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Abstract

In this paper we study the counterparty risk on a payer CDS in a Markov chain model of
two reference credits, the firm underlying the CDS and the protection seller in the CDS. We first
state few preliminary results about pricing and CVA of a CDS with counterparty risk in a general
set-up. We then introduce a Markov chain copula model in which wrong way risk is represented
by the possibility of joint defaults between the counterpart and the firm underlying the CDS. In
the set-up thus specified we derive semi-explicit formulas for most quantities of interest with
regard to CDS counterparty risk like price, CVA, EPE or hedging strategies. Model calibration
is made simple by the copula property of the model. Numerical results show adequation of the
behavior of EPE and CVA in the model with stylized features.
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1 Introduction

Since the sub-prime crisis, counterparty risk is a crucial issue in connection with valuation and risk
management of credit derivatives. Counterparty risk in general is ‘the risk that a party to an OTC
derivative contract may fail to perform on its contractual obligations, causing losses to the other
party’ (cf. Canabarro and Duffie [11]). A major issue in this regard is the so-called wrong way risk,
namely the risk that the value of the contract be particularly high from the perspective of the other
party at the moment of default of the counterparty. As classic examples of wrong way risk, one can
mention the situations of selling a put option to a company on its own stock, or entering a forward
contract in which oil is bought by an airline company (see Redon [22]).

Among papers dealing with general counterparty risk, one can mention, apart from the abovemen-
tioned references, Canabarro et al. [12], Zhu and Pykhtin [24], and the series of papers by Brigo et
al. [7, 8, 9, 10]. From the point of view of measurement and management of counterparty risk, two
important notions emerge:
∙ The Credit Value Adjustment process (CVA), which measures the depreciation of a contract due
to counterparty risk. So, in rough terms, CVAt = Pt −Πt, where Π and P denote the price process
of a contract depending on whether one accounts or not for counterparty risk.
∙ The Expected Positive Exposure function (EPE), where EPE(t) is the risk-neutral expectation of
the loss on a contract conditional on a default of the counterparty occurring at time t.
Note that the CVA can be given an option-theoretic interpretation, so that counterparty risk can, in
principle, be managed dynamically.

1.1 Counterparty Credit Risk

Wrong way risk is particularly important in the case of credit derivatives transactions, at least from
the perspective of a credit protection buyer. Indeed, via economic cycle and default contagion
effects, the time of default of a counterparty selling credit protection is typically a time of higher
value of credit protection.

We consider in this paper a Credit Default Swap with counterparty risk (‘risky CDS’ in the sequel,
as opposed to ‘risk-free CDS’, without counterparty risk). Note that this topic already received a
lot of attention in the literature. It can thus be considered as a benchmark problem of counterparty
credit risk. To quote but a few:
∙ Huge and Lando [15] propose a rating-based approach,
∙ Hull and White [16] study this problem in the set-up of a static copula model,
∙ Jarrow and Yu [17] use an intensity contagion model, further considered in Leung and Kwok
[19],
∙ Brigo and Chourdakis [7] work in the set-up of their Gaussian copula and CIR++ intensity model,
extended to the issue of bilateral counterparty credit risk in Brigo and Capponi [6],
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∙ Blanchet-Scalliet and Patras [5] or Lipton and Sepp [20] develop structural approaches.

1.2 A Markov Copula Approach

We shall consider a Markovian model of credit risk in which simultaneous defaults are possible.
Wrong way risk is thus represented in the model by the fact that at the time of default of the coun-
terparty, there is a positive probability that the firm on which the CDS is written defaults too, in
which case the loss incurred to the investor (Exposure at Default ED, cf. (3)) is the loss given de-
fault of the firm (up to the recovery on the counterparty), that is a very large amount. Of course, this
simple model should not be taken too literally. We are not claiming here that simultaneous defaults
can happen in actual practice. The rationale and financial interpretation of our model is rather that
at the time of default of the counterparty, there is a positive probability of a high defaults spreads
environment, in which case, the value of the CDS for a protection buyer is close to the loss given
default of the firm.

More specifically, we shall be considering a four-state Markov Chain model of two obligors, so that
all the computations are straightforward, either that there are explicit formulas for all the quantities
of interest, or, in case less elementary parameterizations of the model are used, that these quantities
can be easily and quickly computed by solving numerically the related Kolmogorov ODEs.

This Markovian set-up makes it possible to address in a dynamic and consistent way the issues of
valuing (and also hedging) the CDS, and/or, if wished, the CVA, interpreted as an option as evoked
above.

To make this even more practical, we shall work in a Markovian copula set-up in the sense of
Bielecki et al. [3], in which calibration of the model marginals to the related CDS curves is straight-
forward. The only really free model parameters are thus the few dependence parameters, which can
be calibrated or estimated in ways that we shall explain in the paper.

1.3 Outline of the Paper

In Section 2 we first describe the mechanism and cash flows of a payer CDS with counterparty credit
risk. We then state a few preliminary results about pricing and CVA of this CDS in a general set-up.
In Section 3 we introduce our Markov chain copula model, in which we derive explicit formulas
for most quantities of interest in regard to a risky CDS, like price, EPE, CVA or hedging ratios.
Section 4 is about implementation of the model. Alternative model parameterizations and related
calibration or estimation procedures are proposed and analyzed. Numerical results are presented
and discussed, showing good agreement of model’s EPE and CVA with expected features. Section
5 recapitulates our model’s main properties and presents some directions for possible extensions of
the previous results.
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2 General Set-Up

2.1 Cash Flows

As is well known, a CDS contract involves three entities: A reference credit (firm), a buyer of default
protection on the firm, and a seller of default protection on the firm. The issue of counterparty risk
on a CDS is:
∙ Primarily, the fact that the seller of protection may fail to pay the protection cash flows to the
buyer in case of a default of the firm;
∙ Also, the symmetric concern that the buyer may fail to pay the contractual CDS spread to the
seller.
We shall focus in this paper on the so-called unilateral counterparty credit risk involved in a payer
CDS contract, namely the risk corresponding to the first bullet point above; however it should be
noted that the approach of this paper could be extended to the issue of bilateral credit risk.
We shall refer to the buyer and the seller of protection on the firm as the risk-free investor and the
defaultable counterpart, respectively. Indices 1 and 2 will refer to quantities related to the firm and
to the counterpart, first of which, their default times �1 and �2.

Under a risky CDS (payer CDS with counterparty credit risk), the investor pays to the counterpart
a stream of premia with spread �, or Fees Cash Flows, from the inception date (time 0 henceforth)
until the occurrence of a credit event (default of the counterpart or the firm) or the maturity T of the
contract, whichever comes first.

Let us denote by R1 and R2 the recovery of the firm and the counterpart, supposed to be adapted to
the information available at time �1 and �2, respectively. If the firm defaults prior to the expiration
of the contract, the Protection Cash Flows paid by the counterpart to the investor depends on the
situation of the counterpart:
∙ If the counterpart is still alive, she can fully compensate the loss of investor, i.e., she pays (1−R1)
times the face value of the CDS to the investor;
∙ If the counterpart defaults at the same time as the firm (note that it is important to take this case
into account in the perspective of the model with simultaneous defaults to be introduced later in this
paper), she will only be able to pay to the investor a fraction of this amount, namely R2(1 − R1)
times the face value of the CDS.

Finally, there is a Close-Out Cash Flow which is associated to clearing the positions in the case of
early default of the counterpart. As of today, CDSs are sold over-the-counter (OTC), meaning that
the two parties have to negotiate and agree on the terms of the contract. In particular the two parties
can agree on one of the following three possibilities to exit (unwind) a trade:
∙ Termination: The contract is stopped after a terminal cash flow (positive or negative) has been
paid to the investor;
∙ Offsetting: The counterpart takes the opposite protection position. This new contract should have
virtually the same terms as the original CDS except for the premium which is fixed at the prevailing
market level, and for the tenor which is set at the remaining time to maturity of the original CDS.
So the counterpart leaves the original transaction in place but effectively cancels out its economic
effect;
∙ Novation (or Assignment): The original CDS is assigned to a new counterpart, settling the amount
of gain or loss with him. In this assignment the original counterpart (or transferor), the new coun-
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terpart (transferee) and the investor agree to transfer all the rights and obligations of the transferor to
transferee. So the transferor thereby ends his involvement in the contract and the investor thereafter
deals with the default risk of the transferee.
In this paper we shall focus on termination. More precisely, if the counterpart defaults in the life-
time of the CDS while the firm is still alive, a ‘fair value’ �(�2) of the CDS is computed at time
�2 according to a methodology specified in the CDS contract at inception. If this value (from the
perspective of the investor) is negative, (−�(�2)) is paid by the investor to the counterpart, whereas
if it is positive, the counterpart is assumed to pay to the investor a portion R2 of �(�2).

Remark 2.1 A typical specification is �(�2) = P�2 , where Pt is the value at time t of a risk-
free CDS on the same reference name, with the same contractual maturity T and spread � as the
original risky CDS. The consistency of this rather standard way of specifying �(�2) is, in a sense,
questionable. Given a pricing model accounting for the major risks in the product at hand, including,
if appropriate, counterparty credit risk, with a related price process of the risky CDS denoted by Π,
it could be argued that a more consistent specification would be �(�2) = Π�2 (or, more precisely,
�(�2) = Π�2−, since Π�2 = 0 in view of the usual conventions regarding the definition of ex-
dividend prices). We shall see in section 4 that, at least in the specific model of this paper, adopting
either convention makes little difference in practice.

2.2 Pricing

Let us be given a risk-neutral pricing model (Ω,F,ℙ), where F = (ℱt)t∈[0,T ] is a given filtration
making the �i’s stopping times. In absence of further precision, all the processes, first of which, the
discount factor process �, are supposed to be F-adapted, and all the random variables are assumed
to be ℱT -measurable. The fair value �(�2) is supposed to be an ℱ�2-measurable random variable.
The recoveries R1 and R2 are assumed to be ℱ�1- and ℱ�2- measurable random variables. Let E�
stand for the conditional expectation under ℙ given ℱ� , for any stopping time � .

We assume for simplicity that the face value of all the CDSs under consideration (risky or not) is
equal to monetary unit and that the spreads are paid continuously in time. All the cash flows and
prices are considered from the perspective of the investor. In accordance with the usual convention
regarding the definition of ex-dividend prices, the integrals in this paper are taken open on the left
and closed on the right of the interval of integration. In view of the description of the cash-flows in
subsection 2.1, one then has,

Definition 2.2 (i) The model price process of a risky CDS is given by Πt = Et
[
�T (t)

]
, where

�T (t) corresponds to the risky CDS cumulative discounted cash flows on the time interval (t, T ], so,

�t�T (t) = −�
∫ �1∧�2∧T

t∧�1∧�2∧T
�sds+ ��1(1−R1)1t<�1≤T

[
1�1<�2 +R21�1=�2

]
+��21t<�2≤T1�2<�1

[
R2�

+
(�2) − �

−
(�2)

]
. (1)

(ii) The model price process of a risk-free CDS is given by Pt = Et[pT (t)], where pT (t) corresponds
to the risk-free CDS cumulative discounted cash flows on the time interval (t, T ], so,

�tpT (t) = −�
∫ �1∧T

t∧�1∧T
�sds+ (1−R1)��11t<�1≤T . (2)



S. CRÉPEY, M. JEANBLANC AND B. ZARGARI 7

The first, second and third term on the right-hand side of (1) correspond to the fees, protection and
close-out cash flows of a risky CDS, respectively. Note that there are no cash flows of any kind after
�1 ∧ �2 ∧T (in the case of the risky CDS) or �1 ∧T (in the case of the risk-free CDS), so �T (t) = 0
for t ≥ �1 ∧ �2 ∧ T and pT (t) = 0 for t ≥ �1 ∧ T .

Remark 2.3 In these definitions it is implicitly assumed that, consistently with the now standard
theory of no-arbitrage [13], a primary market of financial instruments (along with the risk-free asset
�−1) has been defined, with price processes given as locally bounded (Ω,F,ℙ) – local martingales.
No-arbitrage on the extended market consisting of the primary assets and a further CDS then mo-
tivates the previous definitions. Since the precise specification of the primary market is irrelevant
until the question of hedging is dealt with, we postpone it to section 3.3.

Definition 2.4 (i) The Exposure at Default (ED) is the ℱ�2-measurable random variable �(�2) de-
fined by,

�(�2) =

⎧⎨⎩
(1−R2)(1−R1), �2 = �1 ≤ T,
P�2 − (R2�

+
(�2) − �

−
(�2)) �2 < �1, �2 ≤ T,

0, otherwise .
(3)

(ii) The Credit Valuation Adjustment (CVA) is the process killed at �1 ∧ �2 ∧ T defined by, for
t ∈ [0, T ],

�tCVAt = 1{t<�2}Et
[
��2�(�2)

]
. (4)

(iii) The Expected Positive Exposure (EPE) is the function of time defined by, for t ∈ [0, T ],

EPE(t) = E
[
�(�2)∣�2 = t

]
. (5)

The following proposition justifies the name of Credit Valuation Adjustment which is used for the
CVA process defined by (4). In case �(�2) = P�2 (see Remark 2.1) then

�(�2) = �0
(�2) := (1−R2)×

⎧⎨⎩
(1−R1), �2 = �1 ≤ T,
P+
�2 �2 < �1, �2 ≤ T,

0, otherwise
(6)

and we essentially recover the basic result that appears in the series of papers by Brigo et alii. Note
that as opposed to Brigo et al. we do not exclude simultaneous defaults in our set-up, whence further
terms in 1t<�1=�2≤T in the proof of Proposition 2.1.

Proposition 2.1 One has CVAt = Pt −Πt on {t < �2}.

Proof. If �1 ≤ t < �2, then Πt = Pt = CVAt = 0 in view of (1), (2) and (4).

Assume t < �1 ∧ �2. Subtracting �T (t) from pT (t) yields,

�t (pT (t)− �T (t)) = −�
∫ �1∧T

�1∧�2∧T
�sds+ ��1(1−R1)1�1≤T1�1≥�2

−��1R2(1−R1)1�1≤T1�1=�2 − ��21�2<�11�2≤T
(
R2�

+
(�2) − �

−
(�2)

)
. (7)
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Moreover, in view of (2), one has,

��2pT (�2)1�2<�11�2≤T = −�
∫ �1∧T

�1∧�2∧T
�sds+ (1−R1)��11�2<�1≤T . (8)

Now, using the following identity in the second term on the right-hand-side of (7):

1�1≤T1�1≥�2 = 1�1≤T1�2<�1 + 1�1=�2≤T ,

and plugging (8) into (7) , it comes (recall t < �1 ∧ �2),

�t (pT (t)− �T (t)) = ��21�2<�1, �2≤T pT (�2)

+��21�2=�1≤T (1−R2)(1−R1)− ��21�2<�1, �2≤T
(
R2�

+
(�2) − �

−
(�2)

)
.

Thus:
∙ On the set {�2 < �1, �2 ≤ T},

�t (pT (t)− �T (t)) = ��2pT (�2)− ��2
(
R2�

+
(�2) − �

−
(�2)

)
As P�2 = E�2 [pT (�2)], we then have, since R2 and �(�2) are ℱ�2-measurable,

�tE�2
[
pT (t)− �T (t)

]
= ��2

(
P�2 − (R2�

+
(�2) − �

−
(�2))

)
; (9)

∙ On the set {�1 = �2 ≤ T},

�t (pT (t)− �T (t)) = ��2(1−R1)(1−R2)

and thus
�tE�2

[
pT (t)− �T (t)

]
= E�2

[
��2(1−R1)(1−R2)

]
. (10)

Using the fact that �2 < �1, �2 ≤ T and �2 = �1 ≤ T are ℱ�2-measurable, it follows,

�tPt − �tΠt = �tEt
[
E�2 [pT (t)− �T (t)]

]
= �tEt

[
E�2 [pT (t)− �T (t)]1�2<�1, �2≤T + E�2 [pT (t)− �T (t)]1�2=�1≤T

]
= Et

[
��2�(�2)

]
= �tCVAt.

□

2.3 Special Case F = ℍ

LetH = (H1, H2) denote the pair of the default indicator processes of the firm and the counterpart,
so H i

t = 1�i≤t. The following proposition gathers a few useful results that can be established in the
special case of a model filtration F given as

F = ℍ = (ℋ1
t ∨ℋ2

t )t∈[0,T ] ,

withℋit = �(H i
s; 0 ≤ s ≤ t).
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Proposition 2.2 (i) For t ∈ [0, T ], anyℋt-measurable random variable Yt can be written as

Yt = y0(t)1t<�1∧�2 + y1(t, �1)1�1≤t<�2 + y2(t, �2)1�2≤t<�1 + y3(t, �1, �2)1�2∨�1≤t

where y0(t), y1(t, u), y2(t, v), y3(t, u, v) are deterministic functions.
(ii) For any integrable random variable Z, one has,

1t<�1∧�2EtZ = 1t<�1∧�2
E(Z1t<�1∧�2)

ℙ(t < �1 ∧ �2)
. (11)

(iii) The price process of the risky CDS is given by Πt = Π(t,Ht), for a pricing function Π defined
on ℝ+×E1×E1 with E1 = {0, 1}, such that Π(t, e) = 0 for e ∕= (0, 0). On the set {t < �1 ∧ �2},
Πt is given by the deterministic function

Π(t, 0, 0) = u(t) :=
E
[
�T (t)

]
ℙ(�1 ∧ �2 > t)

. (12)

(iv) One has, for suitable functions �̃(⋅), v(⋅), �̃(⋅, ⋅) and CVA(⋅),

1{�2<�1}�(�2) = 1{�2<�1}�̃(�2) , 1{�2<�1}P�2 = 1{�2<�1}v(�2) (13)

�(�2) = �̃(�1, �2) :=
(
1�2=�1≤T (1−R2)(1−R1) + 1�2<�1, �2≤T

(
v(�2)− (R2�̃

+(�2)− �̃−(�2))
))
(14)

CVAt = 1t<�1∧�2CVA(t) . (15)

(v) A function CVA(⋅) satisfying (15) is defined by, for t ∈ [0, T ],

�tCVA(t) :=

∫ T

t
�sEPE(s)

ℙ(�2 ∈ ds)
ℙ(t < �1 ∧ �2)

. (16)

Proof. (i) and (ii) are standard (see, e.g., [4]; (ii) in particular is the so-called Key Lemma).
(iii) Since there are no cash flows of a risky CDS beyond the first default (cf. (1)), one has �T (t) =
�T (t)1t<�1∧�2 . The Key Lemma then yields,

Πt = Et
[
1t<�1∧�2�T (t)

]
= (1−H1

t )(1−H2
t )

E
[
�T (t)

]
ℙ(�1 ∧ �2 > t)

⋅

Thus Πt = Π(t,H1
t , H

2
t ), for a pricing function Π defined by

Π(t, e1, e2) = (1− e1)(1− e2)u(t) ,

where u(t) is defined by the right-hand-side of (12).
(iv) follows directly from part (i), given the definition of P�2 , �(�2), �(�2) and of the CVA process.
(v) By (iv), one has, using (ii) again,

�t1{t<�1∧�2}CVAt = 1{t<�1∧�2}Et
[
��2�(�2)

]
= 1{t<�1∧�2}Et

[
��2 �̃(�1, �2)

]
= 1{t<�1∧�2}

E
[
��2 �̃(�1, �2)1t<�1∧�2

]
ℙ(t < �1 ∧ �2)

= 1{t<�1∧�2}
E
[
E
(
��2 �̃(�1, �2)1t<�1∧�2 ∣�2

)]
ℙ(t < �1 ∧ �2)

= 1{t<�1∧�2}
E
[
E
(
��2 �̃(�1, �2)1t<�2≤T ∣�2

)]
ℙ(t < �1 ∧ �2)

= 1{t<�1∧�2}
E
[
��2E

(
�̃(�1, �2)∣�2

)
1t<�2≤T

]
ℙ(t < �1 ∧ �2)

= 1{t<�1∧�2}
E
[
��2EPE(�2)1t<�2≤T

]
ℙ(t < �1 ∧ �2)

= 1{t<�1∧�2}

∫ T

t
�sEPE(s)

ℙ(�2 ∈ ds)
ℙ(t < �1 ∧ �2)

,
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whence (v). □

3 Markov Copula Factor Set-Up

3.1 Factor Process Model

We shall now introduce a suitable Markovian Copula Model for the pair of default indicator pro-
cesses H = (H1, H2) of the firm and the counterpart. The name ‘Markovian Copula’ refers to
the fact that the model will have prescribed marginals for the laws of H1 and H2, respectively (see
Bielecki et al. [2, 3] for a general theory). The practical interest of a Markovian copula model is
clear with respect to the task of model calibration, since the copula property allows one to decouple
the calibration of the marginal and of the dependence parameters in the model (see again section
4.1). More fundamentally, the opinion developed in this paper is that it is also a virtue for a model
to ‘take the right inputs to generate the right outputs’, namely taking as basic inputs the individual
default probabilities (individual CDS curves), which correspond to the more reliable information on
the market, and are then ‘coupled together’ in a suitable way (see section 4.1).

An apparent shortcoming of the Markov copula approach is that it is does not allow for default
contagion effects in the usual sense (default of a name impacting the default intensities of the other
ones). The way we shall introduce dependence between �1 and �2 is by relaxing the standard
assumption of no simultaneous defaults. As we shall see, allowing for simultaneous defaults is a
powerful way of modeling defaults dependence.

Specifically, we model the pair H = (H1, H2) as an inhomogeneous Markov chain relative to
its own filtration ℍ on a probability space (Ω,ℙ) (for the �-algebra ℋT ), with state space E =
{(0, 0), (1, 0), (0, 1), (1, 1)}, and generator matrix at time t given by the following 4 × 4 matrix
A(t), where the first to fourth rows (or columns) correspond to the four possible states (0, 0), (1, 0),
(0, 1) and (1, 1) of Ht :

A(t) =

⎡⎢⎢⎢⎢⎢⎣
−l(t) l1(t) l2(t) l3(t)

0 −q2(t) 0 q2(t)

0 0 −q1(t) q1(t)

0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ . (17)

In (17) the l’s and q’s denote deterministic functions of time integrable over [0, T ],with in particular
l(t) = l1(t) + l2(t) + l3(t).

Remark 3.1 The intuitive meaning of ‘(17) being the generator matrix of H’ is the following (see,
e.g., Rogers and Williams [23], Vol. I, Chap. III, Sec. 2, for standard definitions and results on
Markov Chains):
∙ First line: Conditional on the pair Ht = (H1

t , H
2
t ) being in state (0, 0) (firm and counterpart still

alive at time t), there is a probability l1(t)dt, (resp. l2(t)dt; resp. l3(t)dt) of a default of the firm
alone (resp. of the counterpart alone; resp. of a simultaneous default of the firm and the counterpart)
in the infinitesimal time interval (t, t+ dt);
∙ Second line: Conditional on the pair Ht = (H1

t , H
2
t ) being in state (1, 0) (firm defaulted but
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counterpart still alive at time t), there is a probability q2(t)dt of a further default of the counterpart
in the time interval (t, t+ dt);
∙ Third line: Conditional on the pair Ht = (H1

t , H
2
t ) being in state (0, 1) (firm still alive but

counterpart defaulted at time t), there is a probability q1(t)dt of a further default of the firm in the
time interval (t, t+ dt).

On each line the diagonal term is then set as minus the sum of the off-diagonal terms, so that the
sum of the entries of each line be equal to zero, as should be for A(t) to represent the generator of
a Markov process.

Moreover, for the sake of the desired Markov copula property (Proposition 3.1(iii) below), we
impose the following relations between the l’s and the q’s.

Assumption 3.2 q1(t) = l1(t) + l3(t) , q2(t) = l2(t) + l3(t).

Observe that in virtue of these relations:
∙ Conditional onH1

t being in state 0, and whatever the state ofH2
t may be (that is, in the state (0, 0)

as in the state (0, 1) for Ht), there is a probability q1(t)dt of a default of the firm (alone or jointly
with the counterpart) in the next time interval (t, t+ dt);
∙ Conditional on H2

t being in state 0, and whatever the state of H1
t may be (that is, in the states

(0, 0) or (1, 0) for Ht), there is a probability q2(t)dt of a default of the counterpart (alone or jointly
with the firm) in the next time interval (t, t+ dt).
In mathematical terms the default indicator processes H1 and H2 are ℍ-Markov processes on the
state space E1 = {0, 1} with time t generators respectively given by

A1(t) =

[
−q1(t) q1(t)

0 0

]
, A2(t) =

[
−q2(t) q2(t)

0 0

]
. (18)

To formalize the previous statements, and in view of the study of simultaneous jumps, let us further
introduce the processes H{1}, H{2} and H{1,2} standing for the indicator processes of a default of
the firm alone, of the counterpart alone, and of a simultaneous default of the firm and the counterpart,
respectively. So

H{1,2} = [H1, H2] , H{1} = H1 −H{1,2} , H{2} = H1 −H{1,2} , (19)

where [⋅, ⋅] stands for the quadratic covariation. Equivalently, for t ∈ [0, T ],

H
{1}
t = 1�1≤t,�1 ∕=�2 , H

{2}
t = 1�2≤t,�1 ∕=�2 , H

{1,2}
t = 1�1=�2≤t .

Note that the natural filtration of (H�)�∈I , with here and henceforth I = {{1}, {2}, {1, 2}}, is equal
to ℍ. The proof of the following Proposition is deferred to Appendix A.

Proposition 3.1 (i) The ℍ-intensity of H� is of the form q�(t,Ht) for a suitable function q�(t, e) for
every � ∈ I, namely,

q{1}(t, e) = 1e1=0 (1e2=0l1(t) + 1e2=1q1(t))

q{2}(t, e) = 1e2=0 (1e1=0l2(t) + 1e1=1q2(t))

q{1,2}(t, e) = 1e=(0,0)l3(t) .



12 CDS WITH COUNTERPARTY RISK

Put another way, the processes M � defined by, for every � ∈ I ,

M �
t = H�

t −
∫ t

0
q�(s,Hs)ds , (20)

with

q{1}(t,Ht) = (1−H1
t )
(
(1−H2

t )l1(t) +H2
t q1(t)

)
q{2}(t,Ht) = (1−H2

t )
(
(1−H1

t )l2(t) +H1
t q2(t)

)
q{1,2}(t,Ht) = (1−H1

t )(1−H2
t )l3(t) ,

(21)

are ℍ-martingales.
(ii) The ℍ-intensity process of H i is given by (1 − H i

t)qi(t). In other words, the processes M i

defined by, for i = 1, 2,

M i
t = H i

t −
∫ t

0
(1−H i

s)qi(s)ds , (22)

are ℍ-martingales.
(iii) The processes H1 and H2 are ℍ-Markov processes with generator matrix at time t given by
A1(t) and A2(t) (cf. (18)).
(iv) One has, for s < t,

ℙ(�1 > s, �2 > t) = e−
∫ s
0 l(u)due−

∫ t
s q2(u)du , ℙ(�1 > t, �2 > s) = e−

∫ s
0 l(u)due−

∫ t
s q1(u)du(23)

and therefore

ℙ(�1 > t) = e−
∫ t
0 q1(u)du , ℙ(�2 > t) = e−

∫ t
0 q2(u)du

ℙ(�1 > s, �2 ∈ dt) = q2(t)e−
∫ s
0 l(u)due−

∫ t
s q2(u)dudt , ℙ(�1 ∈ dt, �2 > s) = q1(t)e−

∫ s
0 l(u)due−

∫ t
s q1(u)dudt

ℙ(�1 > t, �2 ∈ dt) = q2(t)e−
∫ t
0 l(u)dudt , ℙ(�1 ∈ dt, �2 > t) = q1(t)e−

∫ t
0 l(u)dudt

ℙ(�1 ∧ �2 > t) = exp

(
−
∫ t

0
l(u)du

)
.

(24)

(v) The correlation of H1
t and H2

t (default correlation at the time horizon t) is

�d(t) =
exp

(∫ t
0 l3(s)ds

)
− 1√(

exp
(∫ t

0 q1(s)ds
)
− 1
)(

exp
(∫ t

0 q2(s)ds
)
− 1
) . (25)

Remark 3.3 (i) In the Markov copula [3] terminology, the so-called consistency condition is sat-
isfied (H1 and H2 are ℍ-Markov processes). The bi-variate model H with generator A is thus a
Markovian copula model with marginal generators A1 and A2.
(ii) The default times �1 and �2 could equivalently be defined by

�1 = �1 ∧ �3 , �2 = �2 ∧ �3
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where the �i’s are independent inhomogeneous exponential random variables with parameters li(t)’s.
Thus, for every 0 ≤ s, t,

ℙ(�1 > s, �2 > t) = ℙ(�1 > s)ℙ(�2 > t)ℙ(�3 > s ∨ t) . (26)

In the special case of homogeneous exponential random variables with (constant) parameters li’s,
one has further (see section 4 of [14] or [21]),

ℙ(�1 > s, �2 > t) = C(ℙ(�1 > s),ℙ(�2 > t)) , (27)

where the Marshall-Olkin survival copula function C is defined by, for p, q ∈ [0, 1],

C(p, q) = pqmin(p−�1 , q−�2) (28)

with �i = l3
li+l3

. Our model is thus an extension of the classical Marshall-Olkin copula model in
which inhomogeneous exponential random variables are used as model inputs, and where, more
importantly, a dynamic perspective is shed on the random times �1 and �2 by introducing the model
filtration ℍ.

3.2 Pricing

We use the notation of Proposition 2.2, which applies here since we are in the special case F = ℍ.
Recall in particular Πt = Π(t,Ht) = (1−H1

t )(1−H2
t )u(t), for a pricing function Π(t, 0, 0) = u(t),

as well as the identities (13), (15) (16).

We assume henceforth for simplicity that:
∙ The discount factor writes �t = exp(−

∫ t
0 r(s)ds), for a deterministic short-term interest-rate

function r,
∙ The recovery rates R1 and R2 are constant.

Proposition 3.2 The pricing function u of the risky CDS is given by

�tu(t) =

∫ T

t
�se
−

∫ s
t l(u)du�(s)ds (29)

with

�(s) = (1−R1)
[
l1(s) +R2l3(s)

]
+ l2(s)

[
R2�̃(s)+ − �̃(s)−

]
− � . (30)

The function u satisfies the following ODE:{
u(T ) = 0

du
dt (t)− (r(t) + l(t))u(t) + �(t) = 0 , t ∈ [0, T ) .

(31)

Proof. Recall (12):

u(t) =
E
[
�T (t)

]
ℙ(�1 ∧ �2 > t)

,
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where the denominator can be calculated using Proposition 3.1(iv). For computing the numerator,
one rewrites the expressions for the cumulative discounted Fee, Protection and Close-out cash flows
in terms of integrals with respect to H{1}, H{2} and H{1,2}, as follows:

Fees Cash Flow = �

∫ T

0
�s(1−H1

s )(1−H2
s )ds

Protection Cash Flow = (1−R1)

∫ T

0
�s(1−H2

s−)dH{1}s +R2(1−R1)

∫ T

0
�sdH

{1,2}
s

= (1−R1)

∫ T

0
�s(1−H2

s−)dM{1}s + (1−R1)

∫ T

0
�s(1−H2

s )q{1}(s,Hs)ds

+R2(1−R1)

∫ T

0
�sdM

{1,2}
s +R2(1−R1)

∫ T

0
�sq{1,2}(s,Hs)ds

Close-out Cash Flow =

∫ T

0
�s
[
R2�̃(s)+ − �̃(s)−

]
(1−H1

s−)dH{2}s

=

∫ T

0
�s
[
R2�̃(s)+ − �̃(s)−

]
(1−H1

s−)dM{2}s

+

∫ T

0
�s
[
R2�̃(s)+ − �̃(s)−

]
(1−H1

s )q{2}(s,Hs)ds

Taking care of the martingale property of M{1}, M{2} and M{1,2} and of the fact that the integrals
of bounded predictable processes with respect to these martingales are indeed martingales, it thus
comes,

E(�T (t)) = E(�̃T (t)) (32)

with

�t�̃T (t) =− �
∫ T

t
�s(1−H1

s )(1−H2
s )ds

+ (1−R1)

∫ T

t
�s(1−H2

s )q{1}(s,Hs)ds+R2(1−R1)

∫ T

t
�sq{1,2}(s,Hs)ds

+

∫ T

t
�s
[
R2�̃(s)+ − �̃(s)−

]
(1−H1

s )q{2}(s,Hs)ds.

Moreover, in view of the expressions for q{1} and q{2} in (21), one has

(1−H2
s )q{1}(s,Hs) = (1−H1

s )(1−H2
s )l1(s) ,

(1−H1
s )q{2}(s,Hs) = (1−H1

s )(1−H2
s )l2(s) .

(33)
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Plugging this into (32) and using (24), it comes,

�tE[�T (t)] = E
[∫ T

t
�s(1−H1

s )(1−H2
s )�(s)ds

]

=

∫ T

t
�sE

[
(1−H1

s )(1−H2
s )
]
�(s)ds

=

∫ T

t
�se
−

∫ s
0 l(x)dx�(s)ds

where � is given by (30). One can now check by inspection that the function u satisfies the ODE
(31). □

Remark 3.4 The equation (31) can also be interpreted as the Kolmogorov backward equation re-
lated to the valuation of a risky CDS in our set-up. This ODE can in fact be derived directly and
independently by an application of the Itô formula to the martingale Π(t,H1

t , H
2
t ), which results in

an alternative proof of Proposition 3.2.

Remark 3.5 In the set-up of the Markov chain copula model, the identity (whenever assumed)
�(�2) = Π�2− (see Remark 2.1) is thus equivalent to

�(�2) = Π�2− = lim
t→�2−

u(t) = u(�2) ,

by continuity of u. This case thus corresponds to the case where the function �̃ in Proposition 2.2(iv)
is in fact given by the function u (case �̃ = u). In this case the positive and negative parts of u, i.e.,
u+ and u− are sitting in the expression for � in (30). One thus deals with a non-linear valuation
ODE (31), and the formula (29) is not explicit anymore, since u is ‘hidden’ in � in the right hand
side of this formula. However one can still compute u by numerical solution of (31).

Proposition 3.3 The price of a risk-free CDS with spread � on the firm admits the representation:

Pt = P (t,H1
t ) , (34)

for a function P of the form P (t, e1) = (1− e1)v(t). The pricing function v is given by

�tv(t) =

∫ T

t
�se
−

∫ s
t q1(x)dxp(s)ds

with
p(s) = (1−R1)q1(s)− �. (35)

The pricing function v thus solves the following pricing ODE:{
v(T ) = 0

dv
dt (t)− (r(t) + q1(t))v(t) + p(t) = 0 , t ∈ [0, T ) .
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Proof. One has,

�tpT (t) = −�
∫ T

t
�s(1−H1

s )ds+ (1−R1)

∫ T

t
�sdH

1
s

= −�
∫ T

t
�s(1−H1

s )ds+ (1−R1)

∫ T

t
�sdM

1
s + (1−R1)

∫ T

t
�sq1(s)(1−H1

s )ds.

As M1 is an ℍ-martingale and � a bounded continuous function, thus

�tEt[pT (t)] = Et
[∫ T

t
�s(1−H1

s )p(s)ds

]
=

∫ T

t
�sEt[1−H1

s ]p(s)ds , (36)

with p(t) defined by (35), and where in virtue of Proposition 3.1(iii) and Proposition 2.2(ii) (Key
Lemma), one has for t < s,

Et[1−H1
s ] = E[1−H1

s ∣H1
t ] = (1−H1

t )
ℙ(�1 > s)

ℙ(�1 > t)
= (1−H1

t )e−
∫ s
t q1(x)dx .

□

Proposition 3.4 One has, for t ∈ [0, T ], (cf. (13), (15) (16)),

EPE(t) =

(
(1−R2)(1−R1)

l3(t)

q2(t)
+
(
v(t)− (R2�̃

+(t)− �̃−(t))
) l2(t)

q2(t)

)
e−

∫ t
0 l1(x)dx (37)

CVA(t) =

∫ T

t
�s

(
(1−R2)(1−R1)l3(s) +

(
v(s)− (R2�̃

+(s)− �̃−(s))
)
l2(s)

)
e−

∫ s
t l(x)dxds(38)

which in the special case where �(�2) = P�2 , �̃ = v reduce to

EPE(t) = EPE0(t) := (1−R2)

(
(1−R1)

l3(t)

q2(t)
+ v+(t)

l2(t)

q2(t)

)
e−

∫ t
0 l1(x)dx (39)

CVA(t) = CVA0(t) :=

∫ T

t
(1−R2)�s

(
(1−R1)l3(s) + v+(s)l2(s)

)
e−

∫ s
t l(x)dxds (40)

Proof. Set

Φ(�2) = E(1�1=�2≤T ∣�2) , Ψ(�2) = E(1�2<�1, �2≤T ∣�2) ,

which are characterized by

E
(
Φ(�2)f(�2)

)
= E

(
f(�2)1�1=�2≤T

)
,

E(Ψ(�2)f(�2)) = E(f(�2)1�2<�1, �2≤T ) ,
(41)

for every Borel function f . In particular we take f(x) = 1x≤t for some t ∈ (0, T ].

Now using law of �2, the left-hand sides of (41) are given by

E
(
Φ(�2)1�2≤t

)
=

∫ t

0
Φ(s)q2(s)e−

∫ s
0 q2(x)dxds

E
(
Ψ(�2)1�2≤t

)
=

∫ t

0
Ψ(s)q2(s)e−

∫ s
0 q2(x)dxds
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As for the right-hand-sides of (41), thanks to Proposition 3.1(i) and (iv), one has

E
(
1�2≤t1�1=�2≤T

)
= E(

∫ t

0
dH{1,2}s )

=

∫ t

0
E
(
(1−H1

s )(1−H2
s )
)
l3(s)ds =

∫ t

0
e−

∫ s
0 l(x)dxl3(s)ds ,

and

E
(
1�2≤t1�2<�1, �2≤T

)
= E

(∫ t

0
1s≤�1∧TdH

{2}
s

)
= E

(∫ t

0
1s≤�1q{2}(s,Hs)ds

)
= E

(∫ t

0
(1−H1

s )(1−H2
s )l2(s)ds

)
=

∫ t

0
e−

∫ s
0 l(x)dxl2(s)ds ,

where the second identity in the first line uses that H{2} does not jump at �1.

Thus for f(x) = 1x≤t the identities in (41) can be rewritten as∫ t

0
Φ(s)q2(s)e−

∫ s
0 q2(x)dxds =

∫ t

0
l3(s)e−

∫ s
0 l(x)dxds ,∫ t

0
Ψ(s)q2(s)e−

∫ s
0 q2(x)dxds =

∫ t

0
l2(s)e−

∫ s
0 l(x)dxds .

Taking derivative with respect to t of these last equations, leads us to

Φ(t) =
l3(t)e−

∫ t
0 l(x)dx

q2(t)
e
∫ t
0 q2(x)dxd , Ψ(t) =

l2(t)e−
∫ t
0 l(x)dx

q2(t)
e
∫ t
0 q2(x)dx

and (37) follows.

Using (16), one then has for t ∈ [0, T ],

�tCVA(t) =

∫ T

t
�sEPE(s)e

∫ s
0 l(x)dxe−

∫ s
0 q2(x)dxq2(s)e−

∫ s
t l(x)dxds

=

∫ T

t
�sEPE(s)e

∫ s
0 l1(x)dxq2(s)e−

∫ s
t l(x)dxds .

Hence (38) follows from (37). □

Remark 3.6 In view of the option-theoretic interpretation of the CVA, the CVA valuation formula
(38) can also established directly, without passing by the EPE, much like formula (29) in Proposition
3.2 above (using a probabilistic computation, or resorting to the related Kolmogorov pricing ODE).

3.3 Hedging

We now give few preliminary results about hedging the risky CDS. We shall mainly consider the
issue of delta-hedging, at least partially, the risky CDS, by a risk-free CDS which would also be
available on the market (CDS on the firm with the same characteristics, except for the counterparty
credit risk). Another perspective on the counterparty credit risk of the risky CDS can thus be given
by assessing to which extent the risky CDS could, in principle, be hedged by the risk-free CDS.
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3.3.1 Price Dynamics

Let Π̂ denote the discounted cum-dividend price of the risky CDS, that is, the local martingale

Π̂t = �tΠt + �t(0).

The Itô formula applied to Πt = Π(t,Ht) yields, on [0, �1 ∧ �2 ∧ T ], )

dΠ̂t = �t
(
�Π{1}(t)dM

{1}
t + �Π{2}(t)dM

{2}
t + �Π{1,2}(t)dM

{1,2}
t

)
(42)

with

�Π{1}(t) = 1−R1 − u(t) , �Π{2}(t) = R2�̃
+(t)− �̃−(t)− u(t) , �Π{1,2}(t) = R2(1−R1)− u(t) .

Similarly, setting
P̂t = �tPt + pt(0),

it comes

dP̂t = �t�P1(t)dM1
t (43)

with
�P1(t) = 1−R1 − v(t) .

3.3.2 Min-Variance Hedging

Let us denote by  a (self-financing) strategy in the risk-free CDS with price process P (and the
savings account �−1

t ) for tentatively hedging the risky CDS with price process Π.

Recall that ℙ is the risk neutral probability chosen by market. So the discounted cum-dividend price
process P̂ is a ℙ-local martingale (actually in view of (43) P̂ is here a ℙ-martingale). As a result
of the Galtchouk-Kunita-Watanabe decomposition, the hedging strategy  va which minimizes the
ℙ-variance of the hedging error, or min-variance hedging strategy, is given by

 vat =
d⟨Π̂, P̂ ⟩t
d⟨P̂ ⟩t

.

Remark 3.7 Note that we only deal with minimization of the risk-neutral variance of the hedging
error, here, as opposed to the more difficult problem of minimizing the variance of the hedging error
under the historical probability measure.

In view of the price dynamics (42)-(43), one has, for t ≤ �1 ∧ �2,

d⟨Π̂, P̂ ⟩t
d⟨P̂ ⟩t

=
l1(t)(�Π{1}(t))(�P1(t)) + l3(t)(�Π{1,2}(t))(�P1(t))

q1(t)(�P1(t))2
.

So

 vat =
l1(t)

q1(t)

1−R1 − u(t)

1−R1 − v(t)
+
l3(t)

q1(t)

R2(1−R1)− u(t)

1−R1 − v(t)
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on [0, �1 ∧ �2 ∧ T ] (and  va = 0 on (�1 ∧ �2 ∧ T, T ]). The related min-variance hedging reduction
factor writes:

Var(Π̂T )

Var(Π̂T −
∫ T

0  vat dP̂t)
=

Var(Π̂T )

Var(Π̂T ) + Var(
∫ T

0  vat dP̂t)− 2ℂov(Π̂T ,
∫ T

0  vat dP̂t)
, (44)

where:

Var(Π̂T ) = E⟨Π̂⟩T = E
∫ �1∧�2∧T

0

(
l1(t)(�Π{1}(t))

2 + l2(t)(�Π{2}(t))
2 + l3(t)(�Π{1,2}(t))

2
)
dt

Var(

∫ T

0
 vat dP̂t) = E⟨

∫ ⋅
0
 vat dP̂t⟩T = E

∫ �1∧�2∧T

0
q1(t)( vat �P1(t))2dt

ℂov(Π̂T ,

∫ T

0
 vat dP̂t) = E⟨Π̂,

∫ ⋅
0
 vat dP̂t⟩T =

E
∫ �1∧�2∧T

0

(
l1(t)�Π{1}(t) + l3(t)�Π{1,2}(t)

)
 vat �P1(t)dt .

(45)

The various quantities that arise in (45), and therefore the hedging reduction factor given by (44),
can be computed by Monte Carlo simulation.

Remark 3.8 The previous min-variance hedging strategy can be easily extended to multi-instrument
hedging schemes. In case three non-redundant hedging instruments are available, then, in view of
(42), the risky CDS can be perfectly replicated.

4 Implementation

4.1 Affine Intensities Model Specification

Note that the Markov chain copula model primitives are the marginal pre-default intensity functions
q1 and q2 as well as the ‘dependence intensity function’ l3 in A(t) (cf. (17)).

Let us specify, for constants a’s and b’s,

qi(t) = ai + bit , l3(t) = a3 + b3t , (46)

with
a3 = �min{a1, a2} , b3 = �min{b1, b2} ,

for a model dependence parameter � ∈ [0, 1] (for the sake of Assumption 3.2).

Remark 4.1 Such an affine specification of intensities was already used by Bielecki et. al. [2] in a
context of CDO modeling.

It is immediate to check that under (46), the spread �i of a risk-free CDS on name i is given by

�i = (1−Ri)

∫ T

0
�t(ai + bit) exp(−ait−

bi
2
t2)dt∫ T

0
�t exp(−ait−

bi
2
t2)dt

. (47)
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Also note that one has, by Proposition 3.1(v),

�d := �d(T ) =
ea3T+b3T 2/2 − 1√(

ea1T+b1T 2/2 − 1
) (
ea2T+b2T 2/2 − 1

) , (48)

or, equivalently,

� =
ln
(

1 + �d

√(
ea1T+b1T 2/2 − 1

) (
ea2T+b2T 2/2 − 1

))
aT + bT 2/2

(49)

where a = min{a1, a2} and b = min{b1, b2}.

4.1.1 Calibration Issues

Using (47), the ai’s and bi’s can be calibrated independently in a straightforward way to the market
CDS curves of the firm and the counterpart, respectively. Note in this regard that market CDS curves
can be considered as ‘risk-free CDS curves’.

As for the model dependence parameter �, in case the market price of an instrument sensitive to
the dependence structure of default times (basket credit instrument on the firm and the counterpart)
is available, one can use it to calibrate �. Admittedly however, this situation is an exception rather
than the rule. It is thus important to devise a practical way of setting � in case such a market data is
not available. A possible procedure1 thus consists in ‘calibrating’ � to a target value for the model
probability p1,2(T ) = ℙ(H1

T = H2
T = 1) of joint default at the time horizon T. A target value for

p1,2(T ) can be obtained by plugging a standard static Gaussian copula asset correlation � into a
bivariate normal distribution function, so

p1,2(T ) = N �
2

(
N−1

1 (p1(T )),N−1
1 (p2(T ))

)
, (50)

where:
∙ N1 denotes the standard Gaussian c.d.f.,
∙ N �

2 denotes a bivariate centered Gaussian c.d.f. with one-factor Gaussian copula correlation
matrix of parameter �,
∙ pi(T ) = ℙ(H i

T = 1) for i = 1, 2.
Regulatory capital requirements being based on the Vasicek formula, such a static copula correlation
� can be retrieved from the Basel II correlations per asset class (cf. [1, pages 63 to 66]).

4.1.2 Special Case of Constant Intensities

We now look at a particular case in which b1 = b2 = b3 = 0. This case will be referred to hence-
forth as the case of constant intensities, as opposed to the more general case of affine intensities
introduced in subsection 4.1. In the case of constant intensities, one has,

q1(t) = a1 , q2(t) = a2 , l3(t) = a3.

1We thank J.-P. Lardy for the suggestion of this procedure.
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The correlation coefficient �d in (48) simplifies to

�d =
ea3T − 1√

(ea1T − 1) (ea2T − 1)

from which a3 can be calculated as

a3 =
1

T
ln

(
1 + �d

√
(ea1T − 1) (ea2T − 1)

)
.

As is well known, the price of a risk-free CDS in a constant intensity model is null, i.e., v(t) ≡ 0
when b1 = 0. So the EPE formula (37) simplifies to

EPE(t) = (1−R1)(1−R2)
a3

a2
e−(a1−a3)t .

Also in this case, the pricing formula (29) for the risky CDS reduces to (assuming here r(t) = r),

u(t) = −(1−R1)(1−R2)a3
1− e−(r+a1+a2−a3)(T−t)

r + a1 + a2 − a3
.

Finally, from Proposition 2.1, one gets,

CVA(t) = −u(t) .

In particular, for low values of the coefficients,

CV A(0) ≃ (1−R1)(1−R2)a3T = (1−R1)(1−R2) ln

[
1 + �d

√
(ea1T − 1) (ea2T − 1)

]
,

so, finally,

CV A(0) ≃ (1−R1)(1−R2)
√
a1a2T�d . (51)

4.2 Numerical Results

Our aim is to assess by means of numerical experiments the impact of � (the asset correlation
between the firm and the counterpart, cf. (50)) on one hand, and of �2 (the risk-free CDS fair spread
of the counterparty as of (47)) on the other hand, on the counterparty risk exposure of the investor.

Towards this end we fix the general data of Table 1 (case with affine intensities) or 3 (case with
constant intensities, all b’s equal to 0), and we further consider twelve alternative sets of values for
a2, b2, and � given in columns one, two and four of Table 2 (case with affine intensities), resp. for
a2 and � given in columns one and three of Table 4 (case with constant intensities).

r R1 R2 T a1 b1 �1

5% 40% 40% 10 years .0095 .0010 84 bp

Table 1: Fixed Data — Affine Intensities.
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a2 b2 �2 � �d � p1,2 CVA(0)

.0056 .0006 50 bp 10% .0378 .0520 .0147 .0013

.0085 .0009 75 bp 10% .0418 .0472 .0211 .0018

.0122 .0010 100 bp 10% .0444 .0522 .0269 .0021

.0189 .0014 150 bp 10% .0476 .0702 .0376 .0028

.0056 .0006 50 bp 40% .1859 .2531 .0286 .0056

.0085 .0009 75 bp 40% .1998 .2230 .0388 .0074

.0122 .0010 100 bp 40% .2074 .2406 .0472 .0087

.0189 .0014 150 bp 40% .2145 .3107 .0616 .0110

.0056 .0006 50 bp 70% .4020 .5406 .0489 .0119

.0085 .0009 75 bp 70% .4256 .4673 .0640 .0153

.0122 .0010 100 bp 70% .4336 .4937 .0754 .0178

.0189 .0014 150 bp 70% .4306 .6100 .0925 .0214

Table 2: Variable Data — Affine Intensities.

r R1 R2 T a1 �1

5% 40% 40% 10 years .0140 84 bp

Table 3: Fixed Data — Constant Intensities.

a2 �2 � �d � p1,2 CVA(0)

.0083 50 bp 10% .0372 .0510 .0138 .0011

.0125 75 bp 10% .0411 .0464 .0198 .0015

.0167 100 bp 10% .0438 .0515 .0254 .0018

.0250 150 bp 10% .0470 .0690 .0355 .0023

.0083 50 bp 40% .1839 .2501 .0272 .0054

.0125 75 bp 40% .1977 .2207 .0368 .0070

.0167 100 bp 40% .2056 .2387 .0451 .0084

.0250 150 bp 40% .2128 .3073 .0587 .0104

.0083 50 bp 70% .3998 .5372 .0469 .0117

.0125 75 bp 70% .4231 .4650 .0613 .0150

.0167 100 bp 70% .4315 .4921 .0726 .0175

.0250 150 bp 70% .4288 .6063 .0889 .0210

Table 4: Variable Data — Constant Intensities.
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In the case of affine intensities the corresponding spreads �2 at time 0, default correlation �d, model
dependence parameter � and joint default probabilities p1,2 = ℙ(H1

T = H2
T = 1) are displayed

respectively in the third, fifth, sixth and seventh column of Table 2, whereas the last column of Table
2 (which will be commented later in the text) gives the corresponding CVA’s at time 0. The risky
and risk-free CDS pricing functions u and v corresponding to each of our twelve sets of parameters
are displayed in Figure 1. On each graph three curves are represented (see Remark 3.5):
∙ v(t) (dashed blue curve),
∙ u(t) with �̃ = v therein, denoted by u0(t) (doted red curve),
∙ u(t) with �̃ = u therein, denoted by u1(t) (black curve).

The analogous results in the case of constant intensities are displayed in Table 4 and Figure 2.
Note that on each graph in Figure 2 the function v is equal to 0, as must be in the case of constant
intensities.

In all the cases u0 and u1 are rather close to each other, and one can check numerically that using
either one makes little difference regarding the related EPEs and CVAs. We present henceforth the
results for u = u0.

Figures 3, 4 and 5 show the graphs of the Expected Positive Exposure as a function of time, of the
Credit valuation Adjustment as a function of time, and of the Credit Valuation Adjustment at time 0
as a function of �, in the cases of affine (left graphs) or constant (right graphs) intensities.

One can see on Figure 3 the impact on the counterparty risk exposure of the investor of the default
risk (as measured by the risk-free spread �2) of the counterpart. On each graph the asset correlation
� is fixed, with from top to down � = 10%, 40% and 70%. The four curves on each graph of
Figure 3 correspond to EPE(t) for �2 = 50, 75, 100 and 150bps. Observe that as �2 decreases
the counterparty risk exposure increases. This is in line with the stylized features and the financial
intuition regarding the EPE: EPE(t) is the expectation of the investor’s loss, given the default of the
counterpart at time t. A default of a counterpart with a lower spread is interpreted by the markets as
a worse news than a default of a counterpart with a higher spread. The related EPE is thus larger.

Figure 4 shows the graphs of the Credit Valuation Adjustment as a function of time, for affine (left
column) or constant (right column) intensities. One can thus see the impact of �2 on the CVA. In
each graph the asset correlation � is fixed, with from top to down � = 10%, 40% and 70%. The four
curves on each graph of Figure 4 correspond to CVA(t) for �2 = 50, 75, 100 and 150bps. Observe
that as opposed to the EPE, the CVA is increasing in �2, in line with stylized features. Also note
that the CVA is a decreasing function of time, in accordance again with expected features: less time
to maturity, less risk.

Finally Figure 5 represents the graphs of CVA(0) as a function of the asset correlation � for �2 = 50,
75, 100 and 150bps. Note for comparison that CVA(0) grows essentially linearly in the default
correlation �d, at least in the case of constant coefficients (cf. formula (51)).

5 Concluding Remarks and Perspectives

In this article we propose a model of CDS with counterparty credit risk, with the following desirable
properties:
∙ Adequation of the behavior of EPE and CVA in the model with expected features (see Section
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Figure 1: Pricing functions in the case of affine intensities — v(t) (dashed blue curve), u0(t) (doted
red curve) and u1(t) (black curve).
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Figure 2: Pricing functions in the case of constant intensities — v(t) (dashed blue curve), u0(t)
(doted red curve) and u1(t) (black curve).
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Figure 3: EPE(t) (�̃ = v, u = u0). In each graph � is fixed. From top to down � = 10%, � = 40%
and � = 70%. Left column: affine intensities. Right column: constant intensities.
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Figure 4: CVA(t) (�̃ = v, u = u0). In each graph � is fixed. From top to down � = 10%, � = 40%
and � = 70%. Left column: affine intensities. Right column: constant intensities.
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Figure 5: CVA(0) as a function of � for �2 = 50 bp, 75 bp, 100 bp and 150 bp (�̃ = v, u = u0).
Left: Affine intensities. Right: Constant intensities.

4.2),
∙Wrong way risk (via joint defaults, specifically),
∙ Simplicity, since the model is a four-state Markov chain of two credit names, with one-name
marginals automatically calibrated to the individual CDS curves,
∙ Fact, related to the previous one, that the model ‘takes the right inputs to generate the right
outputs’, namely it takes as basic inputs the individual default probabilities (individual CDS curves),
which correspond to the more reliable information on the market, which are then ‘coupled’ in a
suitable way,
∙ Consistency, in the sense that it is a dynamic model with replication-based valuation and hedging
arguments.

The present work might be extended in at least three directions.
First, it would be desirable to add credit spread volatility into the model. This could be achieved by
adding a reference filtration F̃ so that the model filtration F be given as F̃ ∨ ℍ, and the intensities
l, q are non-negative F̃-adapted processes.
A second related issue is that of merging the CDS-CVA pricing tool of this paper into a more
general, real-life CVA engine, including the following features:
∙ Netting, that is, aggregation in a suitable way of all the contracts (as opposed to only one CDS in
this paper) relative to a given counterpart,
∙ Market (other than credit) risk factors,
∙ Margin agreements.
Finally, at the stage of implementation (see, e.g., Zhu and Pykhtin [24]), such real-life CVA engines
pose interesting challenges from the numerical point of view of Monte Carlo simulations.

A Proof of Proposition 3.1

We shall need the following (essentially classic) Lemma.
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Lemma A.1 Let X be a right-continuous process with a finite state space ℰ and adapted to some
filtration F. Condition (i), (ii) or (iii) below are necessary and sufficient conditions for X to be an
F – Markov chain with infinitesimal generator A(t) = At = [Ai,jt ]i,j∈ℰ :
(i) For every function ℎ over ℰ ,

ℳℎ
t = ℎ(Xt)−

∫ t

0
(Asℎ)(Xs)ds (52)

is an F – local martingale;
(ii) For every j ∈ ℰ , the processℳj defined by

ℳj
t = 1Xt=j −

∫ t

0
AXs,j
s ds

is an F – local martingale;
(iii) For every i, j ∈ ℰ the processℳi,j given by

ℳi,j
t = 1Xt−=i,Xt=j −

∫ t

0
1Xs=iAi,js ds

is an F – local martingale.

Proof. (i) is the usual local martingale characterization of Markov chains (see, e.g., Proposition
11.2.2 in [4]).
(ii) Since ℰ is finite, the set of the indicator functions 1⋅=j spans linearly the set of all functions
over ℰ . The condition of part (ii) is thus equivalent to that of (i).
(iii) Necessity follows by combination of Proposition 11.2.2 and Lemma 11.2.3 in [4]. As for
sufficiency, note that theℳi,j’s being F – local martingales implies the same property for theℳj’s
in (ii), by summation over i. We thus conclude by the sufficiency in part (ii). □

Let us proceed with the proof of Proposition 3.1. First, note the processes H� can also be written as

H
{1}
t =

∑
0<s≤t

1ΔHs=(1,0) , H
{2}
t =

∑
0<s≤t

1ΔHs=(0,1) , H
{1,2}
t =

∑
0<s≤t

1ΔHs=(1,1) .

(i) Let us verify that the M �’s in (20) are ℍ – local martingales. As bounded ℍ – local martingales,
M{1}, M{2} and M{1,2} will thus be ℍ-martingales. For I = {1, 2}, one has,

M
{1,2}
t = H

{1,2}
t −

∫ t

0
q{1,2}(s,Hs)ds

=
∑

0<s≤t
1ΔHs=(1,1) −

∫ t

0
1Hs=(0,0)l3(s)ds

=
∑

0<s≤t
1Hs−=(0,0),Hs=(1,1) −

∫ t

0
1Hs=(0,0)l3(s)ds .

Thus Lemma A.1 with i = (0, 0) and j = (1, 1), implies the local martingale property of M{1,2}.
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For M{1}, one has,

M
{1}
t = H

{1}
t −

∫ t

0
q{1}(s,Hs)ds

=
∑

0<s≤t
1ΔHs=(1,0) −

∫ t

0
1H1

s=0

[
1H2

s=0l1(s) + 1H2
s=1q1(s)

]
ds

=

⎧⎨⎩ ∑
0<s≤t

1Hs−=(0,0),Hs=(1,0) −
∫ t

0
1Hs=(0,0)l1(s)ds

⎫⎬⎭
+

⎧⎨⎩ ∑
0<s≤t

1Hs−=(0,1),Hs=(1,1) −
∫ t

0
1Hs=(0,1)q1(s)ds

⎫⎬⎭ .

Now we apply Lemma A.1 to the two terms in the last equation, with i = (0, 0) and j = (1, 0) for
the first term and i = (0, 1) and j = (1, 1) for the second term. Thus M{1} being the sum of two ℍ
– local martingales is an ℍ – local martingale. In the same way, M{2} is an ℍ – local martingale.
As bounded ℍ – local martingales, M{1}, M{2} and M{1,2} are thus ℍ–martingales.
(ii) As qi = li + l3 and H i = H{i} + H{1,2}, one has M i = M{i} + M{1,2}, so the M i’s are in
turn ℍ-martingales.
(iii) Since the M i’s are ℍ-martingales, this follows easily from the sufficiency in Lemma A.1(ii).
(iv) Formulas (24) follow directly from (23), in which we shall now show the first identity. One has
for t > s (see the end of the proof of Proposition 3.3),

ℙ(�2 > t∣ℋs) = ℙ(�2 > t∣H2
s ) = (1−H2

s )e−
∫ t
s q2(u)du .

Thus

ℙ(�1 > s, �2 > t) = E(1�1>sE(1�2>t∣ℋs))

= E
{

(1−H1
s )(1−H2

s )e−
∫ t
s q2(u)du

}
,

and the result follows.
(v) Since H i

t is a Bernoulli random variable with (cf. Proposition 3.1(iv))

ℙ(H i
t = 1) = ℙ(�i ≤ t) = 1− exp(−

∫ t

0
qi(s)ds) := pi(t),

one has

Var(H i
t) = pi(t)(1− pi(t))
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Also

ℂov(H1
t , H

2
t ) = ℂov(1−H1

t , 1−H2
t )

= E
[
(1−H1

t )(1−H2
t )
]
− E(1−H1

t )E(1−H2
t )

= ℙ(�1 > t, �2 > t)− ℙ(�1 > t)ℙ(�2 > t)

= exp

(
−
∫ t

0
l(s)ds

)
− exp

(
−
∫ t

0
q1(s)ds

)
exp

(
−
∫ t

0
q2(s)ds

)
.

Thus, after some algebraic simplifications,

�d(t) =
ℂov(H1

t , H
2
t )√

Var(H1
t )Var(H2

t )
=

exp
(∫ t

0 l3(s)ds
)
− 1√(

exp
(∫ t

0 q1(s)ds
)
− 1
)(

exp
(∫ t

0 q2(s)ds
)
− 1
) .
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