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AnAlysis technical

In this article we introduce our work to build a com-
mon shock model of portfolio credit risk where one 
can build a consistent picture of bottom-up defaults 

that are also manageable in a top-down aggregate loss 
space. In this sense this model solves the bottom-up top-
down puzzle, which the CDO industry had been trying 
– and failing – to crack since before the crisis. 

Two types of shock cause defaults
In our model, defaults are the consequence of shocks 
associated with groups of obligors. We define the fol-
lowing pre-specified set of groups:

where I1 , ... , I𝑚 are subsets of N = {1, ... , 𝑛}, and each 
group I𝑗 contains at least two obligors or more. The 
shocks are divided in two categories: the idiosyncratic 
shocks associated with singletons {1}, ... , {𝑛} can only 
trigger the default of name 1, ... , 𝑛 individually, while the 
systemic shocks associated with multi-name groups  
I1 , ... , I𝑚 may simultaneously trigger the default of all 
names in these groups. Note that several groups I𝑗 may 
contain a given name 𝑖, so that only the shock occurring 
first effectively triggers the default of that name. 

As a result, when a shock associated with a specific 
group occurs at time 𝑡, it only triggers the default of 
names that are still alive in that group at time 𝑡. In the 
following, the elements 𝑌 of 𝑦 will be used to designate 
shocks, and we let ℐ = (I𝑙 )1≤𝑙≤m denote the pre-specified 
set of multi-name groups of obligors. 

Shock intensities 𝜆𝑌(𝑡, 𝐗𝑡 ) will be specified later in 
terms of a Markovian factor process 𝐗𝑡 . Letting 𝛬𝑡

𝑌 = ∫0
𝑡 

𝜆𝑌(s, 𝐗s )𝒹𝑠, we define

for independent standard exponential random  
variables E𝑌. 

For every obligor 𝑖 we let

 = ( ),min
 

which defines the default time of obligor 𝑖 in the com-
mon shocks model. The model filtration is given as  
𝔽 = 𝕏 ∨ ℍ, the filtration generated by the factor process 
𝐗 and the point process 𝐇 = (𝐻𝑖)1≤𝑖≤n with 𝐻𝑡

𝑖 = 𝟙𝜏𝑖 ≤ 𝑡 .

This model can be viewed as a generalisation of the 
Marshall-Olkin model doubly, that is stochastic (via the 
stochastic intensities 𝛬𝑌) and dynamised (via the intro-
duction of the filtration 𝔽 ). The purpose of the factor 
process 𝐗 is to more realistically model the diffusive 
randomness of credit spreads. Figure 1 (above) shows 
one possible defaults path in our model with 𝑛 = 5 and  
𝑦 = {{1}, {2}, {3}, {4}, {5}, {4, 5}, {2, 3, 4}, {1, 2}}.

The inner oval shows which common shock happened 
and caused the observed default scenarios at successive 
default times. At the first instant, the default of name 
2 is observed as the consequence of the idiosyncratic 
shock {2}. At the second instant, names 4 and 5 default 
simultaneously as a consequence of the systemic shock 
{4,  5}. At the fourth instant, the systemic shock  
{2,  3,  4} triggers the default of name 3 alone, as names 
2 and 4 have already defaulted. At the fifth instant, the 
default of name 1 alone is observed as the consequence 
of the systemic shock {1,  2}.

Demonstrating our calibration results
Tables 1a and 1b (right) summarise the calibration 
results obtained with this model (using piecewise-con-
stant intensities), for two different quotation dates and 
two different CDS indices under the constraint that the 
model perfectly reproduces each individual CDS curve 
of the corresponding index at these two dates. 

Even better fits can be obtained by resorting to ran-
dom recovery specifications. The calibrated model can 
then be used for any bottom-up dynamic portfolio credit 
purpose, in particular valuation and hedging of counter-
party risk on credit derivatives.
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Figure 1: Possible defaults path with n = 5 and y = {{1}, {2}, {3}, {4}, {5}, {4, 5}, {2, 3, 4}, {1, 2}}.

Figure 1: Possible path of defaults

𝑦 = {{1}, ... , {𝑛}, I1 , ... , I𝑚 },

𝜏𝑌(𝑡) = inf {𝑡 > 0; 𝛬𝑡
𝑌 > E𝑌},  (1)

  (2)



In this regard, first note that by using suitable stochas-
tic specifications of the shock intensities, the model can 
generate very significant levels of CDS implied volatili-
ties (see figure 2, above). Figure 3 shows the value of 
the credit valuation adjustment (CVA) on a payer CDS 
in the common shock model, with a stochastic default 
intensity thus specified as a function of a Gaussian 
copula correlation 𝜚 between the counterparty (protec-
tion seller with credit spread 𝜅2) and the reference firm 
of the CDS (with credit spread 𝜅1 = 84 basis points). 

Changes in the credit valuation adjustment
Observe that the CVA increases monotonically in 𝜚, 
including at the highest values of the latter, whereas co-
monotonic pathologies would alter this monotonicity in 
simplistic models of counterparty credit risk – at least in 
the case 𝜅2 = 50bps < 84bps = 𝜅1 (blue curve on the fig-

ure) for which, in a co-monotonic model at high 𝜚, the 
reference would always default before the counterparty; 
hence it would be a zero CVA.

Finally, table 2 (below, left) shows the CVA on stylised 
[0 − 5]%,  [5 − 35]% and [35 − 100]% CDO tranches 
in a common shock model of 100 obligors, including 
the counterparty of the CDO, without ‘naked’ and with 
‘continuous’ collateralisation (collateral continuously 
updated to track at every time the left-limit of the mark-
to-market of the CDO tranche, the most extreme case of 
collateralisation with the left-limit reflecting an ‘infini-
tesimal’ cure period). 

As is clear from the table, collateralisation has lit-
tle  impact in this case, particularly on the senior 
tranches, which conveys the important message that 
due to wrong-way risk (represented in this model by the 
possibility of joint defaults which are ‘missed’ by the 
collateral due to the cure period), it may be difficult to 
collateralise counterparty risk on credit derivatives.

The full text of this article can be downloaded at creditflux.com

21Creditflux July 2013

AnAlysis technical

Stéphane Crépey is 
professor at the 
mathematics 

department, University of 
Evry, France. 

Tomasz Bielecki is 
professor of applied 
mathematics at  

the Illinois Institute of 
Technology, Chicago. 

Areski Cousin is 
assistant professor 
at ISFA actuarial 

school, University of Lyon.

Alexander 
Herbertsson is  
an associate  

senior lecturer at the 
University of Gothenburg’s 
Centre for Finance. 

Table 1a: CDX 2007-12-17
CDO tranche [0, 3] [3, 7] [7, 10] [10, 15] [15, 30]
Market spread 48.07 254.0 124.0 61.00 41.00
Model spread 48.07 254.0 124.0 61.00 38.94
Absolute error in bp 0.010 0.000 0.000 0.000 2.061
Relative error in % 0.0001 0.000 0.000 0.000 5.027

Table 1b: iTraxx Europe 2008-03-3
CDO tranche [0, 3] [3, 6] [6, 9] [9, 12] [12, 22]
Market spread 40.15 479.5 309.5 215.1 109.4
Model spread 41.68 429.7 309.4 215.1 103.7
Absolute error in bp 153.1 49.81 0.0441 0.0331 5.711
Relative error in % 3.812 10.39 0.0142 0.0154 5.218

Table 2: naked versus collateralized CVA
Naked Collateralised

Tranche 0-5 5-35 35+ 0-5 5-35 35+
CVA 4.78 2.96 2.44 3.41 2.73 2.26
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Implied volatility of a CDS option on an individual name with respect to the volatility 𝑣 of the driving 
noise of the default intensity.

Time-0 CVA on a CDS with respect to the Gaussian correlation 𝜚 between the counterparty (protection 
seller) and the reference firm in a common shock model of the two names.

Table 1a & 1b: CDX.NA.IG Series 9, 17 December 2007 and iTraxx Europe Series 9, 31 March 2008. 
The market and model spreads and the corresponding absolute errors, both in basis points and in 
percent of the market spread. The [0, 3] spread is quoted in %. All maturities are for five years.

Figure 2: implied volatility of a CDs option Figure 3: Time-0 CVA on a CDs with respect to the Gaussian correlation


