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Yannick Armenti† , Stéphane Crépey† , Samuel Drapeau‡ , and Antonis Papapantoleon§

Abstract. The ongoing concern about systemic risk since the outburst of the global financial crisis has high-
lighted the need for risk measures at the level of sets of interconnected financial components, such
as portfolios, institutions, or members of clearing houses. The two main issues in systemic risk
measurement are the computation of an overall reserve level and its allocation to the different com-
ponents according to their systemic relevance. We develop here a pragmatic approach to systemic
risk measurement and allocation based on multivariate shortfall risk measures, where acceptable al-
locations are first computed and then aggregated so as to minimize costs. We analyze the sensitivity
of the risk allocations to various factors and highlight its relevance as an indicator of systemic risk.
In particular, we study the interplay between the loss function and the dependence structure of the
components. Moreover, we address the computational aspects of risk allocation. Finally, we apply
this methodology to the allocation of the default fund of a central clearing counterparty on real data.
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1. Introduction. The ongoing concern about systemic risk since the onset of the global
financial crisis has prompted intensive research on the design and properties of multivariate risk
measures. In this paper, we study the risk assessment for financial systems with interconnected
risky components, focusing on two major aspects, namely, the following:

• The quantification of a monetary risk measure corresponding to an overall reserve
of liquidity such that the whole system can overcome unexpected stress or default
scenarios.
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†Université d’Evry, 23 Boulevard de France, 91037 Evry, France (yannick.armenti@gmail.com, stephane.crepey@

univ-evry.fr).
‡School of Mathematical Sciences & Shanghai Advanced Institute for Finance (CAFR/CMAR), Shanghai Jiao

Tong University, 211 West Huaihai Road, Shanghai, P.R. 200030 China (sdrapeau@saif.sjtu.edu.cn).
§Institute of Mathematics, Technical University Berlin, Strasse des 17. Juni 136, 10623 Berlin, Germany

(papapan@math.tu-berlin.de).

90

D
ow

nl
oa

de
d 

02
/2

5/
18

 to
 8

9.
3.

10
0.

90
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/sifin/9-1/M108735.html
mailto:yannick.armenti@gmail.com
mailto:stephane.crepey@univ-evry.fr
mailto:stephane.crepey@univ-evry.fr
mailto:sdrapeau@saif.sjtu.edu.cn
mailto:papapan@math.tu-berlin.de


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SHORTFALL RISK ALLOCATION AND SYSTEMIC RISK 91

• The allocation of this overall amount between the different risk components in a way
that reflects the systemic risk of each one.

Our goal is fourfold. First, we introduce a theoretically sound and numerically tractable class
of systemic risk measures. Second, we study the impact of the intrinsic dependence on the
risk allocation and its sensitivity. Third, we address the computational aspects and challenges
of systemic risk allocation. Finally, we present empirical results, based on real data provided
by LCH S.A., on the risk allocation of the default fund of a CCP.

Review of the literature. Monetary risk measures have been the subject of intensive re-
search since the seminal paper of Artzner et al. [6], which was further extended by Föllmer
and Schied [31] and Fritelli and Gianin [32], among others. The corresponding risk measures,
including conditional value at risk in [6], shortfall risk measures in [31], or optimized certainty
equivalents by Ben-Tal and Teboulle [9], can be applied in a multivariate framework that mod-
els the dependence of several financial risk components. Multivariate market data-based risk
measures include the marginal expected shortfall of Acharya, Pedersen, and Richardson [2],
law invariant convex risk measures for portfolio vectors of Rüschendorf [48], the systemic risk
measure of Acharya, Engle, and Richardson [1] and Brownlees and Engle [13], the delta con-
ditional value at risk of Adrian and Brunnemeier [3], or the contagion index of Cont, Santos,
and Moussa [19]. In parallel, theoretical economical and mathematical considerations have
led to multivalued and set valued risk measures, in a static or even dynamic setup; see, for
instance, Molchanov and Cascos [43], Hamel, Heyde, and Rudloff [37] and Jouini, Meddeb,
and Touzi [39].

Recently, the risk management of financial institutions raised concerns about the allocation
of the overall risk among the different components of a financial system. A bank, for instance,
for real time monitoring purposes, wants to channel to each trading desk a cost reflecting its
responsibility in the overall capital requirement of the bank. A central clearing counterparty—
CCP for short, also known as a clearing house—is interested in quantifying the size of the
so-called default fund and allocating it in a meaningful way among the different clearing mem-
bers; see [18], [5], [34]. On a macroeconomic level, regulators are considering requiring from
financial institutions an amount of capital reflecting their systemic relevance. The aforemen-
tioned approaches can only address the allocation problem indirectly, through the sensitivity
of the risk measure with respect to the different risk components. For instance, the so-called
Euler rule allocates the total amount of risk according to the marginal impact of each risk fac-
tor. However, a practical limitation of the Euler rule is that it is based on Gâteaux derivatives
which, in general, are difficult to compute beyond simple cases. Also the Euler rule considers
the marginal risk of one element with respect to the full system rather than the marginal risk
with respect to each individual component. In addition, the Euler risk allocation does not
add up to the total risk, unless the univariate risk measure that is used in the first place is
subadditive; see [49]. In other words, the Euler rule does not automatically fulfill the so-called
full allocation property. The work by Brunnemeier and Cheridito [14] addresses systematically
the question of allocation of systemic risk with regard to certain economic properties:

• Full allocation: the sum of the components of the risk allocation is equal to the overall
risk measure.
• Riskless allocation: if a risk factor is riskless, the corresponding component of the risk

allocation is equal to it.D
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• Causal responsibility: any system component bears the entire additional costs of any
additional risk that it takes.

More specifically, Brunnemeier and Cheridito [14] propose a framework where an overall capi-
tal requirement is first determined by utility indifference principles and then allocated accord-
ing to a rule such that the above three properties are fulfilled, at least at a first order level
of approximation. In fact, as far as dependence is concerned, whether the last two properties
should hold is debatable. One may argue that each component in the system is not only re-
sponsible for its own risk taking but also for its relative exposure to other components. This is
also what comes out from the present study; see section 4.3. In a general framework, Kromer,
Overbeck, and Zilch [41] characterized systemic risk out of axioms allowing for a decompo-
sition between an aggregation function and a univariate risk measure. In the spirit of this
aggregation function, in two recent papers, Feinstein, Rudlof, and Weber [28] and Biagini et
al. [10] proposed a general approach similar in spirit to ours. We make precise thereafter and
later in the paper the relationship to these references and in which sense our approach differs.

Contribution and outline of the paper. Our approach addresses simultaneously the design
of an overall risk measure regarding a financial system of interconnected components and the
allocation of this risk measure among the different risk components; the emphasis lies on the
allocation and its sensitivities. In contrast to [14], [15], we first allocate the monetary risk
among the different risk components and then aggregate and minimize the risk allocations in
order to obtain the overall capital requirement. As previously mentioned, [41], [28], and [10]
develop approaches in a similar spirit, covering allocation first followed by aggregation, in
general, frameworks with different aggregation procedures. They focus on the resulting risk
measure, conducting systematic studies of their properties in terms of set valued functions,
diversification, and monotonicity, among others. The multivariate shortfall risk measure of
this paper can be viewed as a special case of their definition, in a way made precise in
Remark 2.9. Sharing with these references the “allocate first, then aggregate” perspective,
our approach is restricted to a systemic extension of shortfall risk measures (see [31]), based on
multivariate loss functions. However, in contrast to the aforementioned references, we focus
on the resulting risk allocation in terms of existence, uniqueness, sensitivities, and numerical
applications. In our framework, the systemic risk ; is the risk that stems specifically from
the intrinsic dependence structure of an interconnected system of risk components. In this
perspective, the risk allocation and its properties provide a “cartography” of the systemic risk;
see section 5 on the numerical aspects of risk allocation and the empirical study in section 6
on real data for an illustration thereof. It turns out that special care has to be given to
the specifications of the loss function in order to stress the systemic risk. In [10], by allowing
random allocations, the impact of the interdependence structure can be observed in the future.
Such random allocations may be interesting in view of a posteriori management of defaults.
By contrast, our deterministic allocation is sensitive to the dependence of the system already
at the moment of the quantification; see section 4 and see a contrario Proposition 3.8. We
study the sensitivity of the risk allocation with respect to external shocks as well as internal
dependence structure. We show in particular that a causal responsibility can be derived in
marginal terms; see Proposition 4.3. In addition, we discuss computational aspects of risk
allocation and finally, we provide an empirical study on the risk allocation of a default fund
of a CCP based on real data provided by LCH S.A.D
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The univariate shortfall risk measure as a law invariant risk measure holds additional
properties as an operator on probability distributions. Indeed, as shown by Weber [50] and
Krätschmer, Schied, and Zähle [40], it has some continuity properties with respect to the
ψ-weak topology on distributions. It has been furthermore characterized in [50] as the only
law invariant convex risk measure on the level of distributions and, therefore, the unique
one having elicitability properties, a wishful statistical property; see [44, 8]. Extensions of
these results, such as elicitability characterization in the multidimensional case as proposed
by Ziegel [52] and Fissler and Ziegel [30], as well as the axiomatic characterization along the
lines of [50], are highly nontrivial and therefore let for further study. A set valued multivari-
ate shortfall risk measure has been introduced by Ararat, Hamel, and Rudloff [4]. However,
allocation is not the focus of their work and the loss function that they then consider is decou-
pled in the sense of (C2), which from our viewpoint is too restrictive in view of Proposition
3.8.

The paper is organized as follows: Section 2 introduces the class of systemic loss functions,
acceptance sets, and risk measures that we use in the paper. Section 3 establishes the existence
and uniqueness of a risk allocation. Section 4 focuses on sensitivities with respect to external
shocks, dependence structure, nature of the loss function, as well as the properties of full
allocation, causal responsibility, and riskless allocation mentioned before. Section 5 discusses
the computational aspects and challenges of risk allocation. Section 6 applies our approach
to the concrete allocation of the default fund of a CCP. Appendices A and B gather classical
facts from convex optimization and results on multivariate Orlicz spaces. Appendix C provides
additional insight on the data of the empirical study.

1.1. Basic notation. Let xk denote the generic coordinate of a vector x ∈ Rd, and ek the
kth unit vector. By > we denote the lattice order on Rd, that is, x > y if and only if xk ≥ yk
for every 1 ≤ k ≤ d. We denote by ‖·‖ the Euclidean norm and by ±,∧,∨, |·| the lattice
operations on Rd. For x, y ∈ Rd, we write x > y for xk > yk componentwise, x · y =

∑
xkyk,

xy = (x1y1, . . . , xdyd), and x/y = (x1/y1, . . . , xd/yd). We denote by f∗(y) = supx{x ·y−f(x)}
the convex conjugate of a function f : Rd → [−∞,∞], and for C ⊆ Rd, we denote by δ(·|C)
the indicator function of C defined as δ(x,C) = 0 for x in C and ∞ otherwise.

Let (Ω,F , P ) be a probability space, and denote by L0(Rd) the space of F-measurable d-
variate random variables on this space identified in the P -almost sure sense. The space L0(Rd)
inherits the lattice structure of Rd, hence, we can use the above notation in a P -almost sure
sense. For instance, for X and Y in L0(Rd), we say that X > Y or X > Y if P [X > Y ] = 1
or P [X > Y ] = 1, respectively. Since we mainly deal with multivariate functions or random
variables, to simplify notation we drop the reference to Rd in L0(Rd), writing simply L0 unless
necessary.

2. Multivariate shortfall risk. Let X = (X1, . . . , Xd) ∈ L0 be a random vector of financial
losses, that is, negative values of Xk represent actual profits. We want to determine an overall
monetary measure R(X) of the risk of X as well as a sound risk allocation RAk(X), k =
1, . . . , d, of R(X) among the d risk components. We consider a flexible class of risk measures
defined by means of loss functions and sets of acceptable monetary allocations. This class
allows us to discuss in detail the properties of the resulting risk allocation as an indicator of
systemic risk. Inspired by the shortfall risk measure introduced in [31] in the univariate case,D

ow
nl

oa
de

d 
02

/2
5/

18
 to

 8
9.

3.
10

0.
90

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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we start with a loss function ` defined on Rd, used to measure the expected loss E[`(X)] of
the financial loss vector X.

Definition 2.1. A function ` : Rd → (−∞,∞] is called a loss function if
(A1) ` is increasing, that is, `(x) ≥ `(y) if x > y;
(A2) ` is convex, lower semicontinuous with inf ` < 0;
(A3) `(x) ≥

∑
xk − c for some constant c.

A loss function ` is permutation invariant if `(x) = `(π(x)) for every permutation π of
its components.

A risk neutral assessment of the losses corresponds to E[
∑
Xk] =

∑
E[Xk]. Thus, (A3)

expresses a form of risk aversion, whereby the loss function puts more weight on high losses
than a risk neutral evaluation. As for (A1) and (A2), they express the respective normative
facts about risk that “the more losses, the riskier” and “diversification should not increase
risk”; see [21] for related discussions.

Remark 2.2. The choice of the terminology loss function stems from [31] for which this
paper is a multivariate extension. Our notion of a loss function coincides with the one of
“aggregation function” in [28, 10], in the sense that it aggregates several loss profiles into a
univariate random variable for which it can be decided whether or not it is acceptable; see
Remark 2.9. Due to the obvious extension from the shortfall risk measure, throughout this
paper we stick to the terminology loss function.

As for the permutation invariance, the considered risk components are often of the same
type—banks, members of a clearing house, or trading desks within a trading floor. In that
case, the loss function should not discriminate a particular component against another.

Example 2.3. Let h : R → R be a one dimensional loss function, that is, a function
satisfying conditions (A1), (A2), and (A3) in one dimension, such as, for instance,

h(x) = βx+ − αx−, 0 < α < 1 < β, h(x) = x+ (x+)2/2, or h(x) = ex − 1.

Using these as building blocks, we obtain the following classes of multivariate loss functions,1

which will be used for illustrative purposes in the discussion of systemic risk; see sections 3
and 4:

(C1) `(x) = h(
∑
xk);

(C2) `(x) =
∑
h(xk);

(C3) `(x) = αh(
∑
xk) + (1− α)

∑
h(xk) for every 0 ≤ α ≤ 1.

Note that each of these loss functions is permutation invariant.

For integrability reasons we consider loss vectors in the following multivariate Orlicz
heart:2

M θ =
{
X ∈ L0 : E [θ (λX)] <∞ for all λ ∈ R+

}
,

where θ(x) = `(|x|), x ∈ Rd; see Appendix B.

1A simple check shows that the following examples satisfy condition (A1), (A2), and (A3) in d dimensions.
2Orlicz spaces are natural spaces in this context. The theory of Orlicz spaces has long been used in the

theory of risk measures; see [20, 11, 17, 12].D
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Definition 2.4. A monetary allocation m ∈ Rd is acceptable for X if

E [` (X −m)] ≤ 0.

We denote by

(1) A(X) :=
{
m ∈ Rd : E [` (X −m)] ≤ 0

}
the corresponding set of acceptable monetary allocations.

Example 2.5. In a centrally cleared trading setup, each clearing member k is required to
post a default fund contribution mk in order to make the risk of the clearing house acceptable
with respect to a risk measure accounting for extreme and systemic risk. The default fund
is a pooled resource of the clearing house, in the sense that the default fund contribution of
a given member can be used by the clearing house not only in case the liquidation of this
member requires it, but also in case the liquidation of another member requires it. For the
determination of the default fund contributions, the methodology of this paper can be applied
to the vector X defined as the vector of stressed losses-and-profits over initial margins of the
clearing members. According to the findings of sections 3 and 4, a “systemic” loss function
such as (A3) with α > 0 would be consistent with the purpose of a default fund. Note however
that our setup applied to clearing houses takes the view of a closed system, so an internal
assessment. In principle we ignore additional systemic risk such as a competition between
clearing houses with common membership, or the external risk to which these members may
be subject to, as addressed for instance in [36]. However, our method could also assess such
a systemic risk by taking X as the overall vector of positions of each member in each clearing
house.

The next proposition gathers the main properties of the sets of acceptable monetary al-
locations. The convexity property in (i) means that a diversification between two acceptable
monetary allocations remains acceptable. If a monetary allocation is acceptable, then any
greater amount of money should also be acceptable, which is the monotonicity property in
(i). As for (ii), it says that, if the losses X are less than Y almost surely, then any monetary
allocation that is acceptable for Y is also for X. Next, (iii) means that a convex combination
of acceptable allocations in two markets is still acceptable in the diversified market. In par-
ticular, the acceptability concept pushes towards greater diversification among the different
risk components. From the viewpoint of a clearing house, for instance, a diversified position
of its members is preferable to a concentrated one and, therefore, may enforce default fund
allocations that incite its members towards this goal. Also, from a trading floor supervision,
an overall diversified position of the traders is preferable, an incentive which is a current prac-
tice; see section 5.2. Finally, (iv) means that acceptable positions translate with cash in the
sense of scalar monetary risk measures à la [6, 31, 32]. As an immediate consequence of these
properties, X 7→ A(X) defines a monetary set valued risk measure in the sense of [37], that
is, a set valued map A from M θ into the set of monotone, closed, and convex subsets of Rd.

Proposition 2.6. For X,Y in M θ, it holds
(i) A(X) is convex, monotone, and closed;

(ii) A(X) ⊇ A(Y ) whenever X 6 Y ;D
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(iii) A(αX + (1− α)Y ) ⊇ αA(X) + (1− α)A(Y ) for any α ∈ (0, 1);
(iv) A(X +m) = A(X) +m for any m ∈ Rd;
(v) ∅ 6= A(X) 6= Rd.
If furthermore

(vi) ` is positive homogeneous, then A(λX) = λA(X) for every λ > 0;
(vii) ` is permutation invariant, then A(π(X)) = π(A(X)) for every permutation π.

Proof. Since ` is convex, increasing, and lower semicontinuous, it follows that (m,X) 7→
E[`(X −m)] is convex and lower semicontinuous, decreasing in m, and increasing in X. This
implies the properties (i) through (iii) by Definition 2.4 of A(X). Regarding (iv), a change of
variables yields

A(X +m) =
{
n ∈ Rd : E [` (X +m− n) ≤ 0]

}
=
{
n+m ∈ Rd : E [` (X − n)] ≤ 0

}
= A(X) +m.

As for (v), on the one hand, `(X − m) ↘ `(−∞) < 0 as m → ∞ componentwise. Since
X ∈ M θ it follows that `(X) ∈ L1, thus monotone convergence yields E[`(X − m)] ↘
`(−∞) < 0 and in turn the existence of m ∈ Rd such that E[`(X − m)] ≤ 0, showing
that A(X) 6= ∅. On the other hand, ` being increasing and such that `(x) ≥

∑
xk − c, it

implies that `(X − m) ≥
∑
Xk −

∑
mk − c ↗ ∞ as m → −∞, componentwise. Hence,

monotone convergence yields E[`(X −m)]↗∞ > 0, therefore, there exists m ∈ Rd such that
E[`(X−m)] > 0, that is, m 6∈ A(X). As for (vi) if ` is positive homogeneous, for any λ > 0 it
holds E[`(λX −m)] = λE[`(X −m/λ)]. Hence m is in A(λX) if and only if m/λ is in A(X)
if and only if m is in λA(X). Finally, if ` is permutation invariant, for any permutation π it
holds E[`(π(X)−m)] = E[`(π(X − π−1(m))] = E[`(X − π−1(m))]. Hence m is in A(π(X)) if
and only if π−1(m) is in A(X), if and only if m is in π(A(X)) showing (vii).

Figure 1 shows sets of acceptable monetary allocations for a bivariate normal distribution
with varying correlation coefficient. The location and shape of these sets change with the
correlation: the higher the correlation, the more costly the acceptable monetary allocations,
as expected in terms of systemic risk. As discussed in sections 3 and 4, this feature is not
always immediate and depends on the specification of the loss function.

Given an acceptable monetary allocation m ∈ A(X), its aggregated liquidity cost is
∑
mk.

The smaller the cost, the better, which motivates the following definition.

Definition 2.7. The multivariate shortfall risk of X ∈M θ is

(2) R(X) := inf
{∑

mk : m ∈ A(X)
}

= inf
{∑

mk : E [` (X −m)] ≤ 0
}
.

Example 2.8. Following up on the central clearinghouse Example 2.5, any acceptable al-
location m ∈ A(X) yields a corresponding value for the default fund. Clearinghouses are in
competition with each other, hence they are looking for the cheapest acceptable allocation to
require from their members.

Remark 2.9. When d = 1, the above definition corresponds exactly to the shortfall risk
measure in [31], of which this paper is a multivariate extension.D
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Figure 1. Acceptance sets A(X) corresponding to the case study of Example 3.12 for different correlations.

The set valued risk measure X 7→ A(X) introduced in (1) can be seen as an example of
the set valued systemic risk measures presented in [28], which in their notation translates as
follows:

A(X) = R(Y, k) =
{
m ∈ Rd : Yk+m ∈ A

}
,

where the aggregation is given by Yk+m = Λ(X − k −m) for Λ(x) = `(x) and the acceptance
set is A := {X : E[X] ≤ 0}. Their setting considers more general random fields Yk associated
with capital allocations denoted by k accommodating, for instance, the modeling of financial
networks, among others. The case we consider can be embedded into [28, Case (ii), p. 5]. Even
if the set valued risk measure is not the primary focus of [10], it is included in the definition
of the acceptance family which, in their notation, is given as follows:

Am = AY = {X : E [`(X −m)] ≤ 0} , Y ∈ C,

where C = Rd and Y = Rd. The resulting systemic risk measure can also be translated into
their notation and denomination in terms of an aggregating function Λ(x) = `(x), acceptance
set A = {X : E[X] ≤ 0}, and a measure of risk π(m) =

∑
mk, resulting in

R(X) = inf {π(m) : Λ(X −m) ∈ A} .

Therefore the case we consider can be embedded into the class presented in [10, section 1.3].

Our next result, which uses the concepts and notation of Appendix B, shows that all
the classical properties of the shortfall risk measure, including its dual representation, can beD

ow
nl

oa
de

d 
02

/2
5/

18
 to

 8
9.

3.
10

0.
90

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

98 ARMENTI, CRÉPEY, DRAPEAU, AND PAPAPANTOLEON

extended to the multivariate case. We denote by

Qθ∗ :=
{
dQ

dP
:= (Z1, . . . , Zd) : Z ∈ Lθ∗ , Zk ≥ 0 and E [Zk] = 1 for every k

}
the set of d dimensional measure densities in Lθ

∗
, the dual space of M θ according to Theorem

B.3. For the sake of simplicity, we use the notation EQ[X] := E[dQ/dP ·X] for dQ/dP ∈ Qθ∗

and X ∈M θ.

Theorem 2.10. The function

R(X) = inf
{∑

mk : m ∈ A(X)
}
, X ∈M θ,

is real valued, convex, monotone, and translation invariant.3 In particular, it is continuous
and subdifferentiable. If ` is positive homogeneous, then so is R. Moreover, it admits the dual
representation

(3) R(X) = max
Q∈Qθ∗

{EQ [X]− α(Q)} , X ∈M θ,

where the penalty function is given by

(4) α(Q) = inf
λ>0

E

[
λ`∗

(
dQ

λdP

)]
, Q ∈ Qθ∗ .

Remark 2.11. This robust representation can also be inferred from the general results of
[27]. However, for the sake of completeness and since the multivariate shortfall risk measure
is closely related to a multidimensional version of the optimized certainty equivalent, we give
a self-contained proof tailored to our context.

The argumentation follows the original one by [31], which, however, cannot be directly
applied on the product space Ω × {1, . . . , d} since the optimization is done here according
to multidimensional allocations m ∈ Rd rather than one dimensional allocations m ∈ R.
Moreover, in the course of our derivation of the dual representation we extend to the multi-
dimensional setting the following relationship between the optimized certainty equivalent and
the shortfall risk provided in [9, section 5.2]:

R(X) = inf
m∈R
{m : E [`(X −m)] ≤ 0} = sup

λ>0
S(λ,X),

where

S(λ,X) := inf
m∈R
{m+ λE [`(X −m)]} = sup

Q�P

{
EQ[X]− E

[
λ`∗

(
dQ

λdP

)]}
is the optimized certainty equivalent of X.4

3True in the sense that R(X +m) = R(X) +
∑
mk.

4Here ` is a one dimensional loss function and X a one dimensional random variable.D
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Proof. By Proposition 2.6(v), we have A(X) 6= ∅ and in turn R(X) <∞. If R(X) = −∞
for some X ∈ M θ, then there exists a sequence (mn) ⊆ A(X) such that

∑
mn
k → −∞,

in contradiction with 0 ≥ E[`(X − mn)] ≥ E[
∑
Xk] −

∑
mn
k − c. Hence, R(X) > −∞.

Monotonicity, convexity, and translation invariance readily follow from Proposition 2.6(ii),
(iii), and (iv), respectively. In particular, R is a convex, real-valued, and increasing functional
on the Banach lattice M θ. Hence, by [17, Theorem 4.1], R is continuous and subdifferentiable.
Therefore, the results recalled in Appendix B and the Fenchel–Moreau theorem imply

(5) R(X) = sup
Y ∈Lθ∗

{E [X · Y ]−R∗(Y )} = max
Y ∈Lθ∗

{E [X · Y ]−R∗(Y )} ,

where R∗(Y ) = sup{E[X ·Y ]−R(X) : X ∈M θ}, Y ∈ Lθ∗ . By the bipolar theorem, for Y 6> 0,
there exists K ∈ Mθ, K > 0 with E[Y ·K] < −ε < 0 for some ε > 0. By monotonicity of R,
it follows that R(−λK) ≤ R(0) <∞ for every λ > 0. Hence

R∗(Y ) = sup
X∈Mθ

{E [Y ·X]−R(X)}

≥ sup
λ>0
{−λE[Y ·K]−R(−λK)} ≥ sup

λ
λε−R(0) =∞.

Furthermore, by translation invariance, setting X = (0, . . . , r, . . . , 0) for r ∈ R at the kth
component, it follows that

R∗(Y ) ≥ rE [Yk]−R(0)− r = r (E [Yk]− 1)−R(0),

where the right-hand side can be made arbitrarily large whenever E [Yk] 6= 1. It shows that
the supremum and maximum in (5) can be restricted to the set of those Y ∈ Lθ∗ such that
Yk ≥ 0 and E[Yk] = 1 for every k. Hence, it can be identified to Qθ∗ . In order to obtain a
more explicit expression of the penalty function α(Q) := R∗(dQ/dP ) = R∗(Y ), we set

L(m,λ,X) =
∑

mk + λE [` (X −m)] ,

S(λ,X) = inf
m∈Rd

L(m,λ,X) = inf
m∈Rd

{∑
mk + λE [` (X −m)]

}
.

The functional X 7→ S(λ,X) is a multivariate version of the so-called optimized certainty
equivalent; see [9]. Clearly,

R(X) = inf
m∈Rd

sup
λ>0

L(m,λ,X) ≥ sup
λ>0

inf
m∈Rd

L(m,λ,X) = sup
λ>0

S(λ,X).

Since A(X) is nonempty and monotone, there exists m ∈ Int(A(X)) and so the Slater con-
dition is fulfilled. As a consequence of [45, Theorem 28.2], there is no duality gap. Namely,
R(X) = supλ>0 S(λ,X). Via the first part of the proof, an easy multivariate adaptation of
[9, Chapter 4] and [22, Chapter 2] yields

S(λ,X) = sup
Q∈Qθ∗

{
EQ [X]− E

[
(`λ)∗

(
dQ

dP

)]}
,

where `λ(m) =λ`(m), hence, `∗λ(m∗) =λ`∗(m∗/λ). Combining this withR(X) = supλ>0 S(λ,X),
the dual representation (4) follows.D
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100 ARMENTI, CRÉPEY, DRAPEAU, AND PAPAPANTOLEON

Example 2.12. We consider the following two positive homogeneous loss functions that
will be used later in the empirical study:

`1(x) = β
∑

x+
k − α

∑
x−k ,(6)

`2(x) = β
∑

x+
k − α

∑
x−k + β

∑
k<j

(xk + xj)
+ − α

∑
k<j

(xk + xj)−(7)

for 0 < α < 1 < β. A simple computation yields that `∗i = δ(·|Ci) where5

C1 = {x : α ≤ xk ≤ β for all k} ,

C2 =

x =
∑

1≤j≤d
x0jek +

∑
1≤k<j≤d

xkj(ek + ej) : α ≤ xkj ≤ β for all 0 ≤ k < j ≤ d

 .

Note that [α, β] = C1 ⊆ C2 ⊆ [α, dβ], where α and β are identified with their vector of equal
components. Furthermore, dβ is an extreme point of C2. It follows in particular that R1 ≤ R2.
By positive homogeneity, α∗i only takes values 0 or ∞. It follows that α∗i (Q) = 0 if and only
if there exits λ > 0 such that dQ/dP ∈ λCi almost surely. Since 1 has to be in λCi for this to
happen, we can constrain 1/β ≤ λ ≤ 1/α in the case of C1 and 1/(dβ) ≤ λ ≤ 1/α in the case
of C2. Thus

R1(X) = sup
{
EQ [X] :

dQk
dP
∈ λC1 for some 1/β ≤ λ ≤ 1/α

}
,

R2(X) = sup
{
EQ [X] :

dQ

dP
∈ λC2 for some 1/(dβ) ≤ λ ≤ 1/α

}
.

3. Risk allocation. We have established in Theorem 2.10 that the infimum over all allo-
cations m ∈ Rd used for defining R(X) is real valued and has the desired properties of a risk
measure. Beyond the question of the overall liquidity reserve, the allocation of this amount
between the different risk components is key for systemic risk purposes. We therefore address
in this section the following questions:

• The existence of a risk allocation;
• the uniqueness of a risk allocation;
• the impact of the interdependence structure.

The first question is important in some applications such as the default fund contribution of
each member of a clearinghouse or the allocation of the capital among the different business
lines of a bank. As for the second question, nonuniqueness can become an issue when this
allocation is a regulatory cost for the different members or desks. If no additional clear rule
is provided, the members would then face arbitrariness as for their contributions for the same
overall risk. As for the last question, systemic risk should reflect the level of dependence of the
system. For instance, highly correlated losses, while having the same marginal risk, should
result in a higher systemic risk and different optimal allocations.

5In particular, since 1 ∈ Ci for i = 1, 2, it follows that `i satisfies condition (A3) of a loss function.D
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Definition 3.1. A risk allocation is an acceptable monetary allocation m ∈ A(X) such that
R(X) =

∑
mk. When a risk allocation is uniquely determined, we denote it by RA(X).

Remark 3.2. By definition, if a risk allocation exists, then the full allocation property
automatically holds; see also section 4.3.

In contrast to the univariate case, where the unique risk allocation is given by m = R(X),
existence and uniqueness are no longer straightforward in the multivariate case. The following
example shows that existence may fail.

Example 3.3. Consider the loss function `(x, y) = x + y + (x + y)+/(1 − y) − 1 if y < 1
and ∞ otherwise. It follows that

A(0) = {m ∈ R2 : m2 > −1 and 1 ≥ −m1 −m2 + (−m1 −m2)+/(1 +m2)}.

Computations yield R(0) = infm2>−1{m2 − (m2
2 + 3m2 + 1)/(m2 + 2)} = −1. However, the

infimum is not attained.

Note that the loss function used in Example 3.3 is not permutation invariant. Our next
result introduces conditions towards the existence and uniqueness of a risk allocation. We
denote by Z = {u ∈ Rd :

∑
uk = 0} the set of zero-sum allocations.

Theorem 3.4. If ` is a permutation invariant loss function, then, for every X ∈ M θ, risk
allocations m∗ exist. They are characterized by the first order conditions

(8) 1 ∈ λ∗E [∇` (X −m∗)] and E [` (X −m∗)] = 0,

where λ∗ is a Lagrange multiplier. In particular, when ` has no zero-sum direction of recession6

except 0, the set of the solutions (m∗, λ∗) to the first order conditions (8) is bounded.
If `(x + ·) is strictly convex along zero-sums allocations for every x with `(x) ≥ 0, then

the risk allocation is unique.

Proof. Letting m be in A(X), according to Theorem A.1, it holds

0+A(X) =
{
u ∈ Rd : E [` (X −m− ru)] ≤ 0, for all r > 0

}
=
{
u ∈ Rd : sup

r>0
E

[
`(X −m− ru)− `(X −m)

r

]
≤ 0
}

=
{
u ∈ Rd : E

[
sup
r>0

`(X −m− ru)− `(X −m)
r

]
≤ 0
}

= −0+`.

Further, we define f(m) =
∑
mk + δ(m|A(X)). It follows that f is increasing, convex, lower

semicontinuous, proper, and such that R(X) = inf f . Let B = {m : f(m) ≤ γ} be nonempty
for some γ large enough and b ∈ B. By Theorem A.1 and the definition, u ∈ 0+B = 0+f if
and only if

R(X) ≤
∑

bk + r
∑

uk ≤ γ and b+ ru ∈ A(X) for all r > 0.

6We refer the reader to Appendix A regarding the notions and properties of recession cones and functions.D
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102 ARMENTI, CRÉPEY, DRAPEAU, AND PAPAPANTOLEON

However, −∞ < R(X) ≤ γ < ∞ showing that 0+f = Z ∩ 0+A(X) = −Z ∩ 0+`. By
[45, Theorem 27.1(b)], the existence of a risk allocation follows from f being constant along
its directions of recession 0+f , which according to Theorem A.1, is equivalent to u ∈ 0+f
implies (−u) ∈ 0+f . However, since ` is permutation invariant it follows that 0+` = −0+`
and therefore u ∈ 0+f implies that −u ∈ 0+f . Thus the existence of a risk allocation.7

In particular, if 0+` = 0, then by [45, Theorem 27.1(d)], the set of risk allocations is non-
empty and bounded. Furthermore, since E[`(X − m)] < 0 for some m large enough, the
Slater condition for the convex optimization problem R(X) = infm f(m) is fulfilled. Hence,
according to [45, Theorems 28.1, 28.2, and 28.3], optimal solutions m∗ are characterized by (8).

Finally, letm 6= n be two risk allocations. It follows that αm+(1−α)n is a risk allocation as
well for every α ∈ [0, 1]. Furthermore, (m−n) is a zero-sum allocation. By convexity, it follows
that 0 = E[`(X−αm−(1−α)n)] ≤ αE[`(X−m)]+(1−α)E[`(X−n)] = 0 for every 0 ≤ α ≤ 1,
which shows that α`(X −m) + (1− α)`(X − n) = `(X − αm− (1− α)n) P -almost surely for
every 0 ≤ α ≤ 1. By assumption, `(x+·) is strictly convex on Z for every x such that `(x) ≥ 0.
From m−n ∈ Z, it holds that X−αm+(1−α)n+Z entails the segment [X−m,X−n]. From
α`(X−m)+(1−α)`(X−n) = `(X−αm−(1−α)n), z 7→ `(X−αm−(1−α)n+z) is almost surely
constant on this segment and, therefore, not strictly convex. Hence P [`(X−αm−(1−α)n) <
0] = 1 for every 0 ≤ α ≤ 1, showing in particular that E[`(X −m)] < 0, a contradiction.

Corollary 3.5. Let ` be a permutation invariant loss function, such that `(x+ ·) is strictly
convex along zero-sum allocations for every x with `(x) ≥ 0. It holds

RA(X + r) = RA(X) + r for every X ∈M θ and r ∈ Rd.

If ` is additionally positive homogeneous, it holds

RA (λX) = λRA(X) for every X ∈M θ and λ > 0.

Proof. From Theorem 3.4, the assumptions on ` ensure the existence and uniqueness
of a risk allocation uniquely characterized, together with the Lagrange multiplier, by the
first order conditions. Let m = RA(X + r) for which there exists a unique λ such that
λE [∇` (X + r −m)] = 1 and E[`(X + r − m)] = c. Hence, n = m − r and λ satisfy the
first order conditions λE[∇`(X − n)] = 1 and E[`(X − n)] = 0, which by uniqueness shows
that n = RA(X) = m − r = RA(X + r) − r. As for the second assertion, it follows from
A(λX) = λA(X) for every λ > 0 according to Proposition 2.6.

Remark 3.6. In general, the positivity of the risk allocation is not required. However, if
positivity or any other convex constraint is imposed, for instance, by regulators, it can easily
be embedded into our setup. In the case of positivity, this would modify the definition of
R(X) into

R(X) = inf
{∑

mk : E [`(X −m)] ≤ 0 and mk ≥ 0 for every k
}

with accordingly modified first order conditions.

7Note that this computation shows that the condition Z ∩ 0+` = −Z ∩ 0+` is sufficient to get the existence
of a risk allocation.D
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As already mentioned, the following example illustrates the importance of the uniqueness.

Example 3.7. Any loss function of class (C1), that is, `(x) = h(
∑
xk), is permutation in-

variant. Thus, a risk allocation m∗ ∈ A(X) exists by means of Theorem 3.4. However, for any
zero-sum allocation u, we have R(X) =

∑
(m∗k +uk) =

∑
m∗k and E[h(

∑
Xk − (m∗k +uk))] =

E[h(
∑
Xk −m∗k)] ≤ 0, so that m∗ + u is another risk allocation.

In terms of regulatory costs, this is a problematic situation. Indeed, consider two banks
and require from them 110 M e and 500 M e, respectively, as capital allocations. In such a
case, one could equally well require 610 M e from the first bank and nothing from the second.
Such arbitrariness is unlikely to be accepted in that case.

Example 3.7 shows that loss functions of the class (C1) lack the uniqueness of a risk
allocation. By contrast, for loss functions of class (C2), that is, `(x) =

∑
h(xk), the fol-

lowing proposition shows that, while there exists a unique risk allocation under very mild
conditions, the risk allocation only depends on the marginal distributions of the loss vector
X = (X1, . . . , Xd). In other words, the risk measure and the risk allocation do not reflect the
dependence structure of the system.

Proposition 3.8. Let `(x) :=
∑
h(xk) for some strictly convex univariate loss function

h : R → R. For every X ∈ M θ, there exists a unique optimal risk allocation RA(X) and
we have RA(X) = RA(Y ), for every Y ∈ M θ such that Yk has the same distribution as Xk,
k = 1, . . . , d.

Proof. The loss function is permutation invariant and strictly convex. According to The-
orem 3.4, there exists a unique risk allocation for every X ∈ M θ. The first order conditions
(8) are written as

1 ∈ λE [∂h(Xk −mk)] , k = 1, . . . , d, and
∑

E [h (Xk −mk)] = 0,

which only depend on the marginal distributions of X.

Following Rüschendorf [47] we can characterize in terms of supermodular, directionally
convex, and upper orthant stochastic ordering the risk of positive dependence in terms of `.
For a function f : Rd → R we define

∆k,yf(x) = f(x0, . . . , xk + yk, . . . , xd)− f(x), x, y ∈ Rd, k ∈ {1, . . . , d}.

We say that a continuous function f : Rd → R is
• supermodular if ∆k,y∆l,yf(x) ≥ 0 for every 1 ≤ k < l ≤ d;
• directionally convex if ∆k,y∆l,yf(x) ≥ 0 for every 1 ≤ k ≤ l ≤ d;
• ∆-monotone if ∆i1,y . . .∆in,yf(x) ≥ 0 for every {i1, . . . , in} ⊆ {1, . . . , d}

for every x and y in Rd with y > 0. We denote by <sm, <dc, and <uo the integral orders given
by the respective class of functions. We refer to [47] for a discussion of these orders in terms
of dependence risk. Note that X <uo Y if and only if P [X > x] ≥ P [Y > x] for every x ∈ Rd.

Proposition 3.9. The shortfall risk measure R is monotone with respect to <sm, <dc, or
<uo whenever ` is supermodular, directionally convex, or ∆-monotone, respectively.

Proof. The assertion follows immediately from the fact that if ` is one of a supermodular,
directionally convex, or ∆-monotone function, so is `(·−m) for every m. Therefore if X <x YD
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with x either sm, dc, or uo according to `, it follows that E[`(X−m)] ≥ E[`(Y −m)] showing
that A(Y ) ⊆ A(X).

Remark 3.10. Any loss function of the form (C1), (C2), and (C3) is directionally convex
and therefore supermodular. They are ∆-monotone if d = 2. As for the specific loss functions
used in this paper in several places for illustration,∑ (x+

k )2

2
+ α

∑
k<j

x+
k x

+
j − 1 and

∑
x+
k + α

∑
k<j

(xj + xj)+ − 1,

they are both directionally convex and ∆-monotone. However, if α = 0 they are degenerate
in terms of these monotonicities since ∆k,y∆j,y`(x) = 0 for every k 6= j. As soon as α > 0,
these loss functions are strictly monotone on Rd

+.

Remark 3.11. A loss function can be chosen in view of an a priori list of wished properties
in terms of risk measurement and allocation as the proposition above mentioned. However,
loss functions may also arise in systemic risk problems as an intrinsic property of the system
as presented by Eisenberg and Noe [25] or recently by Weber and Weske [51].

Example 3.12. The following simple example shows the impact of the dependence in a
simple case for a loss function8

(9) `(x1, x2) =
1

1 + α

[
1
2
e2x1 +

1
2
e2x2 + αex1ex2

]
− 1,

that is ∆-monotone and bivariate normal vector X = (X1, X2) ∼ N (0,Σ) with Σ =[ σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
. Solving the first order conditions yields

RAi(X) = σ2
i +

1
2
SRC(ρ, σ1, σ2, α), R(X) = σ2

1 + σ2
2 + SRC(ρ, σ1, σ2, α),

showing that the risk allocations are disentangled into the respective individual contributions
σ2
i , i = 1, 2, and a systemic risk contribution

(10) SRC = ln
(

1 + αeρσ1σ2− 1
2 (σ2

1+σ2
2)
)
,

which depends on the correlation parameter ρ and on the systemic weight α of the loss
function. Figure 2 shows the value of this systemic risk contribution as a function of ρ and
σ1. Computing the partial derivatives with respect to σi and ρ yields

∂SRC

∂σ1
=
α (ρσ2 − σ1)

2
eρσ1σ2− 1

2 (σ2
1+σ2

2)

1 + αeρσ1σ2− 1
2 (σ2

1+σ2
2)
,

∂SRC

∂ρ
=
ασ1σ2

2
eρσ1σ2− 1

2 (σ2
1+σ2

2)

1 + αeρσ1σ2− 1
2 (σ2

1+σ2
2)
,

showing that the systemic risk contribution is
• increasing with respect to the correlation ρ;
• decreasing with respect to σ1 if the correlation is negative;
• increasing up to ρσ2 and then decreasing with respect to σ1 if the correlation is positive

as the individual risk of X1 dominates the risk of the system.
8A simple check shows that it is indeed a loss function satisfying (A1), (A2), and (A3).D
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Figure 2. SRC (10) as a function of σ1 for different values of the correlation ρ in the case where α = 1.

4. Systemic sensitivity of shortfall risk and its allocation. The previous results empha-
size the importance of using a loss function that adequately captures the systemic risk inherent
to the system. This motivates the study of the sensitivity of shortfall risk and its allocation
so as to identify the systemic features of a loss function.

Definition 4.1. The marginal risk contribution of Y ∈ M θ to X ∈ M θ is defined as the
sensitivity of the risk of X with respect to the impact of Y , that is,

R(X;Y ) := lim sup
t↘0

R(X + tY )−R(X)
t

.

In the case where R(X+ tY ) admits a unique risk allocation RA(X+ tY ) for every t, the risk
allocation marginals of the risk of X with respect to the impact of Y are given by

RAk(X;Y ) = lim sup
t↘0

RAk(X + tY )−RAk(X)
t

, k = 1, . . . , d.

Theorem 2.10 and its proof show that the determination of the risk measure R(X) reduces
to the saddle point problem

R(X) = min
m

max
λ>0

L(m,λ,X) = max
λ>0

min
m

L(m,λ,X).

Using [45], the “argminmax” set of saddle points (m∗, λ∗) is a product set that we denote by
B(X)× C(X).

Theorem 4.2. Assuming that ` is permutation invariant, then

R(X;Y ) = min
m∈B(X)

max
λ∈C(X)

λE [∇` (X −m) · Y ] .

D
ow

nl
oa

de
d 

02
/2

5/
18

 to
 8

9.
3.

10
0.

90
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Supposing further that ` is twice differentiable and that (m,λ) ∈ B(X)× C(X) is such that

M =
[
λE
[
∇2`(X −m)

]
−1/λ

1 0

]
is nonsingular, then

• there exists t0 > 0 such that B(X+tY )×C(X+tY ) is a singleton for every 0 ≤ t ≤ t0;
• the corresponding unique saddle point (mt, λt) = (RA(X + tY ), λt) is differentiable as

a function of t and we have [
RA(X;Y )
λ(X;Y )

]
= M−1V,

where λ(X;Y ) = lim supt↘0(λt − λ0)/t and

V =
[
λE
[
∇2`(X −m)Y

]
R(X;Y )

]
.

Proof. Let L(m,λ, t) =
∑
mk + λE[`(X + tY −m)]. Theorem 2.10 yields

R(X + tY ) = min
m

max
λ

L(m,λ, t) = max
λ

min
m

L(m,λ, t) = L(mt, λt, t),

for every selection (mt, λt) ∈ B(X + tY ) × C(t + tY ). Regarding the first assertion of the
theorem, since ` has no zero-sum direction of recession other than 0, it follows from Theo-
rem 3.4 that B(X)×C(X) is nonempty and bounded. Hence, the assumptions of Golshtein’s
theorem on the perturbation of saddle values (see Rockafellar and Wets [46, Theorem 11.52]),
are satisfied and the first assertion follows. As for the second assertion, the assumptions of
Fiacco and McCormick [29, Theorem 6, pp. 34–45] are fulfilled. The Jacobian of the vector[

∇mL(m,λ, 0)
λE [` (X −m)]

]
that is used to specify the first order conditions is given by the matrix M . Hence, the second
assertion follows from [29, Theorem 6, pp. 34–35].

Theorem 4.2 allows us to explicitly derive the impact of an independent exogenous shock
as stated in the following proposition.

Proposition 4.3. Under the assumptions of Theorem 4.2 ensuring the uniqueness of a saddle
point, suppose that Y is independent of X. Then

R(X;Y ) =
∑

E [Yk] and RA(X;Y ) = E[Y ].

Proof. Since Y is independent of X, denoting m = RA(X;Y ), it follows from the first
order conditions that

R(X;Y ) = λE [∇`(X −m) · Y ] = λE [∇`(X −m)] · E[Y ] = 1 · E[Y ] =
∑

E[Yk].D
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Furthermore, we have

M =
[
λA −B
C 0

]
and V =

[
λE
[
∇2`(X −m)Y

]
R(X;Y )

]
=
[
λAE[Y ]
CE[Y ]

]
,

where A = E[∇2`(X −m)], B =
[
1/λ · · · 1/λ

]ᵀ, and C =
[
1 . . . 1

]
. Using the classical

formula of block matrix inversion, we obtain

RA(X;Y ) =
[
A−1

λ
− A−1BCA−1

λCA−1B

A−1B

CA−1B

] [
λAE[Y ]
CE[Y ]

]
= E [Y ]− A−1BCE [Y ]

CA−1B
+
A−1BCE [Y ]
CA−1B

= E [Y ] .

According to the discussion about causal responsibility in section 4.3, it follows that each
member is marginally paying for the additional risk is takes provided this one is independent
of the system. In particular, if the risk factor k is affected by a shock Yk independent of the
system, it follows that R(X;Y ) = E[Yk] = RAk(X;Y ), showing that the member k pays for
the full risks it takes.

4.1. Impact of an exogenous shock. The following section illustrates the case when the
exogenous shock may depend on X. We consider a bivariate situation where X = (X1, X2),
and exogenous factor Y = (Y1, 0) impacting only the first component. We consider the loss
function

`(x1, x2) =
(x+

1 )2 + (x+
2 )2

2
+ αx+

1 x
+
2 − 1, 0 ≤ α ≤ 1,

which gives rise to a unique risk allocation by virtue of Theorem 3.4. Note that ` is
∆-monotone, and strictly on R2

+ if α > 0. For ease of notation, we assume that X1 ∼ X2,
which, since ` is permutation invariant, implies that m = RA1(X) = RA2(X). Let p =:
P [X1 ≥ m] = P [X2 ≥ m] and r = P [X1 ≥ m;X2 ≥ m]. According to Theorem 4.2, and the
first order condition (8), we have

R(X;Y ) =
E [Y1(X1 −m1)+] + αpE [Y1(X2 −m2)+|X1 ≥ m1]
E [(X1 −m1)+] + αpE [(X2 −m2)+|X2 ≥ m2]

.

As for the allocation of this marginal risk contribution, in the notation of Theorem 4.2, we have

M =

 λp λαr −1/λ
λαr λp −1/λ

1 1 0

 and V =

 λpE [Y1|X1 ≥ m1]
λαrE [Y1|X1 ≥ m1;X2 ≥ m2]

R(X;Y )

 ,
which by inverting M yields

RA1(X;Y ) =
R(X;Y )

2
+

1
2
E
[
Y11{X1≥m1}

]
− αE

[
Y11{X1≥m1;X2≥m2}

]
p− αr

,

RA2(X;Y ) =
R(X;Y )

2
− 1

2
E
[
Y11{X1≥m1}

]
− αE

[
Y11{X1≥m1;X2≥m2}

]
p− αr

.

Beyond the fact that according to Proposition 4.3, if Y is independent of X then R(X;Y ) =
RA1(X;Y ) and RA2(X;Y ) = 0, observe in general the following:D
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• The two risk components marginally first share equally the additional cost of the
exogenous impact in terms of R(X;Y )/2 each.
• The asymmetry of the shock that concerns only X1 is reflected in the correction with

respect to the second term which is added to the first one and subtracted from the
second. Furthermore, 1{X1≥m1} ≥ α1{X1≥m1;X2≥m2} for every 0 ≤ α ≤ 1. It implies
that the additional risk taken by the first risk factor is always positively proportional
to Y1 while the second one is negatively proportional to Y1.
• If α = 0, then the marginal change impacts the risk factors according to
±(E[Y1]− E[Y1|X1 ≥ m])/2.
• If α = 1 and X1 and X2 are strongly anticorrelated, then 1{X1≥m;X2≥m} is likely very

small and therefore the effect is similar to the case where α = 0. On the other hand,
if X1 and X2 are strongly correlated, then 1{X1≥m} ≈ 1{X1≥m;X2≥m} and in that case
RA1(X;Y ) ≈ RA2(X;Y ) ≈ R(X;Y )/2 showing that the full dependence with α = 1
yields an equal share of the marginal risk changes.

4.2. Sensitivity to dependence. Following the previous section where the loss function
depends on α that impacts the risk allocation with respect to the degree of dependence between
risk factors, we apply the techniques of Theorem 4.2 to study the sensitivity with respect to
α. To this end we consider a loss function of the following form,

`(x) =
∑

g(xk) + αh(x),

where g is a one dimensional loss function and h a multidimensional function such that ` is a
loss function for all α ≥ 0 close enough to 0,9 for instance, a loss function of the class (C3).
We also suppose that g is twice differentiable. Using the same strategy as in the proof of
Theorem 4.2, we can provide the marginal risk contribution and allocation as a function of α
around 0, stressing the dependence part of the loss function. Computations yield

∂αR(X) = λE [h(X −m)] and ∂α

[
R(X)
λ′

]
= M−1

[
λE [∇h(X −m)]

∂αR(X)

]
,

where M is given by M =
[
λA −B
C 0

]
and A = diag(g′′(Xk −mk)) and B and C as in the proof

of Proposition 4.3. In the case where

`(x) =
1
2

3∑
k=1

(x+
k )2 + α

∑
1≤k<j≤3

x+
k x

+
j − 1

and X = (X1, X2, X3) with X1 ∼ X2 ∼ X3, (X1, X2) ∼ (X2, X1), and X3 independent of
(X1, X2), it follows that m = RAk(X) for every k = 1, 2, 3. Defining Z = (X1 − m)+ ∼
(X2 −m)+ ∼ (X3 −m)+, computations yield

∂αR(X) = E[Z]
(

2 +
E[(X1 −m)+(X2 −m)+]

E[Z]2

)
.

9For instance, true when h is positive.D
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Hence, with increasing correlation between X1 and X2 the marginal risk increases. As for
the impact on the risk allocation, since E[(X1 −m)+|X2 ≥ m] = E[(X2 −m)+|X1 ≥ m] it
simplifies to

∂αRA1 or 2(X) =
E[Z]

3

(
1 +

E[(X2 −m)+|X1 ≥ m]
E[Z]

+
E[(X1 −m)+(X2 −m)+]

E[Z]2

)
,

∂αRA3(X) =
E[Z]

3

(
4− 2

E[(X2 −m)+|X1 ≥ m]
E[Z]

+
E[(X1 −m)+(X2 −m)+]

E[Z]2

)
.

Due to the asymmetric dependence of the system, we have the following:
• One the one hand, if X1 and X2 are highly anticorrelated, then

∂αRA1 or 2(X) ≈ E[Z]
3

and ∂αRA3(X) ≈ 4
E[Z]

3
.

The systemic risk factor is advantaging those who are anticorrelated with respect to
the others.
• On the other hand, if X1 and X2 are highly correlated, then for p = P [X1 ≥ m],

∂αRA1 or 2(X) ≈ E[Z]
3

(
p+ 1
p

+
E[Z2]
E[Z]2

)
while

∂αRA3(X) ≈ E[Z]
3

(
2
p− 1
p

+
E[Z2]
E[Z]2

)
.

Since p ≤ 1, the systemic risk factor penalizes those who are highly correlated and
reduces the costs for the one who is independent with respect to the previous case.

Figure 3 illustrates this fact for different correlation values in the case of a 3-variate normal
distribution

X ∼ N

0,

1 ρ 0
ρ 1 0
0 0 1

 .

4.3. Riskless allocation, causal responsibility, and additivity. We conclude this section
regarding risk allocation and its sensitivity by a discussion of their properties in light of the
following economic features of risk allocations introduced in [14].

(FA) Full Allocation:
∑
RAk(X) = R(X).

(RA) Riskless Allocation: RAk(X) = Xk if Xk is deterministic.
(CR) Causal Responsibility: R(X + ∆Xk) − R(X) = RAk(X + ∆Xk) − RAk(X), where

∆Xk is a loss increment of the kth risk component.
As mentioned before, per design, shortfall risk allocations always satisfy the full allocation

property (FA). As is visible from the above case studies, riskless allocation (RA) and causal
responsibility (CR) are not satisfied in general. In fact, from a systemic risk point of view,
we think that (RA) and (CR) are not desirable properties. Indeed, both imply that risk
taking, or nontaking, should only impact the concerned risk component. However, the risk
components are interdependent and any move in one of them bears consequences to the restD
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Figure 3. Systemic factor, marginal change of the risk allocation, and total risk for different correlations ρ.

of the system. The search for an optimal allocation is a noncooperative game between the
different system components, each of them, respectively, looking for its own minimal risk
allocation while impacting the others by doing so. In other words, each is responsible for its
own risk but also for its relative exposure with respect to the others. The sensitivity analysis
of this section, however, shows that external shocks are primarily born by the risk component
that is hit at least in first order. In the case where this shock is independent of the system,
by Proposition 4.3 it is then a full causal responsibility. Otherwise, a correction appears and
a fraction of the shock is offloaded to the other risk components according to their relative
exposure to the concerned component and dependence on the shock.

5. Computational aspects of risk allocation. In this section we present computational
results based on the loss function10

(11) `(x) =
d∑

k=1

xk +
1
2

d∑
k=1

(x+
k )2 + α

∑
1≤j<k≤d

x+
j x

+
k − 1

for α = 0 or 1. In that case, the constrained problem (2) becomes

R(X) := inf

{∑
mk :

d∑
k=1

E [Xk −mk] +
1
2

d∑
k=1

E
[
(Xk −mk)

+]2
+ α

∑
1≤j<k≤d

E
[
(Xj −mj)

+ (Xk −mk)
+] ≤ 1

}
.

(12)

10A direct check shows that this function satisfies (A1), (A2), and (A3).D
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According to Theorem 3.4, the risk allocation is determined by the first order conditions (8),
which read, in this case,

(13)



λE

(Xk −mk)+ + α
d∑

j=1,j 6=k
(Xj −mj)+1{Xk≥mk}

 = 1− λ for k = 1, . . . , d,

E

 d∑
k=1

(Xk −mk)] +
1
2

((Xk −mk)+)2 + α
∑

1≤j<k≤d
(Xk −mk)+(Xj −mj)+

 = 1.

We use Gaussian distributions with mean vector µ and variance-covariance matrix Σ for the
loss vector X. In the bi- and tri-variate cases the variance-covariance matrix is parameterized
by a single correlation factor ρ and the variances σ2

k of Xk for all k. In other words, Σij =
ρσiσj for i 6= j. We write CT for computational time. The implementation was done on
standard desktop computers in the Python programming language. To solve the constrained
problem (2), we use the root finding scheme sequential least squares programming (SLSQP)
algorithm, in combination with Monte Carlo, Fourier, or Chebyshev interpolation schemes,
briefly described below, for the computation of the expectations in (13).

Fourier methods. Assuming that the moment generating functions of the considered dis-
tributions are available, Fourier methods allow us to compute the different expectations in
(13), based on methods presented, among others, in Eberlein, Glau, and Papapantoleon [24]
and Drapeau, Kupper, and Papapantoleon [22]. The main advantage of this method is that it
is theoretically possible to compute the value of the integrals at any level of precision, while
the basic CT is roughly doubled for every additional digit of accuracy. However, as seen in
the subsequent computations this method suffers from the large number of double integrals
to be computed, for which the CT can become prohibitively long.

Monte Carlo methods. We can also use Monte Carlo simulations for the estimation of the
many integrals in (13). An important observation here is that we can generate and store all
realizations in advance, and then use them for the estimation of the functions for different m
in every step of the root-finding procedure. The main advantage of Monte Carlo relative to
Fourier methods is that a wider variety of models can be considered; think, for example, of
models with copulas or of random variables with Pareto-type distributions as considered in
the empirical study in section 6. The main disadvantage is the slow statistical convergence
of the scheme, yet, in our context, it is fast enough. In addition, the time to generate the
samples once and for all, independently of the value of m, as well as to compute the Monte
Carlo averages, is very fast.

Chebyshev interpolation. A numerical scheme well suited to approximate the large numbers
of functions in the context of optimization routines is the Chebyshev interpolation method.
This method, recently applied to option pricing by Gass et al. [33], can be summarized as
follows: suppose you want to evaluate quickly a function F (m), of one or several variables,
for a large number of m’s. The first step of the Chebyshev method is to evaluate the function
F (m) on a given set of nodes mi, 1 ≤ i ≤ N . These evaluations can be computed by Fourier
or Monte Carlo schemes, are independent of each other, and can thus be realized in parallel.
The next step, in order to compute F (m) for an m outside the nodes mi, is to perform aD
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polynomial interpolation of the F (mi)’s using the Chebyshev coefficients. In other words, the
Chebyshev method provides a polynomial approximation F̂ (m) of F (m).

Discussion. Whether it is advantageous to use the Chebyshev interpolation or not, is a
matter of two competing factors that affect the CT: on the one hand, the number of iterations
I(d) needed to find the root of the system and, on the other hand, the size of the grid N2 used
in the Chebyshev interpolation. Our findings reveal that the Monte Carlo schemes are better
than the Fourier schemes in the range of our accuracy requirements, since they require the
least amount of work during each step of the root-finding procedure or for the preprocessing
computations in the Chebyshev method. Only when the dimension is low, less than three
or α = 0 can the Fourier methods be faster. Next, the choice between Chebyshev or not
is a matter of comparison between I(d) and N2. In high dimensions, when I(d) dominates
N2, with I(d) being of order d in principle and N usually between 10 and 20, the Chebyshev
method is less costly. Furthermore, the Chebyshev method can intensively benefit from parallel
computing as the preprocessing step is not sequential.

Remark 5.1. The numerical methods outlined above can be further improved by con-
sidering variance reduction techniques for the Monte Carlo simulations. Sparse grids and
analogous numerical techniques can be developed to reduce the computational work for the
Fourier and Chebyshev schemes. Another avenue to be explored is the application of stochas-
tic approximation schemes, instead of deterministic root-finding methods, for the computation
of multivariate risk measures. In the one dimensional case, a stochastic gradient algorithm
has been proposed for the computation of shortfall risk measure by Dunkel and Weber [23]
or Hu and Zhang [38]. With respect to deterministic optimization or root-finding schemes,
stochastic gradient algorithms present the advantage of being incremental, less sensitive to
the dimension, and offer a flexible framework that can be conveniently combined with other
features such as importance sampling (see [35], [7], and [23]), model uncertainty, or the quest
for, not only the risk measure itself, but also its sensitivities to model parameters. This is all
left for future research.

5.1. Bivariate case. We suppose that d = 2 and consider a bivariate Gaussian distribution
with zero mean, σ1 = σ2 = 1, and correlation

ρ ∈ {−0.9,−0.5,−0.2, 0, 0.2, 0.5, 0.9} .

When setting α = 0, that is, without systemic risk weight, the result m∗ does not depend on
the correlation value. Since σ1 = σ2 = 1 the allocation is symmetric and we find m∗1 ≈ −0.173.
Explicit formulas for the involved expectations are available in this case and this yields of
course the fastest computation. Fourier methods are quite fast (CT ≈ 3× explicit formula) as
we only need to compute one dimensional integrals. In order to get a high approximation in
the Chebyshev approximation, one must use 20 nodes for each integral. Since the number of
iterations in the optimizations is low, the Chebyshev method coupled with Fourier transforms
is slower than Fourier without it. Finally, Monte Carlo is about 20 to 40 times slower than
Fourier, becoming the slowest method in that case. When setting α = 1, the values of the risk
allocation are increasing with respect to ρ, as expected; see Table 1. The Monte Carlo method
becomes the fastest one. Indeed, we now need to compute bivariate integrals in (13). Even if
Fourier methods are fast, from 30 seconds to almost 3 minutes, they are still approximatelyD
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Table 1
Bivariate case with systemic weight, that is, for α = 1.

Fourier Fourier + Chebyshev 10 nodes Monte Carlo 2 Mio

ρ m∗1 CT m∗1 CT m∗1 CT

−0.9 −0.167 61520 ms −0.150 45 m 18 s −0.167 3257 ms
−0.5 −0.143 37100 ms −0.132 30 m 27 s −0.143 3357 ms
−0.2 −0.120 45200 ms −0.113 25 m 21 s −0.120 3414 ms

0 −0.103 51800 ms −0.098 24 m 52 s −0.103 3302 ms
0.2 −0.085 75700 ms −0.082 27 m 55 s −0.085 3417 ms
0.5 −0.057 158000 ms −0.055 32 m 10 s −0.056 3250 ms
0.9 −0.013 88900 ms −0.012 55 m 04 s −0.012 3387 ms

10 to 50 times slower than Monte Carlo. Moreover, using even as little as 10 nodes in the
Chebyshev interpolation, which is not very accurate, increases the total CT because of the
number of two dimensional integrals to compute in the preprocessing step.

5.2. Trivariate case. In this section, we illustrate the systemic contribution of the loss
function with three risk components and study the impact of the interdependence of two
components with respect to the third one. We start with a Gaussian vector with the variance-
covariance matrix

Σ =

 0.5 0.5ρ 0
0.5ρ 0.5 0

0 0 0.6


for different correlations ρ ∈ {−0.9,−0.5,−0.2, 0, 0.2, 0.5, 0.9}. Here the third risk component
has a higher marginal risk than the first two so that, in the absence of systemic weight, it
should contribute most to the overall risk. When α = 0, this is indeed the case. The result is
independent of the correlation and is typically overall lower, charging the risk component with
the highest variance—m∗3 ≈ −0.12—more than the other two—m∗1 = m∗3 ≈ −0.166. However,
with systemic risk weight, the contribution of the first two overcomes the third one for high
correlation, as emphasized in red in Table 2. These results illustrate that the systemic risk
weights correct the risk allocation as the correlation between the first two risk components
increases. The Monte Carlo scheme in this trivariate case is radically faster than Fourier—
Chebyshev interpolation was not found useful in this case either—from 30 times up to 60
times more efficient.

5.3. Higher dimensions. Figure 4 shows the variance-covariance matrix and the resulting
risk allocation in a 30-variate case using Monte Carlo, coupled with 15 node Chebyshev
interpolation when α = 1. Indeed, the dimension being large, the preprocessing time with
Monte Carlo to compute the Chebyshev coefficients together with the computational time
resulting from the root finding for the resulting interpolation function is lower than the raw
Monte Carlo root finding. The plot shows that the risk allocation depends not only on
the variance of the different risk components, but also, in the case where α = 1, on the
corresponding dependence structure. For instance, compare components 28 and 29 in the
30-variate case in Figure 4. In the first case we observe that when α = 0, component 28D
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Table 2
Trivariate case with systemic weight, that is α = 1. Computed by Fourier.

Fourier method Monte Carlo 2 Mio

ρ m∗1 = m∗2 m∗3 R(X) TCP m∗1 = m∗2 m∗3 R(X) TCP

−0.9 −0.189 ≤ 0.096 −0.258 2 m 55 s −0.190 ≤ 0.095 −0.283 3159 ms
−0.5 −0.135 ≤ 0.016 −0.253 1 m 39 s −0.134 ≤ 0.017 −0.252 2799 ms
−0.2 −0.099 ≤ −0.030 −0.229 1 m 32 s −0.098 ≤ −0.030 −0.228 2760 ms

0 −0.076 ≤ −0.059 −0.212 2 m 22 s −0.077 ≤ −0.058 −0.212 3188 ms
0.2 −0.053 ≤ −0.086 −0.194 1 m 37 s −0.055 ≤ −0.086 −0.195 2741 ms
0.5 −0.020 ≥ −0.125 −0.165 1 m 47 s −0.020 ≥ −0.124 −0.164 3358 ms
0.9 0.025 ≥ −0.173 −0.121 2 m 07 s 0.026 ≥ −0.171 −0.119 2722 ms

contributes more than 29, and conversely when α = 1. The reason is that even if component
28 has a slightly higher variance, it is relatively less correlated than 29 to the components
2, 3, 6, 20, and 30 that have the highest variance, and thus are the most “dangerous” from
the systemic point of view. Hence, component 29 is more exposed than 28 in the case of a
systemic event.

6. Empirical study: Default fund allocation. In the following we consider loss functions
of the type

`1(x) =
∑

x+
k −

1
2

∑
x−k ,(14)

`2(x) =
∑

x+
k −

1
2

∑
x−k +

∑
k 6=j

(xk + xj)
+ − 1

2

∑
k 6=j

(xk + xj)
− ,(15)

studied in Example 2.12. The first loss function means that a position is acceptable if on
average, the losses are compensated by gains twice as large.11 In this case, the risk assessment
of the losses is marginal or componentwise. The second one is similar, however, it also ag-
gregates pairwise losses and gains among the different components. Here the risk assessment
considers additionally the pairwise dependence between the losses. Note that each of these
loss functions is positive homogeneous (hence so is R) and permutation invariant.

The default fund of a CCP is a protection against extreme and systemic risk. As of today,
it is sized according to the cover 2 rule; see [26, article 42, section 3, p. 37]. In a rough
way, this corresponds to the maximal joint loss of two members over their posted collateral
(initial margin) in a stressed situation over the last 60 days. The relative contribution of
each member to the default fund is proportional to their respective initial margin—that is,
the value at risk at a given level of confidence of their loss and profit over a three-day time
horizon. Hence, denoting by DF the total size of the default fund and by IMk(Xk) the initial
margin of member k, the contribution of member k is given by

(16)
IMk(Xk)∑
j IMj(Xj)

DF.

11The coefficient 1/2 is naturally subject to consensus and can be taken as any real number between 0 and
1.D
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Figure 4. Plot showing the variance-covariance matrix together with the respective allocation in the 30-
variate case for α = 0, 1.

As an alternative, we propose to define the contribution of member k to the default fund as
follows. According to Theorem 3.4 there exists a unique optimal capital allocation RA(X)
for a given loss vector X. We define therefore the relative risk contribution of each financial
component as

(17) RCk := RCk(X) =
RAk(X)∑
RAj(X)

=
RAk(X)
R(X)

.

The value at risk for the initial margins IMk, the overall risk measure R as well , the optimal
capital allocation are all positive homogeneous. It follows that RCk(λX) = RCk(X) for every
λ > 0, that is, the relative risk contribution is scaling invariant as, for instance, the Sharpe
ratio, Minmax ratio, or Gini ratio among others; see Cheridito and Kromer [16]. The scaling
invariance property allows one to consider the allocation independently of the total size of theD
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default fund. The contribution of member k is then given as

(18) RCk ×DF.

The current practice based on the ratio of (IMs) (16) provides an allocation that only depends
on the marginal risk of each member profit and loss Xk, and does not take their joint depen-
dence into account, that is, the systemic risk component. By contrast, the approach (18)
allows one to take this systemic risk component into account in the allocation of the default
fund in the sense of the following proposition already discussed in section 4.

6.1. Data. In this section we compare a standard IM-based allocation of the default fund
of a CCP with the multivariate shortfall risk allocation resulting from the use of the loss
functions `1 and `2. This empirical study is based on an LCH real dataset corresponding
to the clearing of 74 portfolios of equity derivatives bearing on 90 underlyings. The clearing
members have been anonymized and are referenced in the following by labels starting by PB
plus number (e.g., PB7), whereas the underlying assets are identified by their real tickers,
such as FCE for CAC40 index future and AEX for Amsterdam exchange index, which can all
be retrieved online. The Jupyter notebook corresponding to this empirical study, including all
the data and numerical codes, is publically available at https://github.com/yarmenti/MSRA.
In order to avoid the repricing of the options, all the derivative positions have been linearized
and reformulated in equivalent Delta positions in their underlyings. We denote by P the
74 × 90 matrix of the positions of the 74 clearing members in the 90 underlyings. As the
CCP clears, each column of P sums up to zero. The vector of the clearing member losses at
a three-day horizon is given by

(19) X = −P × (S3d − S0),

where S is the vector of the underlying price processes. The vector S0 is observed and
the vector S3d is simulated in a student’s t model estimated by maximum likelihood on the
underlying return time series, i.e.,

(20) Si3d − Si0 ∼ κi × T
νi
i × S

i
0,

where T νii is a student’s t random variable with νi degrees of freedom and where κi is a cali-
bration fudge coefficient. The dependence between the underlyings is modeled by a student’s
t copula with correlation matrix ρ and ν degrees of freedom, that is,

Cρ,ν(u1, . . . , un) = F νρ

(
F−1
ν (u1), . . . , F−1

ν (un)
)
.

Here F νρ is the cumulative distribution function (cdf) of the multivariate student’s t distribu-
tion with correlation matrix ρ and ν degrees of freedom, and Fν is the student’s t cdf with ν
degrees of freedom.

6.2. Simulations. The correlation matrix ρ is estimated empirically on the return time
series and the dependence copula parameter is set to ν = 6. Each of m = 105 realizations of
S3d, hence, of the loss vector X, is simulated as follows:D
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Figure 5. Left: Correlation matrix of the underlying assets (ranked by alphabetical order of asset ticker;
one ticker out of ten is displayed along the coordinate axes). Right: Correlation matrix of the loss vector X of
the clearing members (ranked by alphabetical order of member label; one label out of ten is displayed along the
coordinate axes).

Table 3
Size of a cover 2 default fund for different levels of initial margins and different values of the dependence

copula parameter ν.

ν = 2 ν = 6 ν = 50

99 % IM 6.16 108 6.72 108 6.27 108

99.7 % IM 4.96 108 5.48 108 5.00 108

1. Simulate a Gaussian random vector G of size 90 with zero mean and correlation ρ.
2. Generate a χ2 random variable ξ with parameter ν.
3. Obtain the student’s t vector R =

√
ν
ξG.

4. Transform R into uniform coordinates by Ui = Fν
(
Ri
)

and compute T νii = F−1
νi

(
Ui
)
.

5. Compute S3d by (20) and X by (19).
The resulting inputs to the allocation optimization problem are analyzed in Appendix C.
Figure 5 shows the correlation matrices of the underlying assets and of the loss vector X
of the clearing members, in a heatmap representation. In the left panel, which is directly
estimated from the data, we see that the underlying assets are all positively correlated, as
commonly found in the case of equity derivatives. However, due to positions in opposite
directions taken by the clearing members, some of their losses exhibit significant negative
correlations, as shown by the blue cells in the right panel.

6.3. Allocation results. The total size of the default fund as of a standard cover 2 method-
ology are shown in Table 3, for three values of the dependence copula parameter ν and for
99% versus 99.7% IMs. Since a cover 2 default fund is a cushion over IM, its size is directly
responsive to the level of the quantile which is used for setting the IM (compare the two lines
in Table 3). In relative terms the size of the default fund is quite stable with respect to ν.
However we emphasize that these are monetary amounts, so that the difference between, forD
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Figure 6. Left: Decreasing log-allocation weights implied by the loss function `1 (top) and 99% IM (bottom).
Right: Twelve highest allocation weights implied by the loss function `1 (top) and by 99% IM (bottom) with the
corresponding member labels.

instance, 6.16 108 and 6.72 108 corresponds to 0.56 108, i.e., more than half a billion of the
corresponding currency.

In the following we set ν = 6, which corresponds to an intermediate level of tail dependence,
and we use 99% IM, which corresponds to the EMIR regulatory floor on initial margins.

Figure 6 compares the allocation weights implied by the loss function `1 with the ones
implied by 99% IM. The allocations are very similar, as confirmed by the examination of the
percentage relative differences displayed in the upper panels of Figure 6. By contrast, the
lower panels of Figure 7 show that the allocation weights implied by the loss function `1 and
the dependence sensitive loss function `2 differ significantly in relative terms, including for the
names with the greatest contributions to the default fund. These results illustrate the impact
of the use of a “systemic” loss function on the allocation of the default fund.

Appendix A. Some classical facts in convex optimization. For an extended real-valued
function f on a locally convex topological vector space X, its convex conjugate is defined as

f∗(x∗) = sup
x∈X
{〈x∗, x〉 − f(x)} , x∗ ∈ X∗,

where X∗ is the topological dual of X. The Fenchel–Moreau theorem states that if f is lowerD
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Figure 7. Left: Percentage relative differences between the allocation weights implied by the loss function
`1 and 99% IM (top), the loss function `2 and 99% IM (middle), and the loss functions `1 and `2 (bottom),
ranked by decreasing values of the allocation weights implied by the loss function `1. Right: Zoom on the left
parts of the graphs, with member labels.

semicontinuous, convex, and proper, then so is f∗, and it holds

f(x) = f∗∗(x) = sup
x∗∈X∗

{〈x∗, x〉 − f∗(x∗)} , x ∈ X.

Following Rockafellar [45], for any nonempty set C ⊆ Rd, we define its recession cone

0+C :=
{
y ∈ Rd : x+ λy ∈ C for every x ∈ C and λ ∈ R+

}
.D
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120 ARMENTI, CRÉPEY, DRAPEAU, AND PAPAPANTOLEON

By [45, Theorem 8.3], if C is nonempty, closed, and convex, then

(21) 0+C =
{
y ∈ Rd : there exists x ∈ C such that x+ λy ∈ C for every λ ∈ R+

}
.

By [45, Theorem 8.4], a nonempty, closed, and convex set C is compact if and only if 0+C =
{0}.

Given a proper, convex, and lower semicontinuous function f on Rd, we call y ∈ Rd a
direction of recession of f if there exists x ∈ dom(f) such that the map λ 7→ f(x + λy) is
decreasing on R+. We denote by f0+ the recession function of f , that is, the function with
epigraph given as the recession cone of the epigraph of f , and we call

0+f :=
{
y ∈ Rd : (f0+)(y) ≤ 0

}
the recession cone of f . The following theorem gathers results from [45, Theorems 8.5, 8.6,
8.7, and Corollaries pp. 66–70].

Theorem A.1. Let f be a proper, closed, and convex function on Rd.
1. Given x, y in Rd, if lim infλ→∞ f(x+ λy) <∞, then λ 7→ f(x+ λy) is decreasing.
2. All the nonempty level sets B := {x ∈ Rd : f(x) ≤ γ} 6= ∅ of f have the same recession

cone, namely the recession cone of f . That is,

0+f = 0+B for every γ ∈ R such that B 6= ∅.

3. f0+ is a positively homogeneous, proper, closed, and convex function, such that

(f0+)(y) = sup
λ>0

f(x+ λy)− f(x)
λ

= lim
λ→∞

f(x+ λy)− f(x)
λ

, y ∈ Rd,

for every x ∈ dom(f).
4. There exists x ∈ dom(f) such that the map λ 7→ f(x + λy) is decreasing on R+, that

is, y is a direction of recession of f if and only if this map is decreasing for every
x ∈ dom(f), which in turn is equivalent to (f0+)(y) ≤ 0.

5. The map λ 7→ f(x + λy) is constant on R+ for every x ∈ dom(f) if and only if
(f0+)(y) ≤ 0 and (f0+)(−y) ≤ 0.

Appendix B. Multivariate Orlicz spaces. In this appendix we briefly sketch how the
classical theory of univariate Orlicz spaces carries over to the d-variate case without any
significant change. We follow the lecture notes by Léonard [42], only providing the proofs
that differ structurally from the univariate case.

A function θ : Rd → [0,∞] is called a Young’s function if it is
• convex and lower semicontinuous,
• such that θ(x) = θ(|x|) and θ(0) = 0, and
• nontrivial, that is, dom(θ) contains a neighborhood of 0 and θ(x) ≥ a ‖x‖− b for some
a > 0.

In particular, θ achieves its minimum at 0 and is increasing on Rd
+. It is said to be finite if

dom(θ) = Rd and strict if limx→∞ θ(x)/ ‖x‖ =∞.D
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Lemma B.1. The function θ is Young if and only if θ∗ is Young. Furthermore, θ is strict
if and only if θ∗ is strict if and only if θ and θ∗ are both finite.

Proof. This follows by application of the Fenchel–Moreau theorem and from the relation
x · y ≤ θ(x) + θ∗(y).

For X ∈ L0, the Luxembourg norm of X is given as

‖X‖θ = inf {λ ∈ R : λ > 0 and E [θ (X/λ)] ≤ 1} ,

where inf ∅ =∞. The Orlicz space and heart are, respectively, defined as

Lθ :=
{
X ∈ L0 : ‖X‖θ <∞

}
=
{
X ∈ L0 : E [θ (X/λ)] <∞ for some λ ∈ R, λ > 0

}
,

M θ :=
{
X ∈ L0 : E [θ (X/λ)] <∞ for all λ ∈ R, λ > 0

}
.

Lemma B.2.
1. We have ‖X‖θ = 0 if and only if X = 0.
2. If 0 < ‖X‖θ < ∞, then E[θ(X/ ‖X‖θ)] ≤ 1. In particular, B := {X : ‖X‖θ ≤ 1} =
{X : E[θ(X)] ≤ 1}.

3. The gauge ‖·‖θ is a norm both on the Orlicz space Lθ and on the Orlicz heart M θ.
4. The following Hölder inequality holds:

E [|X · Y |] ≤ ‖X‖θ ‖Y ‖θ∗ .

5. Lθ is continuously embedded into L1, the space of integrable random variables on Ω×
{1, . . . , d} for the product measure P ⊗Unif{1,...,d}.12

6. The normed spaces (Lθ, ‖·‖θ) and (M θ, ‖·‖θ) are Banach spaces.

Proof. These results can be established along the same lines as in the univariate case; see
[42, Lemmas 1.8 and 1.10 and Propositions 1.11, 1.14, 1.15, and 1.18], using the Fenchel–
Moreau theorem in Rd

+.

Theorem B.3. If θ is finite, then the topological dual of M θ is Lθ
∗
.

Proof. Again, the proof follows the univariate case; see [42, Proposition 1.20, Theorem 2.2,
and Lemmas 2.4 and 2.5].

Appendix C. Data analysis. Figure 8 shows the gross positions (sum of the absolute val-
ues of the positions in the underlying asset) per clearing member. Four members concentrate
particularly high positions in the CCP. Figure 9 shows the gross positions of the CCP per
underlying asset (top) and the corresponding underlying asset values (bottom). The largest
investment by far of the clearing members is in the asset with ticker FCE (CAC40 index
future, with spot value 4463), by a factor about three to the second ticker AEX (Amsterdam
exchange index, with spot value 443.83). The investments of the clearing members in the
other assets are comparatively much smaller.

12The case where Lθ = L1 corresponds to θ(x) =
∑
|xk|.D
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Figure 8. Left: Gross positions per clearing member, ranked decreasingly. Right: Zoom on the left part of
the graph with member labels.

Figure 9. Top: Gross positions per underlying, ranked decreasingly (left) and zoom on the left part of the
graph with tickers (right). Bottom: Spot values of the underlying assets, ranked as above (left) and zoom on
the left part of the graph with tickers (right).

Figure 10 shows the signed positions in the underlying assets of the twelve clearing mem-
bers with the largest gross positions (left) and the signed positions of the clearing members in
the nine most traded underlying assets (right), in a heatmap representation. In particular, we
observe from the left panel that the biggest players in the CCP, namely, the members labeled
PB7, PB56, PB59, and PB50, have opposite sign positions in the main asset (the one withD
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Figure 10. Left: Positions in the underlying assets (one ticker out of ten displayed along the y axis) of the
ten clearing members with the largest gross positions, ranked by decreasing gross positions. Right: Positions of
the clearing members (one label out of ten displayed along the x axis) in the three most invested-in underlying
assets, ranked by asset gross positions of the CCP.

Figure 11. Left: Underlying asset volatilities (ranked by decreasing order). Right: Zoom on the left part of
the graph with tickers.

ticker FCE). The right panel shows that the dominant asset position in the CCP, i.e., the
one in FCE, is shared (with opposite signs) between a significant number of clearing mem-

bers. Figure 11 shows the annualized volatilities κi ×
√

νi
νi−2 ×

√
250
3 of the underlying assets

(cf. (20)). Most of these volatilities are comprised between 15% and 40%, with two assets,
KBC and TMS, spiking over 60% volatility. However, the clearing members are only very
marginally invested in these two assets (their tickers do not even appear in the right panel of
Figure 9). Figure 12 shows the monetary risks (3d volatilities × absolute monetary positions)
in the underlying assets of the ten clearing members with the largest gross positions. From
the right panel we see that the FCE and AEX assets (CAC40 index future FCE and Ams-
terdam exchange index AEX, two major indices) concentrate most of the risk of the clearing
members. The comparison with Figure 11 shows that this is not an effect of the volatility of
these assets, but of very large monetary positions of the clearing members.D
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Figure 12. Left: Log-monetary risks in the underlying assets, ranked by decreasing risk order, of the ten
clearing members with the largest gross positions. Right: Monetary risks in the five most invested-in underlying
assets of the ten clearing members with the largest gross positions.
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