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Abstract

Performance assessment of derivative pricing models revolves around a compar-
ative model-risk analysis. From among the plethora of econometrically unrealistic
models, the ones that survive the Darwinian selection tend to generate systematic
short-term profits while exposing the bank to long-term risks.

This article proposes an ex-ante methodology to analyze the model-risk pattern
for the broad class of structures, whereby a dealer buys long-term convexity from
investors and resells hedges for risk management purposes. As a particular case, we
consider callable range accruals in the US dollar, a product that has been traded
in size in recent years and is currently generating material losses. To visualize the
sources of model-risks, we use 3d animations.

1 Principles

The objective of derivative portfolios’ pricing and hedging drives models’ development.
The risk in a derivative portfolio can be partitioned between market and model risk.
The former focuses on the second or higher moments of the return distribution and
is often managed by overnight Delta or Vega hedging strategies. Contrary, as we
will discuss, model-risk revolves around the first moment and results in systemic and
autocorrelated leakages that manifest as a bias over longer periods.

If model-risk is only analyzed on a backward-looking basis, a realized leakage is
interpreted as a “black swan” event, an interpretation that precludes disentangling
sound and unsound models. Along this line of thought, a trader always perceives
upfront profits as realized, and model blow-ups take the role of rare and unlucky events
he has no margin of maneuver to prevent.
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This article discusses the Darwinian theory of model-risk, i.e., the antipodal oppo-
site of the black swan theory, providing a scientific explanation of financial blow-ups
based on models’ behavioral analysis. In more detail, we develop a forward-looking
model-risk framework for structured products sharing similar features. By trading
structural products, a bank buys volatility and convexity from investors and sells out-
of-the-money (OTM) options trading at a premium for risk management purposes.
Model-risk manifests in yield enhancement features, such as optional callability or
auto-callability, without which the bank could statically replicate these products with-
out incurring any model-risk. Examples include callable range accruals hedged by
digital swaptions (our case study), structured equity products such as autocallables
and cliquets, power-reversal dual currency options, and target redemption forwards.

The present article uses a forward-looking state-space analysis to discover models
blow-up patterns. Instead, in Albanese, Crépey, and Iabichino (2020) we precisely
identify blow-up patterns via a reverse-engineering exercise, and we extend our analysis
to the XVA metrics generated by a portfolio of exotic derivatives.

Quality ranking for models is subjective and a function of the utility of the model
user. Typically, a user with interests aligned with the bank would prefer more realistic
models, which have lower short-term profitability but far less long-term risk. However,
a bad actor might prefer a lower-quality unrealistic model as its usage could help
extracting more short-term wealth in exchange for long-term risk.

From among the vast plethora of econometrically unrealistic models, the ones that
stand a chance to survive and become broadly used have to satisfy two adverse selection
conditions. The first condition relates to competitive pricing:

First Darwinian Principle A lower-quality model surviving the test of time must
over-value the structured product at inception.

An over-valuation at inception implies that the upfront payment paid to the investor
could be greater than the payment implied by a more sound model. The over-valuation
makes the model competitive in the market, a necessary model’s survival condition, or
else the trader would discard the model as its usage would attract no business.

However, in line with the Doob-Meyer theorem decomposition of supermartingales,
the mirroring companion of over-valuation at inception is a negative alpha-leakage
as time goes on. As reality unwinds and the model is re-calibrated, the initial over-
pricing turns in valuations’ systematic decay, making realized discounted price processes
deviate from martingales, i.e., a signal of the existence of arbitrage opportunities on an
ex-post basis. Hence, the aggressive initial valuation must turn into a mark-to-market
loss for the user as reality unavoidably sets-in.

The first Darwinian principle raises a profitability puzzle: how can the systematic
PnL losses be sustained over time? Over-valuation is a survival’s necessary, yet not suf-
ficient, condition. We need a second condition to guarantee the survival of the “fittest”.

Second Darwinian Principle A surviving lower-quality model will over-hedge and,
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limited to the short to medium term, the profits generated by hedge positions will overall
offset and surpass the systematic losses engendered by the initial over-valuation.

The second Darwinian principle conceals the first Darwinian principle’s losses, at
least in the short to medium run. If a model satisfies the Darwinian principles, it
stands a chance at survival and might become an accepted derivatives market pricing
standard.

Alpha leakages are undetectable by market risk tools such as VaR, Expected Short-
fall, and Stressed VaR models as these frameworks focus on the return distributions’
second or higher moments over short-time horizons. Backward-looking statistical and
Machine Learning methods estimate only the realized alpha terms, and, in the worst
case, they take the role of post-mortem forensic tools. Contrarily, the forward-looking
state-space analysis of this paper anticipates the risk, as model-risk losses surface using
a Challenger model to simulate the Champion model’s hedging strategy.

2 Equations

In what followsM denotes a continuous martingale that changes from line to line. We
develop a stylized setup where trading book valuations follow a process P such that

dPt = rtPtdt− αPt dt+ dMt, (1)

where r is the risk-free rate and (−αP ) ≤ 0 is a valuation alpha leakage. A simple
framework for model risk involves looking at the valuation process from the dual view-
point of a sound model (G) and an unsound model (B). At time 0, both models are
assumed to calibrate well to the same set of instruments used for hedging. Equation
(1) is written under the sound model’s measure and expresses the valuation’s dynamics
process P computed using the unsound model1. The good model calibrates well to the
accounting exit price (fair value as per IFRS 13) of the exotic derivative at all times.

Models have a dual purpose: pricing for the client and generating a hedging strategy.
The valuation provided by the bad model is typically above the exit price, except
that the difference is placed in a model risk reserve account and is not recognized in
PnL. Structured products, such as the callable range accrual in our case study, can be
profitable to the bank because their hedging strategy involves selling out-of-the-money
options to buyers whom we know are willing to pay a premium. As a consequence
one would expect that the hedging strategy executed with a perfect model would still
produce systematic gains.

Nevertheless, a bad actor could seek to generate additional gains in the short term
by playing with model switches (see Figure 1). Namely, the bad actor could use a sound

1The case αP = 0 corresponds to the sound model case
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Figure 1: Model risk stylized pattern (in red PnL losses, in green PnL profits, in orange
model risk reserve)

model, corresponding to αP = αG = 0 in (1), for fair-value discovery, and a unsound
model, with some αP = αB > 0, to determine both the entry-price upper-bound and
the potential over-hedging gains. Therefore, model B would be used for the sake of
increasing volumes, hedging and book-keeping.

However, a risk manager would insist that the difference B0 − G0 is retained in
a model risk reserve to avoid monetizing a fictitious instant PnL gain to the trader’s
benefit (generated by the book-keeping usage of the B model). Ultimately, the strat-
egy’s valuation side will reduce to a negative valuation drift (−αB)dt in the bank PnL,
which the model risk’s reserve absorbs. However, the key point of this paper is that
the model-risk reserve strategy is often insufficient. The unsound model does not only
influence valuation (cf. the First Darwinian Principle); it also affects hedging. Typ-
ically, unsound models generate over-hedging (cf. the Second Darwinian Principle),
which generate material short-term profits if they expire worthless, while giving rise to
significant losses if they don’t.

To cut losses in case excessive hedges appreciate, a risk manager would typically
place trading limits on the over-valuation amount and/or on the aggregate value of the
hedges. In the event that trading limits are hit, the bank will (i) unwind the hedges,
(ii) recognize a portfolio mark down and (iii) switch away from the unsound model, at
a substantial loss. This tends to happen at time of market stress when the hedges are
rapidly appreciating and the rush to buy them back from other dealers can trigger a
nonlinear blow up by a compounding effect, i.e. a so called “gamma trap”.

SupposeH denotes the cumulative value process of excessive hedges generated using
the unsound model. The cumulative wealth in the hedging account satisfies an equation
of the form H0 = 0 and

dHt = rtHtdt+ (αLt + αIt )dt+ dJ−t + dMt, (2)

where αL, αI ≥ 0. The term αL is a legit profit, as driven by the actual derivative’s
hedging requirements. However, the term αI is illegit,“Ponzi profit”, as it simply acts
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as a compensator for the downward jump process J−, i.e., the process

αIt dt+ dJ−t (3)

is a (risk-neutral) martingale. The loss dJ−t materializes at the time τ where the
unsound model stops being viable, as trading limits are triggered because the overval-
uation implied by the bad model over the exit (good model) price is excessive. Note
that the ensuing loss, and therefore αI in the above, is driven by αB.

The overall PnL of the bank, V say, satisfies V0 = 0 and, for t ≥ 0,

dVt = rtVtdt+ (αLt + αIt − αBt )dt+ dJ−t + dMt, (4)

where, by the Second Darwinian Principle,

αLt + αIt − αBt > 0. (5)

The accumulated amounts (αLt +αIt −αBt )dt would also drive the trader’s remuneration
until time τ . In the short to medium term, the bank might not perceive the risk
represented by the term J− in V and see the strategy as globally profitable in view of
(5). But the actual drift of the strategy is only (αLt −αBt )dt and a loss dJ−t materializes.
at the time where the unsound model is not sustainable and the bank has to unwind
hedges and mark-down the portfolio. At this time the trader takes no part to the jump
loss, even though he diverted a part of the jump compensator as his benefit.

By comparison, without the model switch strategy, the PnL of the bank, Ṽ say,
would satisfy Ṽ0 = 0 and, for t ≥ 0,

dṼt = rtṼtdt+ α̃Lt dt+ dMt. (6)

hence no downward jump risk and a purely legit drift coefficient2 α̃L.
One may even argue that, if unsound models and model switches are allowed, our

“bad actor” might not be so much to blame: he could have no choice than using a
unsound model to ensure his survival as he would operate in a competitive equilibrium
generated by the usage of unsound models. By contrast, if only sound models are
allowed for pricing, hedging, and book-keeping purposes (indeed, the practice we advo-
cate) or model switches are forbidden, the competitive equilibrium will revolve around
sound models, immunized against systemic PnL blow-ups. Hence, only an external
regulator can break the unsound models usage deadlock to the mutual benefit of the
bank’s traders, shareholders, and banking stability.

3 The Case of Callable Range Accruals

Hedging strategies typically consist of the combination of a robust strategy, which is
model-independent (see for instance Carr and Madan (1998), Dupire (1993), Hagan

2Typically, α̃L < αL in (4) as a bad actor would also leverage on unsound models to enhance
liquidity gains via distorted hedging ratios.
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(2002)), plus a model-driven strategy which is subject to model risk. Examples of
model risk sources are optionality clauses embedded in derivative contracts such as
early termination as in American style options, where different models typically lead
to different conclusions regarding optimal termination decisions. Typically, different
models would lead to different conclusions regarding optimal termination decisions and
risk sensitivities.

In this section, we illustrate the case of a callable range accrual under the Darwinian
principles’s spotlight. A range accrual is a derivative product very popular among
structured-note investors. The investor in a range accrual bets that the reference
underlier, usually interest rates, will stay within a predefined corridor. Callability is
commonly added to enhance the returns and make the product more attractive to the
client, but this is also the place in which Darwinian model risk unveils.

3.1 The Payoff

Consider a range accrual issued at time 0 with maturity T . A typical payoff at time
t ∈ [0, T ] is Φtdt to the bank, where

Φt = K0(I
−
s + I+s )−K1.

Here I−s = 1{Is<R0} and I+s = 1{Is>R1}, where [R0, R1] is a range and Is is an index
process, typically of the form

Is = η1SR(1)
s − η2SR(2)

s ,

where SR
(1)
s , SR

(2)
s are two swap rates and 0 ≤ η1, η2 ≤ 1 are constants. The swap rates

are functions of the time s discounting curve and Libor rates. Hence I±s are payoffs of
European style digital swaptions in the index maturing at time s.

Some range accruals are callable by the issuer as, in order to entice the investor
with a larger coupon, the bank reserves the right to terminate the transaction prior to
maturity. From the investor viewpoint, termination could be acceptable since it will
occur only in a state of the world where the bank has incurred in large losses, hence
the investor has received excess revenues.

The time-0 valuation of a callable range accrual under the risk neutral pricing mea-
sure, with corresponding expectation E, is given by (we skip the risk-neutral discount
factors for notational simplicity)

Π0 = E
[ ∫ T

0
1{s≤ϑ}Φsds

]
,

where ϑ is the stopping time for the early exercise held by the bank.

Non callable range accruals are relatively simple to analyze as the issuer can stati-
cally hedge them by writing a set of digital swaptions struck at the corridor boundaries
(see Figure 2).
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Figure 2: Range accrual corridor (the grey box), static hedges (on the sides of the
corridor), and sample paths.

In this case, we have that Φs = K0(I
−
s + I+s ) − K1. Hence the valuation at the

inception of the non-callable variant of the range accrual can be decomposed as follows

P0 =

∫ T

0
E(Φs)ds =

∫ T

0

(
K0(D

+(s) +D−(s))−K1

)
ds,

where D±(s) = E(I±s ).
The time 0 valuation of a callable range accrual instead is given by

Π0 =

∫ T

0
E
[
1{s<ϑ}

(
K0(I

+
s + I−s )−K1

)]
ds =

∫ T

0

(
K0(∆

+(s) + ∆−(s))−K1Ξ(s)
)
ds.

Here ∆±(s) = E[1{s<ϑ}I
±
s ] are time-0 valuations of “Canadian style” digital swaptions

(cf. Carr (1998)), which expire worthless in case the callable range accrual is exercised,
and Ξ(s) = E

[
I−s<ϑ

]
. Assuming that digital swaptions are fairly priced, a quasi-robust

hedging strategy for the callable range accrual in terms of European digital swaptions
is given by the following static hedging ratios (constant over time t) in the digital
swaptions with infinitesimal ds nominals (and the ensuing funding position so as to
make the strategy self-financing):

a±(s) =
∆±(s)

D±(s)
.

We say quasi-robust, because the time-t hedging ratios that would correspond to the
same analysis as above, but starting from a time t in the future, are quite stable
through time t. In practice, people use these hedging ratios plus a classical Delta
hedging strategy for the residual hedging error already “smoothed out” by the digital
swaptions quasi-static hedge.
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3.2 Champion and Challenger

For the model-risk analysis, we compare two models: a champion and a challenger.
The champion is the Hull-White (HW) 1-factor model specified as

drt = κ(t)(θ(t)− rt)dt+ σ(t)dWt.

In the HW model, rates are not bounded from below and the classic Hull and White
(1990) solver depends on this assumption.

The challenger is a model with two fundamental differences: rates are bounded
from below and there are two factors instead of one (so that the steepness of the yield
curve is stochastic). An example of such model is the stochastic drift (SD) short rate
model of Albanese and Trovato (2008), where the short rate process is defined by an
equation of the form

rt = φ(t) + λ(t)ρt. (7)

Here
φ(t) = min(0, f(t)− 20bp), (8)

where f(t) is the infinitesimal forward rate, λ(t) is a drift adjustment factor, and

dρt = κ(θt − ρt)dt+ σ(t)ρβt dW
(1), dθt = k(a− θt)dt+ νdW (2), (9)

with d〈W (1),W (2)〉t = γdt. The resulting short rate model is very similar to a shifted
2-factor Libor market model.

To make the qualitative comparison significant, we select specific instances, sharing
the properties of the HW and the SD model, of a common framework of discrete hidden
Markov models (see Albanese and Trovato (2008)).

Figure 3 reports the differences in the calibration accuracy between the SD and the
HW models for the 5-year swaption surface (in bps). We refer to Albanese and Trovato
(2008) for details on the models’ calibration routine. Figure 4 depicts the calibrated
models’ probability densities as a function of time, from which the major differences
between the two models can be observed.

Figure 3: HW model calibration accuracy in bps observed from the SD model: 5-year
swaption surface (columns: Swaptions’ tenor; rows: Swaptions’ moneyness)
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Figure 4: Probability densities of the USD short rate computed using the HW (left)
and SD (right) models. Probability densities of the USD short rate computed using
the champion (left) HW model and challenger (right) SD model.

3.3 Alpha-leakages in action

We run the SD and the HW models on a callable range accrual in the USD of ma-
turity 25 years and with corridor [0, 4%]. 3d animations are found the best way to
visualize sources of model-risk, and we refer to this sample model risk report, see Al-
banese (2019). The frames corresponding to months 10, 100 and 200 have the following
interpretation:

• The comparison between the challenger’s (below) and the champion’s (above)
valuations, which differences represent the valuation alpha leakages, as a function
of the future possible states of the economy (see Figure 5)

• The valuations of the challenger model are then investigated in terms of the cross
gamma eigenvector (see Figure 10);

• The HW model’s and the SD model’s optimal exercise boundary (see Figures 8
and 6 respectively);

• The comparison between the champion’s and the challenger’s hedge ratios (see
Figure 7). The champion model’s overhedging requirements are visualized from
the challenger model’s viewpoint (see Figure 11);

• The challenger’s least crossgamma eigenvalue (see Figure 9).

The ensuing comparison between the two models are summarized in Table 1.

The HW model’s alpha-leakages materially dominate the SD model’s. The alpha-
leakage dominance relates to the profound negative rates, which is probable in the HW
model while not possible in the SD model. When rates descend to deep negative values
in the HW model, range accruals turn into a precious asset for the issuer. The rates’
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Gaussian assumption raises the valuation of the HW model also in the positive range
(see Figure 5).

HW Model SD Model

Valuations
(cf. the
first Dar-
winian
principle)

The unbounded short-rate assump-
tion has a direct impact on the
HW’s alpha leakages. Alpha leak-
ages are particularly pronounced in
states characterized by deep nega-
tive rates, in which the range ac-
crual is predicted as particularly
valuable for the issuer.

The bounded short-rate process in
the SD model constraints the alpha-
leakages, especially in scenarios
characterized by low-interest rates.
In low-rates scenarios, the proba-
bility of exiting the corridor, which
would turn the range accrual into
an asset for the issuer, is immate-
rial, and there is no economic value
in keeping the position open.

Early exer-
cise

Low-interest rates scenarios are of
great value for the HW model. In
low-interest rates scenarios, the op-
timal exercise decision is postponed
as the probability of having deep
negative interest rates, in which the
range accrual would turn into an as-
set for the bank, is material. There-
fore, there is no economic value in
early unwinding the trade for the is-
suer.

The SD model perceives low-interest
rates scenarios as the riskiest states,
as the probability to exit the range
accrual’s corridor is immaterial.
Therefore, the SD model signals the
optimality in early unwinding the
trade. The optimal exercise bound-
ary in the SD model is greatly af-
fected by the steepness of the inter-
est rate curve (see Figure 6), a fea-
ture which is not captured by the
HW model.

Hedge ra-
tios (cf.
the second
Darwinian
principle)

HW’s higher hedging ratios are re-
lated to the delay in which the op-
timal exercise decisions are signaled
by the HW model.

SD model’s hedging ratios, in the
digital swaptions struck at the corri-
dor boundaries, are far smaller than
the hedge ratios implied by the HW
model (see Figure 7).

Sensitivities For rates within the corridor, the
HW model shows mostly positive
gammas, signaling that dynamic
hedging is relatively safe.

For rates within the corridor, the
SD model indicates that the cross-
gamma matrix has mostly negative
eigenvalues (see Figure 9), signal-
ing the presence of gamma traps.
Once represented in terms of the 10y
and the 10y-2y swap rate, the lowest
eigenvalues’ angle varies from 30◦to
70◦as the corridor boundary is ex-
plored (see Figure 10).

Table 1: Champion / Challenger comparison.
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In particular, the HW model depicts a somehow appealing story from the bank’s
viewpoint, especially in low-interest-rate regimes. The gamma is positive across most
of the state-space, and the option termination occurs significantly late in the lifetime,
allowing the bank to seize the benefit of carrying of the hedges, which are traded at
a material liquidity premium. However, from the viewpoint of the SD model, the
excessive hedges represent a financial risk (see Figure 11).

Over the most profitable period for the trade, the risk profile due to excessive hedges
exhibits a saddle point shape centered in the middle of the corridor and a pronounced
steep, which signals potential losses in case of falling rates. This situation unveils
the typical cross-gamma risk, whereby one eigenvalue of the cross-gamma matrix is
positive, and the other is negative (see Figure 9 and 10).

Figure 5: Comparison between the valuations of the range accrual by the challenger
(below) and the champion (above), color-coded for the gamma (red for positive gamma,
white for intermediate, blue for negative. X-axis represents the 10y swap rate; Y-axis
the 10y-2y swap rate spread; the Z-axis is the values of the range accrual).

Figure 6: Exercise boundaries of the challenger. (X-axis represents the 10y swap rate;
Y-axis the 10y-2y swap rate spread; the Z-axis are the range accrual’s valuations).

The HW model, proposed in 1990, was a veritable breakthrough as it was the
first example of a class of term structure models later generalized in Heath, Jarrow,
and Morton (1992). Within the HJM models class, the HW model and its 2-factor
extensions are unique in the simplicity of implementation. Three decades ago, in a
limited technological environment, the HW model’s solvability was the model’s biggest
strength, a strength achieved by an underlying Gaussian structure. Three decades
later, in a technology environment where closed-form solvability is no-longer a model’s
binding constraint, the Gaussian hypothesis, which implies unbounded interest rates
from below, turned the HW model’s strength into an Achille’s heel.
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Figure 7: Comparison of the hedge ratios for the champion and the challenger.

Figure 8: Exercise boundaries of the champion. (X-axis time in months to maturity;
Y-axis 10y swap rate).

Figure 9: Least crossgamma eigenvalue in the SD model (the challenger), color-coded
as blue if negative, red if positive (X-axis represents the 10y swap rate; Y-axis the
10y-2y swap rate spread; the Z-axis is the cross-gamma value).
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Figure 10: Valuations of the challenger. The white filaments point in the direction of
the negative crossgamma eigenvector (X-axis represents the 10y swap rate; Y-axis the
10y-2y swap rate spread; the Z-axis is the values of the range accrual in the SD model).

Figure 11: Exposure to the over-hedging as quantified by the valuation of the excess of
short digital swaptions implied by the HW model from the viewpoint of the SD model
(X-axis represents the 10y swap rate; Y-axis the 10y-2y swap rate spread; the Z-axis is
the value of the portfolio of excessive hedges).
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4 Conclusion

Darwinian selection favors models that generate systematic profit in the short and
medium-term compensated by possible large losses in the long term. Alpha leakages
are undetectable by market risk models such as Value-at-Risk (VaR), Expected Short-
fall, and stressed VaR. Backward-looking statistical and Machine Learning methods
estimate only the realized α terms. A forward-looking analysis anticipates also the
jump; model-risk losses become apparent using a Challenger model to simulate the
hedging strategy of the Champion model. The state-space analysis on which this ar-
ticle basis, facilitates model-risk understanding by employing intuitive visualizations
and 3d animations of the model-risk’s sources. We conclude that the preference for
short-term profitability skews returns giving rise to large losses in stress conditions.

Model-risk is intimately intertwined with reverse stress testing, the forward-looking
variant of stress testing. A model can not be considered as valid if it is known to
break down on a path leading to a stress scenario. While in the present article we
are concerned with understanding the pattern that leads to blow-up under stress, in
Albanese, Crépey, and Iabichino (2020) we focus on the discovery of models’ blow-up
scenarios.
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