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Expected Credit Loss vs.  
Credit Value Adjustment:  
A Comparative Analysis

■■ I. Introduction

It is admitted that 2/3 of the losses that occured during 
the 2007-2008 subprime and financial crisis are due to the 
deterioration of credit counterparties rather than defaults 
or price variations on other assets. Both regulators and 
accountants now want banks to better recognize credit 
deterioration in capital charge and P&L.

On trading books, the price of counterparty risk is called 
Credit Value Adjustment (CVA). It is equal to the difference 
between the price of a derivative contract negociated with 
a riskless counterparty and the price of the same instru-
ment negociated with a real (credit risky) counterparty. 
CVA was already taken into account in the pricing of 
books of derivatives before the crisis. This is why banks 
who were in the business of Negative Base Trading of 
ABS suffered large losses when the credit rating of their 
swap counterparties that were insuring them dropped 
from AAA to CCC or to default in a few weeks period of 
time only during the crisis. However, market risk related 
to CVA variations was not, at that time, embedded in the 
market VaR. In the Basel 3 regulation, the regulators ask 
banks to compute a dedicated capital charge for CVA risk.

Similarly, the crisis revealed that the provisioning process 
within banks was much too late when the creditworthiness 
of banking book exposures was deteriorating. The current 
IAS 39 (International Accounting Standards) accounting 
rules prescribe an “incurred loss” model for loan impair-
ment: this norm considers that a loan is impaired when, 
on the basis of objective evidence, it is partly or wholly 
uncollectible, so that its carrying amount is greater than 
its estimated recoverable amount. Objective evidence in 

this context includes significant financial difficulty of the 
issuer, actual breach of contract or a high probability of 
bankruptcy. However, under the current standard, impair-
ment losses are recognized only upon the occurrence of 
a credit event of the issuer, even if this event was already 
expected to happen. This generates procyclical effects that 
were pointed out to be responsible for accelerating the 
financial crisis, because of delayed recognition of credit 
losses. In order to circumvent this, the Spanish regulator 
has asked banks to set statistical provisions as soon as in 
2000 (see Jimenez (2006)). IASB (2014) released the final 
version of the IFRS 9 new accounting standards aiming at 
overcoming the concerns that arose during the financial 
crisis because of the former IAS 39 incurred loss model. 
The new requirement on performing loan books is to 
recognize loss allowances or provisions before a default 
event occurs, based on the measurement of an Expected 
Credit Loss (ECL hereafter).

It appears that the definitions and mathematics of ECL 
and CVA are similar to each other because ECL and CVA 
measure analogous quantities, the first one on banking 
books and the second one on trading books. However, 
they are not sensitive to the same risk drivers. The CVA 
measures the expected credit loss, as seen by the market, 
on a derivative instrument. The main drivers of this expec-
ted loss are market risk factors that drive the exposure 
amount to counterparty risk and the credit spread of the 
counterparty. By contrast, the risk drivers of the IFRS 9 
provisions are not market implied but rather fundamental 
since they aim at measuring the forthcoming credit losses 
and their sensitivity to the macroeconomic context. As the 
risk drivers between these two measures are different, the 
modelling challenges they generate are not the same. In 
a nutshell, the challenges to measure CVA are linked to 
the correct measure of the future exposure on derivatives 
contracts, whereas the main challenges on ECL estimation 
are to measure accurately the significant risk deteriora-
tion and default probability term structures for any tenor.

In this article, we review the notions of ECL (Section 2) 
and CVA (Section 3). Section 4 concludes by a compara-
tive analysis of the two measures. Section 5 provides a 
review of the mathematical and estimation tools involved.
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Let ( , )W G  stand for a filtered space, which is used 
throughout this paper as the space containing random 
events that underlie modeling the stochastic evolution 
of a financial market. In particular, all our processes are 
G -adapted. The filtration will be given as G T=( )Gt tŒ  
with T N=  and T R= + in the respective ECL and CVA 
case, consistent with the respective banking/statistical 
and trading/pricing tradition for these notions. Expec-
tations under the statistical probability measure P  and 
a risk-neutral pricing measure Q  (assumed chosen by 
the market) are denoted by EP  and EQ ,  respectively.

Here is a recapitulative list of acronyms, by order of 
apparition of their main use in the paper. 

CSA	 Credit Support Annex 
CVA	 Credit Valuation Adjustment 
DVA	 Debit Valuation Adjustment 
FVA	 Liquidity Funding Valuation Adjustment 
XVA	 Total Valuation Adjustment. 
ECL	 Expected Credit Loss 
IFRS	 International Financial Reporting Standards 
IAS(B)	 International Accounting Standards (Board) 
EIR	 Effective Interest Rate 
LGD	 Loss Given Default 
EAD	 Exposure At Default 
PIT	 Point-In-Time 
IRB	 Internal Rating Based 
PD	 Probability of Default 
TTC	 Through-The-Cycle 
EPE	 Expected Positive Exposure 
EEPE	 Effective Expected Positive Exposure 
RWA	 Risk Weighted Assets 
EE	 Expected Exposure 
PFE	 Potential Future Exposure 
MPFE	 Maximum Potential Future Exposure 
HR	 Hit Rate 
CAP	 Cumulative Accuracy Profile 
AR	 Accuracy Ratio 

■■ II. ECL as a measure  
of the IFRS 9 provision

In the context of ECL computations, time is modeled 
as discrete and a finite time horizon T <• represents 
the maturity of a credit exposure of the bank. As stated in 
IASB (2014) (the final version of the IFRS 9 new accoun-
ting standards), the Expected Credit Loss (ECL) aims at 
measuring collective provisions on non defaulted instru-
ments that are measured at amortised cost or fair value 
through Other Comprehensive Income (OCI). In what 
follows, we will refer to the “instrument” for any finan-
cial instrument that is in the scope of the IFRS 9 norm; 
it can be a loan, a bond or an other debt instrument or 
asset on the balance sheet, as well as a liability such as 
an undrawn commitment or a guarantee issued by the 
bank. The IASB standard defines the ECL as the difference 
between all contractual discounted cash-flows that are 
due on the instrument and all discounted cash-flows that 
the bank expects to receive (i.e. all cash shortfalls). Both 

the interest amounts and the discount factor are compu-
ted based on the Effective Interest Rate (EIR). The EIR 
is calculated at initial recognition of the financial asset. 
It is the rate that exactly discounts estimated cash-flows 
through the expected life of the instrument to the gross 
carrying amount. It includes transaction costs or fees, as 
well as future lifetime expected credit losses for origina-
ted credit-impaired financial assets. ECL measurement 
in then based on all terms of the contract (including all 
the options such as prepayment, extensions,...) over 
the life of the instrument, as well as cash-flows coming 
for instance from the sale of the loan collateral or other 
credit enhancement mechanism, if any.

The loss allowance to non defaulted instruments is 
done in two stages, depending on the observed credit 
risk deterioration since origination of the instrument:  

■■ Stage 1: if the credit risk on a financial instrument has 
not increased significantly since initial recognition, 
the loss allowance is equal to the 12 months ECL. 

■■ Stage 2: if the credit risk on a financial instrument 
has increased significantly since initial recognition, the 
loss allowance is equal to the lifetime ECL. 

As a result, stage 1 loans are of better credit quality 
than stage 2 loans. Paragraphs 5.5.10 and 5.5.11 of 
IASB (2014) provide details about the transfer criteria to 
be used from stage 1 to stage 2. For instance, an entity 
may assume that the credit risk on instruments has not 
increased significantly if the instrument is determined to 
have low credit risk. Conversely, as soon as contractual 
payments on an instrument are more than 30 days past 
due, the norm requires transfering it automatically to 
stage 2. However, beyond these two special cases, the 
norm is “principle-based” so that it does not detail how 
to determine the instruments that should be in stage 1 or 
in stage 2: implementing the new standards is subject to 
interpretation of the text and to some subjective choices 
in terms of credit risk quantification. We mention that 
the the defaulted instruments correspond to the stage 3 
instruments, for which the provision is specific (and no 
longer collective) and is equal to the full lifetime ECL.

ECL is an estimate of the total credit loss over the life 
of the instrument. The measurement of ECL needs to 
take into account:  

■■ unbiased and probability weighted amounts in order 
to take into account a full range of possible outcomes. 
The bank needs to specify the amount and timing of 
cash-flows as well as the estimated probability of each 
outcome. 

■■ time value of money has to be taken into account by 
discounting cash-flows at a rate that approximates the 
Effective Interest Rate of the instrument.

■■ risk parameters estimated from historical data and 
adjusted to reflect the effects of current conditions and 
forecasts of future economic conditions. 

Based on the definition stated earlier, the standard 
defines the ECL as the weighted-average of future credit 
losses on the instrument, where the weights must reflect 
the probabilities of occurence of a default. Let’s start from 
the initial definition. For a given instrument, the ECL is 
equal to the difference between the sum of discounted 
contractual and expected cash-shortfalls:
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where the horizon T  is equal to one year for stage 1 
instruments and to the maturity date for stage 2 instru-
ments; the second sum is done for all values of t  larger 
than 0 because the recovery process in case of a default 
may be longer than the contractual maturity of the ins-
trument. As stated by the norm, the discount rate is the 
EIR and the discount factor associated with horizon t  
is DF t EIR t( )=1 / (1 )+ . ( ) 0CFt

C
t≥  and ( ) 0CFt

R
t≥  

are respectively the sequences of contractual and real 
(random) cash-flows paid by the instrument, including 
both principal and interest payments. In the case of a 
loan, the quantity CFt

R  embeds prepayments, additio-
nal drawings (for instance for revolving facilities) or an 
occurrence of a default ; indeed, in case of default, the 
cash-shortfalls are the proceeds linked to the recovery or 
liquidation process and no longer with the withdrawal 
of the loan from the client. We can decompose the real 
cash-flows into two terms, depending on whether a 
default has already occured at time t  or not. We obtain:

CF CF Rt
R

t t t t= .1 .10
{ > } { }t t+ £ 	 (2)

where t  is the default date on the instrument, Rt is the 
recovery cash shortfall at date t  and CFt

0  is the cash-
flow occuring at date t  in the non default scenario. The 
sequences ( )0 0CFt t≥  and ( ) 0Rt t≥  represent the cash-
flows before and after the default event occurs. We can 
then rearrange the ECL formula in order to make the 
expected credit loss appear explicitly:
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The cash-flows CFt
C  and CFt

R  both include principal 
and interest payments. The first term of equation (3) is 
equal to 0 from the following proposition:

Proposition 2.1. For any sequence of cash-flows CF t( ) 
that includes principal and interest payments, the sum 
of the discounted cash-flows is independent on the dates 
and amounts of the cash-flows. In particular, we have 

t t t t
CCF DF t CF DF t

≥ ≥Â Â0

0

0
( )= ( ). 

Proof. Let’s call Nt  the principal amount withdrawn 
at date t . We have: 
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After rearranging this relationship, we get: 

t
i
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This relationship means that the sum of all the discounted 
cash-flows are equal to the total nominal exposure, 
whatever the amounts and the dates of payment of the 
principal cash-flows. Then whatever the sequence of cash-
flows for a given nominal amount, the sum of discounted 
cash-flows remains unchanged. n

Equation (3) then writes:
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We set EXP CF
DF t

DFt t( )=
( )

( )
0t

tt≥Â , which is the 

total credit exposure on the instrument at the date of the 
default event. We note that this definition differs from 
the Basel 2 Exposure At Default (EAD) definition. We 
then get for the ECL:
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We introduce the loss rate, or Loss Given Default 

LGD
R
DF t

DF

EXP

t t

=1

( )

( )

( )
-

≥Â t t
t

. Through this definition, 

we see that the loss rate depends on the default date t  
and on the recovery cash-flow sequence Rt t( ) ≥0

 which 
is random as well. However, it is usually assumed that 
the loss rate is a constant. We get the formula for the 
expected credit loss:
ECL DF t EXP t LGD t t dt= ( ) ( ) [ ( , )].

0

•
Ú ◊ ◊ ◊ Œ +P t

(6)
If we discretize this relationship, we get:
ECL EXP t LGD DF t t t

t
i

i i i iÂ ◊ ◊ ◊ Œ +( ) ( ) [ ( , )]1P t
(7)

where P[ ( , )]1t Œ +t ti i  can be estimated by the techniques 
reviewed in Sect. 5.1-5.2 (whereas for loans the estimation 
of the exposure in (7) is straightforward).

Depending on whether the instrument is in stage 1 or 
in stage 2, the expected credit loss is measured either 
over a one year time horizon or over the full lifetime of 
the instrument. This generates a jump in the provision 
amount when the instrument is transfered from stage 
1 to 2: as the credit risk associated with the instrument 
has increased significantly, the default probabilities are 
much higher compared to their values at origination, and 
additionally, the ECL is measured over the full lifetime 
instead of one year only.

The philosophy of the IFRS 9 is similar to a pricing 
approach, motivating the full lifetime horizon retained 
for instruments in stage 2. Thus, the choice of the one 
year horizon for instruments in stage 1 looks arbitrary, 
but it is the same time horizon as the one used to measure 
regulatory capital charge in the advanced approaches. 
There is however a major difference between the two, in 
particular from the way that credit risk parameters (PDs 
and loss rates) are measured. In the IFRS 9 framework, 
parameters should reflect current economic conditions 
(the so called Point-In-Time -PIT- parameters) whereas 
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Basel PDs for instance are supposed to be average para-
meters over the credit cycle (Through-The-Cycle or TTC 
parameters) and LGDs have downturn values. Despite, 
IRB banks are supposed to use their existing Basel models 
at least as a starting point for measuring IFRS 9 provi-
sions. Basel Committee on Banking Supervision (2015) 
yields guidelines for the evolution of risk management 
frameworks to comply with the ECL measurement. The 
interplay betweeen the Basel and the IFRS 9 frameworks 
is out of the scope of this article, but it will obviously lead 
to an upgrade of risk management practices within banks.

The new aspect that the IFRS 9 norm introduces is about 
including forecasts into the metrics, PDs and LGDs in 
particular. Historical information is a starting point, 
and adjustments are required based on forward-looking 
information. From a modelling point of view, this raises 
several issues. First of all, the period over which the his-
torical data have to be considered is an issue in order to 
reflect both past events and current conditions. Second, it 
should be assessed whether the historical data capture TTC 
information or PIT information. Third, the information 
captured through historical data has to be assessed too 
and adjusted to include forecasts. Finally, the estimates 
of ECLs shall be recalibrated regularly, and backtested as 
well. Backtesting raises an important theoretical issue too 
because the ECL embeds both estimation from historical 
data and forward-looking forecasts: these are the two legs 
in the quatification which need to be assessed separately.

■■ III. Credit Value Adjustment 
(CVA)

III.1. Cash Flows 
In the context of CVA computations, time is modeled 

continuously and a finite horizon T <• represents the 
maturity of a credit support annex (CSA) regarding the 
“instrument”, in the sense of a generic netted portfolio 
of OTC derivatives between a bank and its counterparty. 
The perspective of the bank is taken in the sequel. The 
CSA is a legal agreement between the two parties, which 
frames the liquidation process in case of default of one 
or the other party. In principle, a CSA also prescribes a 
collateralization scheme in order to mitigate counterparty 
risk, but since there is no collateral involved in ECL com-
putations, we assume no collateralisation henceforth. By 
“netted portfolio” above, we mean that in case of default 
of a party, the debt of each party to the other will be valued 
by the liquidator on the basis of the cumulative value of all 
the ingredients of the portfolio, rather than as the cumu-
lative debt over the different ingredients in the nonnetted 
case. This setup can be considered as general since, for 
any partition of a portfolio into netted sub-portfolios, 
the results may be applied separately to every netting set. 
The results at the portfolio level are then simply derived 
as the sum of the results of the netting sets.

Given our purpose of emphasizing the analogy between 
ECL and CVA computations, we assume the bank default-
free and only consider the default time t  of the counter-
party. We assume that t  cannot occur at fixed times, an 

assumption that is for instance satisfied in all the intensity 
models of credit risk. In particular, the scenario { = }t T  
has zero probability and is immaterial in any expectation 
(hence price and hedge), so that we can ignore it for 
simplicity, e.g. we write { < }t T  interchangeably with 
{ }t £T . We denote t t= ,ŸT  which represents the 
effective time horizon of our problem, since there are 
no cash flows after t .

We represent by a finite variation process D  the 
promised (or clean) cumulative dividend process of 
the instrument, with jump process denoted by D , 
i.e. Dt t tD D= .- - All cash flows are considered from 
the bank’s point of view in the sense that Dt =1  means 
+1  to the bank. A promised dividend is only effectively 
paid at time t  if the counterparty is still alive at time t , 
resulting in the effective dividend process 1 .{ < }t tdDt  A 
close-out cash flow c  closes the bank’s position at time 
t  (if t<T). This close-out cash flow is based on the 
(algebraic) debt e  of the counterparty to the bank at the 
counterparty default time t , namely 

	 e t t= ,Q + D 	 (8)

where Q  is a CSA close-out valuation process and where 
Dt t t=D D- - denotes the jump of D  at t , represen-
ting any dividend unpaid to the bank by the counterparty 
defaulted at time t . In the absence of collateral, the 
close-out cash flow c  is defined, for t<•, as 

	 c e e= ,R + -- 	 (9)

where R  denotes the recovery rate of the counterparty 
toward the bank, assumed constant in this article for sim-
plicity. In words, if, at the counterparty default time, the 
counterparty is net debtor to the bank (case where e>0), 
then, as the counterparty is in default, it’s only a fraction 
R  of the debt that is recovered by the bank. If the bank is 

net debtor to the counterparty (case where e<0), then 
the bank settles its debt in totality (otherwise it would 
itself be in default, which we excluded by assumption).

III.2.Prices
We assume that there is only one funding asset, the so-

called savings account, growing at the risk-free rate rt . 
The savings account is thus the inverse of the risk-free 

discount factor bt

t
r
s
ds

e= 0
-Ú

. In the ensuing classical 
risk neutral valuation framework we can proceed with 
presenting the following definitions, which are consis-
tent with the standard theory of arbitrage (cf. Delbaen 
and Schachermayer (2005)). Recall that D  stands for 
the cumulative promised (or clean) dividend process of 
the instrument on [0, ]T , ignoring counterparty risk. 
We denote by EQt  the conditional expectation under the 
risk-neutral measure Q  given Gt .

Definition 3.1. (i) The (counterparty-)clean price1  Pt  
of the instrument is given, for t TŒ[0, ], by 

	 b bt t t t

T

s sP dD= .EQ ÚÊËÁ
ˆ
¯̃ 	 (10)
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The  clean cumulative value process of the portfolio 
is given by 

	 P P pt t t
 = ,+ 	 (11)

where pt  represents the discounted cumulative clean 
dividend up to time t , so 

	 b bt t

t

s sp dD= .
0Ú 	 (12)

(ii) The (counterparty-)risky price Pt  of the instrument 
is given, for t Œ[0, ],t  by 

	 b b b c
t

t t tt t t t s s s TdDP = 1 1 .< <EQ Ú +Ê
ËÁ

ˆ
¯̃

	 (13)

The risky cumulative value process of the portfolio is 
given, for t £ t, by 

	 P P

t t t= ,+ p 	 (14)

where 

	 b p b tt t

t

s s sdD= 1 .
0 <Ú 	 (15)

In the sequel we assume the most standard CSA close-
out valuation process Q P= .

III.3. Credit Valuation Adjustment
As for the ECL in (1), we will begin with the CVA defi-

ned as a counterparty risk valuation adjustment process. 
Then, in Proposition 3.4, which is the CVA analog of the 
ECL identity (4), we will demonstrate that the CVA is a 
price process for a so-called contingent credit default 
swap (CCDS), which pays the so-called counterparty risk 
exposure at default. 

Definition 3.2. The CVA process, denoted as CVA, is 
given, for t Œ[0, ],t  as: 

	 CVA P Pt t t t t t t T= = 1 ., <- - + ≥P P Dt t 	 (16)

The left equality appears as a natural definition for what 
a (cumulative) counterparty risk valuation adjustment 
should be. The right equality follows since, by Defini-
tion 3.1, we have on [0, ] :t  

pt t t t T- ≥p t t=1 ., < D

Remark 3.3. The term 1 , <t t T≥t tD  is needed in the right 
hand side of (16) so that we get a cumulative CVA. In most 
cases, there will be no promised cash flows at t , so that 
Dt=0, then of course this term vanishes. The reader 
may ask why we are interested in a cumulative CVA. The 
reason is that the discounted cumulative CVA is a Q  
martingale (assuming integrability), which makes it 
convenient mathematically for valuation and hedging 
purposes. Note however that on the time interval [0, ),t  
which only matters for the bank in practice (as the bank 
only manages its CVA before t ), we have CVA Pt t t= - P  
(whether or not Dt=0 ).  

In the rest of this section we will discuss three alternative 
representations of the CVA.

Exposure at Default. We define the (counterparty risk) 
exposure at default as the Gt -measurable random variable   

	 x c e e e et t:= = ( )=(1 ) ,P R R+ - - - -+ - +D 	
(17)

where the second equality holds by the definition (9) of 
c  and the third one follows by the definition (8) of e , 
accounting for our specification Q P=  for the CSA 
close-out valuation process.

Proposition 3.4. For t Œ[0, ],t  we have: 

	 b b xt tt t t TCVA = [ 1 ].<EQ 	 (18)

Proof. This follows from the martingale property of the 
process bCVA, which is apparent on the left-hand-side 
identity in (16) (assuming integrability), whereas we have 
by the right-hand side identity:   

	 CVA P

P

T

T T

t t t t t

t t t tc x

= 1

=1 ( )=1 .

<

< <

- +

+ -

P D

D

	 (19)

As first observed in Brigo and Pallavicini (2008), we 
obtain an interpretation of the CVA as the price of a 
contingent credit default swap (CCDS), which, as visible 
in the definition (17) of the payoff x , is an option on the 
(algebraic) debt e  of the counterparty toward the bank 
at time t  (if t<T ).

A major issue in regard to counterparty credit risk is 
the so-called wrong-way risk. From the perspective of 
the bank, this occurs when the exposure is adversely 
correlated with the credit quality of the counterparty (risk 
that the value of the instrument is particularly high at the 
counterparty’s default). In simultaneous default models 
of portfolio credit risk, an extreme form of wrong-way 
risk (“instantaneous default contagion”) is represented 
by a term Dt π 0  in e  (see (8) and Remark 3.3).

Expected Positive Exposure. In the case where b  is 
deterministic, the following representation of CVA at 
time 0 follows from (18): 

	 CVA R

R

T

T

s ds

T

0 <

0

0

= (1 )1

= (1 )1

=

E

E

Q

Q
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where the expected positive exposure EPE  is the func-
tion of time defined, for t TŒ[0, ], by 

	 EPE t R t( ) = (1 ) | = .EQ -È
Î

˘
˚

+e t 	 (21)

Note that the EPE is frequently computed under the 
assumption that R=0. A loss-given-default factor is 
then introduced at the stage of CVA computation based 
on this “zero recovery EPE”.

Remark 3.5. The CVA representation formula (20) can be 
compared with the ECL representation formula (4), except 
for the nature of the probability measures that are used in the 
expectations. For CVA computations, the pricing measure 
Q  prevails. However, for regulatory capital computations, 
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the historical measure P  is typically used. In particular, 
this is the case for measuring the capital charge linked to 
the variations of the CVA, the so-called CVA-VaR, which is 
the 99% P  percentile of CVA variations over 10 business 
days (where the involved CVAs are computed under Q  
as usual). In EEPE (Effective Expected Positive Exposure) 
internal model approaches, RWA measurements related 
to counterparty credit risk are also done with respect to 
the historical probability measure. Specifically, in this 
context, the following quantities are defined:  

■■ Expected Exposure (EE): P  expected value of 
the positive part of the future market value of the 
instrument; 

■■ Expected Positive Exposure (regulatory EPE): time 
average of the Expected Exposure profile, i.e. 

	
1

( )
0T
EE t dt
T

Ú 	

(note that the P  analog of the CVA related EPE (21) is EE 
and not regulatory EPE); 

■■ Effective Expected Positive Exposure: time average 
of the running maximum Expected Exposure profile, 
i.e. 

	
1

( ) .
0T

EE s dt
T

s t
Ú

£
max 	

Other indicators are used by banks in their internal pro-
cesses of deal acceptance or risk limit definition for front 
offices. In particular, the Potential Future Exposure (PFE) 
is a percentile under the historical measure of the positive 
part of the market value and the MPFE is the maximum of 
the PFE over the time horizon of the instrument.  

Example 3.6. Figure 3.6 shows the mean and the 2.5% 
and 97.5% quantiles as a function of time for the price 
process a 3 months versus 6 months basis swap in the 
multicurve interest rate two-factor log-normal model 
of Crepey, Macrina, Nguyen and Skovmand (2015). A 
basis swap exchanges two streams of floating payments 
based on a nominal cash amount N  or, more generally, 
a floating leg against another floating leg plus a fixed leg. 
In the classical single-curve interest rate setup, the value 
of a basis swap (without fixed leg) is zero throughout 
its life. Since the onset of the financial crisis in 2007, 
markets quote positive basis swap spreads that have to 
be added to the smaller tenor leg. Hence, basis swaps 
have to be handled through multicurve interest rate 
models. Our Q  measure in this example is calibrated 
to the EONIA 3m and 6m tenor initial term structures 
and to 3m tenor swaption data of January 4, 2011; Our 
P -measure is fudged from our Q -measure based on a 
view that the LIBOR rate L y y y(10.75 ;10.75 ,11 ) will be 
either 2%  with P  probability p=0.7 or 5%  with P  
probability 1 =0.3- p . The dashed lines in the left and 
right panels indicate the maximum in time of the 97.5% 
quantile of the price process of the basis swap under the 
respective Q  and P  measures. In particular, the dashed 
line on the right panel corresponds to the MPFE. These 
graphs show that the impact of the probability measure 
on extreme percentiles of the price process, hence the 
impact of the choice of the probability measure Q  and 
P  in counterparty risk computations, can be very large. 

Intensity-Based CVA Formula.  The formula  (20) looks 
nice, but it is only really practical when t  is independent 
of e  so that 

	

EPE t
R t

R Pt t
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Î
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˚
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+
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In order to obtain a formula similar to (20), but under 
a weaker conditional independence (called immersion) 
assumption between the credit risk of the counterparty 
and the underlying exposure, we suppose further that 
G F H= ,⁄  where the filtration H  is generated by the  
indicator process of t  and where F  is some  reference 
filtration. Assuming Z tt t:= ( > | )Q t F  nonincreasing, 
positive and time-differentiable, an application of Lemma 
5.4 below (case where f =0 in the lemma, where the 
case of a nonzero f  could be used to extend our results 
to the presence of funding costs, i.e. FVA computations) 
yields the following intensity-based CVA formula: 

	 EQ[ (1 ) ],
0

T

t t tR P dtÚ - +a g 	 (22)

where g  and a  are the respective  hazard default inten-
sity and  credit-risk-adjusted-discount-factor formally 
defined in terms of Z  in (40).

The reason why D  does not show up in the formula (22) 
is the simplistic information structure G F H= ⁄ , which 
implies that Dt=0  (cf. Lemma (5.3)(ii) below). To go 
beyond the conditional independence (basic immersion) 
setup for this formula, one can work in a larger filtration 
G,  where the additional information in G  is used for 
modeling different wrong-way risk scenarios. An alterna-
tive is a similar formula valid in general (beyond a basic 
immersion setup) under a changed probability measure, 
where the measure change reflects the lack of immersion 
in the model (see Crépey and Song (2015)).

■■ IV. Comparison

We see from (1) and (16) that ECL and CVA have the same 
definitions, i.e. the difference between riskless and risky 
probability weighted discounted cash shortfalls. We have 
shown in (6) and (18) that these cash-shortfall were equal 
to the present value of future losses on the intruments. 
In a risk neutral world, as it is the case for CVA, this is 
equal to a price, associated with the fact that counterpar-
ties are credit risky. In a historical world, this is equal to 
the ECL provision that measures the average risk on the 
instruments. To conclude this paper we underline the 
similarities and differences between ECL and CVA from 
the point of view of calibration, modeling, management 
and impact on the bank.

Both measures embed forward looking parameters and, 
in particular, forward-looking default probabilities. The 
CVA is a probability weighted average of all the possible 
outcomes in terms of default risk of the counterparty. 
The weighting of the outcomes is computed from mar-
ket implied default probabilities of the counterparty. In 
essence, these probabilities are Point-In-Time parameters 
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(reflect current economic conditions), because market 
implied parameters are measured from spot market 
prices, and are forward-looking, because they embed 
the view of the market related to the default likelihood 
of the counterparty at different horizons in the future. 
Regarding the ECL, PDs are PIT forward-looking as well. 
However, they are not calibrated from market spreads, 
but estimated from historical data and adjusted to take 
into account the curent conditions and the available 
information about the foreseeable future. Some players 
are pushing for the use of market implied parameters 
of the corporate perimeter, but this seems disconnected 
from the goal of measuring provisions on the loan book.

Regarding loss rates (or LGDs), we observe the same 
difference between CVA and ECL. For CVA, the LGD used 
in the pricing is linked to the recovery rate used for the 
pricing of credit derivatives, which is a market parameter. 
By contrast, for ECL, the loss rate is estimated from the 
bank’s loss data base or from the bank’s provision rates 
database, which are not linked to market parameters.

One of the main aspect of counterparty risk is the notion 
of wrong way risk that encompasses the potential positive 
correlation between the increase of the exposure and the 
increase of default likelihood of the counterparty. A similar 
effect occurs on the loan book, in particular for revolving 
facilities or term loans with a drawing period. For this 
type of exposure, it is well known that the increase of the 
default likelihood is often associated with an increase of 
the exposure because the client draws her line of credit 
when financial difficulties appear. The regulator is of 
course aware of this type of wrong way risk and requires 
the bank to measure a Credit Conversion Factor (CCF) for 

off-balance sheet exposures that are likely to be drawn 
before the client goes to default. Prepayments are ano-
ther component of the dynamics of the exposure on the 
loan book, and the difference in the prepayment beha-
vior of the clients depending on their credit quality has 
to be assessed in IFRS 9 models as well, because it may 
contribute to generate a wrong way risk.

Finally, we have focused in this paper on unilateral coun-
terparty risk and CVA, only accounting for the default risk 
of the bank’s counterparty. However, a change in the bank’s 
own credit spread may impact the P&L of the bank. When 
the credit spread of the bank increases, the present value of 
all the future cash-flows that the bank is committed to pay 
decreases, resulting in a gain in P&L. The correction on the 
PV of all the outgoing cash-flows due to the positive market 
spread of the bank, i.e. the symmetrical accounting compa-
nion of the CVA, is called Debit Valuation Adjustment (DVA). 
Such an effect does not exist on the ECL because the IFRS 9 
norm requires to compute purely unilateral ECLs, even for 
issued guarantees or other off-balance sheet commitments 
that are considered as liabilities.	 n

1	 In the market terminology, it is frequently called the mark-to-market (MtM).

Figure 1. Mean and quantiles of the price process right before the 6m coupon times for 
a 3 months versus 6 months basis swap in the multicurve interest rate two-factor log-
normal model of Crepey, Macrina, Nguyen and Skovmand (2015). Both legs of the basis 
swap are worth 27.96 at time 0. (Left) Exposure under the Q-measure. (Right) Exposure 
under the P-measure
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A.1. Credit Rating and Scoring models
One of the main differences between CVA and ECL (provisions) is that they are not based on the same risk measures because they are not sensitive to the 
same risk drivers. Regarding credit risk, CVA is measured from the risk parameters as assessed by the market, namely credit spreads, which is possible 
because derivative transactions are often done with non retail counterparties (corporate, financial institutions, sovereigns) whose credit risk is quoted 
on the CDS markets. Conversely, provisions are assigned to any type of client of the bank, and most of them are not quoted on the CDS markets, such as 
Small and Medium Enterprises (SMEs) or retail banking clients. It is widely accepted that the provision has to be estimated based on credit ratings or credit 
scores instead of any other risk measure (either market implied or pool based).

A.1.1. Ratings
A credit rating is an opinion on the client’s or counterparty’s creditworthiness, i.e. its abilility or willingness to pay back the loan it has been granted. 
Credit ratings are provided by rating agencies (Standard and Poor’s, Moody’s, FitchRatings for instance) which focus on evaluating credit risk. There 
are also regional or “niche” rating agencies that specialize in a geographical area or industry. Banks provide credit ratings as well, based on their own 
internal models.
Ratings embed an evaluation of the current and historical information as well as the potential impact of the foreseeable future conditions or events, such 
as the evolution of the business cycle. However, the forward-looking feature of the rating is neither a prediction of a forthcoming default nor an exact 
quantification of the probability of default: the rating is a relative opinion about creditworthiness, a ranking of obligors based on their credit risk. A rating 
grade or a risk class gathers clients having the same level of risk.

A.1.2. Scoring
Scoring and rating models have been used in the field of credit granting and credit risk management for long now. Initially, scoring models were used 
to assess the creditworthiness on potential clients of the bank as a decision tool for granting loans. In the 1980s, banks developped behavioral scores, 
which assessed the credit risk of existing clients, and were useful for risk management and marketing purposes. When the Basel 2 regulation came into 
force in 2007, behavioral scores became the cornerstone of the Internal Rating Based (IRB) approach for measuring capital allocation under that accord.
Rating and scoring have the same goal, i.e. assessing the risk of insolvency of a debt issuer or instrunment. The main difference between the two is that 
the rating process is based on a financial audit of the client, whereas the scoring process is more automatic. Scoring models take into account certain 
characteristics of the customer and of the loan (for instance, for a given borrower, real estate loans and consumer loans don’t have the same risk drivers), 
which are integrated into a single number, the score. This process is mainly backward-looking and contains limited or no subjectivity.
Scoring models link the behavior (repayments, arrears, bank account information,...) or the features of clients to the defaults that the bank suffers over 
a one year period. Regression analysis, discriminant analysis, neural networks, and many other machine learning techniques are available for scoring. 
Scoring is a classification method where the inputs are the explicative factors, F1, ..., Fn , and the output is a partition of the clients into two groups, the 
“goods” (G) and the “bads” (B). We refer to Thomas2000 and references therein for a survey on credit scoring. Many classification problems, in particular 
those for which the conditional distribution given “goods” and “bads” of the explicative factors is multivariate normal, reduce to a linear rule (see for a 
review Lachenbruch1975, Choi1986, Hand1981). In this case, the set of explicative factors for the goods is defined by:

		  A F F w F w F w F cG n n n={( ,..., ) ... > }.1 1 1 2 2+ + 	 (23)

If we introduce the score function s F F w F w F w Fn n n( ,... )= ...1 1 1 2 2+ + , we reduce the classification problem from a problem with n  
dimensions to a problem with one dimension only. The value of the cut-off parameter c  is the result of an optimization problem because a classification 
error generates losses: classifying a “good” as a bad and rejecting it generates a loss of profit, and classifying a “bad” as a good and accepting it 
generates a credit loss. The cut-off value is the one that minimizes the expected loss on the estimation sample. It can be easily shown that the optimal 
cut-value does not depend directly on the misclassification costs themselves but rather on the ratio of the misclassification costs (see Hand (2009)).
Computing the weights in the score function is a classical optimization problem addressed for instance in Fisher (1936). Discriminant analysis has been 
applied by Altman in the field of corporate bankruptcies (see Altman (1968, 1981, 2010). Following Fisher’s method, the estimation of the score function 
is equivalent to maximizing the variance between the groups and minimizing the variance within individual groups.
For single borrowers, the default probability cannot be observed directly. For groups of borrowers, however, observed default rates are a proxy of the 
average default probability. We can link the individual default probability to the score:

	 p L s F Fi
i

n
i= ( ( ,..., ))1

	 (24)

where F Fi
n
i

1 ,...,  are the realization of the factors for client number i . The use of a logistic link function L( )◊  was first introduced by Wiginton (1980) 
in the context of credit scoring and then became very popular. The resulting logit model is defined by

	 p
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1
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+
- +g

	 (25)

The coefficient g  is estimated so that the average default probability on the sample is equal to the observed (or target) default rate of the portfolio. 
Another link function, the normal cumulative distribution function N ( )◊ , was suggested by Grablowsky (1981) in the framework of regression analysis. 
This is the probit model. The difference between logit and probit models is often negligible because the shapes of the associated link function are very 
close to each other.

A.1.3. Rating and scoring models performance
As mentioned above, a scoring model consists in ranking the loans of a portfolio. Some loans are assigned a low score and are going to default. Others 
with low scores are not going to default. The better the performance of the model, the better the ranking it generates compared to the observed defaults. 
We consider a homogeneous portfolio of loans, which means that the loans have the same risk drivers. These loans are granted to the same type of 

Appendix A – Review of the Mathematical Toolbox
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clients, in the same geographic area and belong to the same asset class (for instance prime residential mortgages in the UK originated by entity X of the 
bank). We call p  the one year unconditional probability of default within the loan portfolio. We consider a rating model that produces a continuous score 
over the set of debtors in the portfolio. The higher the score related to a loan, the lower its probability of default. We rank the debtors respective to their 
creditworthiness, starting with those that have lowest score and going to those with the highest score.
Let’s consider the fraction x  of the debtors having the lowest scores. Among all the defaulters of the portfolio, we call “Hit Rate” HR x( ) is the 
proportion of defaulters that have been predicted correctly regarding a threshold on the score value equal to x .
The Cumulative Accuracy Profi le curve (CAP curve; see fi gure 1) is obtained by plotting the function HR x( ) when x  ranges from 0% to 100%. A perfect 
scoring model will assign the lowest scores to the defaulters. In this case, the CAP curve is increasing linearly for x p£  and remains equal to one for 
x p≥ . For a scoring model without any discriminatory power (random model), the fraction of all debtors with the lowest rating scores contains a 

fraction of defaulters equal to x , and the CAP curve is the diagonal of the unit square. Real rating systems lie somewhere between these two extremes. 
The quality of a rating system is measured by the accuracy ratio AR  defi ned as the ratio of the area between the CAP curve of the real scoring model 
and the CAP curve of the random model, and the area between the CAP curve of the perfect scoring model and the CAP curve of the random model. This 
ratio ranges from 0% for the random model to 100% for the perfect model (see Engelmann et al., 2003).

Figure 2. cap curve: hit rate as a function of x
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We mention that the Accuracy ratio AR is criticized for being fl awed, particularly when expressed in terms of misclassifi cation costs, and that a 
more objective measure exists (see Hand (2009)). When reformulated in terms of misclassifi cation cost, a perfect model corresponds to an expected 
misclassifi cation loss equal to 0 whereas a random model corresponds to an expected misclassifi cation loss being equal to its maximum value LMax. For 
a realistic model, the expected misclassifi cation loss L  is between these two extreme values. Hand (2009) proposes to measure the model performance 
with the H-measure, defi ned as H L LMax=1 /- .
In the context of the IFRS 9 norm, Brunel (2015) uses these analytics and shows how the discriminatory power of the scoring model drives the size of the 
stage 2 portfolio and the IFRS 9 provision amount itself.

a.2. pD estimation methods
The parameters used to measure the ECL must be sensitive to the provisions’ risk drivers. The IFRS 9 standard allows one to compute the parameters 
based on a statistical approach for instruments gathered into homogeneous portfolios of assets that share the same risk drivers, called segments. The 
estimation process leads to a set of identical parameters for all the instruments within a segment. Segmentation is a key feature of the provision model.

a.2.1. overview of the approaches
PD estimation is one of the cornerstones of the quantifi cation of IFRS 9 provision within a given segment. The requirement of the norm is quite heavy 
because PD estimations have to include the relevant information about the past, the current position in the credit cycle (Point-in-Time, “PIT”) and any 
relevant information about the foreseeable future. PDs must refl ect default risk over all time periods.
It is clear that market spreads natively encompass these requirements because market prices are forward-looking in essence. However, market spreads 
exist for large corporates only and don’t exist for the majority of bank’s clients or counterparties that don’t have any listed debt instrument or credit 
derivative quoted on the market. This is the case for retail clients or small corporates for instance. Additionally, the estimation of PDs from market data 
would overestimate the ECL because market spreads are biased by liquidity premia.
It is now widely accepted that the IFRS 9 framework should be based upon the regulatory framework. This doesn’t mean that the parameters are the 
same, in particular regarding PDs since regulatory PDs is expected to be the average of the default rate over an economic cycle (Through-the-Cycle, 
“TTC”), whereas IFRS 9 PDs must be PIT. As PDs are not directly observable and are not calibrated from market data, they are estimated in a portfolio 
approach, by considering homogeneous groups of loans or counterparties, the segments. This is similar to the the estimation of the Basel 2 parameters. 
The mainstream approach is to consider risk classes or internal ratings as a starting point of the IFRS 9 framework for PD estimation. Two options are 
possible for PD estimation:  
■ option 1: estimation from observed rating migrations, 
■ option2: estimation from observed default rates within each risk class or rating level. 

appendix a (continued)
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When choosing between option 1 and options 2, we have to distinguish between two types of portfolios, high default portfolios on one hand and low 
default portfolios on the other hand. High default portfolios are portfolios that contains a sufficient number of loans so that statistical analysis can be 
performed with a good degree of accuracy on default and rating migrations. Retail portfolios, small corporate portfolios, large corporate portfolios are 
all considered as high default portfolios, and both option 1 and options 2 are relevant because of the large quantity of available data. In the case when 
maturation effects are important (for some retail portfolios for instance), Markovianity or time homogeneity may be broken, and it is more relevant 
to estimate directly the term structures of PDs from observed default rates. Conversely, very large corporate portfolios, banks or sovereign portfolios 
generate very few default events, and they are called low default portfolios. In this case, estimation from observed default rates is not a relevant option 
because of the scarcity of data and estimation from observed rating migrations often leads to much robust results (see for instance Fuertes (2007)).

A.2.2. The PD term structure from the observed migrations
In this paragraph we describe the main lines of the method based on observed rating migrations, which is suitable for non retail portfolios or retail 
portfoliois based on the roll-rates. The most common approach to estimate migration matrices from observed rating migrations is the cohort method 
(see Schuermann (2005)), but is not very robust in practice, in particular for low default portfolios. Another approach, the continuous approach, leads to 
much robust results and is widely recognized to be the best estimation approach: “It is crucial to base the estimation of transition rates on continuously 
observed histories to get efficient estimates of transition rates. This point is particularly important when estimating rare events” (see Lando (2002)).
We assume that the data set includes all the observed rating migrationsbetween dates 0  and T . In the continuous approach, the waiting times between 
rating migrations (called “durations”) follow an exponential distribution whose parameters are the elements of a generating matrix representing migration 
rates that we seek to estimate. In this paragraph, we follow the model described as in Brunel and Roger (2014). At time t , and for i j K, ={1, , }

, 
the elements of the generating matrix l lt i j t={ ( )},

 are the instantaneous migration rates from rating i  to rating j , conditional to being in rating 
i  at date t . The likelihood of the transition from rating i  to rating j  after a time interval tm is equal to the probability that an issuer rated i  remains 
in this class for a time period equal to tm multiplied by the probability to jump to rating j  at time tm. This writes: 

	 L i j t e tm

t
m
ii
t dt

ij( , , )= ( )0
( )Ú l

l 	 (26)

Similarly, the likelihood that an issuer with rating i  stays in this rating class up to time tm is equal to: 

	 L i i t em

t
m
ii
t dt

( , , )= 0
( )Ú l

	 (27)

If we observe Nij  migrations from rating i  to rating j  over the full historical data set, each having occured by time tm (m Nij=1 )
, and a 

number Nic  of censored durations from rating i  at dates tm ( =1 )m Nic
, then we can write the total likelihood as the product of individual 

likelihoods of all issuers that passed in the rating class i  in the data set. The relationship l lii j i ij
t t( )= ( )-

πÂ  leads to: 
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Under the assumption of time homogeneity l lij ijt i j K( )= , , =1" 
, the estimator of the instantaneous migration rate from rating i  to rating 

j  is obtained by maximizing the above likelihood function with respect to each of the lij : 

	 lij ij

m

N
i

m

N T

t

=
( )

=1
Â

	 (29)

where N Tij ( )  is the number of observed migrations from rating i  to rating j  between dates 0  and T , and N N T Ni j ij ic= ( )Â +  is the 
number of migrations starting from rating i  between dates 0 et T .
This approach leads to a one year TTC migration matrix exp( )L , and PD curves by raising the matrix to the power of time horizon. This is the starting 
point from which one can estimate PIT forward-looking PD curves as required by the IFRS 9 norm. PIT migration rates are time dependent because of 
variations of the macroeconomic conditions and they can be made forward-looking by taking into account some forecasting of the macroeconomic 
factors into the estimation process. The credit cycle is represented by a continuous time process ( ) 0Ft t≥  where the date t=0  is the starting point of 
the historical data. We assume, as in Vasicek’s model (Vasicek, 2007), that a rating migration or a default for obligor number l  between date t  and date 
t +1 year is driven by a standard normal random variable defined by 

	 R Fl t t l t, ,= 1r re+ - 	 (30)

where Ft  and el t,  are independent standard normal variables. The transition from rating i  to a rating equal or lower than j  for obligor l  occurs 
when Rl t,  is lower than a threshold si j,  which is linked to the TTC transition probability from rating i  to a rating equal or lower than j . If we denote 
pi j,  this probability, we have: 

	 s N pi j i j,
1

,= ,- ( ) 	 (31)
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where N  denotes the standard normal cumulative distribution function. Conditional to the value of the systemic factor Ft , the average migration rate 
from rating i  to rating j  over one year is then equal to: 

	 M N
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. 	 (32)

The systemic factors Ft t( ) ≥0
 and the correlation parameter r  are estimated by maximizing the likelihood of observed migrations: 

	 L F F F MT
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where D  is the number of rating grades including default and ni j t, ,  is the number of observed migration from rating i  to rating j  between time t  
and time t + 1 . A forward-looking measure of PDs requires to have a view on the values of the systemic factor for dates t T> . This can be obtained by 
assuming a functional dependence between this macroeconomic factor and some macroeconomic variables (GDP growth, unemployment rate, interest 
rates...) on which economists may express some forecasts.
The term structure of PDs is obtained by multiplying the resulting transition matrices. The estimated correlation parameter, called r , is assumed to 
be constant over the estimation period and over the future horizons. The dynamics of the systemic factor is assumed to be linked to the dynamics of 
macroeconomic factors via an econometric relationship which can be written in a discrete time framework as:

	 F a F Yt t
i
i t
i

t+ + +Â1 = . .b e 	 (34)

where the Yt
i  are the macroeconomic factors at time t  (for instance GDP growth, unemployement rate variation...) and ( ) 0et t≥  is a white noise 

process. Let’s assume that we are at time t . When the economists provide forecasts for macroeconomic factors over the next few years, i.e. they provide 
the values for Yt

i , Yt
i
+2 , ... Yt k

i
+ , then eq. (34) provide forecasts for the systemic factor at all future dates up to date t k+ . The PIT forward-looking 

PDs at horizon k  are given by the last column of the cumulative transition matrix over the time period going from date T  to date T k+ , equal to:

	 M T T k M M M
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F
T k( , )=
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1
,

1
.

+ ¥ ¥ ¥+ + -r r r� � �
� 	 (35)

This approach describes the general formalism to estimate TTC parameters and adjust them to get PIT forward-looking parameters. It can be extended 
to the estimation of PD curves directly from obseverd defaults, but this would require a global review of all the approaches to estimate PD curves which 
is out of the scope of this section devoted to the mathematical toolbox.

A.3. Reduced-Form Credit Risk Modeling
This section, based on Crépey, Bielecki, and Brigo (2014, Sect. 13.7), gives mathematical tools underlying the so-called reduced-form intensity credit risk 
modeling approach that grounds the intensity-based CVA formula (22). Given a [0, ] { }T » +• -valued stopping time t  without atom on [0, ]T , let 
Jt t=1{ > }t  denote the related survival indicator and let t t= .ŸT  We assume further that G F H= ,⁄  where the filtration H  is generated 

by the  process J  and where F  is some  reference filtration. The Azéma supermartingale associated with t  is the [0,1]  valued process Z  defined, 
for t TŒ[0, ],  by  

	 ( | ).Jt tF 	 (36)

Assuming a positive Z et
t=: ,

-G
 where G  is called the hazard process, we have the following “key lemma” of single-name credit risk (see e.g. 

page 143 of Bielecki and Rutkowski (2001)).  
Lemma A.1. If x  is an integrable random variable, then 

	 J J
J

t
J e Jt t t

t t

t
t
t

t tE
E
Q

EQ
Q

Q[ | ]=
( | )

( > | )
= ( |x

x
t

xG
F

F
F

G
)). 	 (37)

For x  of the form J sc, for some Fs -measurable c  with s t≥ ,  we have: 

	 E E EQ Q Q[ | ]= ( | )= ( | ).
( )

J J e J J es t t
t

s t t
s t

tc c cG F F
G G G- -

	 (38)

Proof. The left-hand side in (37) (where the right-hand side is only notational) results from the fact that, on { > },t t  the s -field Gt  is generated by 
Ft  and the random variable { > }t t . In (38), the left-hand side follows by an application of (37) to x c= J s ; the right-hand side then results from 

the tower law by taking an inner conditional expectation with respect to Fs . n

In particular, (38) with c= e s
G

 proves that the process X J et t
t=

G
 is a G -martingale, since for s t≥ : 

	 E EQ Q[ | ]= ( | ]= .
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t t
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t t
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Lemma A.2. For any G -adapted, respectively G -predictable, process Y , there exists a unique F -adapted, respectively F -predictable, process Y  
such that JY JY=  , respectively J Y J Y- -=  .  

Proof. In view of (37), we can take, in the adapted case, Y e Y Jt
t

t t t
 = ( | ).

G EQ F  For the predictable case see §75, page 186 in Dellacherie et al. 
(1992) and Proposition 9.12 in Nikeghbali (2006). n

Further assuming the process Z  continuous and nonincreasing, letting M Jt t t= ( )- + ŸG t , we have that dX X dMt t t=- -  and therefore 
dM e dXt

t
t= ,-

-G
 so that M  also is a G -martingale. Moreover:  

Lemma A.3. Under the above assumptions: (i) An F -martingale stopped at t  is a G -martingale. 
(ii) An F -adapted  càdlàg process cannot jump at t.   
Proof. (i) Since t  has a positive, continuous and nonincreasing Azéma supermartingale, it is known from Elliot et al. (2000) that an � -martingale 
stopped at t  is a G -martingale.

(ii) As Z  is continuous, t  avoids F -stopping times, i.e. Q( = )=0t s  for any F -stopping time s  (see for instance Nikeghbali (2006)). Moreover, 
by Theorem 4.1, page 120 in He et al. (1992), there exists a sequence of F -stopping times exhausting the jump times of an F -adapted  càdlàg process. n  

Letting bt

t
r
s
ds

e= 0
-Ú

 denote the discount factor at some F -progressively measurable risk-free rate r,  we model the cumulative discounted future 
cash flows of a defaultable claim in the form of the Gt -measurable random variable pt  defined, at any t Œ[0, ],t  by 

	 b p b b x
t

t t t tt
t

t s s t T Tf ds R= (1 1 ),{ < < } >Ú + + 	 (39)

for some F -progressively measurable  dividend rate process f ,  some F -predictable  recovery process R  and some FT -measurable payment at 
maturity (random variable) x . Note that the assumption that the data rt , f ,  R  and x  are in F  is not restrictive in view of Lemma 5.2.
Now, assuming Zt  time-differentiable, we define the  hazard intensity g  and the  credit-risk-adjusted-discount-factor a  as the F -adapted 
processes defined, for t Œ +R , by   

	 g a b gt
t t

t t

t

s

td Z

dt

d

dt
ds r= = , = ( )= ( (

0 0
- - -Ú Ú
ln

exp exp
G

ss s ds+ g ) ). 	 (40)

The next result shows that the computation of conditional expectations of cash flows pt  with respect to Gt  can be reduced to the computation of 
conditional expectations of “ F -equivalent” cash flows p t  with respect to Ft .

Lemma A.4. We have 

	 E E( | )= ( | ),p pt
t t

t

tJG F

where p t  is given, with g f R= ,+ g  by 

	 a p a a xt

t

t

T

s s Tg ds = .Ú + 	 (41)

Proof. Since M Jt t t= ( )- + ŸG t  is a G -martingale, 

	 E E EQ Q Q[1 | ]= [ | ]= [{ < < }t T t t

T

s s s t t

T

sR R dJt t tb b bG G- Ú Ú RR J dss s s tg | ] .G

The proof is concluded by repeated applications of (38). n

Hence, the valuation of defaultable claims can be handled in essentially the same way as default-free claims, provided the default-free discount factor 
process b  is replaced by a  credit risk adjusted discount factor a  and a fictitious dividend continuously paid at rate g  is introduced to account for 
recovery on the claim upon default (note that a “default-free” discount factor b  can itself be interpreted in terms of a default risk with “intensity” rt ).
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