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In Bielecki et al. (2014a), the authors introduced a Markov copula model of portfolio
credit risk where pricing and hedging can be done in a sound theoretical and practical
way. Further theoretical backgrounds and practical details are developed in Bielecki
et al. (2014b,c) where numerical illustrations assumed deterministic intensities and
constant recoveries. In the present paper, we show how to incorporate stochastic default
intensities and random recoveries in the bottom-up modeling framework of Bielecki
etal. (2014a) while preserving numerical tractability. These two features are of primary
importance for applications like CVA computations on credit derivatives (Assefa et al.,
2011; Bielecki et al., 2012), as CVA is sensitive to the stochastic nature of credit
spreads and random recoveries allow to achieve satisfactory calibration even for “badly
behaved” data sets. This article is thus a complement to Bielecki et al. (2014a), Bielecki
etal. (2014b) and Bielecki et al. (2014c).

Keywords Common shocks; Markov copula model; Portfolio credit risk;
Random recoveries; Stochastic spreads.

Mathematics Subject Classification Primary 60J99, 91G40, 91B70; Secondary
33F05, 91G60.

1. Introduction

In Bielecki et al. (date 2014a) we introduced a common-shock Markov copula model
of default times providing an effective joint calibration to single-name CDS and
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multi-name CDO tranches data. In this sense this model solves the portfolio credit
risk top-down bottom-up puzzle (Bielecki et al., 2010). For earlier, partial progress in
this direction, see Brigo et al. (2007a,b,2010); Elouerkhaioui, (2007); Brigo et al. (2010)
and the introductory discussion in Bielecki et al. (2014b). The main model feature
is the use of common jumps to default, triggered by common shocks, as a powerful
dependence device also compatible with the Markov copula properties Bielecki et al.
(2008), the latter being required to decouple the calibration of the individual (single-
name) model parameters from the model dependence parameters.

The model presented in Bielecki et al. (2014a) is a fully dynamic model in which
the critical issue of modeling counterparty risk embedded in credit derivatives, and
consequently the issue of computation and hedging of CVA, can be consistently and
practically addressed (Assefa et al., 2011; Bielecki and Crépey, 2013; Bielecki et al.,
2012, 2013; Crépey et al., 2014). However, it was emphasized in a June 2011 Bank
of International Settlements press release that “During the financial crisis of 2007—
2009, roughly two-thirds of losses attributed to counterparty credit risk were due to
CVA losses and only about one-third were due to actual defaults”. In other words,
the volatility of CVA matters as much as its level. Consequently (and also to be
consistent with the optional nature of the CVA), for CVA computations on credit
derivatives, practitioners strongly advocate the use of stochastic default intensities.
Moreover, in case of some “badly behaved" data sets, a satisfying calibration
accuracy can only be achieved by resorting to random recoveries.

In order to respond to these considerations, in the present paper, which is a follow-
up to Bielecki et al. (2014a,b,c), we provide more background, implementation hints,
as well as numerical illustration accounting for these two features which are important
for applications: stochastic spreads and random recoveries. Section 2 reviews the model
of default times which is used, including the specification of the stochastic intensities
and recoveries. Regarding the default intensities, we resort to time-inhomogenous affine
processes with time-dependent piecewise-constant mean-reversion level, resulting in
analytical tractability and calibration flexibility (of the term-structure of CDS spreads
in particular). For tractability reasons, random recoveries are taken to be independent
between them, as well asindependent fromeverythingelsein the model. Section 3isabout
pricingin this setup. In particular, pricing of CDS, as well as of CDO tranches, ultimately
boils down here to computations of Laplace transform for time-inhomogenous affine
processes. Proposition 3.1 shows how this can be done explicitly, exploiting the
piecewise-constant mean-reversion structure of the intensities. Again, effective joint
calibration of this model to CDS and CDO data is an important achievement. Section 4
reviews in detail and illustrates the calibration methodology, regarding in particular the
stochastic affine intensities and random recovery specifications which are used.

In the rest of the article we consider a risk neutral pricing model (Q, 7, IP), for
a filtration F = (%,),¢[o, sy Which will be specified below, and where T > 0 is a fixed
time horizon. We denote N, = {1, ..., n} and we let .¥, denote the set of all subsets
of IN,,, where n represents the number of obligors in the underlying credit portfolio.
We also let 7; and H = 1t; < r denote the default time of name i = 1,2,...,n and
the corresponding indicator process.

2. Model of Default Times

We recall a common shocks portfolio credit risk model of Bielecki et al. (2014a,b,c).
In order to describe the defaults we define a certain number m (typically small: a
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few units) of groups /; € N, of obligors who are likely to default simultaneously,
for j € N,,. More precisely, the idea is that at every time 7, there will be a
positive probability that the survivors of the group of obligors /; (obligors of
group [; still alive at time ¢) default simultaneously. Let . = {[,,...,1,}, % =
{1}, ..., {n}, I, ..., I,}. Given non-negative constants a, ¢ and non negative
deterministic functions by (r) for Y € ¥, let a “shock intensity process” X" be defined
in the form of an extended CIR process as: X, a given constant, and for ¢ € [0, 7]

dX! =a(by(t) — X)) dt + c/ X)W/, (1)
where the Brownian motions WY are independent.

Remark 2.1. We refer the reader to Bielecki et al. (2012) for a preliminary version
of this model dedicated to valuation and hedging of counterparty risk on a CDS.
The use of extended CIR processes as drivers of default intensities is motivated by
the following arguments.

e The numerical results of Bielecki et al. (2012) illustrate that such extended
CIR specifications of the intensities, with time dependent and piecewise
constant functions b,(-),! in addition to being compatible with the underlying
Markov copula structure of a portfolio credit risk model, are appropriate
for dealing with counterparty credit risk. In particular, as shown in Sec. 8.4
of Bielecki et al. (2012), versions of the model are capable of generating
a large range of implied volatilities for CDS spread options, broader and
better behaved than with shifted CIR intensities (for results regarding the
latter model we refer to Brigo and Alfonsi (2005), Brigo and El-Bachir (2010),
or Brigo et al. (2011)).

e Compared to shifted CIR, the extended CIR (with piecewise constant
parameter) specification allows for endogenous calibration of the term-
structure of default probabilities whereas, with shifted CIR, one has to
rely on arbitrary reconstruction methods. For instance, Brigo and Alfonsi
(2005) uses a piecewise-linear specification of hazard rates to strip default
probabilities from CDS spreads.

e The extended CIR model is very convenient when it turns to calibrate
dependence parameters on CDO tranche spreads since the optimization
constraints are linear (see Sec. 4 for more details).

Of course, extended CIR processes with piecewise constant coefficients can be seen
as standard CIR processes on each time interval where the coefficients are constant.
All the literature regarding simulation of standard CIR processes (in particular,
how to cope with the numerical instabilities that may arise if the parameters do
not satisfy a suitable Feller condition, e.g., by exact simulation based on chi-
square distributions; (Glasserman, 2004, Fig. 3.5 p. 24)) can therefore be applied
“piecewise” to such extended CIR processes.

For k = (k,...,k,) € {0,1}", we introduce supp(k) ={i € N,; k;, =1} and
supp‘(k) = {i € N,; k; = 0}. Hence, supp(k) denotes the obligors who have

"Note that in this regard our CIR model is a special version of the segmented square
root model of Schlogl and Schlogl (1997), where all three coefficients of the CIR diffusion
are piecewise functions of time.
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defaulted in the portfolio-state k and similarly supp®(k) are the survived names in
state k. Given X = (X")y., we aim for a model in which the predictable intensity of
a jump of H = (H'),.x from H,_ =« to H, = 1, with supp(x) & supp(z) in {0, 1}",
would be given by

2 X 2)

{Yevy; k¥ =1}

where k! denotes the vector obtained from k = (k;);en, by replacing the components
k;, i € Y, by numbers one. The intensity of a jump of H from x to v at time ¢ is thus
equal to the sum of the intensities of the groups Y € % such that, if the default of
the survivors in group Y occurred at time ¢, the state of H would move from k to 1.

This is achieved by constructing H through an X-related change of probability
measure, starting from a continuous-time Markov chain with intensity one
(see Bielecki et al., 2014b). As a result, the pair-process (X, H) is a Markov process
with respect to the filtration ¥ generated by the Brownian Motion W and the
random measure counting the jumps of H, with infinitesimal generator s/ of (X, H)
acting on every function u = u(t, x, k) with 7 € R, x = (xy)ycy and k = (k;),cn, as

1
Au(t,x, k)= (a (by (1) = x7) D (2. X, 1) + 5 Xy % (1. X, ¥)
Yey
+x,0,u(t, X, K)), (3)
where we denote

Syu(t, x, k) = u(t, x, k") — u(t, x, k).

2.1. Markov Copula Properties
Note that the SDEs for processes the X! have the same coefficients except for by (¢),
to the effect that for i € IN,,

Xo= > x'=x"4+ > x 4)

YsY>i PEYEN

is again an extended CIR process, with parameters a, ¢ and

b(t) := Z by(1) = b{i}(t) + Z b,(1), (5)

Y>3Y3i NEVET)

driven by an F-Brownian motion W’ such that

. , VX7
VXidWi =3 /XTawy, dwl =Y —YXL_gw. (6)
' ' Ysi ' ' ' Ysi v ZYsi Xty '

The fact that W' defined by (6) is an F-Brownian motion results from Paul Lévy’s
characterization of a Brownian motion as a continuous local martingale with
bracket process equal to time ¢. One can then check, as is done in Bielecki et al.
(2014b), that the so-called Markov copula property holds (see Bielecki et al., 2008),
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in the sense that for every i € N,, (X', H') is an F — Markov process admitting the
following generator, acting on functions v; = v,(t, x;, k;) with (x;, k;) € R x {0, 1}:

1

) 1
tyvi(t, x;, k;) = a(b(t) — xi)ax,-vi(t7 x;, ki) + ECZ xiaizvi(t’ x; k;) (N

+xi(vi(t’ xp 1) — (2, x;, ki))'

Also, the 7 — intensity process of H' is given by (1 — H/)X!. In other words, the
process M’ defined by,

t
M=H — fo (1 — H)X'ds, (8)

is an F-martingale. Finally, the conditional survival probability function of name
i € N, is given by, for every ¢, > t,

P(z; > 1,

F) = IE{exp(—/tt[ Xids) |X;'}. 9)

3. Pricing

Regarding the dynamics of CIR intensity processes, we assume in the sequel that the
mean-reversion functions b, (f) are piecewise-constant with respect to a time tenor
(T i1y So, forevery k =1... M,

by()=bY, t €[T,_,, T\, (10)

where bg,k) is a non negative constant and 7, = 0. The time tenor (7)) is a set of
pillars corresponding to standard CDS maturities. In this framework, we are able
to provide explicit expressions for survival probabilities of triggering events, which
are the main building blocks in the calculation of CDS and CDO tranche spreads.

Remark 3.1. For comparison purposes, the (simpler) case of deterministic time-
dependent intensities will also be considered in the numerical experiments of Sec. 5.
In that case, the default intensities will be given as X := 1,(r) where Z, is a
piecewise-constant function of time with respect to the same time tenor (7,),_;
as for the mean-reversion function b, of the CIR intensity case. Then, for every
k=1...M, there exists a non-negative constant i(yk) such that

() =20, e [T, T). (11)

Survival probabilities (9) can be obtained explicitly in the case of piecewise-
constant intensities as defined by (11). We will show now that similar analytical
formulas can be obtained when the underlying intensities are driven by CIR
processes with piecewise-constant mean-reversion parameters (see Proposition 3.1
and Remark 3.2).
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3.1.  Survival Probabilities of Trigger-Events

In this section, we provide an analytical expression for survival probabilities in an
extended CIR intensity model with piecewise constant mean-reversion parameter.
This result derives from Prop. 8.2 in Bielecki et al. (2012). However, contrary to the
letter result which involves recursively defined parameters, Proposition 3.1 provides
closed form expressions for survival probabilities and conditional density functions.
This allows us to compute CDS and CDO tranche spreads almost as fast as in a
(deterministic) piecewise constant intensity model.
Let X be an extended CIR process with dynamics

dX, = a(b(r) — X,)dt + ¢ /X,dW, (12)

where a and ¢ are positive constants and b(-) is a non negative deterministic
function. When the mean-reversion function b is constant, the following lemma is
a standard result in the affine processes literature (see e.g. Duffie and Géarleanu
(2001)). Note that (14), which is obtained from (13) with y = 0, by differentiating
with respect to 7, gives the conditional density of default time in a classical CIR
intensity model.

Lemma 3.1. Consider the process X in (12). If b(-) is constant on [t,, t], then for every
y=0,

E (6_ f,:) X,ds—yX,

X, ) — o Y1) Xyy —E(1—t9:y)b (13)
0 9

B (X 00X, ) = (b0 =10 00X, + 20— 13 0)p)em oD N 00", (14)
where ¢ and & satisfy the following Riccati system of ODE:

{@@wﬁrwwxw—§w0wW+i;M&w=y (15)
¢(ssy) = ap(s; y) ; €(0;y) = 0.

Note that the latter ODE can be solved explicitly, i.e.,

_ 1+ D(eto

P =gy C(y)e—40)s’ (16)
_._ a[C(y —=BD(y) B+ C(yet»
=5 AGICO) T B+ CO) st (17)

where A, B, C and D are given by

2y — a2 2
b= %(“*' a’+2¢%), C(y)=( —By)a+2cayy+ ﬁ
- — 2
D(y) = (B+C())y—1. A@y) = W) (ZI; - (ay))t l;((yy))(c +aB)

In the following proposition, we extend Lemma 3.1 to the case of generalized
CIR processes where the mean-reversion function b(-) is assumed to be piecewise
constant. We denote 7, = 0. The functions ¢ and ¢ are those of Lemma 3.1. As a
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sanity-check observe that when b, = - -- = b;, Proposition 3.1 gives the same results
than the ones established in Lemma 3.1 for constant mean-reversion CIR processes.
Also note that the partial derivative 0,/ of I with respect to s in (19) depends on the
functions ¢ and & which can be computed explicitly thanks to (15), (16), and (17).

Proposition 3.1. Assume that b(-) is a piecewise constant function: b(t) = b, on t €
[Ty, Ty fork=1,...,m. Fort <s, leti < jsuchthatt € [T,_;, T;) and s € (T;, T;,,].

Then:
(i) for any y =0,
E(exp(— [ X,du—yX)|X,) = exp (~1(1.5. X,. ) (18)
where
I(t, 5, x,y) = xp(s = :3) + b, [E(s — 5y) = <(s = Ty y)]
+k§1 b (E(s = Tioys y) = E(s = Ty )

+b;1&(s — T3 y); and

(ii) one has

E(X,exp (~ [ qudu)|X[> = 0,1(t, 5, X,, O)E (exp (- [ JXudu)|X[>. (19)

Proof. Expression (19) can be obtained by differentiating (18) with respect to s
and by letting y = 0. Let us prove (18). Note that the piecewise constant function
b(-) is characterized by the time tenor T = (7}),_, ., and the corresponding set of
parameters b = (b;),—, . From Prop. 8.2 in Bielecki et al. (2012), we know that
when ¢ < s such that ¢ € [T,_,, T;) and s € (T}, T;,] with i < j, the following relation
holds:

E(Tb, x,3) = E( exp(~ / X,du— yX)|X, = x)
t

= oxp{ —x¢(T, = :3,(5) = BE(T, = 1 3,(9)

- Z b l(Ty — Tiys i(8)) — bj+1f(s T3 )’)} (20)

k=i+1
where the y.(s), k =i, ..., j, are defined by the following backward recursion
yi(8) == ¢(s = T y),
Vi) == d(Tisr — Tiis Y (9), k<. 21)

Note that in the particular case where b; = b;,, expression (20) must be equal to
the one obtained when T; is removed from the set 7 and b; is removed from the
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set b. More precisely, if the adjusted set of parameters are defined by T := T \ {1}
and b := b\ {b;}, then the following relation holds:

E(T, b, x, )|, =, = E(T, b, x,y). (22)
By letting x, b;, ..., b;_; be equal to zero in the previous relation, we obtain
(T =T 3y(9) = (s = Tjoi5y) = (s = T3 ). (23)
We can then replace & (7, — T;_;; y,(s)) in (20) by the right-hand side of (23) and
apply the previous argument in the particular case where b;_| = b; = b;,;. We then
obtain
E(T = T390 (9) = E(s = T3 y) =S (s = Tj13 ) - (24)

This reasoning can be done backward from k = j — 2 to k = i which shows that

ST =Tin(9) =S5 = T3 y) —=E(s = Tis y) (25)

and
C(T—ty()=CG—ty)—E(s—Tsy). (26)
Eventually, in the particular case where b; = - - - = b;,, expression (20) must be the

same as the one given by application of Lemma 3.1, i.e.,

E(T, b, x,y) =exp(—xdp(s —1;y) —b<(s — 1, ).

So, by letting b; equal to 0, we obtain ¢(T; — t; y;(s)) = ¢(s — t; y) which concludes
the proof. 0

Remark 3.2. Note that the expression of survival probabilities as computed in a
deterministic piecewise-constant intensity set-up can be embedded in formulas (18).
Indeed, if we assume that X, := A(¢) where A(-) is a piecewise constant function, i.e.,
Mty =7, on t €[T,_;, T}), then the function 7 in the right-hand side of Eq. (18)
becomes

i1
Ly(tx) = (T =0+ 2 (=T ) e+ (5= Tiy + )4 27)

k=i+1

and Proposition 3.1 can be readily adapted to the deterministic intensity case by
letting ¢ = 0 and &(s, y) = s + y in (18).

3.2. CDS Pricing

We assume in the sequel that recovery rates are independent of default times.
Under this assumption, the CDS spread of a particular name can be expressed as
deterministic functions of its survival probabilities and of its expected recovery. Let
ty <--- <t,=T be the remaining premium payment dates where 7" stands for the
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maturity date. We assume for simplicity that the risk-free interest rate is constant
and equal to r and we denote fi(f) = ¢~ the corresponding discount factor. In our
numerical experiment, the current fair CDS spread of name i is approximated by
the following expression:

LB (P(r> 1) =P (x> 1))

O = O B 0P = 1)

: (28)

where R} denotes the expected recovery rate of name i. To derive the previous
expression, we implicitly assume that, if a default occur at time 7, < 7, the protection
payment occurs at the premium payment date that immediately follows ;.

Recall that (cf. (9))

P(z,>1)=E {exp(—/ot/ X;jds)}, (29)

where X' is an extended CIR process with parameters a, ¢ and piecewise-constant
mean-reversion function b,(-) in (5) (assuming piecewise-constant functions b, (-)).
Hence, provided the expected recovery is known, the CDS spread of name i can be
efficiently calculated using part (i) of Proposition 3.1 with y = 0.

3.3. CDO Tranche Pricing with Random Recoveries

In this section, we outline how to modify the model to include stochastic recoveries.
Let L = (L'),.,., represent the [0, 1]"-valued vector process of the loss given
defaults in the pool of names. The process L is a multivariate process where L €
0, and where each component L! represents the fractional loss that name i may
have suffered due to default until time ¢. Assuming unit notional for each name,
the cumulative loss process for the entire portfolio is defined as L, := >",(1 — R,)H!
where the variables R; are random and independent fractional recoveries with values
in [0, 1]. The default times are defined as before, but at every time of jump of H, an
independent recovery draw is made for every newly defaulted name i, determining
the recovery R; of name i. In particular, the recovery rates resulting from a joint
default are thus drawn independently for the affected names.

Note that independent recoveries do not break the dynamic properties
developed in Bielecki et al. (2014b). However by introducing stochastic recoveries
we can no longer use the exact convolution recursion procedures of Bielecki
et al. (2014c) for pricing CDO tranches. Instead, we will here use an approximate
procedure based on the exponential approximations of the so called hockey
stick function, as presented in Iscoe et al. (2010, 2013) and originally developed
by Beylkin and Monzon (2005). Here, we explain in detail how to use this method
for computing the price of a CDO tranche in our Markov model when the
individual losses are random.

The mathematical ideas underlying the method of exponential approximations
were originally developed by Beylkin and Monzon (2005), and was later adopted
by Iscoe et al. (2010, 2013) to price CDO tranches in a Gaussian copula model.
While Iscoe et al. (2010, 2013) uses constant recoveries, we will in this paper adopt
their techniques to random recoveries. Below we will outline the techniques given
in Iscoe et al. (2010; 2013) and our presentation also introduces notation needed
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L:

Figure 1. The tranche loss for [a, b] as function of the total loss L,.

later on. First, the so called tranche loss function L;”b for the tranche [a, b] as a
function of the portfolio credit loss L, is given by

Ly" = (L, —a)" = (L, —b)* (30)
where x* = max(x, 0) (see Fig. 1).

As in Beylkin and Monzon (2005), we introduce the so-called hockey stick
function h(x) given by

1—xif0<x<l,
h(x)z{o if 1< x 3D
(see Fig. 2).
Let ¢ > 0 be scalar. By using (31) one can show that
min(x, ¢) = ¢ — ch (f) (32)
¢

and for any two scalars @ and b it holds that

(x —a)t — (x — b)* = min(x, b) — min(x, a) (33)

The hockey stick function h(x)

e T T T T T T

(X AN [ heo

0.8F

o7t '\
06 I

Zosf
0.4
0.3F
0.2f
0

0 02 0.4 0.6 08 1 1.2 1.4 16 18 2
%

Figure 2. The hockey stick function A(x) for x € [0, 2].
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so (32) and (33) then yields

(x—a)+—(x—b)+=b(1—h(%))—a(1—h(§)). (34)

Hence, (30) and (34) implies that

(@) ()

This observation was done by Iscoe et al. (2010) which combined (35) with
the results of Beylkin and Monzon (2005). More specifically, Beylkin and Monzon
(2005) shows that for any fixed € > 0, the function i(x) can be approximated by a
function A% (x) on [0, d] with d = d(e) so that |h(x) — hiy(x)| < € for all x € [0, d]
where g = g(€) is a positive integer and héﬁ)(x) is given by

il X
Hp() = 3 orexp (1) (36)

where (,)7_, and (y,){_, are complex numbers obtained as roots of polynomials
whose coefficients can be computed numerically in a straightforward way. Figure 3
visualizes the approximation hf:%(x) of h(x) on x €[0,10] for ¢ =2,5,10 and

1.2 1.2
1 ~— Approx. of h(x) with q =2| 1 1 | Approx. of h(x) with q =5|
= 0.8 < 08
= =
s 06 s 0.6
v .
S 04 S 04
[=% (=%
o (=%
< 02 < 0.2
0 0
_02 -
0 2 4 6 8 10 0'20 2 4 6 8 10
X X
1.2 1.2
1 ~—— Approx. of h(x) with g =10 1 ——— Approx. of h(x) with g =50
z 08 x 08
= =
s 0.6 5 0.6
» »
S 04 S 04
(=% [=%
(=% (=%
< 02 < 02
0 o 0
-0.2 -0.2
0 2 4 6 8 10 0 2 4 6 8 10
X X

Figure 3. The function héﬁ;(x) as approximation of h(x) for x € [0, 10] with ¢ =2, 5,10

and g = 50.
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5 0.05 t _ it
B o |1 5 002 Ii
. 1 @ 3
3 i X 0.015f | i
gomh}\i['; % \ Ii
2 i | H
0.02 il < 001 EJHI “
0.01 ?H 0oos} i | T A
0 Ofﬁg M ;;ﬁlmvmﬂm.,.. |

0 2 4 6 8 10 0 2 4 6 8 10
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-3
10
0.015 4 : :
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i 3
g 001} l E
]
g ' &
1 L
0
0 2 4 6 8 10

Figure 4. B (x)| for x € [0,10] with ¢ =2,5,10 and

g = 50.

The approximation error |h(x) —

g = 50. As can be seen in Fig. 3, the approximation is fairly good already for
small values values of ¢. In Iscoe et al. (2010) the authors choose the algorithm
for computing (w,)7_, and (y,)i_, so that d(e) =2, and then they show that the
approximation accuracy € satisfies e 1+1) < € where ¢ are the number terms in (36).

Thus, g can be chosen first, implying an accuracy € so that G +1) < e. In practice,

the error |h(x) — héxp(x)| will for almost all x € [0, c0) be much smaller than the
lower bound G0 for €, as can bee seen in Figure 4. More specifically, in Iscoe
et al. (2010, 2013) the authors show that Re(y,) < 0 for all £ (see also in Figure 5)
which implies that hé,’g,(x) — 0 as x — oo and, as pointed out by Iscoe et al. (2010),
since h(x) =0 for x > 1 this guarantees that hﬁ%(x) — h(x) when x — oco. In the
rest of this paper we will, just as in Iscoe et al. (2010, 2013) and Bielecki et al.
(2014a), use d = 2 in the approximation hexp(x) given by (36).

Since (w,){_, are roots to a certain polynomial, then if { € (w,)7_, it will also
hold that { € (w,)?_,. The same also holds for the complex numbers (7,)¢_, . Thus,
it will hold that Im (3_7_, 7,exp (y,x/d)) =0 and Fig. 5 displays the coefficients
(w,)f_, and (y,);_, in the case g = 50.

It is well known that in order to price synthetic CDO tranches, one needs
to compute the quantity EL*’ for ¢t > 0, see e.g. in Herbertsson (2008). So by
replacing h(x) with hg%(x) in (35) with d = 2 and using (36) then implies that we
can approximate L*’ as follows
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The v coefficients for 1=1,2,....q when q=50

400 T T T T
200} 1
-200 ]
-400 . 1 . . L
=12 =10 -8 -6 -4 -2 0
Re(y)
1 Some of the w-coefficients when q=50
X
N T r - T T T T
2 - <
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£ gt Ok 4
£ 0 , oo
-1k . 1
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_3 |- ) ) ) .
-5 -4.5 -4 =35 -3 =25 -2 -1.5 -1 -0.5 1]
Re{w) x107

Figure 5. The coefficients (y,)7_; (top) and some of the coefficients (w,)j_; (bottom) when
q = 50.

q L 4 L
Lﬂzb—a—bzwwm(wﬁ>+a2wﬁw(w§> (37)

=1 =1

and, consequently,

i L il L
EL" ~b—a—b) oEexp (Wﬁ) +a) oEexp <y£2—;>. (38)

=1 =1

Thus, in view of (38), the pricing of a CDO tranche of maturity 7, boils down to
computation of expectations of the form

Ee'e (39)
for ¢ =1,2,..., g and different attachment points ¢ and time horizons 0 <t < T.

Remark 3.3. One can extend the present developments to conditional expectations
given 7, for any 0 < s < t. The case s = 0 is used in the calibration (our focus in
this paper), while the case s > 0 is needed for pricing the credit valuation adjustment
(CVA) on a CDO tranche in a counterparty risky environment, a topical issue since
the 2007-09 credit crisis (see Crépey and Rahal, in press).

Since the algorithm for computing e’ % is the same for each £ =1,2, ..., g and
any attachment point ¢, we will below for notational convenience simply write
Ee'™ instead of Ee %

We now use the common shock model representation developed in Sec. 3
of Bielecki et al. (2014c), with the same notation that was introduced there except
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that 0 there is ¢ here, and 7 there is simply 0 here, as we focus here on expectations
and not conditional expectations; moreover we now use a “.” notation for the
common shocks model representation at the starting time 0 below, instead of
a “(t)” which is used for common shocks model representation with a varying
forward starting time ¢ in Bielecki et al. (2014a).

We thus introduce a common shocks copula model of default times 7, defined
by, for every Y € ¥,

t
%y:inf{t>0;/ XYds > Ey},
0

where the random variables E, are iid. and exponentially distributed with
parameter 1. For every obligor i we let

T.= min 71y, 40
"7 veysien ¥ (40)

which defines the default time of obligor i in the common shocks copula model.
We also introduce the indicator processes I:I,y =17, <t and I:I,’ =17, <1, for every
triggering-event Y and obligor i. One then has much like in Proposition 2.10(ii)
of Bielecki et al. (2014a) that

Ee't = Ee' (41)

where L, := Y",(1 — R)H! .
We henceforth assume a nested structure of the sets /; given by

Lc--ClI, (42)

This structure implies that if all obligors in group I, have defaulted, then all
obligors in group [,,...,I,_; have also defaulted. As detailed in Bielecki et al.
(2014a), the nested structure (42) yields a particularly tractable expression for the
portfolio loss distribution. This nested structure also makes sense financially with
regards to the hierarchical structure of risks which is reflected in standard CDO
tranches. Denoting conventionally 7, = ¢ and H}(0) = 1, then the event-sets

O = (H' =1,H""=0,... H"=0'<j<m
form a partition of Q) with

P(0) = (1- Be 6%) [T Ee i,

JjH1<i<m

where the expectations are explicitly given by Proposition 3.1(i). One then has in
(41) that

Ee'l = Y E(eh | Q))P(Y) (43)

0<j<m
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in which by conditional independence of the ﬁ],’ given every QO
E( el | Q{) — [E(eyzia—R,Jﬁ; | Q{) =TTy IE(em—R,-)ﬁI:' | Q;‘).

Now observe that by independence of R,

. 7(1=R;) [
IE (e R0 |ﬁ{) = {EZ/(I—R,-)I’%“’, lel:elj (44)
with
B0 _ 1 i3 (1 Be-0), 4s)
where

~iLjo_ 1, iEIj’
Pr= 11 B i 14 gge

in which the expectation is explicitly given by Proposition 3.1(i) for CIR intensities
or Remark 3.2 for deterministic intensities. Hence, the above formulas together
with (41) will determine the quantity (39) which in turn is needed to compute the
expected tranche loss given by (38). Furthermore, from the above equations we see
that what is left to compute is the quantity IEe’!=%) and in Sec. 5 we will give an
explicitly example of the recovery rate R, (and the quantity [Ee’!~%)) which will
be used in in Sec. 5.2 with the above hockey-stick method when calibrating the
Markov copula against market data on CDO tranches. As will be seen in Sec. 5.2,
using random recoveries will for some data sets render much better calibration
results compared with the case of using constant recoveries.

4. Calibration with Stochastic Intensities and Constant Recovery

In this section, we discuss the calibration methodology used for fitting the stochastic
intensity Markov copula model against CDO tranches on CDX.NA.IG series.
We use here extended CIR intensities with piecewise-constant mean-reversion
coefficients (as described previously) and we assume that recovery rates are constant.
In Sec. 5, we will investigate the “dual” model specification where intensities are
deterministic and recoveries are stochastic.

Recall that, given non negative constants a and ¢, the intensity process of any
group Y € % is defined by

dX! =a(by(t) — X)) dt + ¢/ X  dW/ (46)

where X] is a given constant and b, (r) is a piecewise constant function such that,
for every k =1... M, b,(t) = b te [T, T,) with T, = 0. In this paper we will
use a time tenor consisting of two maturities 7, = 3y and 7, = 5y. Moreover, in
order to reduce the number of parameters at hands, we consider that, for every
group Y € %, the starting point of the corresponding intensity process is given by
its first-pillar mean-reversion parameter, i.e., X! = b(Yl). Note that in that case, given
a and c, the intensity dynamics of any group Y € % is completely characterized by
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bg,k) , k=1, 2. In particular, thanks to (4), the survival probability of name i up to
T, is characterized by (bfk))k:l,2 where

b =b) + 3 b (47)

NEJE]

The calibration is done in two steps. The first step consists in boostrapping (bfk)) 1.2
on the single-name CDS curve associated with obligor i, for any i =1, ..., n. The
CDS curve of name i is composed of two market spreads: S;(7,) corresponding
to maturity 7, and S7(7,) corresponding to maturity 7,. We first remark from
(28) and Proposition 3.1 that the model spread of CDS i with maturity 7, only
depends on b,-(l) whereas the model spread of CDS i with maturity 7, depends on
bfl) and bfz). As soon as a and c are fixed, we can then find bil) as the solution of
the non-linear (univariate) equation S;(7;) = S¥(7;), plugged this solution into the
expression of S;(7,) and then find biz) as the solution of the non-linear (univariate)
equation S;(7,) = S;(7,). Figure 5, 6 and 7, respectively, show the 3y- and the
Sy-implied mean-reversion coefficients bootstrapped from the 125 CDS curves of
the CDX.NA.IG index constituents as of December 17, 2007. We compare three
different specifications of the underlying individual intensities : piecewise-constant
deterministic intensities (standard bootstrap procedure), CIR intensities with a = 3
and ¢ = 0.05 and CIR intensities with ¢ = 3 and ¢ = 2. We can see that the volatility
parameter ¢ has little impact on implied coefficients whereas individual intensities
may be relatively volatile even for small volatility parameter as illustrated by Fig. 8.

Remark 4.1. We checked that, for a = 3 and ¢ = 0.05, the Feller’s condition holds
for all names after calibration of the mean-reversion levels b®)’s on CDS spreads.
This eases Monte Carlo path generation considerably compared to a situation
where the Feller’s condition would be violated.

The second step is to calibrate group parameters (by,‘)) w=1.2o J = 1,..., mso that
the model CDO tranche spreads coincide with the corjresponding market spreads.
The hockey-stick method described in Sec. 3.3 can be used to compute model CDO
tranche spreads.

0.25‘

02 [— plecewize—constant (deterministic) intensity model
—+— generalized CIR intensity model with a = 3 and ¢=0.05
generalized CIR intensity model with a = 3 and ¢=2

e
o

first-pillar levels

e
."_'_Flv-

S5
0.05 .MX

0 2‘0 40 60 T 3‘0 100 120
obligors
Figure 6. Three-year mean-reversion coefficients bgl), i=1,...,125 bootstrapped from

CDX.NA.IG December 17, 2007 single-name CDS curves and sorted in decreasing order.
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0.07F | piecewise-constant (delerministic) intensity model 1
—+— generalized CIR intensity model with a = 3 and ¢=0.05
CIR intensity model with a = 3 and ¢=2 -

sacond pillar levels

60
abligors

Figure 7. Five-year mean-reversion coefficients bfz), i=1,...,125 bootstrapped from
CDX.NA.IG December 17, 2007 single-name CDS curves and sorted in decreasing order.

Moreover, in view of (47), we impose that, forallk =1,2and i =1, ..., n, the
group parameters are such that

> b < b (48)

Fal>i

for all i=1,...,125. The previous constraints guarantee that the long-term
averages bg.‘}) of single-group intensities are all positive. This in turn implies by
construction that the starting points of single-group intensities Xéi} are all positive.
Given the nested structure of the groups /;-s specified in (42), the following
constrains must hold forall /=1,...,mand k=1, 2:

Zb}f) < min b, (49)

= iel)\I;_;

0.0181
0.016
.I1 uj'

0.014

.# “II’,.I.;, 'Nﬂ'"ﬂ .
||' ‘ ||H .' IJ1'|'|' .h"l|:l ,‘.ﬂ']‘l' % A |
_ ‘“,_ ‘i 'I f||4 !"Elu'
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é

Figure 8. Sample paths of generalized CIR intensities with @ = 3 and ¢ = 0.05 where mean-
reversion parameters are implied from AIG CDS curve at December 17, 2007. The first and
the second pillar coefficients are (resp.) equal to bV = 0.096 and b® = 0.075.
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Next, the group parameters b = (b;lf))ﬁk = {bﬁ%) :j=1,....,mand k = 1,2} are
then calibrated so that the five-year model sprejad Sa6, () =2 S,(1) will coincide
with the corresponding market spread S; for each tranche I. To be more specific,
the parameters b = (b;f) )« are obtained according to

. 2
b = argmin > (Sl(b)—_sl> (50)

*
b i Sl

under the constraints that all elements in b are non negative and that b satisfies the
inequalities (49). In S,(h) we have emphasized that the model spread for tranche /
is a function of b = (bg() )« but we suppressed the dependence in other parameters
like interest rate, payment frequency or b;, i = 1, ..., n. In the calibration we used
an interest rate of 3%, the payments in the premium leg were quarterly and the
integral in the default leg was discretized on a quarterly mesh. We use a constant
recovery of 40%.

As can be seen in Table 1, we obtain a correct fit for CDX 2007-12-17 even
in the case where no name is removed from the calibration constraints. Here,
we use 5 groups Iy, I, ..., 15 where I, ={1,...,i;} for i;=8,19,27,102, 125.
However, for the two cases, we label the obligors by decreasing level of riskiness.
We use the average over 3-year and 5-year CDS spreads as a measure of riskiness.
Consequently, obligor 1 has the highest average CDS spread while company 125
has the lowest average CDS spread. We use Matlab in our numerical calculations
and the related objective function is minimized under the suitable constraints by
using the built in optimization routine fmincon (e.g. in this setup, minimizing the
criterion (50) under the constraints given by equations on the form (49)).

For iTraxx Europe 2008-03-31, the calibration results are not improved with
respect to the piecewise-constant intensity model and constant recovery.

As a matter of comparison, we plot in Fig. 9 the loss distribution functions
obtained from fitted parameters of the generalized CIR intensity model with a = 3
and ¢ = 0.5 and from the fitted parameters of the piecewise-constant (deterministic)
intensity model (see Sec. 5.2 for more details). Note that the grouping is not
the same in the two calibrated models. For the deterministic intensity model, we
used 5 groups I, 1, ..., Is where I, ={1,...,i;} for i; =6,19,25,61,125 when
calibrating the joint default intensities. Moreover, the obligors in the set I5 I,

Table 1
CDX.NAL.IG Series 9, December 17, 2007. The market and model spreads and the
corresponding absolute errors, both in bp and in percent of the market spread.
The [0, 3] spread is quoted in %. All maturities are for five years.

CDX 2007-12-17: Calibration with constant recovery

Tranche [0,3] [3,7] [7,10] [10,15] [15,30]
Market spread 48.07 254.0 124.0 61.00 41.00
Model spread 50.37 258.01 124.68 61.32 41.91
Absolute error in bp 2.301 4.016 0.684 0.327 0.912

Relative error in % 4.787 1.581 0.552 0.536 2.225
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Figure 9. Comparison of 5-year implied loss distributions (P(}; H! = k), k =0, ..., 125)
from CDX.NA.IG December 17, 2007 calibration of the generalized CIR intensity model
and the piecewise constant intensity model.

consisting of the 64 safest companies are assumed to never default individually,
and the corresponding CDSs are excluded from the calibrations constraints. This
specification renders a perfect fit. For the CIR intensity model, we also use 5 groups
but with i; =8, 19,27, 102, 125 and, contrary to the deterministic intensity model,
we do not remove any name from the calibration constraints. This specification
renders a very good fit.

5. Calibration with Deterministic Intensities and Random Recoveries

In this section we discuss the second calibration methodology used when fitting
the Markov copula model against CDO tranches on the iTraxx Europe and
CDX.NAL.IG series in Sec. 5.2. This method relies on piecewise constant default
intensities and random recoveries. Recall that compared with constant recoveries,
using random recoveries requires a more sophisticated method in order to compute
the expected tranche losses, as was explained in Sec. 3.3.

The piecewise-constant intensity model used in this section is the one presented
in Remark 3.1 (see also numerical applications in Bielecki et al., 2014c). Remark 3.2
can be used to compute survival probabilities in this setting.

The calibration methodology and constraints connected to the piecewise
constant default intensities are the same as for the mean-reversion coefficients in
the CIR intensity case of Section 4: one only needs to replace b by A in formulas
(47), (48), and (49). Therefore we will in this Section only discuss the distribution
for the individual stochastic recoveries R; as well as accompanying constraints used
in the calibration. This distribution will determine the quantity IE (¢/'=%)) in (45)
which is needed to compute the expected tranche losses.

5.1. Random recoveries specification and calibration methodology

We assume that the individual recoveries {R;} are i.i.d and have a binomial mixture
distribution of the following form:

1
R, ~ EBin (K, R*(py+ (1 = O)p;)) where ® € {0,1} and P[®@ =1] =4, (51)
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where R*, g, p, and p, are positive constants and K is an integer (in this paper and
in Bielecki et al., (2014a) we let K = 10). As a result, the distribution function for
the recovery rate is given by

1
(5= ) = ZuO ()01 = p) = where p(© = (py+(1-0py) (2

where £ € {0, 1} and u(l) = ¢, u(0) =1—gq.
In view of (51) and (52) we can give an explicit expression for the quantity
[Ee’0—R) specified in Sec. 3.3, as follows:

1 K
Ee0-%) = Y3 ¢(1-4) <I]§)p(é)k(l — P, (53)

=0 k=0

Recall that IEe’0—R) together with the corresponding computations in Sec. 3.3
and Eq. (41) will determine the quantity Ee' % in (39) which in turn is needed to
compute the expected tranche loss given by Eq. (38).

Let R* be a constant representing the average recovery for each obligor in the
portfolio. We now impose the constraint [ER = R* which is necessary in order to
have a calibration of the single-name CDSs that is separate from the calibration
of the common-shock parameters. The condition IER = R* leads to constraints
on the parameters p,, ¢ and p, that must be added to the constraints for the
common shock intensities used in the calibration of the CDO tranches (recall that
the calibration is a constrained minimization problem for these parameters). Below
we derive these constraints for p,, g, and p,. First, note that

R*
ER = —KE[py+ (1 = Opi] = R'py+ (1 —g)p,
so the condition ER = R* implies p, + (1 — g)p; = 1 which yields

N 1 —p,

P = 1 . (54)
—dq

Thus, p; can be seen as a function of ¢ and p,. Next, in view of (51) we have for
any scalar ¢ € {0, 1} that

plr=glo=¢|=(§)rora-per (59)

where p(¢) is defined as in (52). Since p(¢) is a probability for ¢ € {0, 1} it must
hold that

p(1) =R*p, € (0,1) and p(0) = R*(p, +py) € (0, 1)

that is,

0<R'py<1 and 0<R*(py+py) < 1. (56)
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We can always assume that p, > 0 and 0 < R* < 1 so the first condition in (56)
then implies

1
Do < —. (57)

R*
Furthermore, by inserting (54) into the second condition in (56) we retrieve the
following constraint:

1-—
0<pr——P9 (58)
l—g¢g

Since g € (0, 1) and consequently 1 — g > 0, then (58) implies 1 — p,g > 0, that is

1
q< ; (59)
0

However, we note that this is a “soft” condition since (57) implies that p, < % and
if p, < 1 then (59) is superfluous since we already know that 0 < ¢ < 1. Next, (58)
also tells us that R*(1 — p,q) < (1 — g) which after some computation yields

1-R*

_ 60
= 1 — R*p, (60)

q

Finally, it must obviously hold that g < 1 since IP[® = 1] = ¢. Thus, combining
this with (59) and (60) gives us the following final constraint for the parameter ¢,

1 1-R*
g<min(l, —, ——— . (61)
po 1= Rp

Consequently, using the same notation as in Sec. 4 and replacing the group
parameters identifier b by 4= (/"tﬁf)),-,k = {ig‘) :j=1,...,m and k=1,2}, the
parameters 6 = (4, gq) are obtained according to

A 2
0 = argmin ) | <SI(0)—_SZ) , (62)

*
0 1 Sl

where 4 must satisfies the same constraints as b in Sec. 4 and ¢ must obey (61).
The rest of the notation in (62) are defined as in Sec. 4. In our calibrations the
parameters p, and R* will be treated as exogenously given parameters where we set
R* = 40% while p, can be any positive scalar satisfying p, < %. The scalar p, will
give us some freedom to fine-tune our calibrations. In Sec. 5.2 we use the above
setting with stochastic recoveries when calibrating this model against two different
CDO data-sets.

Finally, note that if the i.i.d recoveries R; would follow other distributions than
(51) we simply modify [Ee’!=®) in (45) in Sec. 3.3 but the rest of the computations
are the same. Of course, changing (51) will also imply that the constraints in (61)
will no longer be relevant.
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5.2. Calibration Results

In all the numerical calibrations below we use an interest rate of 3%, the payments
in the premium leg are quarterly and the integral in the default leg is discretized on
a quarterly mesh. Constant or average recoveries (as relevant) are set equal to 40%.

In this section, we calibrate our model against CDO tranches on the iTraxx
Europe and CDX.NA.IG series with maturity of five years. We use the random
recoveries and the calibration methodology as described in Sec. 5.1. Hence, the 125
single-name CDSs constituting the entities in these series are bootstrapped from
their market spreads for 7, =3 and 7, =5 using piecewise constant individual
default intensities on the time intervals [0, 3] and [3,5]. Figure 10 displays the
3 and 5-year market CDS spreads for the 125 obligors used in the single-name
bootstrapping, for the two portfolios CDX.NA.IG sampled on December 17, 2007
and the iTraxx Europe series sampled on March 31, 2008. The CDS spreads are
sorted in decreasing order.

When calibrating the joint default intensities 4 = (zﬁj?)j,k for the CDX.NA.IG
Series 9, December 17, 2007 we used 5 groups I, 1, ..., Is where I, ={1,...,i}
for i; =6, 19,25, 61, 125. Recall that we label the obligors by decreasing level of
riskiness. We use the average over 3-year and 5-year CDS spreads as a measure
of riskiness. Consequently, obligor 1 has the highest average CDS spread while
company 125 has the lowest average CDS spread. Moreover, the obligors in the
set I5\ I, consisting of the 64 safest companies are assumed to never default
individually, and the corresponding CDSs are excluded from the calibration, which
in turn relaxes the constraints for 4 Hence, the obligors in /5 \ I, can only bankrupt
due to a simultaneous default of the companies in the group /5 = {1, ..., 125}, i.e,
in an Armageddon event. With this structure the calibration against the December
17, 2007 data-set is very good as can be seen in Table 2. By using stochastic
recoveries specified as in (51) and (52) we get a perfect fit of the same data-set.
The calibrated common shock intensities 4 for the 5 groups in the December 17,
2007 data-set, both for constant and stochastic recoveries, are displayed in the left
subplot in Fig. 11. Note that the shock intensities /153) for the first pillar (i.e. on the

1200

-~ 3-year CDS spreads: (Tracee March 31, 2008

1000+ S-year CDS spreads: iTrax March 31, 2008
| —+— J-year CDS spreads: CDX Dec 17, 2007

S-year CDS spreads: CDX Dec 17, 2007 |

CDS spreads

| ¥
] 20 40 60 80 100 120 140
obligors

Figure 10. The 3- and 5-year market CDS spreads for the 125 obligors used in the single-
name bootstrapping, for the two portfolios CDX.NA.IG sampled on December 17, 2007
and the iTraxx Europe series sampled on March 31, 2008. The CDS spreads are sorted in
decreasing order.
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Table 2
CDX.NAL.IG Series 9, December 17, 2007 and iTraxx Europe Series 9, March 31,
2008. The market and model spreads and the corresponding absolute errors, both
in bp and in percent of the market spread. The [0, 3] spread is quoted in %. All
maturities are for five years.

CDX 2007-12-17: Calibration with constant recovery

Tranche [0, 3] [3,7] [7, 10] [10, 15] [15, 30]
Market spread 48.07 254.0 124.0 61.00 41.00
Model spread 48.07 254.0 124.0 61.00 38.94
Absolute error in bp 0.010 0.000 0.000 0.000 2.061
Relative error in % 0.0001 0.000 0.000 0.000 5.027

CDX 2007-12-17: Calibration with stochastic recovery

Tranche [0, 3] [3,7] [7,10] [10, 15] [15, 30]
Market spread 48.07 254.0 124.0 61.00 41.00
Model spread 48.07 254.0 124.0 61.00 41.00
Absolute error in bp 0.000 0.000 0.000 0.000 0.000
Relative error in % 0.000 0.000 0.000 0.000 0.000

iTraxx Europe 2008-03-31: Calibration with constant recovery

Tranche [0, 3] [3, 6] [6, 9] [9,12] [12,22]
Market spread 40.15 479.5 309.5 215.1 109.4
Model spread 41.68 429.7 309.4 215.1 103.7
Absolute error in bp 153.1 49.81 0.0441 0.0331 5.711
Relative error in % 3.812 10.39 0.0142 0.0154 5.218

iTraxx Europe 2008-03-31: Calibration with stochastic recovery

Tranche [0, 3] [3, 6] [6, 9] [9,12] [12,22]
Market spread 40.15 479.5 309.5 215.1 109.4
Model spread 40.54 463.6 307.8 215.7 108.3
Absolute error in bp 39.69 15.90 1.676 0.5905 1.153
Relative error in % 0.9886 3.316 0.5414 0.2745 1.053

interval [0, 3]) follows the same trends both in the constant and stochastic recovery
case, while the shock intensities )Lf) for the second pillar (i.e. on the interval [3, 5])
has less common trend. '

The calibration of the joint default intensities 4 = ()»%‘))j’k for the data sampled
at March 31, 2008 is more demanding. This time we use 18 groups I, I, ..., I3
where I, ={1,...,i;} for i;=1,2,...,11,13,14,15,19,25,79,125. In order to
improve the fit, as in the 2007-case, we relax the constraints for A by excluding
from the calibration the CDSs corresponding to the obligors in I, \ 1;;. Hence, we
assume that the obligors in I, \ /;; never default individually, but can only bankrupt
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due to an simultaneous default of all companies in the group I3 = {1, ..., 125}. In
this setting, the calibration of the 2008 data-set with constant recoveries yields an
acceptable fit except for the [3, 6] tranche, as can be seen in Table 2. However, by
including stochastic recoveries (51), (52) the fit is substantially improved as seen in
Table 2. Furthermore, in both recovery versions, the more groups added the better
the fit, which explain why we use as many as 18 groups.

The calibrated common shock intensities 4 for the 18 groups in the March
2008 data-set, both for constant and stochastic recoveries, are displayed in the right
subplot in Figure 11. In this subplot we note that for the 13 first groups /1, ..., I3,
the common shock intensities X() for the first pillar are identical in the constant
and stochastic recovery case, and then diverge quite a lot on the last five groups
L, ..., Iy, except for group Ij,. Similarly, in the same subplot we also see that
for the 11 first groups 1, ..., I;;, the shock intensities /1( ) for the second pillar are
identical in the constant and stochastic recovery case, and then differ quite a lot on
the last seven groups, except for group /5.

The optimal parameters g and p, used in the stochastic recovery model
was given by ¢ = 0.4405 and p, = 0.4 for the 2007 data set and g = 0.6002 and
po = 0.4 for the 2008 case. Fig. 12 displays the recovery distribution with calibrated
parameters g for the two different data sets CDX.NA.IG series sampled at 2007-12-
07 and iTraxx Europe sampled at 2008-03-31. Here I[E[R] = R* = 0.4 and p, = 0.4
in both cases. As seen in Fig. 12, the implied probability for a recovery of 0%, 10%
and 20% was consistenly higher in the 2008 sample compared with the 2007 data
set (in March 2008 Bear Stearns was bailed out leading to around three times
higher credit spreads than in December 2007, both in Europe and North America).
Recall that a recovery of 0% means that everything is lost at a default.

Let us finally discuss the choice of the groupings I, C I, C--- C [, in our
calibrations. First, for the CDX.NA.IG Series 9, December 17, 2007 data set, we
used m =5 groups with as always i, =n. For j=1,2, and 4 the choice of i;

Common shock intensities for CDX.NA.IG, 2007-12-17 Common shock intensities for iTraxx Europe, 2008-03-31
0.06 0.025
] - ?Lf!.". const. recovery - lf; ). const. recovery
0.05+ —a— lfl.z), const. recovery 0.02 —e— Ju.ff} const. recovery
} U] : ()
-.“:3 lll. , stoch, recovery 8 llj , stoch. recovery
@ 0.04 lfl.z), stoch. recovery 'g'a JijZ}, stoch. recovery
£ 20015 .
- -
2 0.03 g ‘ﬁ
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c c ' |
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Figure 11. The calibrated common shock intensities ()( )) ;x both in the constant and
stochastic recovery case for the two portfolios CDX.NA. IG sampled on December 17, 2007
(left) and the iTraxx Europe series sampled on March 31, 2008 (right).
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The implied recovery distribution
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Figure 12. The implied recovery distribution with calibrated parameters ¢ in Bielecki et al.
(2014a), for the two different data sets CDX.NA.IG series sampled at 2007-12-07 and iTraxx
Europe sampled at 2008-03-31, where [E [R] = R* = 0.4 in both cases.

corresponds to the number of defaults needed for the loss process with constant
recovery of 40% to reach the j-th attachment points. Hence, i, - I’TR with R = 40%
and n = 125 then approximates the attachment points 3%, 10%, 30% which explains
the choice i, = 6, i, =19, iy = 61. The choice of i; = 25 implies a loss of 12% and
gave a better fit than choosing i; to exactly match 15%. Finally, no group was
chosen to match the attachment point of 7% since this made the calibration worse
off for all groupings we tried. With the above grouping structure we got almost
perfect fits in the constant recovery case, and perfect fit with stochastic recovery, as
was seen in Table 2. Unfortunately, using the same technique on the market CDO
data from the iTraxx Europe series sampled on March 31, 2008 was not enough
to achieve good calibrations. Instead more groups had to be added and we tried
different groupings which led to the optimal choice rendering the calibration in
Table 2. To this end, it is of interest to study the sensitivity of the calibrations
with respect to the choice of the groupings on the form I, C I, C --- C I,, where
I;={1,....i;} for i;e{1,2,...,m} and i; <--- <i, =125 on the March 31,
2008, data set. Three such groupings are displayed in Table 3 and the corresponding
calibration results on the 2008 data set is showed in Table 4. From Table 4 we
see that in the case with constant recovery the relative calibration error in percent
of the market spread decreased monotonically for the first three thranches as the
number of groups increased. Furthermore, in the case with stochastic recovery
the relative calibration error decreased monotonically for all five tranches as the
number of groups increased in each grouping. The rest of the parameters in the
calibration where the same as in the calibration in Table 2.

Finally, we remark that the two optimal groupings used in Table 2 in the two
different data sets CDX.NA.IG Series 9, December 17, 2007 and iTraxx Europe
Series 9, March 31, 2008 differ quite a lot. However, the CDX.NA.IG Series is
composed by North American obligors while the iTraxx Europe Series is formed
by European companies. Thus, there is no model risk or inconsistency created by
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Table 3
Three different groupings (denoted A, B and C) consisting of m = 7,9, 13 groups
having the structure I, C I, C --- C I, where [; = {1,...,i;} for i, € {1,2,..., m}

and i; < --- < i, =125

Three different groupings

L L %) I3 Iy Is lg Iy lg lg Lo U1 I I3

GroupingA 6 14 15 19 25 79 125
GroupingB 2 4 6 14 15 19 25 79 125
GroupingC 2 4 6 8 9 10 11 14 15 19 25 79 125

Table 4
The relative calibration error in percent of the market spread, for the three
different groupings A, B, and C in Table 3, when calibrated against CDO tranche
on iTraxx Europe Series 9, March 31, 2008 (see also in Table 2)

Relative calibration error in % (constant recovery)

Tranche [0, 3] [3, 6] [6,9] [9, 12] [12,22]
Error for grouping A 6.875 18.33 0.0606 0.0235 4.8411
Error for grouping B 6.622 16.05 0.0499 0.0206 5.5676
Error for grouping C 4.107 11.76 0.0458 0.0319 3.3076

Relative calibration error in % (stochastic recovery)

Tranche [0, 3] [3, 6] [6,9] [9, 12] [12,22]
Error for grouping A 3.929 9.174 2.902 1.053 2.109
Error for grouping B 2.962 7.381 2.807 1.002 1.982
Error for grouping C 1.439 4.402 0.5094 0.2907 1.235

using different groupings for these two different data sets, coming from two disjoint
markets. If on the other hand the same series is calibrated and assessed (e.g., for
hedging) at different time points in a short time span, it is of course desirable to
use the same grouping in order to avoid model risk.

Conclusions and Perspectives

In this paper we make a focus on two practically important features of the Markov
copula portfolio credit risk model of Bielecki et al. (2014a,b,c): random recoveries
and stochastic intensities. Regarding random recoveries it would be interesting to
find ways to add some dependence features without breaking the model tractability
(in the current specifications one is only able to work with independent recoveries).
As for stochastic intensities it would nice to find a good way of fixing the parameters
a and ¢, maybe based on historical observation of the dynamics of CDS spreads,
rather than quite arbitrarily in this paper, as these dynamic parameters have
little impact on CDS and CDO spreads. Also note that other specification of
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the intensities could be used, in particular Lévy Hull-White intensities driven by
subordinators (for the sake of non-negativity, cf. Example 3.6 in Crépey et al.,
2012). Finally, it would be interesting to apply these alternative specifications and
to compare them in the context of CVA computations on portfolios of CDS and/or
CDOs.
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