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EXPECTED CREDIT LOSS VS.
CREDIT VALUE ADJUSTMENT:
A COMPARATIVE ANALYSIS

B [. INTRODUCTION

Itis admitted that 2/3 of the losses that occured during
the 2007-2008 subprime and financial crisis are due to the
deterioration of credit counterparties rather than defaults
or price variations on other assets. Both regulators and
accountants now want banks to better recognize credit
deterioration in capital charge and P&L.

On trading books, the price of counterparty risk is called
Credit Value Adjustment (CVA). Itis equal to the difference
between the price of a derivative contract negociated with
ariskless counterparty and the price of the same instru-
ment negociated with a real (credit risky) counterparty.
CVA was already taken into account in the pricing of
books of derivatives before the crisis. This is why banks
who were in the business of Negative Base Trading of
ABS suffered large losses when the credit rating of their
swap counterparties that were insuring them dropped
from AAA to CCC or to default in a few weeks period of
time only during the crisis. However, market risk related
to CVA variations was not, at that time, embedded in the
market VaR. In the Basel 3 regulation, the regulators ask
banks to compute a dedicated capital charge for CVA risk.

Similarly, the crisis revealed that the provisioning process
within banks was much too late when the creditworthiness
of banking book exposures was deteriorating. The current
IAS 39 (International Accounting Standards) accounting
rules prescribe an “incurred loss” model for loan impair-
ment: this norm considers thata loan is impaired when,
on the basis of objective evidence, it is partly or wholly
uncollectible, so that its carrying amount is greater than
its estimated recoverable amount. Objective evidence in
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this context includes significant financial difficulty of the
issuer, actual breach of contract or a high probability of
bankruptcy. However, under the current standard, impair-
ment losses are recognized only upon the occurrence of
a credit event of the issuer, even if this event was already
expected to happen. This generates procyclical effects that
were pointed out to be responsible for accelerating the
financial crisis, because of delayed recognition of credit
losses. In order to circumvent this, the Spanish regulator
has asked banks to set statistical provisions as soon as in
2000 (seeJimenez (2006)). IASB (2014) released the final
version of the IFRS g new accounting standards aiming at
overcoming the concerns that arose during the financial
crisis because of the former IAS 39 incurred loss model.
The new requirement on performing loan books is to
recognize loss allowances or provisions before a default
event occurs, based on the measurement of an Expected
Credit Loss (ECL hereafter).

It appears that the definitions and mathematics of ECL
and CVA are similar to each other because ECL and CVA
measure analogous quantities, the first one on banking
books and the second one on trading books. However,
they are not sensitive to the same risk drivers. The CVA
measures the expected credit loss, as seen by the market,
on a derivative instrument. The main drivers of this expec-
ted loss are market risk factors that drive the exposure
amount to counterparty risk and the credit spread of the
counterparty. By contrast, the risk drivers of the IFRS g
provisions are not market implied but rather fundamental
since they aim at measuring the forthcoming credit losses
and their sensitivity to the macroeconomic context. As the
risk drivers between these two measures are different, the
modelling challenges they generate are not the same. In
a nutshell, the challenges to measure CVA are linked to
the correct measure of the future exposure on derivatives
contracts, whereas the main challenges on ECL estimation
are to measure accurately the significant risk deteriora-
tion and default probability term structures for any tenor.

In this article, we review the notions of ECL (Section 2)
and CVA (Section 3). Section 4 concludes by a compara-
tive analysis of the two measures. Section 5 provides a
review of the mathematical and estimation tools involved.
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Let (Q,G) stand for a filtered space, which is used
throughout this paper as the space containing random
events that underlie modeling the stochastic evolution
of a financial market. In particular, all our processes are
G -adapted. The filtration will be givenas G = (G,),
with T = Nand T = R in the respective ECL and CVA
case, consistent with the respective banking/statistical
and trading/pricing tradition for these notions. Expec-
tations under the statistical probability measure P and
a risk-neutral pricing measure Q (assumed chosen by
the market) are denoted by E® and EC, respectively.

Here is a recapitulative list of acronyms, by order of
apparition of their main use in the paper.

CSA  Credit Support Annex

CVA  Credit Valuation Adjustment

DVA  Debit Valuation Adjustment

FVA  Liquidity Funding Valuation Adjustment
XVA  Total Valuation Adjustment.

ECL  Expected Credit Loss

IFRS International Financial Reporting Standards
IAS(B) International Accounting Standards (Board)
EIR  Effective Interest Rate

LGD Loss Given Default

EAD  Exposure At Default

PIT  Point-In-Time

IRB  Internal Rating Based

PD Probability of Default

TTC Through-The-Cycle

EPE  Expected Positive Exposure

EEPE Effective Expected Positive Exposure
RWA Risk Weighted Assets

EE Expected Exposure

PFE  Potential Future Exposure

MPFE Maximum Potential Future Exposure
HR  HitRate

CAP  Cumulative Accuracy Profile

AR Accuracy Ratio

B II. ECL AS A MEASURE
OF THE IFRS 9 PROVISION

In the context of ECL computations, time is modeled
as discrete and a finite time horizon 7" < oo represents
the maturity of a credit exposure of the bank. As stated in
IASB (2014) (the final version of the IFRS g new accoun-
ting standards), the Expected Credit Loss (ECL) aims at
measuring collective provisions on non defaulted instru-
ments that are measured at amortised cost or fair value
through Other Comprehensive Income (OCI). In what
follows, we will refer to the “instrument” for any finan-
cial instrument that is in the scope of the IFRS g norm;
it can be a loan, a bond or an other debt instrument or
asset on the balance sheet, as well as a liability such as
an undrawn commitment or a guarantee issued by the
bank. The IASB standard defines the ECL as the difference
between all contractual discounted cash-flows that are
due on the instrument and all discounted cash-flows that
the bank expects to receive (i.e. all cash shortfalls). Both

the interest amounts and the discount factor are compu-
ted based on the Effective Interest Rate (EIR). The EIR
is calculated at initial recognition of the financial asset.
It is the rate that exactly discounts estimated cash-flows
through the expected life of the instrument to the gross
carrying amount. It includes transaction costs or fees, as
well as future lifetime expected credit losses for origina-
ted credit-impaired financial assets. ECL measurement
in then based on all terms of the contract (including all
the options such as prepayment, extensions,...) over
the life of the instrument, as well as cash-flows coming
for instance from the sale of the loan collateral or other
credit enhancement mechanism, if any.

The loss allowance to non defaulted instruments is
done in two stages, depending on the observed credit
risk deterioration since origination of the instrument:
W Stage1:if the creditrisk on a financial instrument has
not increased significantly since initial recognition,
the loss allowance is equal to the 12 months ECL.

M Stage 2: if the credit risk on a financial instrument
has increased significantly since initial recognition, the
loss allowance is equal to the lifetime ECL.

As a result, stage 1 loans are of better credit quality
than stage 2 loans. Paragraphs 5.5.10 and 5.5.11 of
IASB (2014) provide details about the transfer criteria to
be used from stage 1 to stage 2. For instance, an entity
may assume that the credit risk on instruments has not
increased significantly if the instrument is determined to
have low credit risk. Conversely, as soon as contractual
payments on an instrument are more than 30 days past
due, the norm requires transfering it automatically to
stage 2. However, beyond these two special cases, the
norm is “principle-based” so that it does not detail how
to determine the instruments that should be in stage 1 or
in stage 2: implementing the new standards is subject to
interpretation of the text and to some subjective choices
in terms of credit risk quantification. We mention that
the the defaulted instruments correspond to the stage 3
instruments, for which the provision is specific (and no
longer collective) and is equal to the full lifetime ECL.

ECL is an estimate of the total credit loss over the life
of the instrument. The measurement of ECL needs to
take into account:

M unbiased and probability weighted amounts in order
to take into account a full range of possible outcomes.
The bank needs to specify the amount and timing of’
cash-flows as well as the estimated probability of each
outcome.

M time value of money has to be taken into account by
discounting cash-flows at a rate that approximates the
Effective Interest Rate of the instrument.

M risk parameters estimated from historical data and
adjusted to reflect the effects of current conditions and
forecasts of future economic conditions.

Based on the definition stated earlier, the standard
defines the ECL as the weighted-average of future credit
losses on the instrument, where the weights must reflect
the probabilities of occurence of a default. Let’s start from
the initial definition. For a given instrument, the ECL is
equal to the difference between the sum of discounted
contractual and expected cash-shortfalls:

BANKERS, MARKETS & INVESTORS N© 141 MARCH-APRIL 2016

03/02/16 10:11



EXPECTED CREDIT LOSS VS. CREDIT VALUE ADJUSTMENT: A COMPARATIVE ANALYSIS

ECL =Y CEF.DF(t)-EF {ZCFtR .DF(t)}s 6
£20 £20
where the horizon T is equal to one year for stage 1
instruments and to the maturity date for stage 2 instru-
ments; the second sum is done for all values of ¢ larger
than o because the recovery process in case of a default
may be longer than the contractual maturity of the ins-
trument. As stated by the norm, the discount rate is the
EIR and the discount factor associated with horizon ¢
is DF(t) =1/ (1+ EIRY. (CE") 5, and (CFF),,,
are respectively the sequences of contractual and real
(random) cash-flows paid by the instrument, including
both principal and interest payments. In the case of a
loan, the quantity CFtR embeds prepayments, additio-
nal drawings (for instance for revolving facilities) or an
occurrence of a default ; indeed, in case of default, the
cash-shortfalls are the proceeds linked to the recovery or
liquidation process and no longer with the withdrawal
of the loan from the client. We can decompose the real
cash-flows into two terms, depending on whether a
default has already occured at time ¢ or not. We obtain:

R _
C}?t — C}Tto'l{‘t>t} + Rt'l{TSt} (2)

where 7T is the default date on the instrument, R, is the
recovery cash shortfall at date ¢ and CEO is the cash-
flow occuring at date ¢ in the non default scenario. The
sequences (CF;O );s0 and (R, )5, represent the cash-
flows before and after the default event occurs. We can
then rearrange the ECL formula in order to make the
expected credit loss appear explicitly:

ECL =EF [Z(CEF - CFtO).DF(t)} (3)

t=>0

+EF |:2(C};;0 -R, ).I{Tst}.DF(t)}

t>0

The cash-flows CF;C and CF;R both include principal
and interest payments. The first term of equation (3) is
equal to o from the following proposition:

Proposition 2.1. For any sequence of cash-flows CF(t)
that includes principal and interest payments, the sum
of'the discounted cash-flows is independent on the dates
and amounts of the cash-flows. In particular, we have

ZQOCF;ODF(t) = ZIZOCFtC DF(

Proof. Let’s call N, the principal amount withdrawn
at date . We have:
Y. CF, - DF(t)

t.<T !
1

N, -DF(t)
4

= 2| DFG_)-DF()
L<T| +

‘ DF(t,)

Y N, | DF@)
t.>t. J
7 -1
After rearranging this relationship, we get:
2.CF,_-DF(t)= » N,
1

t.<T ! t.<T
1 1

This relationship means that the sum of all the discounted
cash-flows are equal to the total nominal exposure,
whatever the amounts and the dates of payment of the
principal cash-flows. Then whatever the sequence of cash-
flows for a given nominal amount, the sum of discounted
cash-flows remains unchanged. m

Equation (3) then writes:

— P ()DF(t)_ DF(t)
ECL=E H;C}Q DF(Y) ;Rt DF(T)]DF&)

DF(t)

We set EXP(1) = CF’ =~
) zt?f ! DF(7)

total credit exposure on the instrument at the date of the
default event. We note that this definition differs from
the Basel 2 Exposure At Default (EAD) definition. We

then get for the ECL:

, which is the

2 R DF(t)
t

DF(7)
ECL=E"| EXP(1)|1-12=— ~~
¢ @ EXDP(7)

DF (1) (5)

We introduce the loss rate, or Loss Given Default

DF(t)

LGD =1 28 ey

EXP(7)

we see that the loss rate depends on the default date t

and on the recovery cash-flow sequence ( Rt) .o Which

is random as well. However, it is usually assumed that

the loss rate is a constant. We get the formula for the
expected cgoedit loss:

ECL = ["DF()- EXP(t)- LGD - Pl e (¢,¢ +db)]-

(6)

. Through this definition,

If we discretize this relationship, we get:

ECL ~ Y EXP(t,)- LGD-DF(t,) - Plte (t;,t,,,)]

t; (7)
where P[1 e (¢ il )] can be estimated by the techniques
reviewed in Sect. 5.1-5.2 (Whereas for loans the estimation
of the exposure in (7) is straightforward).

Depending on whether the instrument is in stage 1 or
in stage 2, the expected credit loss is measured either
over a one year time horizon or over the full lifetime of
the instrument. This generates a jump in the provision
amount when the instrument is transfered from stage
1 to 2: as the credit risk associated with the instrument
has increased significantly, the default probabilities are
much higher compared to their values at origination, and
additionally, the ECL is measured over the full lifetime
instead of one year only.

The philosophy of the IFRS g is similar to a pricing
approach, motivating the full lifetime horizon retained
for instruments in stage 2. Thus, the choice of the one
year horizon for instruments in stage 1 looks arbitrary,
butitis the same time horizon as the one used to measure
regulatory capital charge in the advanced approaches.
There is however a major difference between the two, in
particular from the way that credit risk parameters (PDs
and loss rates) are measured. In the IFRS g framework,
parameters should reflect current economic conditions
(the so called Point-In-Time -PIT- parameters) whereas
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Basel PDs for instance are supposed to be average para-
meters over the credit cycle (Through-The-Cycle or TTC
parameters) and LGDs have downturn values. Despite,
IRB banks are supposed to use their existing Basel models
at least as a starting point for measuring IFRS g provi-
sions. Basel Committee on Banking Supervision (2015)
yields guidelines for the evolution of risk management
frameworks to comply with the ECL measurement. The
interplay betweeen the Basel and the IFRS g frameworks
is out of the scope of this article, but it will obviously lead
to an upgrade of risk management practices within banks.

The new aspect that the IFRS g norm introduces is about
including forecasts into the metrics, PDs and LGDs in
particular. Historical information is a starting point,
and adjustments are required based on forward-looking
information. From a modelling point of view, this raises
several issues. First of all, the period over which the his-
torical data have to be considered is an issue in order to
reflect both past events and current conditions. Second, it
should be assessed whether the historical data capture TTC
information or PIT information. Third, the information
captured through historical data has to be assessed too
and adjusted to include forecasts. Finally, the estimates
of ECLs shall be recalibrated regularly, and backtested as
well. Backtesting raises an important theoretical issue too
because the ECL embeds both estimation from historical
data and forward-looking forecasts: these are the two legs
in the quatification which need to be assessed separately.

M III. CREDIT VALUE ADJUSTMENT
(CVA)

lll.1. CASH FLOWS

In the context of CVA computations, time is modeled
continuously and a finite horizon T" < o represents the
maturity of a credit support annex (CSA) regarding the
“instrument”, in the sense of a generic netted portfolio
of OTC derivatives between a bank and its counterparty.
The perspective of the bank is taken in the sequel. The
CSAis alegal agreement between the two parties, which
frames the liquidation process in case of default of one
or the other party. In principle, a CSA also prescribes a
collateralization scheme in order to mitigate counterparty
risk, but since there is no collateral involved in ECL com-
putations, we assume no collateralisation henceforth. By
“netted portfolio” above, we mean that in case of default
ofa party, the debt of each party to the other will be valued
by the liquidator on the basis of the cumulative value of all
the ingredients of the portfolio, rather than as the cumu-
lative debt over the different ingredients in the nonnetted
case. This setup can be considered as general since, for
any partition of a portfolio into netted sub-portfolios,
the results may be applied separately to every netting set.
The results at the portfolio level are then simply derived
as the sum of the results of the netting sets.

Given our purpose of emphasizing the analogy between
ECL and CVA computations, we assume the bank default-
free and only consider the defaulttime T of the counter-
party. We assume that T cannot occur at fixed times, an

assumption thatis for instance satisfied in all the intensity
models of credit risk. In particular, the scenario {t=T}
has zero probability and is immaterial in any expectation
(hence price and hedge), so that we can ignore it for
simplicity, e.g. we write {(r<T} interchangeably with
{t <T}. We denote T =1 AT, which represents the
effective time horizon of our problem, since there are
no cash flows after 7 .

We represent by a finite variation process D the
promised (or clean) cumulative dividend process of
the instrument, with jump process denoted by A,
ie. A, = D, — D, All cash flows are considered from
the bank’s point of view in the sense that A, = 1 means
+1 to the bank. A promised dividend is only effectively
paid at time ¢ if the counterparty is still alive at time £,
resulting in the effective dividend process 1y, ,dD,. A
close-out cash flow X closes the bank’s position at time
T (if T < T). This close-out cash flow is based on the
(algebraic) debt € of'the counterparty to the bank at the
counterparty default time T , namely

e =Q +A, ®)

where @ is a CSA close-outvaluation process and where

A, = D_— D, denotes thejump of D at T, represen-
ting any dividend unpaid to the bank by the counterparty
defaulted at time T . In the absence of collateral, the
close-out cash flow X is defined, for T < oo, as

x=Re" —¢, (9)

where R denotes the recovery rate of the counterparty
toward the bank, assumed constant in this article for sim-
plicity. In words, if; at the counterparty default time, the
counterparty is net debtor to the bank (case where € > 0),
then, as the counterparty is in default, it’s only a fraction
R ofthe debt that is recovered by the bank. If the bank is
net debtor to the counterparty (case where € < 0), then
the bank settles its debt in totality (otherwise it would
itself be in default, which we excluded by assumption).

l11.2.PRICES

We assume that there is only one funding asset, the so-
called savings account, growing at the risk-free rate #,.
The savings account is thus the inverse of the risk-free

t
—| rds

discount factor B, = e '[0 . Inthe ensuing classical
risk neutral valuation framework we can proceed with
presenting the following definitions, which are consis-
tent with the standard theory of arbitrage (cf. Delbaen
and Schachermayer (2005)). Recall that D stands for
the cumulative promised (or clean) dividend process of
the instrument on [0,7’], ignoring counterparty risk.
We denote by E? the conditional expectation under the
risk-neutral measure Q given G,.

Definition 3.1. (i) The (counterparty-)clean price1 H
of the instrument is given, for ¢ €[0,7°], by

T
B,P =EC ( ) Bsstj- (10)
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The clean cumulative value process of the portfolio
is given by

f’t:H+pt, (11)

where p, represents the discounted cumulative clean
dividend up to time £, so

t
Bt = J D, (12)

(ii) The (counterparty-)risky price I'T . ofthe instrument
is given, for ¢ €[0,1], by

T
Btnt - E;‘@ (L Bs 1s<r st +B1X1-;<T ) . (13)

The risky cumulative value process of the portfolio is
given, for { <1, by

I; =11, + &, (14)

where
t
Btnt = JOles<rst' (15)

In the sequel we assume the most standard CSA close-
out valuation process @ = P.

11l.3. CREDIT VALUATION ADJUSTMENT

As for the ECL in (1), we will begin with the CVA defi-
ned as a counterparty risk valuation adjustment process.
Then, in Proposition 3.4, which is the CVA analog of the
ECL identity (4), we will demonstrate that the CVA is a
price process for a so-called contingent credit default
swap (CCDS), which pays the so-called counterparty risk
exposure at default.

Definition 3.2. The CVA process, denoted as C'VA, is
given, for t €[0,T], as:

CVA=F-T,=F -1, +1,., .74, (6

The left equality appears as a natural definition for what
a (cumulative) counterparty risk valuation adjustment
should be. The right equality follows since, by Defini-
tion 3.1, we have on [0, 7] :

D=1y =1, A

Remark 3.3. Theterm 1,, <AL 1S needed in the right
hand side of (16) so that we get a cumulative CVA. In most
cases, there will be no promised cash flows at T , so that

A, =0, then of course this term vanishes. The reader
may ask why we are interested in a cumulative CVA. The
reason is that the discounted cumulative CVA is a QQ
martingale (assuming integrability), which makes it
convenient mathematically for valuation and hedging
purposes. Note however that on the time interval [0, 1),
which only matters for the bank in practice (as the bank
only manages its CVA before T ), wehave CVA,= F, —TI,
(whether ornot A, = 0).

In the rest of this section we will discuss three alternative
representations of the CVA.

Exposure at Default. We define the (counterparty risk)
exposure atdefaultas the g, -measurable random variable

€ =P +A —x=e—-(Re"-¢)=(1-R)",
(17)
where the second equality holds by the definition (g9) of
X and the third one follows by the definition (8) of €,
accounting for our specification @ = P for the CSA
close-out valuation process.
Proposition 3.4. For ¢t €[0,T], we have:

B,CVA,=E2(B.1._,E] (18)

Proof. This follows from the martingale property of the
process BC VA, which is apparent on the left-hand-side
identity in (16) (assuming integrability), whereas we have
by the right-hand side identity:

CVA=P —TL+1_,A, (19)
= 1‘r<T (R: + Ar - X) = 1‘c<T &

As first observed in Brigo and Pallavicini (2008), we
obtain an interpretation of the CVA as the price of a
contingent credit default swap (CCDS), which, as visible
in the definition (17) of the payoff £ , is an option on the
(algebraic) debt € of the counterparty toward the bank
attime t (if t<7).

A major issue in regard to counterparty credit risk is
the so-called wrong-way risk. From the perspective of
the bank, this occurs when the exposure is adversely
correlated with the credit quality of the counterparty (risk
that the value of the instrument is particularly high at the
counterparty’s default). In simultaneous default models
of portfolio credit risk, an extreme form of wrong-way
risk (“instantaneous default contagion”) is represented
by a term A # 0 in € (see (8) and Remark 3.3).

Expected Positive Exposure. In the case where B is
deterministic, the following representation of CVA at
time o follows from (18):

CVA,=E° ([5{(1 - R)1T<Tg+) (20)
= [TBES (1= R)1, e
= [B.E((1- R)e*t = s)Qr e ds)
= IOTBS EPE(s)Q( € ds),

where the expected positive exposure FPF is the func-
tion of time defined, for ¢ € [0,7], by

EPE(t) =E° [(1 —R)'|1= t]. 1)

Note that the EPE is frequently computed under the
assumption that K = 0. A loss-given-default factor is
then introduced at the stage of CVA computation based
on this “zero recovery EPE”.

Remark 3.5. The CVA representation formula (20) can be
compared with the ECL representation formula (4), except
for the nature of the probability measures thatare used in the
expectations. For CVA computations, the pricing measure
Q prevails. However, for regulatory capital computations,

BANKERS, MARKETS & INVESTORS N© 141 MARCH-APRIL 2016

Crepey_BM141.indd 5

03/02/16 10:11 ‘



‘ Crepey_BM141.indd 6

EXPECTED CREDIT LOSS VS. CREDIT VALUE ADJUSTMENT: A COMPARATIVE ANALYSIS

the historical measure P is typically used. In particular,
this is the case for measuring the capital charge linked to
thevariations of the CVA, the so-called CVA-VaR, which is
the 99% P percentile of CVA variations over 10 business
days (where the involved CVAs are computed under Q
as usual). In EEPE (Effective Expected Positive Exposure)
internal model approaches, RWA measurements related
to counterparty credit risk are also done with respect to
the historical probability measure. Specifically, in this
context, the following quantities are defined:

M Expected Exposure (EE): P expected value of
the positive part of the future market value of the
instrument;

M Expected Positive Exposure (regulatory EPE): time
average of the Expected Exposure profile, i.e.

1 ¢7T
= jo EE(t)dt

(note thatthe IP analog of the CVA related EPE (21) is EE
and not regulatory EPE);

B Effective Expected Positive Exposure: time average
of the running maximum Expected Exposure profile,
ie.

1 (7T
T jO nslsathE(S)dt
Other indicators are used by banks in their internal pro-
cesses of deal acceptance or risk limit definition for front
offices. In particular, the Potential Future Exposure (PFE)
is a percentile under the historical measure of the positive
partof the marketvalue and the MPFE is the maximum of
the PFE over the time horizon of the instrument.
Example 3.6. Figure 3.6 shows the mean and the 2.5%
and 97.5% quantiles as a function of time for the price
process a 3 months versus 6 months basis swap in the
multicurve interest rate two-factor log-normal model
of Crepey, Macrina, Nguyen and Skovmand (2015). A
basis swap exchanges two streams of floating payments
based on a nominal cash amount NV or, more generally,
afloatingleg against another floating leg plus a fixed leg.
In the classical single-curve interest rate setup, the value
of a basis swap (without fixed leg) is zero throughout
its life. Since the onset of the financial crisis in 2007,
markets quote positive basis swap spreads that have to
be added to the smaller tenor leg. Hence, basis swaps
have to be handled through multicurve interest rate
models. Our Q measure in this example is calibrated
to the EONIA 3m and 6m tenor initial term structures
and to 3m tenor swaption data of January 4, 2011; Our
P -measure is fudged from our Q -measure based on a
view that the LIBOR rate L(10.75y;10.75y,11y)will be
either 2% with P probability p = 0.7 or 5% with P
probability 1 — p = 0.3. The dashed lines in the leftand
right panels indicate the maximum in time of the 97.5%
quantile of the price process of the basis swap under the
respective Q and P measures. In particular, the dashed
line on the right panel corresponds to the MPFE. These
graphs show that the impact of the probability measure
on extreme percentiles of the price process, hence the
impact of the choice of the probability measure @Q and
P in counterparty risk computations, can be very large.

Intensity-Based CVA Formula. The formula (20) looks
nice, butitis only really practical when 7T is independent
of € so that

ZEQ[(I—R)£+ Irzt]

EPE(t)
=EB°[(1-R)(F,+4,)" |-

In order to obtain a formula similar to (20), but under
a weaker conditional independence (called immersion)
assumption between the credit risk of the counterparty
and the underlying exposure, we suppose further that
G = F v H,where the filtration H is generated by the
indicator process of T and where [F is some reference
filtration. Assuming Z, := Q(t > t|.7-'t)nonincreasing,
positive and time-differentiable, an application of Lemma
5.4 below (case where f = 0 in the lemma, where the
case ofanonzero f could be used to extend our results
to the presence of funding costs, i.e. FVA computations)
yields the following intensity-based CVA formula:

EC[[ e, (1~ R)y,dt], (22)

where ¥ and o are the respective hazard default inten-
sity and credit-risk-adjusted-discount-factor formally
defined in terms of Z in (40).

Thereasonwhy A does notshow up in the formula (22)
is the simplistic information structure G = F v H, which
implies that A, =0 (cf. Lemma (5.3)(ii) below). To go
beyond the conditional independence (basic immersion)
setup for this formula, one can work in a larger filtration
G, where the additional information in G is used for
modeling different wrong-way risk scenarios. An alterna-
tive is a similar formula valid in general (beyond a basic
immersion setup) under a changed probability measure,
where the measure change reflects the lack of immersion
in the model (see Crépey and Song (2015)).

B [V. COMPARISON

We see from (1) and (16) that ECL and CVA have the same
definitions, i.e. the difference between riskless and risky
probability weighted discounted cash shortfalls. We have
shown in (6) and (18) that these cash-shortfall were equal
to the present value of future losses on the intruments.
In a risk neutral world, as it is the case for CVA, this is
equal to a price, associated with the fact that counterpar-
ties are credit risky. In a historical world, this is equal to
the ECL provision that measures the average risk on the
instruments. To conclude this paper we underline the
similarities and differences between ECL and CVA from
the point of view of calibration, modeling, management
and impact on the bank.

Both measures embed forward looking parameters and,
in particular, forward-looking default probabilities. The
CVA is a probability weighted average of all the possible
outcomes in terms of default risk of the counterparty.
The weighting of the outcomes is computed from mar-
ket implied default probabilities of the counterparty. In
essence, these probabilities are Point-In-Time parameters
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Basis swap exposure before 3m coupon dates under Q-measure

Basis swap exposure before 3m coupon dates under P-measure
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(reflect current economic conditions), because market
implied parameters are measured from spot market
prices, and are forward-looking, because they embed
the view of the market related to the default likelihood
of the counterparty at different horizons in the future.
Regarding the ECL, PDs are PIT forward-looking as well.
However, they are not calibrated from market spreads,
but estimated from historical data and adjusted to take
into account the curent conditions and the available
information about the foreseeable future. Some players
are pushing for the use of market implied parameters
of the corporate perimeter, but this seems disconnected
from the goal of measuring provisions on the loan book.
Regarding loss rates (or LGDs), we observe the same
difference between CVA and ECL. For CVA, the LGD used
in the pricing is linked to the recovery rate used for the
pricing of credit derivatives, which is a market parameter.
By contrast, for ECL, the loss rate is estimated from the
bank’s loss data base or from the bank’s provision rates
database, which are not linked to market parameters.
One of the main aspect of counterparty risk is the notion
of wrong way risk that encompasses the potential positive
correlation between the increase of the exposure and the
increase of defaultlikelihood of the counterparty. A similar
effect occurs on the loan book, in particular for revolving
facilities or term loans with a drawing period. For this
type of exposure, itis well known that the increase of the
defaultlikelihood is often associated with an increase of
the exposure because the client draws her line of credit
when financial difficulties appear. The regulator is of
course aware of this type of wrong way risk and requires
the bank to measure a Credit Conversion Factor (CCF) for

off-balance sheet exposures that are likely to be drawn
before the client goes to default. Prepayments are ano-
ther component of the dynamics of the exposure on the
loan book, and the difference in the prepayment beha-
vior of the clients depending on their credit quality has
to be assessed in IFRS 9 models as well, because it may
contribute to generate a wrong way risk.

Finally, we have focused in this paper on unilateral coun-
terparty risk and CVA, only accounting for the default risk
ofthe bank’s counterparty. However, achangein the bank’s
own credit spread may impact the P&L of the bank. When
the credit spread of the bank increases, the presentvalue of
all the future cash-flows that the bank is committed to pay
decreases, resulting in a gain in P&L. The correction on the
PV of all the outgoing cash-flows due to the positive market
spread of the bank; i.e. the symmetrical accounting compa-
nion ofthe CVA, is called Debit Valuation Adjustment (DVA).
Such an effect does not exist on the ECL because the [FRS g
norm requires to compute purely unilateral ECLs, even for
issued guarantees or other off-balance sheet commitments
that are considered as liabilities. [ |

1 Inthe market terminology, it is frequently called the mark-to-market (MtM).

BANKERS, MARKETS & INVESTORS N° 141 MARCH-APRIL 2016

Crepey_BM141.indd 7

10

03/02/16 10:11 ‘



‘ Crepey_BM141.indd 8

EXPECTED CREDIT LOSS VS. CREDIT VALUE ADJUSTMENT: A COMPARATIVE ANALYSIS

References

B ALTMAN E. 1. (1968), Financial Ratios, Discriminant
Analysis and the Prediction of Corporate Bankruptcy,
Journal of Finance (Sept.), 589-609.

W ALTMAN E. 1. ET AL. (1981), Application of
Classification Techniques in Business, In Banking and
Finance, JAI Press, Greenwich.

B ALTMAN E. L. (2010), The Z-Metrics Methodology For
Estimating Company Credit Ratings And Default Risk
Probabilities, RiskMetrics Group.

M BASEL COMMITTEE ON BANKING SUPERVISION
(2001), The Internal Ratings-based Approach,
Consultative document.

B BASEL COMMITTEE ON BANKING SUPERVISION
(2015), Guidance on Accounting for Expected Credit
Losses, Consultative document (Febr.).

M BIELECKI T.R., JEANBLANC M. AND RUTKOWSKI
M. (2009), Credit Risk Modeling, Osaka University Press,
Osaka University CSFI Lecture Notes Series 2.

M BIELECKI T. R. AND RUTKOWSKI M. (2001), Credit
Risk: Modeling, Valuation and Hedging, Springer.

B BRIGO D. AND PALLAVICINT A. (2008), Counterparty
Risk and Contingent CDS under Correlation between
Interest-rates and Default, Risk Magazine (February),
84-88.

B BRUNEL V. AND ROGER B. (2014), Le Risque de crédit:
des modeles au pilotage des banques, Economica (in
French).

M BRUNEL V. (2015), Sizing the Stage 2 Portfolio for IFRS
9 Provisions, ssrn:260608o.

B CHOI S.C. (1986), Statistical Methods of Discrimination
and Classification, Pergamon Press, New-York.

B COCULESCU D. AND NIKEGHBALI A. (2012),
Hazard Processes and Martingale Hazard Processes,
Mathematical Finance 22 (3), 519-537.

B CREPEY S., BIELECKI T. R. AND BRIGO D. (2014),
Counterparty Risk and Funding: A Tale of Two Puzzles,
Chapman & Hall/CRC Financial Mathematics Series.

B CREPEY S., MACRINA A., NGUYEN T. M. AND
SKOVMAND D. (2015), Rational Multi-curve Models
with  Counterparty-risk ~ Valuation  Adjustments,
Quantitative Finance, Forthcoming.

B CREPEY S. AND SONG S. (2015), Counterparty Risk
and Funding: Immersion and Beyond: hal-00989062.

B DELBAEN, F. AND SCHACHERMAYER W. (2005),
The Mathematics of Arbitrage, Springer Finance.

B DELLACHERIE C., MAISONNEUVE B. AND MEYER
P.-A. (1992), Probabilités et Potentiel, chap. 17-24,
Hermann.

B ELLIOT R., JEANBLANC M. AND YOR M. (2000), On
Models of Default Risk, Mathematical Finance 10, 179-
195.

B ENGELMANN B., HAYDEN E. AND TASCHE
D. (2003), Testing Rating Accuracy, Risk Magazine
(January), 82-86.

B FISHER R.A. (1936), The Use of Multiple Measurements
in Taxonomic Problems, Annals of Eugenics 7, 179-188.

B FUERTES, A. AND E. KALOTYCHOU (2007), On
Sovereign Credit Migration: A Study of Alternative
Estimators and Rating Dynamics, Computational
Statistics and Data Analysis 51 (7), 3448-3469.

B GRABLOWSKY B.J. AND W.K. TALLEY (1981), Probit
and Discriminant Functions for Classifying Credit
Applicants; a Comparison, Journal of Economics and
Business 33, 254-261.

W HAND D.J. (1981, Discrimination and Classification,
Wiley, Chichester.

B HAND D.J. (2009), Measuring Classifier Performance: A
Coherent Alternative to the Area Under the ROC Curve,
Machine learning, 77:103123.

B HE S.-W., WANG J.-G. AND YAN J.-A. (1992),
Semimartingale Theory and Stochastic Calculus, CRC.

B INTERNATIONAL ACCOUNTING STANDARDS
BOARD (2014), IFRS g Financial Instruments.

B JIMENEZ G. AND SAURINA J. (2006), Credit Cycles,
Credit Risk, and Prudential Regulation, International
Journal of Central Banking 2 (2), 65-98.

B LACHENBRUCH P.A. (1975), Discriminant Analysis
Hafner Press, New-York

B LANDO D. AND SKODERBERG T.M. (2002),
Analysing Rating Transitions and Rating Drift with
Continuous Observations, Journal of banking and
Finance 26, 423-444.

B NIKEGHBALI A. (20006), An Essay on the General
Theory of Stochastic Processes, Probability Surveys 3,
345-412.

B NIKEGHBALI A. AND YOR M. (2005), A Definition
and some Characteristic Properties of Pseudo-Stopping
Times, Annals of Probability 33, 1804-1824.

B SCHUERMANN T.ANDJAFRYY. (2005), Measurement
and Estimation of Credit Migration Matrices, Center for
Financial Institutions, Wharton working paper 03-08.

B TASCHE D. (2010), Estimating Discriminatory Power
and PD Curves when the Number of Defaults is Small,
arxiv:0905.3928.

B THOMAS L.C. (2000), A Survey of Credit and Behavioral
Scoring: Forecasting Financial Risk of Lending to
Customers, International Journal of Forecasting 16,
pp. 149-172.

W VASICEK O. (2007), Loan Portfolio Value, Risk (July).

B WIGINTON J.C. (1980), A Note on the Comparison
of Logit and Discriminant Models of Consumer Credit
Behavior, Journal of Financial and Quantitative Analysis
15, 7577770, 32.

BANKERS, MARKETS & INVESTORS N© 141 MARCH-APRIL 2016

03/02/16 10:11



EXPECTED CREDIT LOSS VS. CREDIT VALUE ADJUSTMENT: A COMPARATIVE ANALYSIS

Appendix A - Review of the Mathematical Toolbox

A.. Credit Rating and Scoring models

One of the main differences between CVA and ECL (provisions) is that they are not based on the same risk measures because they are not sensitive to the
same risk drivers. Regarding credit risk, CVA is measured from the risk parameters as assessed by the market, namely credit spreads, which is possible
because derivative transactions are often done with non retail counterparties (corporate, financial institutions, sovereigns) whose credit risk is quoted
on the CDS markets. Conversely, provisions are assigned to any type of client of the bank, and most of them are not quoted on the CDS markets, such as
Small and Medium Enterprises (SMEs) or retail banking clients. It is widely accepted that the provision has to be estimated based on credit ratings or credit
scores instead of any other risk measure (either market implied or pool based).

A..1. Ratings

A credit rating is an opinion on the client’s or counterparty’s creditworthiness, i.e. its abilility or willingness to pay back the loan it has been granted.
Credit ratings are provided by rating agencies (Standard and Poor’s, Moody’s, FitchRatings for instance) which focus on evaluating credit risk. There
are also regional or “niche” rating agencies that specialize in a geographical area or industry. Banks provide credit ratings as well, based on their own
internal models.

Ratings embed an evaluation of the current and historical information as well as the potential impact of the foreseeable future conditions or events, such
as the evolution of the business cycle. However, the forward-looking feature of the rating is neither a prediction of a forthcoming default nor an exact
quantification of the probability of default: the rating is a relative opinion about creditworthiness, a ranking of obligors based on their credit risk. A rating
grade or a risk class gathers clients having the same level of risk.

A..2. Scoring

Scoring and rating models have been used in the field of credit granting and credit risk management for long now. Initially, scoring models were used
to assess the creditworthiness on potential clients of the bank as a decision tool for granting loans. In the 1980s, banks developped behavioral scores,
which assessed the credit risk of existing clients, and were useful for risk management and marketing purposes. When the Basel 2 regulation came into
force in 2007, behavioral scores became the cornerstone of the Internal Rating Based (IRB) approach for measuring capital allocation under that accord.
Rating and scoring have the same goal, i.e. assessing the risk of insolvency of a debt issuer or instrunment. The main difference between the two is that
the rating process is based on a financial audit of the client, whereas the scoring process is more automatic. Scoring models take into account certain
characteristics of the customer and of the loan (for instance, for a given borrower, real estate loans and consumer loans don’t have the same risk drivers),
which are integrated into a single number, the score. This process is mainly backward-looking and contains limited or no subjectivity.

Scoring models link the behavior (repayments, arrears, bank account information,...) or the features of clients to the defaults that the bank suffers over
a one year period. Regression analysis, discriminant analysis, neural networks, and many other machine learning techniques are available for scoring.
Scoring is a classification method where the inputs are the explicative factors, [, ..., 7, ,and the output is a partition of the clients into two groups, the
“goods” (G) and the “bads” (B). We refer to Thomas2oo0 and references therein for a survey on credit scoring. Many classification problems, in particular
those for which the conditional distribution given “goods” and “bads” of the explicative factors is multivariate normal, reduce to a linear rule (see for a
review Lachenbruch1975, Choi1986, Hand1981). In this case, the set of explicative factors for the goods is defined by:

Ag ={(Fe B Fy + wyFy +.w, F, > c). 23)

If we introduce the score function S(Fj,..F,) = w, F, + w,F, +..w,F,, we reduce the classification problem from a problem with 7
dimensions to a problem with one dimension only. The value of the cut-off parameter c is the result of an optimization problem because a classification
error generates losses: classifying a “good” as a bad and rejecting it generates a loss of profit, and classifying a “bad” as a good and accepting it
generates a credit loss. The cut-off value is the one that minimizes the expected loss on the estimation sample. It can be easily shown that the optimal
cut-value does not depend directly on the misclassification costs themselves but rather on the ratio of the misclassification costs (see Hand (2009)).
Computing the weights in the score function is a classical optimization problem addressed for instance in Fisher (1936). Discriminant analysis has been
applied by Altman in the field of corporate bankruptcies (see Altman (1968, 1981, 2010). Following Fisher’s method, the estimation of the score function
is equivalent to maximizing the variance between the groups and minimizing the variance within individual groups.

For single borrowers, the default probability cannot be observed directly. For groups of borrowers, however, observed default rates are a proxy of the
average default probability. We can link the individual default probability to the score:

b= L(s(F},....F})) (24)

where Fli, - Fni are the realization of the factors for client number 7 . The use of a logistic link function L(-) was first introduced by Wiginton (1980)
in the context of credit scoring and then became very popular. The resulting logit model is defined by

1
h=— % (25)
1+ €_Y+S(F1 ,...,Fn)
The coefficient 7y is estimated so that the average default probability on the sample is equal to the observed (or target) default rate of the portfolio.
Another link function, the normal cumulative distribution function /N (-), was suggested by Grablowsky (1981) in the framework of regression analysis.
This is the probit model. The difference between logit and probit models is often negligible because the shapes of the associated link function are very
close to each other.

A.1.3. Rating and scoring models performance

As mentioned above, a scoring model consists in ranking the loans of a portfolio. Some loans are assigned a low score and are going to default. Others
with low scores are not going to default. The better the performance of the model, the better the ranking it generates compared to the observed defaults.
We consider a homogeneous portfolio of loans, which means that the loans have the same risk drivers. These loans are granted to the same type of
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Appendix A (continued)

clients, in the same geographic area and belong to the same asset class (for instance prime residential mortgages in the UK originated by entity X of the
bank). We call p the one year unconditional probability of default within the loan portfolio. We consider a rating model that produces a continuous score
over the set of debtors in the portfolio. The higher the score related to a loan, the lower its probability of default. We rank the debtors respective to their
creditworthiness, starting with those that have lowest score and going to those with the highest score.

Let’s consider the fraction x of the debtors having the lowest scores. Among all the defaulters of the portfolio, we call “Hit Rate” IR (x) is the
proportion of defaulters that have been predicted correctly regarding a threshold on the score value equal to x .

The Cumulative Accuracy Profile curve (CAP curve; see figure 1) is obtained by plotting the function HR(x) when x ranges from 0% to 100%. A perfect
scoring model will assign the lowest scores to the defaulters. In this case, the CAP curve is increasing linearly for x < p and remains equal to one for
X 2 p. For a scoring model without any discriminatory power (random model), the fraction of all debtors with the lowest rating scores contains a
fraction of defaulters equal to x , and the CAP curve is the diagonal of the unit square. Real rating systems lie somewhere between these two extremes.
The quality of a rating system is measured by the accuracy ratio AR defined as the ratio of the area between the CAP curve of the real scoring model
and the CAP curve of the random model, and the area between the CAP curve of the perfect scoring model and the CAP curve of the random model. This
ratio ranges from 0% for the random model to 100% for the perfect model (see Engelmann et al., 2003).

Figure 2. CAP curve: Hit Rate as a function of x
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We mention that the Accuracy ratio AR is criticized for being flawed, particularly when expressed in terms of misclassification costs, and that a
more objective measure exists (see Hand (2009)). When reformulated in terms of misclassification cost, a perfect model corresponds to an expected
misclassification loss equal to o whereas a random model corresponds to an expected misclassification loss being equal to its maximum value . For
a realistic model, the expected misclassification loss L is between these two extreme values. Hand (2009) proposes to measure the model perfo rmance
with the H-measure, definedas H =1-L /L,

In the context of the IFRS g norm, Brunel (2015) uses tahese analytics and shows how the discriminatory power of the scoring model drives the size of the
stage 2 portfolio and the IFRS g provision amount itself.

A.2. PD estimation methods

The parameters used to measure the ECL must be sensitive to the provisions’ risk drivers. The IFRS g standard allows one to compute the parameters
based on a statistical approach for instruments gathered into homogeneous portfolios of assets that share the same risk drivers, called segments. The
estimation process leads to a set of identical parameters for all the instruments within a segment. Segmentation is a key feature of the provision model.

A.2.1. Overview of the approaches

PD estimation is one of the cornerstones of the quantification of IFRS g provision within a given segment. The requirement of the norm is quite heavy
because PD estimations have to include the relevant information about the past, the current position in the credit cycle (Point-in-Time, “PIT”) and any
relevant information about the foreseeable future. PDs must reflect default risk over all time periods.

It is clear that market spreads natively encompass these requirements because market prices are forward-looking in essence. However, market spreads
exist for large corporates only and don’t exist for the majority of bank’s clients or counterparties that don’t have any listed debt instrument or credit
derivative quoted on the market. This is the case for retail clients or small corporates for instance. Additionally, the estimation of PDs from market data
would overestimate the ECL because market spreads are biased by liquidity premia.

It is now widely accepted that the IFRS g framework should be based upon the regulatory framework. This doesn’t mean that the parameters are the
same, in particular regarding PDs since regulatory PDs is expected to be the average of the default rate over an economic cycle (Through-the-Cycle,
“TTC”), whereas IFRS g PDs must be PIT. As PDs are not directly observable and are not calibrated from market data, they are estimated in a portfolio
approach, by considering homogeneous groups of loans or counterparties, the segments. This is similar to the the estimation of the Basel 2 parameters.
The mainstream approach is to consider risk classes or internal ratings as a starting point of the IFRS g framework for PD estimation. Two options are
possible for PD estimation:

M option 1: estimation from observed rating migrations,

M option2: estimation from observed default rates within each risk class or rating level.
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Appendix A (continued)

When choosing between option 1 and options 2, we have to distinguish between two types of portfolios, high default portfolios on one hand and low
default portfolios on the other hand. High default portfolios are portfolios that contains a sufficient number of loans so that statistical analysis can be
performed with a good degree of accuracy on default and rating migrations. Retail portfolios, small corporate portfolios, large corporate portfolios are
all considered as high default portfolios, and both option 1 and options 2 are relevant because of the large quantity of available data. In the case when
maturation effects are important (for some retail portfolios for instance), Markovianity or time homogeneity may be broken, and it is more relevant
to estimate directly the term structures of PDs from observed default rates. Conversely, very large corporate portfolios, banks or sovereign portfolios
generate very few default events, and they are called low default portfolios. In this case, estimation from observed default rates is not a relevant option
because of the scarcity of data and estimation from observed rating migrations often leads to much robust results (see for instance Fuertes (2007)).

A.2.2. The PD term structure from the observed migrations

In this paragraph we describe the main lines of the method based on observed rating migrations, which is suitable for non retail portfolios or retail
portfoliois based on the roll-rates. The most common approach to estimate migration matrices from observed rating migrations is the cohort method
(see Schuermann (2005)), but is not very robust in practice, in particular for low default portfolios. Another approach, the continuous approach, leads to
much robust results and is widely recognized to be the best estimation approach: “It is crucial to base the estimation of transition rates on continuously
observed histories to get efficient estimates of transition rates. This point is particularly important when estimating rare events” (see Lando (2002)).
We assume that the data set includes all the observed rating migrationsbetween dates (0 and 7. In the continuous approach, the waiting times between
rating migrations (called “durations”) follow an exponential distribution whose parameters are the elements of a generating matrix representing migration
rates that we seek to estimate. In this paragraph, we follow the model described as in Brunel and Roger (2014). At time ¢ ,and for 7, j ={1,---, K},
the elements of the generating matrix A, = 12, ].(t)} are the instantaneous migration rates from rating ¢ torating j , conditional to being in rating
i atdate £ . The likelihood of the transition fromfating ¢ torating j afteratimeinterval £, isequal to the probability that an issuer rated 7 remains
in this class for a time period equal to £, multiplied by the probability to jump to rating ;j attime Z, . This writes:

jtmxl.l.(t)dt
LGjit,) = e ) (26)
Similarly, the likelihood that an issuer with rating 7 stays in this rating class up to time ¢, is equal to:
Jtmkii(t)dt
L(G,i,t,)=e"" (27)

If we observe /. migrations from rating ¢ to rating j over the full historical data set, each having occured by time ¢, (m = 1---N..),and a

number N, of censored durations from rating 7 at dates ¢, (m =1---N. ), then we can write the total likelihood as the product of individual

likelihoods of all issuers that passed in the rating class 7 in the data set. The relationship A (8) = —z].#]\.ij (t) leads to:

N —J'JMZAZ.].(t)dt N, - J;mle.j(t)dt
L= HH%ij(t)e J# He # (28)

Jj=im=1 m=1

Under the assumption of time homogeneity Ki.(t) =A,Vi,j =1--- K ,theestimator of the instantaneous migration rate from rating 7 to rating
J s obtained by maximizing the above likelihood function with respect to each of the A

~  N(T
Aij = N”—() (29)

i
2ty
m=1

where V..(T") is the number of observed migrations from rating ¢ to rating j between dates 0 and 7°,and N, = z .NZU(T) + N, isthe
number ofljmigrations starting from rating ¢ between datesoet 7. 7

This approach leads to a one year TTC migration matrix exp( A ) , and PD curves by raising the matrix to the power of time horizon. This is the starting
point from which one can estimate PIT forward-looking PD curves as required by the IFRS 9 norm. PIT migration rates are time dependent because of
variations of the macroeconomic conditions and they can be made forward-looking by taking into account some forecasting of the macroeconomic
factors into the estimation process. The credit cycle is represented by a continuous time process ( N ) ;>0 Where the date ¢ = () is the starting point of

the historical data. We assume, as in Vasicek’s model (Vasicek, 2007), that a rating migration or a default for obligor number / between date ¢ and date
¢ +1 year is driven by a standard normal random variable defined by

Ry = b + T, 0
where F; and ¢, , are independent standard normal variables. The transition from rating 7 to a rating equal or lower than j for obligor [ occurs

when Rl,t is lower than a threshold s; ; which is linked to the TTC transition probability from rating 7 to a rating equal or lower than j . If we denote
b; this probability, we have:
J

5.0 = N7 (b:). 31)
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where N denotes the standard normal cumulative distribution function. Conditional to the value of the systemic factor F, the average migration rate

from rating 7 torating j over one year is then equal to:
N (8j) =P, N N (8,;)-\pF,
J1-p J1-p

The systemic factors (Ft )t> 0 and the correlation parameter p are estimated by maximizing the likelihood of observed migrations:

D-1D T-1
Lp. Ry F.. F>—HHH( ) 33)

i=1j=1t=0

£,
Ml.,j.p =N (32

where D is the number of rating grades including default and 7, ., is the number of observed migration from rating 7 to rating j between time
and time ¢ + 1. Aforward-looking measure of PDs requires to havé a view on the values of the systemic factor for dates ¢ > 7" . This can be obtained by
assuming a functional dependence between this macroeconomic factor and some macroeconomic variables (GDP growth, unemployment rate, interest
rates...) on which economists may express some forecasts.

The term structure of PDs is obtained by multiplying the resulting transition matrices. The estimated correlation parameter, called p is assumed to
be constant over the estimation period and over the future horizons. The dynamics of the systemic factor is assumed to be linked to the dynamics of
macroeconomic factors via an econometric relationship which can be written in a discrete time framework as:

F. = aF+Zj3 Y +e, (34)

where the Yt are the macroeconomic factors at time ¢ (for instance GDP growth unemponement rate variation...) and (e )t>0 is a white noise
process. Let’s assume that we are at time ¢ . When the economists provide forecasts for macroeconomic factors over the next few years, i.e. they provide
the values for Y7, YZ Y’+ ;. » then eq. (34) provide forecasts for the systemic factor at all future dates up to date ¢ + % . The PIT forward-looking
PDs at horizon £ are glven by fhe last column of the cumulative transition matrix over the time period going from date 7" to date 7"+ %, equal to:

M. T+k) = MTP x T ? o o1 P (35)

This approach describes the general formalism to estimate TTC parameters and adjust them to get PIT forward-looking parameters. It can be extended
to the estimation of PD curves directly from obseverd defaults, but this would require a global review of all the approaches to estimate PD curves which
is out of the scope of this section devoted to the mathematical toolbox.

A.3. Reduced-Form Credit Risk Modeling

This section, based on Crépey, Bielecki, and Brigo (2014, Sect. 13.7), gives mathematical tools underlying the so-called reduced-form intensity credit risk
modeling approach that grounds the |nten5|ty—based CVAformula (22). Given a [0, 7] U {+oo} -valued stopping time T without atom on f() T],let
1{ 1) denote the related survival indicator and let T = T A 7. We assume further that G = I v HI, where the filtration H is enerated

by the process J and where I is some reference filtration. The Azéma supermartingale associated with T is the [0,1] valued process Z defined,
for ¢ €[0,7], by

(J,\7) 30)

Assuming a positive Z, =: € !, where T is called the hazard process, we have the following “key lemma” of single-name credit risk (see e.g.
page 143 of Bielecki and Rutkowski (2001)).

LemmaA.1. If £ is an integrable random variable, then

_l"t

EQ(EJt F)

i 1ol 34 Tigo
e S0F) B ETNF). 37)

JECElG]=

For & of the form Jsx, for some .7-'S-measurable X with s > £, we have:

-(r,-r,)

B[] x1G1= ] B |5) = JE (xe P |F). 39)

Proof. The left-hand side in (37) (where the right-hand side is only notational) results from the fact that, on {t > ¢}, the G -field G, is generated by
F, and the random variable {t > ¢}. In (38), the left-hand side follows by an application of 37) to & = ] X ; the right-hand side then results from
thé tower law by taking an inner conditional expectation with respect to 7 . ®

In particular, 38) with x = e s proves that the process X, = J,e T isa G -martingale, since for s > ¢ :

~(r,-T))

BC[J e 1G]= J,E%e se FAENAES

m BANKERS, MARKETS & INVESTORS N© 141 MARCH-APRIL 2016

‘ Crepey_BM141.indd 12 03/02/16 10:11



EXPECTED CREDIT LOSS VS. CREDIT VALUE ADJUSTMENT: A COMPARATIVE ANALYSIS

Appendix A (continued)

Lemma A.2. For any G -adapted, respectively G -predictable, process Y, there exists a unique ' -adapted, respectively IF -predictable, process Y
suchthat JY = JY ,respectively J Y =] Y.

Proof. In view of (37), we can take, in the adapted case, Yt =e tEQ(Y] |.7-') For the predictable case see §75, page 186 in Dellacherie et al.
(1992) and Proposition .12 in leeghball (20006). ®

Further assumlng the process Z continuous and nonincreasing, letting M, = (] +T, ), we have that dX, =-X, dM, and therefore

dM, = —e dX sothat M alsoisa G -martingale. Moreover:

tAT

Lemma A.3. Under the above assumptions: (i) An [ -martingale stopped at T isa G -martingale.
(ii) An [F -adapted cadlag process cannot jump at T.

Proof. (i) Since T has a positive, continuous and nonincreasing Azéma supermartingale, it is known from Elliot et al. (2000) that an IF -martingale
stopped at T isa G -martingale.

(ii)As Z is continuous, T avoids IF -stopping times, i.e. Q(t = ) = 0 forany IF -stoppingtime G (see for instance Nikeghbali (2006)). Moreover,
by Theorem 4.1, page 120 in He et al. (1992), there exists a sequence of [F -stopping times exhausting the jump times of an T -adapted cadlag process. B

t

—j r.ds
Letting B, = ¢ 0% denote the discount factor at some F - -progressively measurable risk-free rate 7, we model the cumulative discounted future
cash ﬂows of a defaultable claim in the form of the G -measurable random variable 7’ defined, at any ¢ [0, 7], by

Btn - J‘ Bs fsds + I3?(1{),‘<1:<T} RT + 11:>T &)’ (39)

for some T -progressively measurable dividend rate process f, some redictable recovery process R and some F.-measurable payment at
maturity (random variable) & . Note that the assumption that the data 7; fp R and & arein IF is not restrictive in view of Lemma 5.2.

Now, assuming Z, time-differentiable, we define the hazard inten5|ty v and the credit-risk-adjusted-discount-factor o as the T -adapted
processes defined, for teR,,by

dar,

O TR —L, 0, =B, exp(~ jysds) = exp(— f (r, +v,)ds). (40)

The next result shows that the computation of condltlonalj expectations of cash flows 7t/ with respect to g, can be reduced to the computation of
conditional expectations of “ IF -equivalent” cash flows 7t~ with respect to F -

Lemma A.4. We have
B(n'lG) = J,E(x |15,
where T’ is given, with g = f + YR, by
o, = ftTasgsds + o€ (41)

Proof. Since Mz = _(-]z +T, )isaG -martingale,

AT
Q — _mor[? — (Tge
E [1{t<‘r<T}B1:R‘r | gt] =-E [jt l3slesd-]s | gt] - J.t E [BsstsYs | gt ]dS

The proof is concluded by repeated applications of (38). B

Hence, the valuation of defaultable claims can be handled in essentially the same way as default-free claims, provided the default-free discount factor
process 3 is replaced by a credit risk adjusted discount factor o and a fictitious dividend continuously paid at rate 7y is introduced to account for
recovery on the claim upon default (note that a “default-free” discount factor B can itself be interpreted in terms of a default risk with “intensity” 7#,).
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