converge, ou bien pour presque

tout ω ∈ Ω, la série
∑

Xk(ω) diverge.

Posons Sn =
∑n

k=1Xk. Par le même raisonnement, l’ensemble

{ω ∈ Ω | la suite (Sn(ω))n∈N∗ est bornée}

a comme probabilité 0 ou 1. De fait, N étant donné, la suite (Sn(ω))n≥1 est bornée
si et seulement si la suite (

∑n
k=N Xk(ω))n≥N est bornée et cette dernière suite ne

dépend que de Xk pour k ≥ N .

Comme autre application, montrons qu’on peut approcher presque partout
toute fonction de carré intégrable définie sur [0, 1[ par des fonctions en escalier
explicites.
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Proposition 25 Soit f ∈ L2([0, 1[, dx). Alors

2n−1∑

k=0

(
2n
∫ k+1

2n

k
2n

f(x) dx
)
1[ k

2n
, k+1
2n

[

p.s.−−−−→
n→∞ f

Preuve
On prend pour Fn la tribu associée à la partition [0, 1[ =

2n−1∐

k=0

[ k
2n
, k+1

2n
[ . On a vu

précédemment que

E(f | Fn) =
2n−1∑

k=0

(
2n
∫ k+1

2n

k
2n

f(x) dx
)
1[ k

2n
, k+1
2n

[.

De plus, les intervalles de la forme [ k
2n
, k+1

2n
[ , n ∈ N et k ∈ {0, ..., 2n − 1}, en-

gendrent la tribu des boréliens. Le théorème précédent montre que E(f | Fn) → f
p.s. et en norme L2.

Complément
Une martingale (Mn) est dite bornée dans L1 s’il existe C ≥ 0 tel que pour tout
n ∈ N, ‖Mn‖1 ≤ C. On peut montrer qu’une telle martingale converge presque
sûrement mais on n’a pas forcément la convergence en norme L1.
Cette convergence a lieu en norme L1 si et seulement si (Mn) satisfait la condi-

tion suivante :

sup
n∈N

E(|Mn| 1|Mn|≥λ))−−−−→
λ→∞

0.

Une suite de variable aléatoires (Mn) qui satisfait cette condition est dite équi-

intégrable.

Voici un exemple d’une telle suite. Considérons une variable aléatoire X inté-
grable et Fn une filtration. Alors la suite E(X | Fn) est une martingale équi-
intégrable. C’est une conséquence du calcul suivant.

∫
(|E(X|Fn)|≥λ) |E(X | Fn)| dP ≤ ∫

(E(|X| | Fn)≥λ) E(|X| | Fn) dP
≤ ∫

(E(|X| | Fn)≥λ) |X| dP
≤ ∫

(|X|≥
√
λ) |X| dP +

√
λP

(
E(|X| | Fn) > λ

)

≤ ∫
(|X|≥

√
λ) |X| dP + E(|X|)√

λ

La première inégalité provient de la majoration |E(X | F)| ≤ E(|X| | F) et
de la croissance de la fonction x 7→ x1x≥λ. La dernière majoration provient de
l’inégalité de Markov.

Comme application, on peut montrer que la suite E(X | Fn) converge vers X
aussi bien en norme L1 que presque sûrement lorsque les Fn engendrent toute la
tribu T et que X est intégrable.
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8.5 Temps d’arrêt

Définition 22 Soit (Fn) une filtration. Une variable aléatoire τ : Ω → N∪{∞}
est un temps d’arrêt relativement à la filtration Fn si l’événement (τ = n) est

dans Fn pour tout n ∈ N.

Remarque
On a alors (τ ≤ n) ∈ Fn pour tout n ∈ N car

(τ ≤ n) =
∐

0≤k≤n

(τ = k) ∈
⋃

0≤k≤n

Fk = Fn.

Théorème 15 Soit (Mn) une martingale et τ un temps d’arrêt. On pose

(n ∧ τ)(ω) = min(n, τ(ω)),

(Mn∧τ )(ω) = M(n∧τ)(ω)(ω).

Alors (Mn∧τ ) est une martingale.

Remarque
Considérons un résultat ω ∈ Ω pour lequel τ(ω) est fini. Nous avons

Mn∧τ (ω) =
{

Mn(ω) si n ≤ τ(ω)
Mτ(ω)(ω) si n ≥ τ(ω)

Nous voyons que si τ(ω) < ∞, la suite (Mn∧τ )(ω) est stationnaire, c’est-à-dire
constante à partir d’un certain rang. La suite (Mn∧τ )n∈N converge sur l’ensemble
(τ < ∞) vers la variable aléatoire ω 7→ Mτ(ω)(ω), notée Mτ . Sur l’ensemble
(τ = ∞), elle cöıncide avec la suite (Mn).

Exemple
On revient à l’exemple de la fortune Fn d’un joueur qui joue au casino. On a
vu que c’est une martingale et que E(Fn) = E(F0). Le joueur peut-il augmenter
l’espérance de sa fortune en s’arrêtant de jouer au bon moment ?

Reprenons l’exemple de la martingale consistant à doubler la mise si on est per-
dant. Plutôt que de jouer un nombre de fois n fixé, le joueur décide de s’arrêter au
premier gain s’il y a effectivement un gain qui se produit au cours des n tirages.
La variable

τ(ω) = min{k ∈ N∗ | Xk(ω) = 1}
est un temps d’arrêt :

(τ = n) = (X1 = −1, ..., Xn−1 = −1, Xn = 1) ∈ TX1,...,Xn.

La fortune du joueur est maintenant égale à Fn∧τ . C’est une martingale, nous
avons donc E(Fn∧τ ) = E(F0∧τ ) = E(F0) = F0. On ne peut pas améliorer les
gains par cette méthode.
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Preuve du théorème
On pose Hn = 1(τ≥n). Cette fonction est Fn−1-mesurable :

(τ ≥ n) = (τ < n)c = (τ ≤ n− 1)c ∈ Fn−1.

Posons Gn =
∑n

m=1Hm(Mm −Mm−1) =
∑n

m=1 1(m≤τ)(Mm −Mm−1).
Nous avons

Gn(ω) = Mτ(ω)(ω)−M0(ω) si n ≥ τ(ω),
= Mn(ω)−M0(ω) si n ≤ τ(ω).

ce qui montre que Gn = Mn∧τ −M0 et nous avons vu plus haut que Gn est une
martingale.

8.6 Illustration par une marche aléatoire

On se donne une suite de variables aléatoires (Xk)k∈N∗ indépendantes identique-
ment distribuées telle que

P (Xk = 1) = P (Xk = −1) = 1/2.

Posons Sn =
∑n

k=1Xk. La suite (Sn(ω))n∈N est ici interprétée comme un dépla-
cement sur l’ensemble des entiers Z. L’entier Sn(ω) correspond à la position de
la marche au temps n, en considérant que nous sommes à l’origine au temps 0.

Si nous sommes à la position Sn au temps n, nous avons une chance sur deux de
nous déplacer d’un pas vers la droite au temps n+ 1, et une chance sur deux de
nous déplacer d’un pas vers la gauche :

P (Sn+1 = Sn + 1) = P (Xn+1 = 1) = 1/2,

P (Sn+1 = Sn − 1) = P (Xn+1 = −1) = 1/2.

On parle ici d’une marche aléatoire symétrique sur Z.

Voici une présentation imagée de cette marche aléatoire et des problématiques as-
sociées. Un individu passablement éméché se déplace sur un chemin, de réverbères
en réverbères, de manière aléatoire, avec probabilité 1/2 de partir vers la gauche
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ou la droite à chaque étape. Sa maison se trouve en −a, le bar en b avec a, b ∈ N∗.
Deux questions se posent :

- Parviendra-t-il à atteindre sa maison ou à retourner au bar ?

- Quelle est la probabilité qu’il atteigne la maison avant le bar ?

Théorème 16 Presque sûrement, la marche atteint −a ou b :

P ({ω ∈ Ω | ∃n ∈ N∗ tel que Sn = −a ou Sn = b}) = 1.

La probabilité que la marche atteigne −a avant b est égale à b
a+b

:

P ({ω | ∃n ∈ N∗ tel que −a < Sk(ω) < b pour tout k < n et Sn(ω) = −a}) = b

a+ b
.

preuve
Posons τ(ω) = inf{k ∈ N∗ | Sk = −a ou Sk = b} si la suite (Sn(ω)) atteint
effectivement −a ou b et τ(ω) = +∞ sinon. Cette variable aléatoire τ est un
temps d’arrêt à valeurs dans N ∪ {∞}. La preuve du théorème se fait en deux
temps. On commence par vérifier que τ est fini presque sûrement :

P (τ < ∞) = 1.

La variable aléatoire ω 7→ Sτ(ω)(ω) est alors bien définie, on la note Sτ , elle ne
prend que les deux valeurs −a et b. On montre ensuite que cette variable est
d’espérance nulle :

E(Sτ ) = 0.

On a alors le système de deux équations
{

P (Sτ = −a) + P (Sτ = b) = 1
−aP (Sτ = −a) + b P (Sτ = b) = E(Sτ ) = 0

qu’il suffit de résoudre pour trouver la probabilité P (Sτ = −a).

Montrons que τ est fini presque sûrement. On a vu précédemment que l’événement

{ω ∈ Ω | la suite (Sn(ω))n∈N∗ est bornée}

a pour probabilité 0 ou 1. C’est une conséquence de la loi du 0-1. On veut montrer
que cette probabilité vaut 0. Si cela n’est pas le cas, pour presque tout ω ∈ Ω, la
suite (Sn(ω)) est bornée, ce qui implique

Sn(ω)√
n

−−−−→
n→∞

0,

et pour toute f continue bornée, par convergence dominée,

∫

R

fdP Sn√
n
=
∫

Ω
f
( Sn√

n
(ω)

)
dP (ω)−−−−→

n→∞

∫
f(0) dP = f(0) =

∫
f(ω)dδ0(ω).
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La suite Sn√
n
converge en loi vers la mesure de Dirac en zéro, ce qui contredit

le théorème de la limite centrée. La suite n’est pas bornée, elle atteint −a ou b
presque sûrement.

Nous savons maintenant que la variable Sτ est bien définie, montrons que son
espérance est nulle.

Sn∧τ
p.s.−−−−→

n→∞ Sτ et − a ≤ Sn∧τ ≤ b pour tout n ∈ N∗.

Appliquons le théorème de convergence dominée :

E(Sτ ) = lim
n→∞

E(Sn∧τ ).

Comme (Sn∧τ ) est une martingale, nous avons E(Sn∧τ ) = E(S1∧τ ) = E(S1) = 0,
ce qui montre que E(Sτ ) = 0. Le théorème est démontré.

Complément
Donnons une autre preuve des deux résultats P (τ < ∞) = 1 et E(Sτ ) = 0 en
utilisant le théorème de convergence des martingales plutôt que la loi du 0-1.
Nous savons que la suite (Sn∧τ ) est une martingale dont l’espérance est nulle et
qui est toujours comprise entre −a et b. Elle est donc bornée dans L2 et converge
en norme L2 vers une certaine variable aléatoire Y . Par l’inégalité de Cauchy-
Schwarz, la convergence L2 implique la convergence des espérances :

E(Y ) = lim
n→∞

E(Sn∧τ ) = 0.

Sur l’ensemble (τ = ∞), nous avons pour presque tout ω et pour tout n,

Sn∧τ (ω) = Sn(ω), −a < Sn(ω) < b.

La suite Sn converge donc vers Y en norme L2 sur (τ = ∞) et la suite |Sn+1−Sn|
doit converger vers 0 sur cet ensemble. Comme elle est constante égale à un, on
en déduit que l’ensemble (τ = ∞) est négligeable et Y = Sτ presque sûrement.
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8.7 Exercices

exercice 1
Soit (Xn) une suite de variables aléatoires indépendantes identiquement dis-
tribuées centrées de carrés intégrables. On pose Sn =

∑n
k=1Xk. Montrer que

pour tout ε > 0, la série suivante converge presque sûrement :

∑

k≥2

|Xk|√
k ln(k)1/2+ε

En déduire que la suite Sn√
n ln(n)1/2+ε est bornée, puis qu’elle converge vers zéro.

exercice 2
Soit (Mk)k∈N une martingale relativement à une filtration (Fk). On suppose les
Mk de carrés intégrables. Montrer que si les Mk sont indépendants entre eux,
chacun des Mk est constant presque partout.

exercice 3
Soit (Xi)i∈N une suite de variables aléatoires positives, indépendantes entre elles,
telles que E(Xi) = 1 pour tout i. On pose Mn = X1X2...Xn.

– Montrer que Mn est une martingale.

– En déduire que Mn converge presque sûrement. La limite est notée M .

On suppose maintenant que P (Xi = 1/2) = P (Xi = 3/2) = 1/2. Posons

τn(ω) = Card{1 ≤ k ≤ n | Xk(ω) = 3/2}.
– Montrer que τn

n
converge presque sûrement vers une limite qu’on calculera.

– Vérifier que Mn = 3τn/2n.

– En déduire que M = 0 presque sûrement puis que E

( ∞∏

i=1

Xi

)
6=

∞∏

i=1

E(Xi).

exercice 4
Soit a un entier strictement positif, (Xi)i∈N∗ une suite de variables aléatoires
indépendantes identiquement distribuées, telles que P (Xi = 1) = P (Xi = −1) =
1/2. On pose Sn =

∑n
i=1Xi, Fn = TX1,...,Xn et on s’intéresse au premier entier τ

tel que Sτ est égal à a en valeur absolue :

τ(ω) = inf{k ∈ N | |Sk(ω)| = a}.
– Montrer que la suite Mn = (Sn)

2−n est une martingale relativement aux (Fn).

– Montrer que τ est un temps d’arrêt relativement aux (Fn).

– Montrer que E(Mn∧τ ) = 0 pour tout n ∈ N∗.

– Montrer la convergence E(n ∧ τ)−−−−→
n→∞ E(τ).

– Montrer que pour presque tout ω ∈ Ω, il existe k ∈ N∗ tel que |Sk(ω)| = a.

En déduire que |Sn∧τ | ≤ a pour tout n ∈ N∗ et (Sn∧τ )
2−−−−→

n→∞ a2 p.s.

– Déduire de ce qui précède que E(τ) = a2.



Annexe A

Rappels d’intégration

On rappelle dans cette annexe un certain nombre de résultats d’intégration uti-
lisés dans le cours. Le cadre est l’intégrale de Lebesgue. On adopte les notations
probabilistes : (Ω, T , P ) est un espace probabilisé, c’est-à-dire un espace mesuré
pour lequel P (Ω) = 1.

A.1 Théorèmes de convergence

Théorème 17 (convergence croissante) Soit fn : Ω → R+ une suite de fonc-

tions mesurables positives. On suppose que pour presque tout ω ∈ Ω, la suite

(fn(ω))n∈N est croissante et on note f(ω) la limite de cette suite. Alors

lim
n→∞

∫

Ω
fn(ω) dP (ω) =

∫

Ω
f(ω) dP (ω).

Commentaire : la valeur des intégrales peut être égale à +∞.

Cas particulier : en appliquant ce théorème à une suite de fonctions indicatrices
1An , où (An)n∈N est une suite d’ensembles croissante pour l’inclusion, alors

P
( ∞⋃

0

An

)
= lim

n
P (An).

Théorème 18 (lemme de Fatou) Soit fn : Ω → R+ une suite de fonctions

mesurables positives. Alors
∫

Ω
lim inf
n→∞

fn(ω) dP (ω) ≤ lim inf
n→∞

∫

Ω
fn(ω) dP (ω).

Théorème 19 (convergence dominée) Soit fn : Ω → R une suite de fonc-

tions mesurables qui converge presque partout vers une fonction f . On suppose que

pour presque tout ω ∈ Ω, la suite fn(ω) est dominée par une fonction g : Ω → R+

intégrable :

|fn(ω)| ≤ g(ω) pour presque tout ω ∈ Ω.

91
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Alors

lim
n→∞

∫

Ω
fn(ω) dP (ω) =

∫

Ω
f(ω) dP (ω).

Commentaire : Nous avons supposé P (Ω) = 1 si bien que toute suite fn bornée
est dominée par une fonction constante, qui est intégrable. Le théorème s’applique
donc à une telle suite.

Théorème 20 (interversion somme intégrale, cas positif) Soit fn : Ω →
R+ une suite de fonctions mesurables positives. Alors

∫

Ω

∞∑

n=0

fn(ω) dP (ω) =
∞∑

n=0

∫

Ω
fn(ω) dP (ω).

Commentaire : la somme de la série peut être égale à +∞.

Théorème 21 (interversion somme intégrale, cas intégrable) Soit fn : Ω →
R une suite de fonctions mesurables. On suppose que

∞∑

n=0

∫

Ω
|fn(ω)| dP (ω) < +∞.

Alors ∫

Ω

∞∑

n=0

fn(ω) dP (ω) =
∞∑

n=0

∫

Ω
fn(ω) dP (ω).

Commentaire : la série qui apparâıt dans le second terme est convergente.

A.2 Intégrales dépendant d’un paramètre

Théorème 22 (continuité sous le signe intégral) Soit I un intervalle de R.

Soit f : I × Ω → R une fonction mesurable telle que

– pour P -presque tout ω ∈ Ω, t 7→ f(t, ω) est continue sur I,

– il existe une fonction intégrable g : Ω → R telle que pour tout t ∈ I,

|f(t, ω)| ≤ g(ω) pour presque tout ω ∈ Ω.

Alors la fonction t 7→ ∫
Ω f(t, ω) dP (ω) est continue sur I : pour tout t0 ∈ I

lim
t→t0

∫

Ω
f(t, ω) dP (ω) =

∫

Ω
f(t0, ω) dP (ω).
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Théorème 23 (dérivée sous le signe intégral) Soit I un intervalle de R et

f : I × Ω → R une fonction mesurable telle que

– pour tout t ∈ I, ω 7→ f(t, ω) est intégrable,

– pour P -presque tout ω ∈ Ω, t 7→ f(t, ω) est dérivable en tout point t ∈ I,

– il existe une fonction intégrable g : Ω → R telle que pour tout t ∈ I,
∣∣∣∣∣
∂

∂t
f(t, ω)

∣∣∣∣∣ ≤ g(ω) pour presque tout ω ∈ Ω.

Alors en tout point t ∈ I,

d

dt

∫

Ω
f(t, ω) dP (ω) =

∫

Ω

∂

∂t
f(t, ω) dP (ω).

A.3 Intégrales multiples

Ici, (Ω1, T1, P1) et (Ω2, T2, P2) sont des espaces probabilisés.

Théorème 24 (Fubini, cas positif) Soit f : Ω1 × Ω2 → R+ une fonction

T1 ⊗ T2-mesurable positive. Alors
∫ ∫

Ω1×Ω2
f(ω1, ω2) dP1 ⊗ P2(ω1, ω2) =

∫
Ω2

(∫
Ω1

f(ω1, ω2) dP1(ω1)
)
dP2(ω2)

=
∫
Ω1

(∫
Ω2

f(ω1, ω2) dP2(ω2)
)
dP1(ω1)

Commentaire : les intégrales peuvent valoir +∞.

Théorème 25 (Fubini, cas intégrable) Soit f : Ω1 × Ω2 → R une fonction

T1 ⊗ T2-mesurable. On suppose que
∫ ∫

Ω1×Ω2

|f(ω1, ω2)| dP1 ⊗ P2(ω1, ω2) < +∞.

Alors
∫ ∫

Ω1×Ω2
f(ω1, ω2) dP1 ⊗ P2(ω1, ω2) =

∫
Ω2

(∫
Ω1

f(ω1, ω2)dP1(ω1)
)
dP2(ω2)

=
∫
Ω1

(∫
Ω2

f(ω1, ω2)dP2(ω2)
)
dP1(ω1).

Commentaire : la fonction f est dans L1(Ω1 × Ω2).

Théorème 26 (changement de variables) Soient U, V deux ouverts de Rd,

ϕ : U → V un difféomorphisme de classe C1, f : V → R une application

mesurable relativement à la mesure de Lebesgue sur V . On suppose f positive ou

intégrable. Alors ∫

U
f(ϕ(u))Jϕ(u) du =

∫

V
f(v) dv

où Jϕ(u) est le jacobien de ϕ : Jϕ(u) = |det(duϕ)|.
Commentaire : pour le changement de variables en coordonnées polaires, u =
(r, θ), v = ϕ(u) = ϕ(r, θ) = (r cos(θ), r sin(θ)), du = drdθ et Jϕ(r, θ) = r.
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A.4 Espaces Lp

Rappel :

||f ||p =
(∫

Ω
|f |p dP

)1/p
pour 1 ≤ p < ∞.

||f ||∞ = inf{M ≥ 0 | pour presque tout ω ∈ Ω, |f(ω)| ≤ M}.

Théorème 27 (convergence normale dans Lp) Soit p ∈ [1,∞] et (fn) une

suite de fonctions dans Lp(Ω). On suppose que

∑

n∈N
||fn||p < ∞.

Alors la série
∑

fn converge presque partout et en norme Lp vers une certaine

fonction f ∈ Lp(Ω).

Théorème 28 (inclusion des espaces Lp) Soit p, q ∈ R tels que 1 ≤ p ≤ q ≤
∞. Alors

L∞(Ω) ⊂ Lq(Ω) ⊂ Lp(Ω) ⊂ L1(Ω).

De plus, pour tout f : Ω → R mesurable,

||f ||1 ≤ ||f ||p ≤ ||f ||q ≤ ||f ||∞.

Commentaire : le cas p = 2 est important : L∞(Ω) ⊂ L2(Ω) ⊂ L1(Ω).

Théorème 29 (extraction de sous-suites) Soit (fn)n∈N une suite de fonc-

tions de Lp(Ω) qui converge au sens de la norme Lp vers une certaine fonction

f dans Lp(Ω). Alors il existe une sous-suite nk telle que fnk
converge presque

partout vers f .

Commentaire : en général, la convergence Lp n’implique pas la convergence
presque partout.

A.5 Inégalités

Théorème 30 (inégalité de Minkowski) Soit p ∈ [1,∞] et f, g ∈ Lp(Ω).
Alors

||f + g||p ≤ ||f ||p + ||g||p.

Commentaire : c’est l’inégalité triangulaire pour les normes Lp.
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Théorème 31 (inégalité de Cauchy-Schwarz) Soit f, g ∈ L2(Ω). Alors fg
est intégrable et ∫

Ω
fg dP ≤ ||f ||2 ||g||2.

Commentaire : on a égalité si et seulement si f et g sont proportionnelles.

Théorème 32 (inégalité de Hölder) Soit p, q ∈ [1,∞] tels que 1/p + 1/q =
1/r ainsi que f ∈ Lp(Ω), g ∈ Lq(Ω). Alors fg est dans Lr(Ω) et

||fg||r ≤ ||f ||p ||g||q.

Commentaire : l’inégalité de Cauchy-Schwarz correspond à p = q = 2, r = 1.

Théorème 33 (inégalité de Jensen) Rappelons que P (Ω) = 1. Soit ϕ : R →
R une fonction convexe et f : Ω → R telle que f et ϕ ◦ f sont intégrables. Alors

ϕ
(∫

Ω
f dP

)
≤
∫

Ω
ϕ ◦ f dP

A.6 Formule d’inversion de Fourier

Le théorème suivant est une version ponctuelle de la formule d’inversion de Fou-
rier ; c’est l’analogue du théorème de Dirichlet pour les séries de Fourier. On donne
un énoncé est un peu plus général que celui utilisé dans le cours. La convention
utilisée pour la transformée de Fourier est la suivante :

f̂(t) =
∫

R

e−itxf(x)dx.

Lorsque f est intégrable, sa transformée f̂ est continue. Elle tend vers 0 en l’infini,
en vertu du lemme de Riemann-Lebesgue.

Lemme 6 (Riemann-Lebesgue) Soit f ∈ L1. Alors lim
t→∞

∫

R

e−itxf(x) dx = 0.

Ce lemme se démontre par un calcul explicite lorsque f est la fonction indicatrice
d’un intervalle. Dans le cas général, il suffit d’approcher en norme L1 la fonction
f par une combinaison linéaire de fonctions indicatrices.

Théorème 34 (formule d’inversion de Fourier) Soit f ∈ L1(R) et t ∈ R.

On suppose que f admet une limite à gauche et une limite à droite en t, notées
f(t−) et f(t+). On suppose également que f est dérivable à droite et à gauche en

t. Alors,
1

2

(
f(t−) + f(t+)

)
= lim

A→∞

∫ A

−A
eitxf̂(x)

dx

2π
.



96 ANNEXE A. RAPPELS D’INTÉGRATION

Lorsque f est intégrable de classe C1 et que f̂ est intégrable, la formule devient

f(t) =
1

2π

∫

R

eitx f̂(x) dx pour tout t ∈ R.

Remarquons que f̂ est intégrable dès que f est C2 et f ′′ est intégrable. En effet,
f̂ est alors continue et majorée par une constante multipliée par 1

t2
, comme le

montre l’égalité

f̂(t) = − 1

t2
f̂ ′′(t), t ∈ R∗,

qui s’obtient par une intégration par partie. En particulier, la formule d’inversion
est vraie pour toute fonction C∞ à support compact.

Preuve de la formule d’inversion
Quitte à translater la variable, on peut supposer t = 0. On a

∫

R

1[−A,A](x)f̂ (x)
dx

2π
=
∫

R

̂1[−A,A](x)f(x)
dx

2π
=
∫

R

2 sinAx

x
f(x)

dx

2π
.

On va montrer que lim
A→∞

(∫ ∞

0

2 sinAx

x
f(x)

dx

2π
− 1

2
f(0+)

)
= 0.

Faisons le changement de variable y = Ax et remarquons que

∫ ∞

0

sinAx

x
dx =

∫ ∞

0

sin y

y
dy =

π

2
,

et qu’ainsi
∫ ∞

0

2 sinAx

x
f(x)

dx

2π
− 1

2
f(0+) =

∫ ∞

0
2 sin(Ax)

f(x)− f(0+)

x

dx

2π
.

Sans le facteur 1/x, il suffirait d’appliquer le lemme de Riemann-Lebesgue. On
découpe en deux l’intégrale pour analyser ce qui se passe près de 0 et loin de 0.

Près de 0, on utilise l’hypothèse suivante :

f(x) = f(0+) + xf ′(0+) + x ε(x), avec lim
x→0

ε(x) = 0.

Par conséquent, il existe δ > 0 tel que f(x)−f(0+)
x

est borné sur ]0, δ]. La fonction
f(x)−f(0+)

x
1]0,δ](x) est intégrable et par le lemme de Riemann-Lebesgue,

lim
A→+∞

∫ δ

0
sin(Ax)

f(x)− f(0+)

x
dx = 0.

Loin de 0, sur [δ,+∞[, on a 0 < 1/x < 1/δ, et la fonction f(x)
x

1[δ,∞[(x) est
intégrable. Par Riemann-Lebesgue,

lim
A→+∞

∫ ∞

δ
sin(Ax)

f(x)

x
dx = 0.
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Enfin, par définition des intégrales généralisées, on a :

lim
A→+∞

∫ ∞

δ

sin(Ax)

x
f(0+) dx = lim

A→+∞

∫ ∞

Aδ

sin y

y
dy f(0+) = 0.

On démontre de même que lim
A→∞

∫ 0

−∞

2 sinAx

x
f(x)

dx

2π
=

1

2
f(0−), ce qui termine

la preuve.
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A.7 Exercices

exercice 1
Calculer lim

n→∞

∫ n

0

(
1− x

n

)n
dx.

exercice 2

Soit f : [0, 1] → R une fonction mesurée. Calculer lim
n→∞

∫ 1

0

1

1 + n f(x)2
dx.

exercice 3

Montrer l’égalité
∫ 1

0

∫ 1

0

1

1− xy
dx dy =

∞∑

n=1

1

n2
.

exercice 4
Soit t > 0, calculer l’intégrale

∫ ∞

0

(sin x
x

)2
e−tx dx.

En déduire la valeur de
∫∞
0

(
sinx
x

)2
dx.

exercice 5

Calculer de deux manières différentes l’intégrale
∫ ∞

0

∫ ∞

0

1

(1 + y)(1 + x2y)
dxdy.

En déduire la valeur de l’intégrale
∫∞
0

ln(x)
(x2−1)

dx.

exercice 6
On considère la série suivante, pour x ∈ [0, 1],

∑

n

1

2n
√
|x− sin(n)|

.

Montrer qu’elle converge pour presque tout x ∈ [0, 1], mais qu’elle diverge pour
un ensemble dense de x ∈ [0, 1].

exercice 7

Calculer l’intégrale
∫ 1

0

∫ 1

0

1

1− xy
dx dy en effectuant le changement de variables

{
x = cos θ − t
y = cos θ + t

exercice 8
On se place sur R+ muni de la mesure de Lebesgue et on considère

f(x) =
1

x (1 + |ln(x)|)2 .

Montrer que :

– f ∈ L1([1,∞[) et f /∈ Lp([1,∞[) si p < 1.

– f ∈ L1([0, 1]) et f /∈ Lp([0, 1]) si p > 1.

– f ∈ L1([0,∞[) et f /∈ Lp([0,∞[) si p 6= 1.
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A.8 Contre-exemples

Vérifier les assertions suivantes en calculant les deux termes de chacune des
inégalités. Expliquer pourquoi les théorèmes classiques ne s’appliquent pas dans
chacun des cas.

Linéarité :

∫ 1

0

1

x(x+ 1)
− 1

x
dx 6=

∫ 1

0

1

x(x+ 1)
dx −

∫ 1

0

1

x
dx

Interversion limite intégrale :

lim
n→∞

∫ 1

0
nxn dx 6=

∫ 1

0
lim
n→∞

nxn dx

Interversion somme intégrale :

∫ 1

0

+∞∑

k=0

xk − x2k − x2k+1 dx 6=
+∞∑

k=0

∫ 1

0
xk − x2k − x2k+1 dx

Continuité sous le signe intégral :

lim
t→0

∫ ∞

0

|t|
1 + t2x2

dx 6=
∫ ∞

0
lim
t→0

|t|
1 + t2x2

dx

Intégrales multiples :

∫ ∞

1

(∫ ∞

1

x− y

max (x3, y3)
dx

)
dy 6=

∫ ∞

1

(∫ ∞

1

x− y

max (x3, y3)
dy

)
dx
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Annexe B

Formulaire

On collecte dans cette annexe les formules vues dans le cours.

B.1 Loi d’une variable aléatoire

Loi d’une variable aléatoire X

PX(A) = P (X ∈ A) = P (X−1(A))

Espérance

E(X) =
∫

Ω
X dP =

∫

R

x dPX(x)

Variance

V (X) = E
(
(X − E(X))2

)
=
∫

Ω
(X − E(X))2 dP =

∫

R

(x− E(X))2 dPX(x)

V (X) = E(X2)−E(X)2 =
∫

Ω
X2 dP−

(∫

Ω
X dP

)2
=
∫

R

x2 dPX(x)−
(∫

R

x dPX(x)
)2

Formule de transfert

E(g(X)) =
∫

Ω
g(X) dP =

∫

R

g(x) dPX(x)

Fonction de répartition

FX(x) = P (X ≤ x) =
∫ x

−∞
dPX(x)

Fonction caractéristique

ϕX(t) = E(eitX) =
∫

Ω
eitX dP =

∫

R

eitx dPX(x)

101
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Cas discret

PX =
∑

k∈I
pxk

δxk
, PX(A) =

∑

xk∈A
pxk

E(X) =
∫

R

x dPX(x) =
∑

k∈I
xk P (X = xk)

V (X) =
∑

k∈I
(xk − E(X))2P (X = xk) =

∑

k∈I
x2
k P (X = xk)−

(∑

k∈I
xk P (X = xk)

)2

E(g(X)) =
∫

Ω
g(X) dP =

∫

R

g(x) dPX(x) =
∑

k∈I
g(xk)P (X = xk)

FX(x) =
∑

xk≤x

P (X = xk)

ϕX(t) =
∑

k

eitxkP (X = xk)

Cas continu

dPX(x) = fX(x) dx, PX(A) =
∫

A
fX(x) dx

E(X) =
∫

R

x fX(x) dx

V (X) =
∫

R

(x− E(X))2 fX(x) dx =
∫

R

x2 fX(x) dx−
(∫

R

x fX(x) dx
)2

E(g(X)) =
∫

Ω
g(X) dP =

∫

R

g(x) dPX(x) =
∫

R

g(x)fX(x) dx

FX(x) =
∫ x

−∞
fX(x) dx

ϕX(t) =
∫

R

eitxfX(x) dx

B.2 Inégalités

Inégalité de Cauchy-Schwarz

E(|XY |) =
∫

Ω
|XY | dP ≤

√∫

Ω
X2 dP

√∫

Ω
Y 2 dP = ‖X‖2 ‖Y ‖2

Inégalité de Markov

P (Y ≥ λ) ≤ E(Y )

λ
si λ > 0, Y ≥ 0.
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Inégalité de Bienaymé-Tchebichev

P (|X −E(X)| ≥ t) ≤ V (X)

t2
si t > 0, E(X2) < ∞.

Majoration Lp, 1 ≤ p ≤ ∞, pour l’espérance conditionnelle

‖E(X | F)‖p ≤ ‖X‖p si X est dans Lp.

Inégalité de Jensen conditionnelle

ϕ
(
E(X | F)

)
≤ E

(
ϕ(X) | F

)
p.s. si ϕ est convexe et X , ϕ(X) intégrables.

Inégalité maximale pour les martingales

P
(
max
0≤i≤N

|Mi| ≥ λ
)
≤ E(M2

N )

λ2
si (Mn) est une martingale.

B.3 Couples de variables aléatoires

Soit X et Y deux variables aléatoires. La loi du couple (X, Y ) est donnée par

P(X,Y )(A) = P ((X, Y ) ∈ A) = P ({ω ∈ Ω | (X(ω), Y (ω)) ∈ A})

Covariance

Cov(X, Y ) = E(XY )− E(X)E(Y ) =
∫

Ω
XY dP −

(∫

Ω
X dP

)(∫

Ω
Y dP

)
.

V (X + Y ) = V (X) + V (Y ) + 2Cov(X, Y )

Formule de transfert

E(g(X, Y )) =
∫

Ω
g(X, Y ) dP =

∫

R2
g(x, y) dP(X,Y )(x, y)

Espérance d’un produit de variables indépendantes

E(f(X)g(Y )) = E(f(X))E(g(Y ))

Loi d’un couple de variables indépendantes

E(g(X, Y )) =
∫

R2
g(x, y) dP(X,Y )(x, y) =

∫

R2
g(x, y) dPX(x) dPY (y)

Cas discret

P(X,Y ) =
∑

i,j

pxi,yj δ(xi,yj)

P(X,Y )(A) =
∑

i,j tels que (xi,yj)∈A
P (X = xi, Y = yj)
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E(g(X, Y )) =
∫

R2
g(x, y) dP(X,Y )(x, y) =

∑

i,j

g(xi, yj)P (X = xi, Y = yj)

P (X = xi) =
∑

j

P (X = xi, Y = yj)

Cas continu

dP(X,Y )(x, y) = fX,Y (x, y) dxdy, P(X,Y )(A) =
∫

A
fX,Y (x, y) dxdy

E(g(X, Y )) =
∫

R2
g(x, y) dP(X,Y )(x, y) =

∫

R2
g(x, y) fX,Y (x, y) dxdy

fX1(x1) =
∫

R

fX1,X2(x1, x2) dx2

B.4 Convergence de variables aléatoires

Convergence presque sûre

Xn
p.s.−−−−→

n→∞
X si P ({ω ∈ Ω | Xn(ω)−−−−→

n→∞
X(ω)}) = 1.

Convergence Lp

Xn
Lp−−−−→

n→∞
X si ‖Xn −X‖p−−−−→

n→∞
0.

Convergence en probabilité

Xn
proba−−−−→
n→∞ X si P (|Xn −X| > ε)−−−−→

n→∞ 0 pour tout ε > 0.

Convergence en loi

Xn
loi−−−−→

n→∞
X si

∫
f dPXn −−−−→n→∞

∫
f dPX pour toute f continue bornée.

B.5 Théorèmes limites

On pose Sn =
n∑

k=1

Xk. Alors E(Sn) =
n∑

k=1

E(Xk). De plus,

V (Sn) =
n∑

k=1

V (Xk) si les Xi sont indépendantes.

Loi faible des grands nombres

Si les Xi sont i.i.d. intégrables,
Sn

n

proba−−−−→
n→∞

E(X1)
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Loi forte des grands nombres

Si les Xi sont i.i.d. intégrables,
Sn

n

p.s.−−−−→
n→∞

E(X1)

Théorème de la limite centrée

Si les Xi sont i.i.d. centrées telles que 0 < σ(Xi)
2 < ∞,

Sn√
n

loi−−−−→
n→∞

N (0, σ2)

Convergence des martingales bornées dans L2

Si Mn est une martingale et ‖Mn‖2 ≤ C, Mn converge p.s. et L2

Convergence de la somme dans le cas de variance bornée

Si les Xi sont indépendantes centrées et
∑

V (Xi) < ∞, Sn converge p.s. et L2

Théorème des trois séries

Soit Yi = Xi1(|Xi|≤1). Si les Xi sont indépendantes,

Sn converge p.s. ⇔
∑

P (|Xi| ≥ 1),
∑

E(Yi),
∑

V (Yi) convergent.

Convergence des espérances conditionnelles

Si X est de carré intégrable et les Fi sont croissantes et engendrent T ,

E(X | Fn)
p.s. et L2

−−−−→
n→∞ X

B.6 Espérance conditionnelle

Caractérisation de l’espérance conditionnelle

E(X | F) est F -mesurable

E(E(X | F) Y ) = E(XY ) pour tout Y F -mesurable

Propriétés

E(E(X | F)) = E(X)

E(Y X | F) = Y E(X | F) si Y est F -mesurable

E(E(X | F1) | F2) = E(E(X | F2) | F1) = E(X | F1) si F1 ⊂ F2

Conditionnement relativement à une variable aléatoire∫
f(x)E(g(Y ) | X = x) dPX(x) =

∫
f(x) g(y) dP(X,Y )(x, y) si f est bornée

Cas discret

E(g(Y ) | X = x) =
E(g(Y ) 1(X=x))

P (X = x)
=

1

P (X = x)

∫

(X=x)
g(Y ) dP

Cas continu

E(g(Y ) | X = x) =

∫
R
g(y)fX,Y (x, y) dy∫
R
fX,Y (x, y) dy
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B.7 Martingales

Caractérisation

Mn est Fn −mesurable, E(Mn+1 | Fn) = Mn pour tout n.

Propriétés

E(Mn+k | Fn) = Mn pour tout k > 0.

E(Mn) = E(M0) pour tout n.
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