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Abstract

We present a framework for computing CVA sensitivities, hedging the CVA,
and assessing CVA risk, using probabilistic machine learning meant as refined
regression tools on simulated data, validatable by low-cost companion Monte
Carlo procedures. We identify the sensitivities representing the best practical
trade-offs in downstream tasks including CVA hedging and risk assessment.

Introduction
This work illustrates the potential of probabilistic machine learning for pricing
and Greeking applications, in the challenging context of CVA computations. By
probabilistic machine learning we mean machine learning as refined regression tools
on simulated data. Probabilistic machine learning for CVA pricing was introduced
in Abbas-Turki, Crépey, and Saadeddine (2023). Here we extend our approach to
encompass CVA sensitivities and risk. The fact that probabilistic machine learning
is performed on simulated data, which can be augmented at will, does not mean that
there are no related data issues. As always with machine learning, the quality of the
data is the first driver of the success of the approach. The variance of the training
loss may be high and jeopardize the potential of a learning approach. This was
first encountered in the CVA granular defaults pricing setup of Abbas-Turki et al.
(2023) due to the scarcity of the default events compared with the diffusive scale of
the risk factors in the model. Switching from prices to sensitivities in this paper is
another case of increased variance. But with probabilistic machine learning we can
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also develop suitable variance reduction tools, namely oversimulation of defaults
in Abbas-Turki et al. (2023) and common random numbers in this work. Another
distinguishing feature of probabilistic machine learning, key for regulated banking
applications, is the possibility to assess the quality of a predictor by means of low-
cost companion Monte Carlo procedures.

All equations are written using the risk-free asset as a numéraire and stated
under the fininsurance probability measure advocated for XVA computations in
Albanese, Crépey, Hoskinson, and Saadeddine (2021, Remark 2.3), with related
expectation operator denoted below by E. Unless explicitly stated, we include a
ridge regularization term to stabilize trainings and regressions.

1 Fast Bump Sensitivities
Consider a time-0 option price Π0(ρ) = Eξ(ρ), where the payoff ξ(ρ) ≡ ξ(ρ;ω) de-
pends on constant model parameters ρ and (implicitly in the shorthand notation
ξ(ρ)) on the randomness ω of the stochastic drivers of the model risk factors with
respect to which the expectation is taken. The model parameters ρ encompass the
initial values of the risk factors of the pricing model, as well as all the exogenous
(constant, in principle) model parameters, e.g. the value of the volatility in a Black-
Scholes model. For each constant ρ, the price Π0(ρ) can be estimated by Monte
Carlo. Our problem in this part is the estimation of the corresponding sensitivities
∂ρΠ0(ρ0), at a baseline (in practice, calibrated) value ρ = ρ0 of the model parame-
ters. Such sensitivities lie at the core of any related hedging scheme for the option.
They are also key in many regulatory capital formulas.

Monte Carlo estimation of sensitivities in finance comes along three main streams:
(i) differentiation of the density of the underlying process via integration by parts
or more general Malliavin calculus techniques, assuming some regularity of this
process; (ii) cash flows differentiation, assuming their differentiability; (iii) Monte
Carlo finite differences, biased but generic, which are the Monte Carlo version of
the industry standard bump sensitivities. But (i) suffers from intrinsic variance is-
sues. In contemporary technology, (ii) appeals to adjoint algorithmic differentiation
(AAD). AAD can quickly represent important implementation and memory costs
on complex pricing problems at the portfolio level such as CVA computations: see
Capriotti, Jiang, and Macrina (2017). Such an AAD Greeking approach becomes
nearly unfeasible in the case of pricing problems embedding numerical optimiza-
tion subroutines, e.g. the training of the conditional risk measures embedded in the
refined CVA and higher-order XVA metrics of Albanese et al. (2021).

1.1 Common Random Numbers

Under the approach (iii), bump sensitivities are computed by relaunching the Monte
Carlo pricing engine with common random numbers ω for values bumped by ±1%
(typically and in relative terms) of each risk factor and/or model parameter of in-
terest, then taking the accordingly normalized difference between the corresponding
Π0(ρ) and Π0(ρ̄), where ·̄ means symmetrization with respect to ρ0, so

ρ+ ρ̄

2 = ρ0, i.e. ρ̄ = 2ρ0 − ρ. (1)
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This approach requires two Monte Carlo simulation runs (with common drivers
ω) of m paths per sensitivity, making it a robust but heavy procedure dubbed
benchmark bump sensitivities hereafter. We also compute smart bump sen-
sitivities, similar but only using m/p paths each, where p = |ρ|. Hence the time of
computing all the smart bump sensitivities is of the same order of magnitude as the
time of pricing Π0(ρ0) by Monte Carlo with m paths. More precisely, each smart
bump sensitivity uses m/p paths of a Monte Carlo simulation run with m paths as
a whole. This is significantly more efficient than doing p Monte Carlo runs of size
m/p each, especially in the GPU simulation environment of our CVA computations
below.

As another way to accelerate the bump sensitivities with common random num-
bers as in (iii), a useful trick is to introduce ς(ρ;ω) := ξ(ρ;ω) − ξ(ρ̄;ω) (cf. (1)).
We can then learn the sensitivity (in the sense here of finite differences) function
ρ 7→ Σ0(ρ) := Eς(ρ), which satisfies by linearity and chain rule (as ρ̄ = 2ρ0 − ρ)
Σ′0(ρ) = Π′0(ρ) + Π′0(ρ̄), in particular ∂ρΣ0(ρ0) = 2∂ρΠ0(ρ0). For learning the func-
tion Σ0(·) locally around ρ0, with % randomizing ρ as above, we rely on the repre-
sentation Σ0(ρ) = E

(
ς(%)

∣∣ % = ρ
)
, i.e.

Σ0(·) = arg min
Φ∈B

E
[(
ς(%)− Φ(%)

)2]
, (2)

where B denotes the Borel measurable functions of ρ. Then we replace, in the op-
timization problem (2), B by a linear hypothesis space Σθ

0(ρ) = θ>(ρ− ρ0) (noting
that Σ0(ρ0) = 0) and E by a simulated sample mean Ê, with each draw of % fol-
lowed by one draw of ω that is implicit in ς(%). This results in a linear least-squares
problem for the weights θ, solved by regression. The estimated weights θ/2 are
our linear bump sensitivities estimate for 1

2∂ρΣ0(ρ0) = ∂ρΠ0(ρ0). For simple
parametric distributions of %, the covariance matrix that appears in the regression
is known and invertible in closed form, which reduces this regression (implemented
without ridge regularization in this analytical case) to standard Monte Carlo en-
dowed with the associated confidence intervals, for a computation time comparable
to the one of smart bump sensitivities.

The sensitivities ∂ρΠ0(ρ0) are sensitivities to model parameters. Practical hedg-
ing schemes require sensitivities to calibrated prices of hedging instruments. Hence,
for hedging purposes, our sensitivities must be mapped to hedging ratios in market
instruments. This is done via the implicit function theorem, the way explained in
Antonov et al. (2018).

2 Credit Valuation Adjustment and Its Bump Sensitiv-
ities

Since we are also interested in the risk of CVA fluctuations, we now consider the
targeted price Π (CVA from now on) as a process. We denote by MtMc, the
counterparty-risk-free valuation of the portfolio of the bank with its client c; τc,
the client c’s default time, with intensity process γc; X, with X0 ≡ 0 (componen-
twise), the vector of the default indicator processes of the clients of the bank; Y ,
a diffusive vector process of model risk factors such that each MtMc

t and γct is a
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measurable function of (t, Yt), for t ≥ 0 (in the case of credit derivatives with the
client c, MtMc

s would also depend on Xt, which can be accommodated at no harm
in our setup). The exogenous model parameters are denoted by ε. Let the baseline
ρ0 = (y0, ε0) denote a calibrated value of (y, ε), where y is used for referring to the
initial condition of Y , whenever assumed constant. Let ι denote an initial condition
for Y randomized around its baseline y0, ε be likewise a randomization of ε around
its baseline ε0, and %t = (Yt, ε), t ≥ 0. Starting from the (random) initial condition
(0, ι), the model (X,Y ) is supposed to evolve according to some Markovian dynam-
ics (e.g. the one of our CVA Lab in the next part) parameterized by ε. This setup
encompasses in a common formalism:

• the baseline mode of Abbas-Turki et al. (2023, Section 4) where %0 ≡ ρ0;

• the risk mode where Y0 ≡ y0;

• the sensis mode, or general %0 case (only used for t = 0).

The CVA engine in the baseline mode %0 ≡ ρ0 was introduced in Abbas-Turki
et al. (2023). The risk and sensis mode also incorporating a randomization ε of the
exogenous model parameters ε, and of Y0 in the sensis mode, are novelties of this
work.

We restrict ourselves to an uncollateralized CVA for notational simplicity. Given
n pricing time steps of length h such that nh = T , the final maturity of the derivative
portfolio of the bank, let, at each t = ih,

LGDt =
∑
c

i−1∑
j=0

(MtMc
jh)+1jh<τc≤(j+1)h,

ξt,T =
∑
c

n−1∑
j=i

(MtMc
jh)+(e−h

∑j−1
ı=i

γc
ı − e−h

∑j

ı=i
γc

ı )1{τc>ih}.

(3)

Our computations rely on the following default-based and intensity-based formu-
lations of the (time-discretized) CVA of a bank with clients c, at the pricing time
t = ih (cf. Abbas-Turki et al. (2023, Eqns. (25)-(27))):

CVAt(x, ρ) = E
[∑

c

n−1∑
j=i

(MtMc
jh)+1jh<τc≤(j+1)h︸ ︷︷ ︸

LGDT−LGDt

∣∣∣Xih = x, %ih = ρ
]

= E
[∑

c

n−1∑
j=i

(MtMc
jh)+(e−h

∑j−1
ı=i

γc
ı − e−h

∑j

ı=i
γc

ı )1{τc>ih}︸ ︷︷ ︸
ξt,T

∣∣∣Xih = x, %ih = ρ
]
,

(4)

where each coordinate of x is 0 or 1. From a numerical viewpoint, the second line
of (4) entails less variance than the first one (see Figure 5 in Abbas-Turki et al.
(2023)). Hence we rely for our CVA computations on this second line. At the
initial time 0, as X0 ≡ 0, we can restrict attention to the origin x = 0 and skip
the argument x as well as the conditioning by Xih = x in (4). In the sensis mode,
one is in the setup (2) for ξ = ξ0,T , which implicitly depends on %0 = (ι, ε), i.e.
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CVA0(%0) = E
(
ξ(%0)

∣∣ %0
)
. CVA fast bump sensitivities can thus be computed the

ways exposed in the first part of the paper, with CVA and (y = Y0, ε) here in the
role of Π and ρ there. In the baseline mode where %0 ≡ ρ0, CVA0(%0) is constant,
equal to the corresponding

CVA0(ρ0) = ELGDnh = Eξ0,T , (5)

which is computed by Monte Carlo based on the second line of (4) for t = 0 there,
as a sample mean of ξ0,T , along with the corresponding 95% confidence interval.

2.1 CVA Lab

In our numerics, we have 10 economies. For each of them we have a short-term
interest rate driven by a Vasicek diffusion and, except for the reference economy, a
Black-Scholes exchange rate with respect to the currency of the reference economy.
The reference bank has 8 counterparties with corresponding default intensity pro-
cesses driven by CIR diffusions. We thus have 8 default indicator processes X of the
counterparties and 10 + 9 + 8 = 27 diffusive risk factors Y . This results in a Marko-
vian model (X,Y ) of dimension 35, entailing p = 90 parameters corresponding to
the 27 initial conditions of the Y processes plus their 63 exogenous parameters.

A “reasonable” but arbitrary baseline ρ0 plays the role of calibrated model pa-
rameters in our numerics. The portfolio consists of 500 interest rate swaps with
random characteristics (maturity ≤ T = 10 years, notional, currency and counter-
party) and strikes such that the swaps are worth 0 in the baseline model (i.e. for
%t ≡ ρ0) at time 0. The swaps have analytic counterparty-risk-free valuation in our
pricing model. Their price processes are converted into the reference currency and
aggregated into the corresponding clients MtMc processes.

We simulate by an Euler scheme m = 217 ≈ 1.3 × 105 paths of the pricing
model (X,Y ), with n = 100 MtM pricing time steps of length h = 0.1 and 25 Euler
simulation sub-steps per pricing time step. A Monte Carlo computation of (5) in
the baseline mode yields CVA0(ρ0) ∈ 5, 027±18 with 95% probability (computed in
about 30s). A randomization of Y0 and ε in the sensis mode is used for deriving CVA
linear bump sensitivities the way explained after (2). In Figure 1, the increasing
curves in the left panel highlight the almost linear growth of the speedup of the linear
and smart bump sensitivities with respect to the benchmark ones when the number
p of pricing model parameters increases, but with also increasing errors displayed in
the middle panel. The smart bump sensitivities have smaller errors than the linear
bump sensitivities for all tested p. The superiority of the smart bump sensitivities
over the linear ones is also observed in the right panel of Figure 1, where for all
tested p the complexity of linear bump sensitivities is higher than the one of smart
bump sensitivities, itself very close (as expected) to the one of the benchmark bump
sensitivities.

We specify q = 256 market instruments corresponding to zero-coupons, credit
defaults swaps and FX forwards of various maturities in the different economies and
on the different counterparties of the bank in the model. The model sensitivities
are then converted into market sensitivities by the implicit function theorem.
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Figure 1: Comparison of performance of linear and smart bump sensitivities as a
function of the number of model parameters p fixing m = 217, using benchmark
bump sensitivities as references. The speedups displayed in the left panels are ob-
tained by dividing the execution times for benchmark sensitivities by the execution
times for linear or smart bump sensitivities. For each value of p, the error ratio
in the middle panel denotes the median of the p ratios between the Monte Carlo
standard errors of the linear (resp. smart) bump sensitivity and of the benchmark
sensitivity. The complexities in the right panels are defined as projected times of
reaching a relative standard error of 1%, building on a 1/

√
|sample size| scaling of

the standard errors justified by the central limit theorem, with |sample size| = m
for linear and benchmark bumps and m/p for smart bumps.

2.2 Learning the Future CVA

Equivalently to the second line in (4),

CVAt(·) = arg min
Φ∈B

E
[(
ξt,T − Φ(Xt, %t)

)2]
, (6)

where B is the set of the Borel measurable functions of (x, ρ). We denote by
CVAθ

t (Xt, %t) the conditional CVA at time t = ih > 0 learned by a neural network
with parameters θ on the basis of simulated pairs (Xt, %t) and cash flows ξt,T .
The conditional CVA pricing function CVAθ

t (x, ρ) is obtained by replacing E by a
simulated sample mean Ê and B by a neural net (or linear as a special case) search
space in the optimization problem (6). The latter is then addressed numerically by
Adam gradient descent on the basis of simulated pairs (Xt, %t) as features and ξt,T
as labels.

A key asset of probabilistic machine learning procedures for any conditional
expectation such as Π0(%) in the first part of the paper (or CVAt(Xt, %t) above)
is the availability of the companion “twin Monte Carlo validation procedure” of
Abbas-Turki et al. (2023, Section 2.4), allowing one to assess the accuracy of a
predictor. Let ξ(1)(%) and ξ(2)(%) denote two copies of ξ(%) independent given %, i.e.
such that E

[
f(ξ(1)(%))g(ξ(2)(%))

∣∣%] = E
[
f(ξ(1)(%))

∣∣%]E[g(ξ(2)(%))
∣∣%] holds for any

Borel bounded functions f and g. The twin Monte Carlo validation procedure for
a predictor Φ(%) of Π0(%) = E(ξ(%)|%) consists in computing Monte Carlo estimates
twin-stat for

E
[
Φ(%)2 −

(
ξ(1)(%) + ξ(2)(%)

)
Φ(%) + ξ(1)(%)ξ(2)(%)

]
= E

[(
Φ(%)− E

(
ξ(%)

∣∣%))2]
(7)

6



(as it follows from the tower rule by conditional independence) and twin-var for
Var

[
Φ(%)2 −

(
ξ(1)(%) + ξ(2)(%)

)
Φ(%) + ξ(1)(%)ξ(2)(%)

]
. The ensuing 95% confidence

level upper bound on
√
E
[(

Φ(%)− E
(
ξ(%)

∣∣%))2]
(the RMSE of the predictor Φ(%))

is then given by

twin-up =
√
twin-stat+ 2√

m

√
twin-var. (8)

3 CVA Risk and Hedging
An economic (or “internal”) view gained from simulating the movements of model
or/and market risk factors and obtaining risk measures of CVA fluctuations is an
important dimension of the CVA capital regulatory requirements of a bank, in the
context of its supervisory review and evaluation process (SREP): quoting https:
//www.bankingsupervision.europa.eu/legalframework/publiccons/html/icaap_ila
ap_faq.en.html (last accessed June 6 2024), “the risks the institution has identified
and quantified will play an enhanced role in, for example, the determination of
additional own funds requirements on a risk-by-risk basis.”

3.1 Run-off CVA Risk

We first consider

δCVAθ
t + LGDt, where δCVAθ

t = CVAθ
t (Xt, %t)− CVA0(ρ0) (9)

(cf. (3)-(4)), assessed in the risk mode, where %t = (Yt(y0, ε), ε) and ε follows
N
(
ε0, diag

(
t(1%)2ε0 � ε0

) )1. The random variable (δCVAθ
t + LGDt) reflects a

dynamic but also run-off view on CVA and counterparty default risk altogether, as
opposed to the stationary run-on CVA risk view below. We assess CVA risk, coun-
terparty default risk, and both risks combined, on the basis of value-at-risks (VaR)
and expected shortfalls (ES) of δCVAθ

t and LGDt in the risk mode, reported for
t = 0.01, 0.1, 1 yr and quantile levels 99% for VaR and 97.5% for ES in Table 1. The
results of Table 1 emphasize that CVA and counterparty default risks assessed on
a run-off basis are primarily driven by client defaults, especially at higher quantile
levels.

t = 0.01 t = 0.1 t = 1

δCVAθ
t LGDt

δCVAθ
t

+LGDt
δCVAθ

t LGDt
δCVAθ

t

+LGDt
δCVAθ

t LGDt
δCVAθ

t

+LGDt

Expectation -9 0.28 -8 56 7 63 75 502 578
VaR 99% 388 0 389 1,347 0 1,389 4,796 11,997 11,757
ES 97.5% 395 0.28 397 1,361 7 1,445 4,953 12,383 12,297

Table 1: Risk measures of δCVAθ
t , LGDt and their sum (CVA0(ρ0) = 5, 027).

1� is the Hadamard (i.e. componentwise) product between vectors and diag(vec) is a diagonal
matrix with diagonal “vec”.
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3.2 Run-on CVA Risk

With ε(t) ∼ N
(
ε0, diag

(
t(1%)2ε0 � ε0

) )
, denoting by Yt(y0, ε(t)) the Y process

at time t starting from y0 at 0 and for model parameters set to ε(t), by %(t) =(
Yt(y0, ε(t)), ε(t)

)
, by Z0(%(t)) the time-0 price of market instruments corresponding

to the model parameters %(t), and by z0 the baseline price of the market instruments
at time 0, let

δ%(t) = (Yt(y0, ε(t))− y0, ε(t) − ε0) = %(t) − ρ0, δZ(t) = Z0(%(t))− z0,

δCVA(t) = CVA0(%(t))− CVA0(ρ0).
(10)

The fact that we consider the time-0 CVA0(%(t)) (see after (4)) and likewise Z0(%(t))
here is in line with an assessment of risk on a run-on portfolio and customers basis
and with a siloing of CVA vs. counterparty default risk, which have both become
standard in regulation and market practice. Various predictors of δCVA(t) can be
learned directly from the simulated model parameters %(t) and cash flows ξ0,T (%(t))−
ξ0,T (ρ0) (as opposed to and better than learning δCVA(t) via CVA0(%(t)), which
would involve more variance): nested Monte Carlo estimator, neural net regressor
δCVAθ

(t), linear(-diagonal quadratic) regressors against δ%(t) or δZ(t) referred to as
LS (for “least squares”) below. The neural network used for training δCVAθ

(t) based
on simulated data (%(t) − ρ0, ξ0,T (%(t);ω) − ξ0,T (ρ0;ω)) has one hidden layer with
two hundred hidden units and softplus activation functions.

Table 2 displays some twin upper bounds (8) and risk measures of δCVA(t)
computed with these different approximations, as well as with linear(-diagonal
quadratic) Taylor expansions in δ%(t) or δZ(t) with coefficients estimated as bench-
mark or smart bump sensitivities. In terms of the twin upper bounds, the nested
CVA has the best accuracy, but (for a given risk horizon t) it takes about 2 hours
(with 1024 inner paths), versus about one minute of simulation time for generat-
ing the labels, plus 30 seconds for training by neural networks and 2-3 seconds
for LS regression. The neural network excels at large t, where the non-linearity
becomes significant, while being outperformed by the linear methods at small t,
where δCVA(t) is approximately linear. With diagonal gamma (Γ) elements taken
into account, the performance of the LS regressor improves at large t. The linear
quadratic Taylor expansions show relatively good twin upper bounds for small t,
but worsen for large t.

Regarding now the risk measures, the nested δCVA(t) and the neural net-
work δCVAθ

(t) provide more conservative VaR and ES estimates than any linear(-
quadratic) proxy in all cases. Surprisingly, even though CVA0(%(t)) in δCVA(t) is a
function of %(t), for t = 1 the linear(-quadratic) proxies in δZ(t) outperform those
in %(t), in terms both of twin error and of consistency of the ensuing risk measures
with those provided by the nonparametric (neural net and nested) references. Also
note that, when compared with the nonparametric approaches again, the smart
bump sensitivities proxy in δZ(t) yields results almost as good as the much slower
benchmark bump sensitivities proxy in δZ(t).
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t
risk

measure
nonparametric linear(-quadratic) in δ%(t) linear(-quadratic) in δZ(t)

nested
δCVA(t)

δCVAθ
(t)

bench.
bump

sensis w/ Γ

smart
bump
sensis

LS sensis
w/ Γ

bench.
bump
sensis

smart
bump
sensis

LS sensis
w/ Γ

0.01
twin-up 11 29 13 15 18 23 23 18
VaR 99% 510 431 429 418 415 435 431 424
ES 97.5% 514 434 432 421 417 437 433 427

0.1
twin-up 59 103 110 111 109 101 104 94
VaR 99% 1,686 1,618 1,562 1,463 1,539 1,554 1,542 1,556
ES 97.5% 1,693 1,622 1,570 1,467 1,544 1,559 1,545 1,561

1
twin-up 325 693 1,244 1,307 1,113 932 943 743
VaR 99% 10,333 9,887 8,991 6,646 8,812 7,914 7,846 9,493
ES 97.5% 10,654 10,090 9,309 6,715 9,032 8,075 7,988 9,792

Table 2: Risk measures of δCVA(t) computed by Monte Carlo using δCVA(t) simu-
lated by various predictors. The three lowest (i.e. best) twin upper bounds (8) and
the three highest (i.e. most conservative) risk estimates on each row are emphasized
in bold.

3.3 Run-on CVA Hedging

By loss Lθ(t), we mean the following hedged loss(-and-profit) of the CVA desk over
the risk horizon t (cf. (10)):

Lθ(t) = δCVAθ
(t) − (δZ(t))>∆− c, (11)

where the hedging ratio ∆ ∈ Rq is treated as a free parameter, while the real
constant c is deduced from ∆ through the constraint that ELθ(t) = 0 (or ÊLθ(t) = 0
in the numerics). The constant c, which is equal to 0 (modulo the numerical noise)
in the baseline mode where CVA + LGD and Z + CF are both martingales, can
be interpreted in terms of a hedging valuation adjustment (HVA) in the spirit of
Albanese, Benezet, and Crépey (2023), i.e. a provision for model risk. Albanese et al.
(2023) develop how, such a provision having been updated in a first stage, the loss
Lθ(t), thus centered via the “HVA trend” c (i.e. c = −EδHVA(t) = HVA0−EHVA(t),
where HVA(t) is the HVA analog of CVA(t)), deserves an economic capital, which
we quantify below as an expected shortfall of Lθ(t). By economic capital (EC)
and PnL explain (PLE) run-on sensitivities, we mean (cf. Rockafellar and
Uryasev (2000))

∆ec = arg min
∆∈Rq

ES
(
Lθ(t)

)
,
(
∆ec,VaR(Lθ(t))

)
= arg min

∆∈Rq ,k∈R
k + (1− α)−1E

[(
Lθ(t) − k

)+
]
,

∆ple = arg min
∆∈Rq

E[(Lθ(t))2],
(12)

where VaR and ES mean the 95% value-at-risk and the corresponding expected
shortfall. Once δCVAθ

(t) learned from simulated %(t) and ξ0,T (%(t)) − ξ0,T (ρ0) the
way mentioned after (10), these sensitivities are computed as per (12), by training
of ∆, k in the second part of the first line, for ∆ec, and by regression of ∆ in the
second line, for ∆ple. Simpler (but still optimized) least squares (LS) run-on
sensitivities are obtained without prior learning of δCVA(t), just by regressing
linearly ξ0,T (%(t)) − ξ0,T (ρ0) against δZ(t) (but for a purely linear LS regression
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Figure 2: Compression ratios of UPL (left), EC (center), and HVA trends c (right),
for various δCVAθ

(t) hedging approaches. Horizontal dash-dot lines correspond to
the unhedged case with ∆ = 0 in (11).

here as opposed to linear diagonal quadratic LS regression in Table 2, due to the
hedging focus of this part). These LS sensitivities are thus obtained much like the
linear bump sensitivities (see after (2)), but directly in the market (price) variables,
without Jacobian transformations. The computation times of the LS, EC, and PLE
run-on sensitivities are reported in Table 3.

By unexplained PnL UPL (resp. economic capital EC), we mean the standard
error (resp. expected shortfall) of Lθ(t). As performance metrics, we consider a
backtesting, out-of-sample UPL (resp. EC with α = 95%) for ∆ = 0, divided by
UPL (resp. EC with α = 95%) for each considered set of sensitivities: the higher
the corresponding “compression ratios”, the better the corresponding sensitivities.
For each simulation run below, we use m = 217 paths to estimate the PLE, EC and
LS sensitivities and we generate other m = 217 paths for our backtest.

Figure 2 shows the run-on CVA hedging performance of different candidate
sensitivities. All the risk compression ratios decrease with the risk horizon t. All
sensitivities reduce both the unexplained PnL and economic capital by at least 2.5
times for t = 0.01 and 4.5 times for t = 0.1 and 1. Since client defaults are skipped
in the run-on mode, the efficiency of bump sensitivities hedges is understandable.
For each risk horizon and performance metric, the optimized sensitivities always
have better results than (benchmark or smart) bump sensitivities. Among those,
the PLE and LS sensitivities hedges display the highest risk compression ratios
and the lowest HVA trend c. Most sensitivities (except for EC sensitivities when
t = 0.01 or 0.1) also compress the HVA trend c compared to the unhedged case.

[Smart] bump sensitivities Optimized sensitivities SpeedupModel
sensis

Jacobian
transforms

MtM
simulation LS δCVAθ

(t)
learning

PnL regression
EC PLE LS EC PLE

12min48s
[8.5s] 30s 27s 1s 6s 31s 1s 28.5

[1.4]
12.5
[0.6]

23.5
[1.1]

Table 3: Computation times for learning δCVAθ
(t) and the related sensitivities.

The speedups measure the ratios of the total time taken by the benchmark bump
sensitivities approach to the total time taken by each of the sensitivities.
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Conclusion
Table 4 synthesizes our findings regarding CVA sensitivities, as far as their approx-
imation quality to corresponding partial derivatives (for bump sensitivities) and
their hedging abilities (regarding also the optimized sensitivities) are concerned.
The winner that emerges as the best trade-off for each downstream task in blue
red in the first row is identified by the same color in the list of sensitivities. bench.
bump plays the role of market standard. Sensitivities that are novelties of this
work are emphasized in yellow (smart bump sensitivities essentially mean stan-
dard bump sensitivities with less paths, but with the important implementation
caveat mentioned after (1) PLE sensitivities were already introduced in the differ-
ent context of SIMM computations in Albanese et al. (2017); EC sensitivities were
introduced in Rockafellar and Uryasev (2000)).

sensitivities speed stability local accuracy CVA run-on
hedge

bench. bump very slow very stable benchmark good
fast bump
sensis

linear bump fast average good good
smart bump fast stable good good

optimized
sensis

EC sensis fast average not applicable very good
PLE sensis very fast stable not applicable excellent
LS w/o Γ very fast stable not applicable excellent

Table 4: Conclusions regarding sensitivities and hedging. By local accuracy of a
bump sensitivity, we mean the accuracy of the approximation it provides for the
corresponding partial derivative. Italics means tested but not reported in tables or
figures in the paper.

Regarding the assessment of CVA risk, in the run-on CVA case (see Table 5
using the same color code as Table 4), we found out that neural net regression
of conditional CVA results in likely more reliable (judging by the twin scores of
the associated CVA learners) and also faster value-at-risk and expected shortfall
estimates than CVA Taylor expansions based on bump sensitivities (such as the
ones that inspire certain regulatory CVA capital charge formulas). But an LS
proxy, linear diagonal quadratic in market bumps, provides an even quicker (as it
is regressed without training) and almost equally reliable view on CVA risk as the
neural net CVA. In the run-off CVA case (not represented in the table), the
neural net learner of CVAt in the risk mode (or nested CVA learner alike but
in much longer time) allows one to get a consistent and dynamic view on CVA and
counterparty default risk altogether.

δCVA(t) learners speed stability twin accuracy δCVA(t) VaR and ES

nonparametric nested MC very slow stable very good very conservative
neural net fast average good conservative

linear(-quadratic)
in market bumps

bench. bump very slow very stable good/average
for small/large t aggressive

LS w/ Γ in δZt very fast stable good conservative

Table 5: Conclusions regarding run-on CVA risk.
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