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Abstract : We investigate the barrier of a simple pursuit-evasion game for which we are able to
compare two theoretical and numerical approaches. One is directly based on the capture time,
and the second one, introduced by one of the authors, transforms the game in one of approach
(or Lo, criterion). This second approach gives both a new characterization of barriers and a new,
potentially more robust, numerical method for the determination of barriers. We provide a detailed
analytical solution of the various problems thus raised, and use it as a benchmark for the numerical
method.

1 Introduction

We revisit a well known one-dimensional second-order servomechanism problem, proposed by Bern-
hard in [7], with a new approach that transforms the game in one of approach (or Lo, criterion).
This simple pursuit-evasion game allows us to compare the traditional approach with this new one,
both on theoretical and numerical points of view.

We present numerical methods for the computation of the value functions of the two versions
of the game (the game in time and the game in distance), with a particular emphasis on the
determination of the barrier of the pursuit-evasion game. Our methods use the theory of viscosity
solutions for the Isaacs equation (see Barles [4] or Crandall, Ishii, Lions [12] for the state of the
art), which is an alternative to the wiability approach proposed by Cardaliaguet, Quincampoix,
Saint-Pierre [9, 10] or the minimaz solutions of Subbotin [20].

The first method is based on a finite difference approximation of the discounted capture time
function, involving viscosity lower-envelope solutions of the Isaacs equation (cf. the work of Bardi,
Bottacin, Falcone [1]). The associated numerical scheme computes an approximation by discrete
stochastic games, introduced by Pourtallier, Tidball [18] following the work of Kushner [16].

Nevertheless, when a barrier occurs in the capture-evasion game splitting the state space into
capture and evasion areas, a detection of infinite value of the capture time function is required in
order to characterize this manifold. (See Bernhard [8] for a state of the art description of barriers
of differential games). From a numerical point of view, this previous method does not seem to be
well suited for an accurate detection, since the barrier sought appears as the boundary of the set
where the discounted value function is strictly less than one, a level it reaches with zero slope.

The second approach considers an approximation of the minimum oriented distance from the
target, involving viscosity upper-envelope solutions of a variational inequality (see Rapaport [19]).
The oriented distance from the target needs to be known, which may require a numerical compu-
tation for an arbitrary target. Nevertheless, for many games (such as the ones studied by Isaacs
[15]), the target is given by a simple analytic expression and then its oriented distance is an also



an analytic function, easy to compute. The numerical scheme computes a monotone sequence of
continuous solutions for a sequence of perturbated Hamiltonians, using again approximation by
discrete stochastic games (see Crepey [13]). The barrier for the game in time is then determined
by the zero level set of the value function for the game in distance, an intrinsically robust determi-
nation, as the gradient is not zero there. Moreover, this gradient also measures sensitivity of the
barrier location with respect to the target.

Finally, we illustrate these methods with numerical experimentations, using the analytical so-
lutions to benchmark the numerical results we obtain.

2 Presentation of the game

Consider a one-dimensional second-order plant :
j=pv, |ul<1,

where the objective is to keep y as close as possible to a set point z subject to an unknown drift :
Z=au, lu| < 1.

More precisely, for a given positive number v, we are looking for a (state feedback) control law v*()
that guarantees |y(t) — z(t)| < for all ¢ > 0 whatever is the disturbance u(.).

Considering the state vector :
s ()= (V27 ),
T2 Y

this problem can be formulated as a pursuit-evasion game, whose dynamics are :

z(0) = o,
o) = sttty = (O8O ) <, po<,

with the target set :
T :={z € R?||a1] > 7}.

(the player u is the “pursuer” and the player v the “evader”). The usual way to study the existence
of such a control law v* is to study the game in time (cf. Isaacs [15]) :

V(xg) = supinf t°(zg, u,v),
wl] vt

where t°(xg,u,v) = inf{t > 0|z(t) € T} is the capture time, (v(-) = ¥[u(-)],u(-)) are admissible

controls, and 4[] belongs to a set of strategies defined below. This game has been investigated in

detail by Masle [17] and Bernhard in [7]. A particular emphasis is made on the existence and the

characterization of the barrier, that splits the state space between initial positions for which there

exists a strategy for the player v avoiding a termination in finite time from its complementary.
Alternatively, we study another criterion related to the game in distance :

W (zo) = sup inf [infdo(x(t),T)] )
wf] wl) Lt

where (u,v) belong to the same sets of strategies as for the previous game and d° is the oriented
distance function :
dz,T) ifz¢T
0 _ 9 )
&z, 7) = { —d(z,0T) otherwise.



Here, d°(z,T) = v—|z1], and we shall propose a new analytical resolution of this game. The barrier
of the game in time is then determined by the set of points B = {z| W (z) = 0}. Although this
criterion does not provide any information on the capture time, it characterizes the sensitivity with
respect to the target, which is of complementary interest compared with the traditional approach.

3 Analytical solutions

3.1 Preliminaries

We shall define more precisely for which class of strategies the value functions V and W defined
above should be considered :

Definition 1 (VREK STRATEGIES) Let U, V be the sets of measurable functions from IRT to
[—1,1] or open-loop controls. u(-) is sought among U and 1)[| among the non-anticipative VREK
strategies :

{Y]] ;uelUr—Plu] eV}

such that : Yu € U, [Vt <t u(t) =u'(t)] = [Vt < ', P[u](t) = P[u'](t)].
Similarly, we can consider strategies for a reversed order of the players : v(-) is then sought
among V and ¢[| among the non-anticipative VREK strategies :

{¢l] :veVr— o]l }
such that : Yv € V, [Vt <, v(t) =v'(t)] = [Vt < t', P[v](t) = P[v'](t)].

These classes of strategies are well suited to characterize the value functions in terms of viscosity
solutions (see Crandall, Ishii, Lions [12] and Barles [4]), for which we recall the definition :

Definition 2 (VISCOSITY SOLUTIONS) Consider a first order partial differential equation on a
open domain € :

H(z,V(z),VV(z))=0, z€Q

(possibly with a boundary condition V(z) = K, x € 0Q) (1)

Let DTV (x) (resp. D~V (z)) denote the Fréchet super-(resp. sub-)differential of the locally bounded
function V' at x, i.e. the set of formal gradients p, such that

V(y) <V(z)+ <py—z>+0(y —z)|ly — 2|
(resp. V(y) = V(2)+ <p,y—z>—0(y —2)|ly — z|)
for some continuous function 0, null at 0.

i) A subsolution (resp. supersolution) of H on €2 is a u.s.c. (resp. l.s.c.) locally bounded function
V s.t. H(z,V(z),DTV(z)) >0 (resp. H(z,V(z),D~V(z)) <0) on Q.

i) A Dirichlet subsolution (resp. Dirichlet supersolution) of (1) on § must satisfy also V < K
(resp. V > K ) on 0f.

iii) If a subsolution (resp. supersolution) of H on Q satisfies at least H(z,V (z), DTV (x)) > 0
(resp. H(z,V(z),D"V(z)) <0), wherever it fails to satisfy V < K (resp. V. > K) on 01,
we shall call it a subsolution (resp. supersolution) of (1) on €.

iv) A (resp. Dirichlet) viscosity solution means a function that is both a (resp. Dirichlet) sub-
and a super-solution.



v) The viscosity upper (resp. lower) envelope solution on Q (resp. on Q) means the largest vis-
cosity sub-solution on Q (resp. the smallest Dirichlet viscosity super-solution on Q).

Alternatively, we shall also consider classes of feedback strategies :

Definition 3 (FEEDBACK STRATEGIES) ® C {¢: (t,z) — ¢(t,z) € [-1,1]} and ¥ C {3 : (t,z) —
P(t,z) € [-1,1]} are admissible classes of feedback strategies if :

i) Open-loops are admissible : U C ® and V C V.

ii) ® and ¥ are closed by concatenation ( i.e. switching from one strategy in the set to another
one, at an intermediate instant of time, is allowed).

iii) Y(¢,1)) € ® x WU, Vxg, there exists an unique solution of © = f(x,¢(.,z),v(.,z)) over RT,
leading to measurable controls : u(.) = ¢(.,z(.)) €U and v(.) = P(.,z(.)) € V.

These properties do not uniquely define the pair (®,V) but it is clear that such classes exist and
are sub-classes of VREK non-anticipative strategies.

3.2 Game in time

We sketch here the analysis of [17] and [7], according to the classical Isaacs-Breakwell theory. From
dimensional analysis, it is easy to see that the only meaningful parameter in that game is the ratio

By

P=g

First we find the usable part of the capture set (i.e. the subset of the boundary of the target
such that sup, inf, < v(z), f(z,u,v) >< 0 where v(z) is the outer normal to 7 at z) that , here
made up of two symmetric pieces: {x; = 7,29 > —a} and {z; = —7v,z2 < a}. The boundary of
the usable part (BUP) is thus made up of the two points (z1 = ey, 29 = —ea) for ¢ = £1. From the
BUP, we attempt to construct a natural barrier. The semi-permeable normal is (11 = —¢, 15 = 0).
Given the Hamiltonian of the game of kind,

H =vi(z9 — au) + 1nfv,

we see on the one hand that the semi-permeable controls are v = signv; and v = signvs, and on
the other hand that the adjoint equations give

7./1 = 07
7./2 = —.

Initialized with the proposed semi-permeable v’s on the BUP, this yields two parabola with the
controls u = v = —e: (we call #; the final time)

p
z1(t) = ¢ —g(tl—t)Q],
z2(t) = el-a+ Bt —1)].
These intersect the “other edge” of the game space, i.e. the straight line 1 = —evy, at o9 =

g(—a + 2y/B7y). We must now distinguish two cases depending on whether these points are in the
usable part or the non usable part.

The simple case is when this intersection happens in the non usable part, which is the case if
p > 1. In that case the two parabola together with the pieces of (non usable) capture set boundary
that join them (the thick lines in figure 2) indeed form a barrier, separating an escape zone “inside”
from the capture zone outside.



Indeed that composite curve is a barrier. At all the points where it is smooth, the semiperme-
ability condition holds (or, on the capture set boundary, a stronger inequality for the evader). At
its points of non differentiability, the two intersections of the parabola with the opposite capture
sets, the evader may play according to the parabola’s dictum, 7.e. v = €. This insures that the
state remains inside the escape zone, since ©1 has the desired sign whatever the controls are.

Outside that region, we can construct a complete field of trajectories, that happen to be parabola
translated from the previous ones parallel to the z; axis. It is a simple matter to check that they
define a value function

1
V(z) = 7 [a +exo — \/(a + ex9)? — 28(y —ex1)|
with € = 1 in the upper region and € = —1 in the lower region. Inside the escape zone, of course

V = 400. (We should emphasize that the value function computed here is Isaacs’, not the function
V of the next paragraphs which is its Kruskov transform.)

In the case p < 1, the two parabola intersect each other inside the game space, delineating what
we shall call the lens. This lens is not an escape zone however : the corners “leak”. Following the
classical analysis of intersection of barriers, we have an intersection with incoming trajectories that
cross it. Therefore the composite surface is not a barrier.

As a matter of fact, the lens is the intersection of the proposed safety zones defined by each
parabola. Therefore, to stay in it, the state should cross none of the parabola, what the pursuer
cannot enforce since the required controls are +1 for one of the parabola, -1 for the other one.
Upon reaching such a corner, the pursuer can keep its optimal control according to the incoming
parabola, and the state necessarily leaves the “lens”.

In that case there is no escape zone. But the complete solution in terms of singularities of
Isaacs’equation is extremely involved. A private communication of John Breakwell suggested that
the number of commutations of the optimal controls from +1 to -1 and conversely can be arbitrarily
large, depending on the initial state and the value of p.

3.3 Game in distance

In Rapaport [19], it is proved that the value function W for the game in distance is the viscosity
upper-envelope solution of the following variational inequality (under technical assumptions that
guarantee W to be u.s.c.) :

H(z,W(x), VW (z)) = min [do(:r,T) - W), min max VW(x).f(x,u,v)] =0. (2)

Unfortunately, the technical assumptions proposed in [19] in a general framework are not ful-
filled in this game. Nevertheless, we show here, thanks to analytical considerations, that the value
function W is a continuous viscosity solution of (2).

When W (z) < d°(x,T), the characteristic fields of the considered game are obtained for u*(z) =
sign W (z) and v*(z) = sign W (x) :

z1(t)
SUQ(t)

A necessary condition for ¢; to minimize t — v — |z1(¢)| is to have 2 (¢1) = 0, which gives :

eBt?/2 + (21(0) — ea)t + z1(0)
eft + z2(0)

for e = £1. (3)

(22(0) — ea)?
2w

This leads us to consider the following candidate Z solution of the variational inequality :

vy —z1(t1) =7 +ex1(0) —



Definition 4

min(y + z1, PT(z)) when z9 > «,
Z(z) =< min(y—z1, P (z)) when 9 < —a,
min(y —a?/B, P*(z), P~(z)) when |z2| < o,

with ( 2
To + o
pt gy 2T Q)
(z) T2 28 ] )
_ (w2 — o)
P = -
(z) Y+ 28
Figure 1: Different areas defining the function Z.
Remarks 1

1. Z is maximal and constant equal to vy — 2/ inside the “lens” delimited by two arcs of parabola, :
L:={z|P~(z), P*(z) >y —a?/B} N {|z2] < a}.

The constant value inside the lens £ is equal to the common value kept by the three functions
v — |z1], P~ (z) and P*(z) at points x such that |z3] < « and where they are equal, which are
exactly the two points A = (—a?/8,a) and B = (a?/8, —a) (see Figure 1).

2. The set of points where the function Z is null is :
i) void if y — ?/8 < 0,
ii) otherwise equal to
{PT(2) = 0,21 2 —y,23 2 —a} U {P7(z) = 0,71 < 7,35 < o}
U{=7} x[e,2vBy — o] U {7} x [~a, a0 — 2¢/B7]
(see Figure 2).

We recognize in this last expression exactly the barrier found by Bernhard [7] for the game in
time.



Figure 2: The set of points x where Z(z) =0 (when v — a?/B > 0).

Proposition 1 Z is a continuous viscosity solution of (2).

Proof Z is clearly continuous, nowhere above d°(., 7). Notice that requiring Z to be a continuous
viscosity solution of (2) is then equivalent to :

nbinmgxp.f(x,u,v) >0, Vp € D" Z(x),
Z(z) =d°(z,T) or rrhinmgxxp.f(:v,u,v) <0,Vpe D Z(z).

Direct computation shows that Z satisfies the variational inequality (2) at its differentiable points.
At non differentiable points, using non smooth calculus rules (see for instance Clarke [11]), we have :

i) for x such that P*(z) = v+ 21 and 29 > «,

e 1 - 1 i)
vt gy )+ 00 (3]

So n}linmf}xp.f(:(:,u,v) =(1-2\N)z2 — |l = 2)\a+ Az2+ @) >0, Vpe D" Z(z).

(By symmetry, we have the same inequalities at points x such that P~ (z) =y — 27 and 23 < —a)

i) for z such that P*(z) =~ — o?/B and |z2| < a,

B 1 - 0 i)
vt gy )+ 00 (D))

So n}linmf}xp.f(:(:,u,v) = -Mz2+a)+ ANzy+a)=0, VpeD"Z(x).
(By symmetry, we have the same inequalities at points x such that P~ (z) = y—«a?/8 and |z2| < )

iii) for A,

D+Z(A) _ {—>\1 ( 20}/5 ) + Ao ( (1) ) +(1 -\ —)\2) ( 8 )} A0, , D_Z(:l?) = 0.

A1+A2<1



So mgnmlz}xp.f(A,u,v) (A2 — A)a —[Xa — M]a+2\a >0, Vpe DTZ(A).

(By symmetry, we have the same 1nequaht1es at point B)

Z is then a viscosity solution of the variational inequality (2). g
Proposition 2 Z is the value function with feedback strategies (for the game in distance).

Proof Take a number c less or equal than y—a? /3, then (y—c) > «?//3 and so, according to section
3.2, there exists a barrier B, for the game in time with the target 7. := {x € IR? | |z1| > v — c}.
We notice also that the candidate Z is such that the manifold { z | Z(z) = ¢} coincide exactly with
the barrier B, determined in the previous section. As the exterior of B, is a guaranteed capture
zone, the value function W,_.(z¢) for the game in distance (with the target 7;) is necessarily non
positive, as soon as xg is such that Z(zg) > ¢. Similarly, the interior of B, is a guaranteed evasion
zone, so W,_.(xp) is non negative as soon as z¢ is such that Z(z) < c¢. Remark also that the
W (zo) = Wy—c(z0) + ¢, Vzo € IR2

Consider now polar coordinates (r,0) in the plane. For any 6, there exists r > 0 such that
re'? € B.. A point se’? belongs to the exterior (resp. the interior) of B, as soon as s > r (resp. s < )
so W(se?) < ¢ = Z(re') (resp. W(se') > ¢ = Z(re'?)). This can be achieved for any ¢ such that
c <y —a?/B, i.e. outside the lens :

L= {z| P (), PT(z) > v —a®/B} N {|z2] < a},

So we have :
< Z (o)
>

Z (o)

Z being a continuous function, we conclude that W(zg) = 0), Vzog ¢ L. We deduce also that
W(zo) > v — a?/B, Yxo € L. Note also that the reasoning above could be done with the “lower”
value W~ (instead of the “upper” value W) :

_ 0 s >r = W(se?)
ro=re ¢£:>{3<7“:>W(re’9)
Z(x

W (o) = infsup int &(a(t), )] < W)

i.e. we have W =W~ =ZonIR2\ Land W~ >~ —a?/B on L.

Consider the state space divided into the three domains :

S {x|Z(x) =P (zx)or Z(z) =7y —z1}
Z = {z|Z(z)=P (z)or Z(z) =v+z1}

e}

£ = R*\(SUIZ)
and the following feedback strategies :

1 ifzel N -
—1 otherwise and - §(z) = i(2).

u(z) =
From section 3.2 and the result above, it is clear that the pair (a,d) realizes W (xg) for any initial
condition z( outside the lens and give a minimal oriented distance larger or equal to v — /3 for
T € L.
Consider now zy € L and the pair (@, v) for an arbitrary open-loop control v € V. Remember
that inside the lens zo > —a, so let | = infy>o{z2(t) + a}. Inside the lens, the dynamics in z is :
T =zo+ > 1.



If [ > 0, the trajectory leaves L in finite time, let say at t.. But then we have :
Ve >0, 3n>0s.t. |z1(t)] < a?/B—e = @1(t) >n, Vt>t,,

(if the trajectory reaches S) and we conclude that infi>; {y — |21(¢)|} < v — o?/B (by symmetry,
we have the same inequality if the trajectory reaches 7).

If I < 0 and the trajectory does not leave the lens in finite time, it converges asymptotically
inside £ towards the corner point B and we have :

int{y ~|a1(8)]} < max 2(¢) = Z(w), Vo €V,

So, in any case, we obtain :

Z(20) = v — 02/f > sup [inde(x(t),T)] > W (20), Vao € L.
vey Lt>0

We conclude then that Z(z¢) = W(zo) = W (x0), Vzo € IR? (and that the game admits a
saddle point for VREK strategies). We conclude also that the feedback strategies (u,v) € ® x ¥
are optimal. g

Remark 2 W is necessarily non positive (resp. non negative) at capture points (resp. evasion
points). So a barrier separates points x. where W(z.) < 0 from points 2, where W (z.) > 0.
Conversely, a point z belongs to a capture area (resp. evasion area) if W(z) < 0 (resp. W (z) > 0).
So an hyper surface separating points where W is strictly negative from points where W is strictly
positive is a barrier.

In this game, W is continuous and equal to Z (the value with feedback strategies). So the
barrier of the capture-evasion game with feedback strategies is nothing else than the zero level set
of the function Z. Existence condition and determination of the barrier are both derived explicitly
from Z, and the analysis is independent of the ratio p (introduced in the previous section). In
addition, we have proved that there does not exist a barrier when p < 1.

4 Numerical methods

We shall study numerical approximations of the value functions V' and W on a given subset of the
state space £ = IR?. For the game in time, the domain of definition of the value function V is then
Q=E\T (for the game in distance, we shall simply say that Q = &).

4.1 Preliminaries
Definition 5 (KRUSKOV TRANSFORMATION) Let U denote the Kruskov transform of the value
function of the game, where by definition Kruskov transform is : ¢(§) = 1 — exp(—§).

We recall how U is related to the discounted version of the game :

Proposition 3 U is the value function (in the same meaning) of the discounted differential game,
where by discounted game we mean the game with the same dynamics as before and the criterion
t¢ or infy d° replaced by ¢(t¢) or infy $(d°), by monotonicity of ¢.

From now on, V and W will refer to the value functions of the discounted games, which have
the numerical advantage to be bounded from above by 1.



Definition 6 (DISCOUNTED HAMILTONIANS) To the discounted games, we associate the following
Hamiltonians :

i) for the game in time :

H(z,s,p) = IT%iIlqu}iX <p, flz,u,v) >+1—s, (4)

i) for the game in distance :

H(z,s,p) = min [$(d(z,T)) — s, minmax < p, f (z,u,v) >] . (5)

We introduce a finite difference scheme to approximate values of both differential games (game
in time or game in distance). This scheme is nothing else than a classical upwind finite difference
scheme for first-order p.d.e., adapted by Kushner to optimal control problems [16] and later to
differential games by Pourtallier, Tidball [18]. This scheme can also be interpreted as approximation
by discrete stochastic games: this leads to proofs of the convergence results, which are alternative
to the ones used for standard p.d.e. (see Kushner [16] for the one player case and Crepey [13] for
two players games).

Definition 7 (STARRED MESH) A starred mesh of step h on & is given by :
1. A discrete set of nodes EM C £.

2. A local triangulation of the space around each node.

The last point means that about each node z € £" we choose a finite set of r-simplices, or
cells, with edges linking the nodes of £ (a typical instance is the square mesh we effectively use
in the algorithms). These simplices must meet at z, and fit together to cover the space about z
just once. Roughly said about each node x a finite sequence of boxes is constructed on the nodes
of &7, so that these boxes meet at z and partition the space around z. The set of vertices of cells
at z (included) will be noted W"(z).

More precisely, we shall consider families ()5, of starred meshes that fill £, in the sense that
the union of the nodes of all £" (h > 0) is dense in £. Moreover we shall assume the non degeneracy
of these families :

Assumption 1 (NON DEGENERACY) There exist = € (m/2,7), positive functions 5(h) and 5(h)
going to 0 with h, such that for every h > 0,z € E" and y € Wh(z) :

i) 3(h) < |ly — =f] < o(h).
ii) The angle between an edge x_y) of a cell at © and the opposite face is less or equal than .

Remark 3 The classical square mesh satisfies all these requirements.

Proposition 4 For every (z,u,v) € (E"xUxV), there is a unique family of nonnegative f¥(x,u,v)
(y € WHz}) s.t.:

flz,u,0) = Z [z, u,0)(y — ),

yeWh (x)

and fY(x,u,v) = 0 if y € Wh(z) does not belong to the intersection of the cells at x which meet
z+ R} f(z,u,v).
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Proof It is a decomposition of a vector on a base.

~1

Let then At(z,u,v) be a notation for ( Z fz(x,u,v)) when f(z,u,v) # 0, +oo other-
2eWh(z)

wise.

We shall need the concept of weak limit introduced by Barles, Perthame [5] :

Definition 8 (WEAK LIMITS) For any family of functions Vi, on EM (h > 0), we introduce lower
and upper weak limits V.,V : € — IR when h tends to 0 :

V(z) = liminf V,(z") < limsup V,(z") = V(z). (6)
zhegh zh e zhegh zhq
h—0 h—0

We also need, in order to deal with discontinuities, the following definition from Bardi, Bottacin,
Falcone (Definition 2.2 in [1]) :

Definition 9 (DOUBLE CONVERGENCE) We call the doubly indexed family (Ve p)en>0 doubly con-
vergent towards V at x € £, where Vp, V are real functions on Eh, and write

— : h
V(‘T) N mheﬁl'}f,l;h—)m ‘/E,h(x )’
h(e)—0

if for any v > 0 there exists a function h : (0,4+00) — (0,400), and € > 0, such that
Ven(a") = V(2)| <,

for all e <& h < h(e), and z" € EF s.t. ||z — 2| < h(e).

For the next sections, we shall need the following assumption :

Assumption 2
a. f is continuous, Lipschitz continuous w.r.t. x, uniformly in (u,v) and has linear growth.
b. There exists constants i,f such that

0< f < flz,u,v) < f < +oo, V(z,u,v)
c. There exists a constant d° such that
—00 < d’ < d(z,T), Vz
(Note that the function d°(., T) is Lipschitz continuous, whatever is the target set T).

4.2 Game in time

Definition 10 (DISCRETE STOCHASTIC GAME) On the discrete space £" we define a stochastic
game (cf. Filar, Raghavan [14]), composed of the following elements.

i) A discrete target : T" = EMNT and domain : Q" = M\ Th.

11



i1) Transition probabilities :

fY(x,u,v)At(z,u,v) if x € QP y € Wh(z),
plz,y|luv) = § lify=zeT",
0 otherwise.

For the particular case when f(z,u,v) =0, we take :

_ lLify=u=,
plz,y | u,v) = { 0 otherwise.

i11) Instantaneous reward and discount factor :

| ¢lAt(z,u,v)] when z € Qr
k(z,u,v) = { 0 when @ ¢ T,

| exp[-At(z,u,v)] when z € Q"
5(x,u,v)—{ 0 when o & Th

Classically, the value V4, of the discrete stochastic game so defined satisfies the following discrete
averaged dynamic programming equation, known as Shapley equation:

Vi = T Vi, (7)

where by definition T}, is the following non-linear operator from the metric complete space of all
bounded real sequences ]Rf " into itself:

[ThVi)(z) = min max {k(z,u,v) + B(z,u,0) EX " Vi }. (8)

Here E}"V}, means the expected value of V}, viewed as a functional on the Markov random field
(7). EXVh(z) = > yewh(z) P(@,y | u,v)Vi(y). In particular for z € Th (7) gives:

Vi(z) =0
The following proposition is drawn from Prop. 3.1 by Pourtallier, Tidball [18].

Proposition 5 Under assumptions 1 and 2a-2b, T, is contractive from Ith to itself, so that
Shapley equation (7) admits a unique solution V.

Now, we relate this Shapley solution with the viscosity Dirichlet lower envelope solution of the
Isaacs equation on (2 :
{H@Jmmvvu»:m z e ©
V(z) =0, x € 0N)

Denoting V and V the weak limits when h — 0 of V},, solutions of Shapley fixed point equations
(7), we have the fundamental result :

Proposition 6 Under assumptions 1 and 2a-2b, V (resp. V. ) is a wviscosity subsolution (resp.
supersolution) of Isaacs equation (9) on .

Proof See Pourtallier, Tidball [18] or Crepey [13] for application to differential games, following
ideas of Barles, Souganidis [6]. g

When the discounted VREK value function V' is continuous, it can be inferred that this scheme
converges towards V' i.e. lim,_, n s, Va(z") = V(z), under regularity assumption on the bound-
ary target, fulfilled for the present game (see [3]). But when the value function turns out to be
discontinuous, which is the case when a barrier occurs, we have to consider a double approximating
scheme, adding a dilatation of the target according to the ideas introduced in Bardi, Bottacin,
Falcone [1] :
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Definition 11 (DOUBLE APPROXIMATING SCHEME) For € > 0, define T ={x € €| d(z,T) < €},
while Q¢ is €\ Te.
Let Ve 1, be the value function of the stochastic game with Q := ., and T = Te.

Following Th. 2.5 in Bardi, Bottacin, Falcone [1], we have :

Proposition 7 Under assumptions 1 and 2a-2b, V5, converges doubly towards the viscosity lower
Dirichlet envelope solution of (9) on Q.

Proof See the work of Bardi, Bottacin, Falcone [1] or Crepey [13]. g

Remarks 4

1. For pursuit-evasion problems, Bardi, Bottacin, Falcone have shown that the viscosity lower
Dirichlet envelope solution of the Isaacs equation on  is the value function for Friedman-like
strategies, as well as the limit when e tends towards zero of the VREK values for the target 7,
[1]. For capture-time problems, proving that it is also the VREK value function is still an open
problem, except in the case where the VREK value function is continuous.

2. The dependence h(e) between the sequences h — 0 and € — 0 required to guarantee the practical
convergence of the scheme is also an open problem.

3. In our pursuit-evasion game in time, the dynamics does not satisfy the assumption 2b but the
numerical experiments (described in section 5) confronted to the analytical study of section 3.2
suggest that the scheme Nevertheless converges towards the value of the game.

4.3 Game in distance

Following Rapaport [19], for a given positive number €, we consider the e-game :

t
W(zo) = szpui(r.l)i:t {do(:v(t),T) —l—/O EdT} .

Proposition 8 Under assumptions 2a and 2¢, W€ is a non-increasing sequence of bounded con-
tinuous functions, unique viscosity solutions of the variational inequalities :

min [do(x,T) - Wz), n%linméixVWe(x).f(:p,u,v) + e] =0, Vzefl.
Proof See Rapaport [19]. g

The Hamiltonian associated to the discounted version of this e-game is then :
H (%, 5,p) = min [ $(d°(z,T)) — 5, minmax < p, f(z,u,0) > +e(1 = s) ] . (10)

The scheme described in previous section to compute numerically a continuous value can be
adapted here to approximate W€. More precisely, the dynamic programming for an appropriate
approximation Wy of W€ on a grid &, yields the Shapley-like equation :

Wi, =Ty W, (11)
with
[T Wi)(@) = min | ¢d°(z, T)] — Wi(z) , minmax k(z, u,v) + B(w, u,0) By "W |, 1)
k(z,u,v) = ¢p(eAt(z,u,v)) and p(z,u,v) = exp(—eAt(z,u,v))

(remind that there is no boundary condition for this game : 7, = ) in the definition of transition
probabilities for this version of the game).
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T is a contractive operator on IR{ h, as T}, defined through Shapley equation used to be for the
game in time (noticing that whatever are three real numbers a, b, ¢, we have | min(a, b) —min(a, ¢)| <
|b — c|). So the fixed point equation (11) defines a unique Wy.

Theorem 1 Under assumptions 1 and 2a-2b-2c, Wy converges doubly to the wviscosity upper-
envelope solution of (2) on §.

Proof See Crepey [13]. 3

Remark 5

1. It is still an open problem to know if the viscosity upper-envelope solution coincides with the
VREK value function of this game. For general sufficient conditions ensuring such coincidence, see
Rapaport [19].

2. In the minimum distance game, f and d° do not fulfill assumptions 2b and 2c but numerical
experiments confronted to the analytical solutions of section 3.3 suggest that the scheme converges
towards the value of the game.

5 Algorithms

In order to approximate the capture time or the minimum oriented distance, we are led to solve the
Shapley equation (8) (with a target dilated by €) or (11). But these equations are infinite algebraic
systems, since an infinite number of nodes are needed to cover the whole state space £. So, their
numerical resolutions require to localize a bounded window of interest. Classically, on the border
of the discretized domain, the probabilities of transitions that would lead the state outside the
domain have been chosen equal to zero.

Moreover, we need also to discretize the control sets into Uy, Vy. We use a rough discretization
as usual for such problems, without prejudice on the quality of the results (Indeed, most of the
optimal controls are bang bang or median in this example).

In the following experiments, we have used the set of parameters (o, 3,7v) = (3,2,5), a window
of 20 x 20 centered at the origin, a grid & of about 10° nodes in this window and sets of dis-
cretized controls of 5 values (experiments with more values have been made without any significant
improvement on the precision of the results).

5.1 Game in time

A first possible algorithm to solve the fixed point equation (7) (with Q replaced by Q. for small
€ > 0) is the Shapley one i.e. iterations on the values :

n+1 _ . U h
Vit (z) = Jlelg} iléz%};{k(x,u,v) + Bz, u,v)EF V'Y, © € &

This is a gradient method, as remarked by Filar, Raghavan [14]. Therefore its convergence is quite
slow, and consequently it is not the algorithm that we shall use in practice.

Another possible algorithm is the Hoffman-Karp one, making iterations on the policies, which
consists in solving the linear systems (n € IN) :

Vit (z) = k(z,u"(2),0" " (2)) + Bz, " (z), 0" (@) BY T @ @y g e gl (13)

where (u"~!(z),v" " (z)) € Uy x V; mini-maximizes {k(z,u,v) + B(z,u,v) EXV,* 1 and V}? is
arbitrary in Ith.
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It is of Newton-Raphson type (see Filar, Raghavan [14]), converging much faster than the
Shapley one, although its convergence is not proved in general. It is the one we shall use in practice
(The linear systems (13) have been solved iteratively using a Picard method).

Figure 3 shows the value V obtained for small values of e and h, after an hundred of Newton-
Raphson iterations, which was the required amount of iterations to obtain the stabilization of the
algorithm. On figure 3, the results are presented in terms of level curves. Curves of level less than
0.9 are represented in light color, while those of greater level are darker. The lens that can be seen
on this figure is the area {z | V() > 0.9}, therefore it approximates the evasion zone. The existence
and the general shape of this evasion zone are consistent with the analytical results obtained for
this game by Bernhard ([7] and section 3.2).

Figure 3: Iso-values for the game in time
(the superposed white curve is the exact barrier)

5.2 Game in distance

Let (W)new be the sequence W = TEW~" (n € IN*), where W) is arbitrary in IRE". By Picard
fixed point theorem, Wy is the uniform limit of W}’ when n — oo. But as before we prefer to use a
Newton-Raphson algorithm on the policies adapted from Hoffman- Karp, i.e. we solve iteratively
the linear systems :

Wi (z) = min[  $ld(z, T)] - Wi (z),
(™ (), 0" (@) + Bl (@) o @) B O D (1)
T € &
where (u"~!(z),v""!(z)) € Uy x V; mini-maximizes k(z,u,v) + B(z,u,v) EX*W;'" ' and W) =

¢(d(-, T)) on E.
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Figure 4 shows discounted value W obtained for small positive € and h : The curves of negative
level are represented in light color, while those of positive level are darker. These numerical results
are consistent with the theoretical study of section 3.3, except in the anti-first diagonal corners of
the window, where the edge effects are important. Looking at the figure, we recognize the optimal
fields (3), and their separation along the abstract target 7* := {z | W (z) = d°(z,T)}. The oppidum
that should split the optimal fields is clearly visible (it corresponds to the inner lens whose upper
border is well drawn). W is roughly constant at its maximum value in this approximate oppidum,
as expected.

Figure 4: Iso-values for the game in distance
(the superposed white curve is the exact barrier)

5.3 Comparison

To compare the two methods, we have chosen the following criterion of convergence :

1. For any fix control, the linear systems (13) and (14) have been solved using Picard iterations up
to a relative error (between two iterations) less or equal to 1075.

2. Then, iterations on the controls have been achieved until a relative error of 10~* on the fix
points V},, W}, has been reached.

We have experimented approximatively the same amount of iterations for both methods.

Figures 3 and 4 allow one to compare the time and distance approaches, as far as the determina-
tion of the barrier of the capture-evasion game is concerned. As already mentioned, if we consider
level sets of V less than 1 — p (for small i), these domains depend strongly on the arbitrary value
of i1, so they are numerically very sensitive. Indeed, we can see on figure 3 that the level curves are
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very sparse inside the dark lens.

On the opposite, consider once again the figure 4 illustrating the approach in distance. This
time, the level curves are very close to each other about the border of the lens {z | W(z) < 0}.
Indeed, there is no reason why W should be flat about the level curve 0. Therefore it is not a
surprise that the lens {z | W (z) < 0} be less numerically sensitive than {z |V (z) < 1}.

6 Conclusion

Viscosity solutions of Isaacs equation provide two complementary viewpoints on the solution of our
capture-evasion game. The p.d.e. equation allows one to investigate the capture time, while the
variational inequality is an efficient way to investigate the barrier.

Both approaches allow us to construct candidate solutions, and lead to one same numerical
approximation scheme, doubly indexed by two parameters (grid mesh h and dilatation €) due to
the possible discontinuities of the value function.

Numerical experimentations performed on this analytical example suggest that the scheme
should obtain in general good results for both time and distance approaches (although this requires
be checked on further examples...). The current major drawback is that we do not know how to
choose € when h goes towards 0, at least theoretically (In this respect, the viability framework
appears to be more satisfactory from a numerical point of view, see [9, 10]). Mixing with other
approaches could be a fruitful future task : for instance using construction techniques from Isaacs-
Breakwell theory and completing the results obtained by numerical investigations.
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