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Abstract

We consider the problem of the numerical computation of its economic

capital by an insurance or a bank, in the form of a value-at-risk or ex-

pected shortfall of its loss over a given time horizon. This loss includes the

appreciation of the mark-to-model of the liabilities of the firm, which we

account for by nested Monte Carlo à la Gordy and Juneja [17] or by regres-

sion à la Broadie, Du, and Moallemi [9]. Using a stochastic approximation

point of view on value-at-risk and expected shortfall, we establish the con-

vergence of the resulting economic capital simulation schemes, under mild

assumptions that only bear on the theoretical limiting problem at hand,

as opposed to assumptions on the approximating problems in [17] and [9].

Our economic capital estimates can then be made conditional in a Markov
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Saclay, 91037, Evry, France.
‡Email: babacar.diallo@ca-cib.com. Quantitative Research GMD/GMT Crédit Agricole

CIB, 92160 Montrouge, France.
§Email: Gersende.Fort@math.univ-toulouse.fr. CNRS, Institut de Mathmatiques de

Toulouse (IMT), 31062 Toulouse Cedex 9, France.
¶Email: emmanuel.gobet@polytechnique.edu. Centre de Mathématiques Appliquées
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framework and integrated in an outer Monte Carlo simulation to yield the

risk margin of the firm, corresponding to a market value margin (MVM)

in insurance or to a capital valuation adjustment (KVA) in banking par-

lance. This is illustrated numerically by a KVA case study implemented

on GPUs.

Keywords: value-at-risk, expected shortfall, economic capital, nested

Monte Carlo, empirical regression scheme, risk margin, capital valuation

adjustment.
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1 Introduction

The current financial and insurance regulatory trends incentivize investment

banks and insurance companies to charge to their clients, on top of a risk-neutral

expectation of contractual cash flows, a suitable risk margin (see [11], [25]), meant

to be gradually released to shareholders as return for their capital at risk in the

future. This risk margin, sometimes called market value margin (MVM) in in-

surance and corresponding in banking to a capital valuation adjustment (KVA,

see [10]), can be modeled as an expectation of the future economic capital of

the firm. Future economic capital is modeled in our paper as the conditional

expected shortfall (ES)1 of the losses of the firm over a one-year horizon. These

losses are assessed on a mark-to-model basis, which includes, at any future time

point where the conditional expected shortfall is computed, the valuation one

year later of the liabilities of the firm, such as variable annuities (VA) in the

insurance case or a credit valuation adjustment (CVA) in the banking case, i.e.

an expectation, conditionally on the information available one year later, of the

future cash flows that the liability is pricing.

As such complex liabilities are typically intractable analytically and because

the losses of the firm are specified through dynamic models of the underlying risk

factors, in principle, the computation of the risk margin involves a nested and,

in fact, a doubly nested simulation, whereby an outer Monte Carlo simulation

1In the context of this paper where we are considering conditional ES, we avoid the alter-

native terminology of conditional value-at-risk for (unconditional) ES.
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gathers inner estimates of conditional expected shortfalls at future time points,

themselves calling for recursive valuation one year later of the embedded liability.

This makes it a challenging problem, both from a practical and from a conver-

gence analysis point of view. In particular, on realistically heavy applications,

such computations can only be implemented in parallel, with GPUs as a current

hardware paradigm, which poses nontrivial programming optimization issues.

The assumptions made in Gordy and Juneja [17] for establishing the con-

vergence of the simulation-and-sort value-at-risk and expected shortfall nested

Monte Carlo estimates are hard to check (and might actually be violated) in

practice, especially when considered dynamically in the context of risk margin

computations. As the value-at-risk and expected shortfall of a given loss random

variable can jointly be represented as zeros of suitable functions that can be writ-

ten as expectations, an alternative is stochastic approximation (SA). In the base

case without embedded liability of the firm, the convergence of the value-at-risk

and expected shortfall SA estimates is established in Bardou, Frikha, and Pagès

[6, 7]. In the present paper this convergence is extended to the case of dependent

noise, corresponding to the presence of the nested future liability of the firm in

our loss variable. This is then applied to risk margin computations by embedding

the resulting inner conditional ES estimates into an outer sample mean.

Moreover we analyze a variant of this approach where the future liabilities

are regressed as in Broadie, Du, and Moallemi [9], rather than re-simulated in a

nested fashion, resulting in a simply nested procedure for the overall risk margin

computation.

The different variants of the method are tested numerically, using GPU pro-

gramming so that the inner conditional risk measures can be computed in parallel

and then averaged out for yielding the outer risk margin estimate.

Beyond the extension of the base result of [6, 7] to dependent noise and its

economical capital and risk margin application, we refer the reader to the con-

cluding section of the paper regarding the technical contributions of our approach

with respect to [17] and [9].

The paper is organized as follows. Section 2 presents our stochastic approxi-

mation value-at-risk and expected shortfall algorithms in the presence of depen-

dent noise, with nested Monte Carlo versus regression estimates of the latter in the

respective cases of Algorithms 1 and 2 (whereas Algorithm 0 corresponds to the

base case without dependent noise). Sections 3 and 4 deal with the convergence

analyses of the respective Algorithms 1 and 2. Section 5 casts such estimates in

a dynamic setup, integrating out the estimated conditional economic capital in
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the context of an outer simulation for the corresponding risk margin; this is then

illustrated numerically in the context of a KVA case study. Section 6 concludes.

Remark 1.1. In the motivating discussion above and in our application Section

5, for concreteness, we focus on economic capital, modeled as expected shorfall,

and on the ensuing risk margin. However, the results of Sections 3 and 4 cover

both expected shorfall and value-at-risk (establishing convergence for the latter

is in fact a prerequisite for the former). Hence, our results also cover the cases

of value-at-risk, conditional value-at-risks, and integration of the latter in the

context of an outer expectation. Again this can be relevant together for bank

and for insurance, noting that:

• In the insurance case, Solvency capital is determined as the 99.5%-value-

at-risk of the one year loss of the firm for Solvency II (see [11]), and as the

99%-expected shortfall for the Swiss Solvency Test (see [25]);

• In the banking case, Basel II Pillar II defines economic capital as the 99%

value-at-risk of the depletion over a one-year period of core equity tier I

capital (CET1) (where the latter corresponds the one year trading loss

of the bank as detailed in [10, Section A.2]); But the FRTB required a

shift from 99% value-at-risk to 97.5% expected shortfall as the reference

risk measure in capital calculations. Moreover, value-at-risk is relevant to

banks for the computation of their initial margin (with a time horizon of

one or two weeks, as opposed to one year conventionally in the paper) and,

in turn, of their dynamic (conditional) initial margin (see [2]) in the context

of the computation of their margin valuation adjustment (MVA).

2 Stochastic Algorithms for Economic Capital

Calculations

On some probability space (Ω,A,P), our financial loss L is defined as a real

valued random variable of the form

L = φ+ β E0 [ψ|Z1]− E0 [ψ′] , (2.1)

where (β, φ, ψ, ψ′) are four real valued random variables and (Z0, Z1) are two Rq

valued random variables such that under P0, the conditional probability measure

P given Z0 (with related expectation and variance denoted by E0 and Var0):

5



• i.i.d. samples from (φ, β, Z1) given Z0 are available;

• i.i.d. samples from the conditional distribution of ψ given Z1, denoted by

Π(Z1, ·), are available;

• i.i.d. samples from the conditional distribution of ψ′ given {Z0 = z}, de-

noted by Π′(z, ·), are available;

• the discount factor β is bounded: there exists a positive constant cβ such

that |β| ≤ cβ.

We denote by P(z, ·) and Q(z, ·) the distributions of Z1 and L conditionally on

Z0 = z. We also write

Ψ(Z1) := E0[ψ|Z1] and Ψ′(z) := E0[ψ′], so that L = φ+ βΨ(Z1)−Ψ′(z).(2.2)

In the financial application the second and third terms in (2.1) will be used

for modeling the future (conventionally taken as 1, i.e. one year) and present

(time 0) liability valuations, whereas the first term corresponds to the realized

loss of the firm on the time interval [0, 1]. The above-listed assumptions allow

recovering E0 [ψ|Z1] by nested Monte Carlo simulation restarting from time 1

(which is the approach in [17]) or by empirical regression at time 1 (which is

the approach in [9]), whereas E0 [ψ′] can be obtained by a standard Monte Carlo

simulation rooted at (0, z).

Let

H1(ξ, x) := 1− 1

1− α
1x>ξ, H2(ξ, χ, x) := χ− ξ − 1

1− α
(x− ξ)+ . (2.3)

A value-at-risk ξ? at level α of the random variable (loss) L solves the equation

1− 1

1− α
P0 (L > ξ?) = E0 [H1(ξ?, L)] = 0; (2.4)

it is uniquely defined if L has an increasing P0 c.d.f F e.g. if it has a nonvanishing

P0 density f . Given a solution ξ? to (2.4), the expected shortfall χ? at level α

solves the equation

χ? − ξ? −
1

1− α
E0

[
(L− ξ?)+

]
= E0 [H2(ξ?, χ?, L)] = 0 (2.5)

(noting that any solution ξ? to (2.4) yields the same equation (2.5) for χ?; see

e.g. Lemma A.1 in Appendix A.3). Equivalently, ξ? and χ? satisfy∫ +∞

ξ?

Q(z, dx) = 1− α, χ? = ξ? +
1

1− α

∫
(x− ξ?)+Q(z, dx). (2.6)
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We model economic capital (EC) at time 0 (known in the insurance regulation

as the Solvency capital requirement, SCR) as the expected shortfall of level α ∈(
1
2
, 1
)

of the distribution of L given Z0 = z, i.e.

ES(z) := (1− α)−1

∫ 1

α

VaRa
0[L] da. (2.7)

In (2.7), VaRa
0[L] is a corresponding value-at-risk at level a. Throughout the

paper, α is fixed, so the dependence of ES(z) upon α is omitted. Likewise we

introduce the notation VaR(z) for the value-at-risk at the (fixed) level α of L.

2.1 Stochastic Approximation (SA) With Dependent Noise

We propose two approaches for computing ES(z). Both estimates ÊS(z) are

defined as the output of a stochastic approximation (SA) algorithm with K it-

erations. However, in the applications targeted in this paper, the expectations

in (2.4) and (2.5) are not known analytically, so that the quantities (ξ?, χ?) are

roots of intractable functions. SA algorithms provide a numerical solution to

(2.4)-(2.5) (see e.g. [8, 20]): given a deterministic stepsize sequence {γk, k ≥ 1}
and a sequence {Lk, k ≥ 1} of random variables i.i.d. with distribution Q(z, ·),
we define iteratively, starting from (ξ0, χ0),{

ξk+1 = ξk − γk+1H1(ξk, Lk+1)

χk+1 = χk − γk+1H2(ξk, χk, Lk+1).
(2.8)

Remark 2.1. In the case where γk = 1
k
, the first line in (2.8), for the value-at-risk

specification of H1 in (2.3), is equivalent to

1

k

k∑
l=1

ξl−1

ξk
1Ll>ξl−1

= 1− α, k ≥ 1,

to be compared with the following empirical quantile ξ′k specification:

1

k

k∑
l=1

1Ll>ξ′k ≈ 1− α.

The (almost-sure) limit (ξ∞, χ∞) of any convergent sequence {(ξk, χk, k ≥ 0}
is a solution to

(ξ, χ) 7→
{

E0 [H1(ξ, L)] = 0,

E0 [H2(ξ, χ, L)] = 0.
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Therefore, any limit is a pair of solutions to (2.4)–(2.5). In particular, χ∞ =

ES(z).

However, in our case, i.i.d. samples from the law of L are not available,

because of the quantities E1 [ψ] and E0 [ψ′] in L, which are not explicit. Therefore,

we propose to replace exact sampling of L by approximate sampling. Toward this

aim, we introduce two strategies.

Introducing i.i.d. {(φk, βk, Zk
1 ),m ≥ 1} with the same distribution a (φ, β, Z1)

conditionally on Z0 = z, the first strategy consists in replacing the draws {Lk, k ≥
1} in (2.8) by

φk +
βk
Mk

Mk∑
m=1

ψm,k −
1

M ′
k

M ′k∑
m=1

ψ′m, (2.9)

where, conditionally on Zk
1 , {ψm,k,m ≥ 1} are i.i.d. with distribution Π(Zk

1 , ·);
conditionally on Z0 = z, {ψ′m,m ≥ 1} are i.i.d. with distribution Π′(z, ·); Mk,

M ′
k are positive integers.

The second strategy consists in replacing the draws {Lk, k ≥ 1} in (2.8) by

φk + βkΨ̂(Zk
1 )− 1

M ′
k

M ′k∑
m=1

ψ′m,

where the first and last terms are as before and where Ψ̂(·) is a regression-based

estimator, computed prior and independently from the Zk
1 , of the function Ψ(·),

such that

Ψ(Z1) = E0 [ψ|Z1] , P(z, ·)-a.s (2.10)

(recall that P(z, ·) denotes the conditional distribution of Z1 given Z0 = z).

The advantage of the first approach is that, under sufficiently good conver-

gence hypotheses for the nested averages (see the assumptions of Theorem 3.1),

the approximation of ES(z) can be made asymptotically as good as desired. On

the other side, the approach based on the regression requires a previous knowl-

edge of the global behavior of Ψ (as an element of a certain function space) in

order to give approximations with small bias (see Theorem 4.1), which is essential

to have good asymptotics in our error analysis. Nevertheless, the second strategy

has a small computational cost compared with the first one (at least for large

values of the Mk in (2.9)). This can be a significant advantage if we indeed know

which function space can serve to build a good predictor of the function Ψ.
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Algorithmic summaries of these two strategies are given in the respective

Sections 2.3 and 2.4. In Section 2.2, for pedagogical purposes, we start by recalling

essentially known results in the base case where ψ = ψ′ = 0.

2.2 Base-case Without Present and Future Liabilities

1 Input: A positive sequence {γk, k ≥ 1}, K ∈ N∗, ξ0 ∈ R, χ0 ∈ R,

and z ∈ Rq.

2 for k = 1 to K, do

3 /* Sampling step */

4 Sample φk with the same distribution as φ conditionally on

Z0 = z, independently from the past draws ;

5 Set Lk := φk ;

6 /* Update the conditional VaR and ES estimates */

7 ξk = ξk−1 − γkH1(ξk−1, Lk) ;

8 χk = χk−1 − γkH2(ξk, χk−1, Lk).

9 Return(The sequences {χk, 1 ≤ k ≤ K} and {ξk, 1 ≤ k ≤ K})
Algorithm 0: Estimates of VaR(z) and ES(z) in the base case without

present and future liabilities (ψ = ψ′ = 0).

Note that, when ψ ≡ ψ′ = 0, the random variables {Lk, k ≥ 1} are i.i.d.

with distribution Q(z, ·). Therefore, sufficient conditions on this distribution

and on the sequence {γk, k ≥ 1} for the almost-sure convergence of {ξk, k ≥ 0}
to VaR(z) and {χk, k ≥ 0} to ES(z) can be proven by application of standard

results for stochastic approximation algorithms: By application of Theorem A.1

and Lemma A.2 in Appendix A.2, we prove in Theorem 2.1 that the algorithm

produces a sequence {(ξk, χk), k ≥ 1} converging to a pair solution of (2.4)-(2.5)

where L ∼ Q(z, ·). Hence, ξK is a strongly consistent estimator of a value-at-risk

of level α of the distribution Q(z, ·), while χK is a (strongly) consistent estimator

of the associated expected shortfall.

More precisely, these convergences are established under the following as-

sumptions.

H 1. {γk, k ≥ 1} is a (0, 1)-valued deterministic sequence, such that for some

κ ∈ (0, 1], ∑
k

γk = +∞,
∑
k

γ1+κ
k < +∞.

9



H2. a) Under P0, L = φ ∼ Q(Z0 = z, ·) has a continuous cumulative distribution

function.

b) E0 [L2] =
∫
x2Q(z, dx) < +∞.

H1 is standard in stochastic approximation, and is satisfied for example with

γn ∼ γ?/n
c and c ∈ (1/2, 1]. The condition H2 essentially allows to characterize

the set of the limiting points of the algorithm and to prove that the stochastic

approximation algorithm is a perturbation of a discretized ODE with a controlled

noise.

Theorem 2.1. Let {(ξk, χk), k ≥ 1} be the output of Algorithm 0. Assume H1

and H2. Then there exist a bounded random variable ξ∞ and a real number χ∞
satisfying (2.6) P0-a.s. and such that, for any p ∈ (0, 2),

P0

(
lim
k→∞

(ξk, χk) = (ξ∞, χ∞)
)

= 1, lim
k→∞

E0 [|ξk − ξ∞|p] = 0.

The proof, which is detailed in Appendix A.3, consists in first proving the

almost-sure convergence of the sequence {ξk, k ≥ 0} toward the set of solutions of

(2.4) by applying results on the convergence of stochastic approximation scheme;

these results are given in Appendix A.2 for the sake of completeness. We then

deduce the convergence of the sequence {χk, k ≥ 0} by using the fact that χk can

be written as a weighted sum of the samples {Lj, ξj, 0 ≤ j ≤ k}; see Lemma A.2

in Appendix A.2.

Remember that although the set of solutions to the equation ξ : 1 − α =∫∞
ξ

Q(z, dx) might not be a singleton (when VaR(z) is not unique), ES(z) is

unique - see Lemma A.1 in Appendix A.3.
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2.3 With Future Liability Estimated by Nested Monte

Carlo

1 Input: A positive sequence {γk, k ≥ 1}, N∗-valued sequences

{Mk,M
′
k, k ≥ 1}, ξ0 ∈ R, χ0 ∈ R and z ∈ Rq.

2 for k = 1 to K, do

3 /* Sampling step */

4 Sample (φk, βk, Zk
1 ) with the same distribution as (φ, β, Z1)

conditionally on Z0 = z, independently from the past draws

;

5 Sample (M ′
k −M ′

k−1) independent copies {ψ′m, M ′
k−1 < m ≤M ′

k}
with the distribution Π′(z, ·);

6 Given Zk
1 , sample Mk independent copies {ψm,k, 1 ≤ m ≤Mk}

with the distribution Π(Zk
1 , ·);

7 Compute Lk := φk + βk 1
Mk

∑Mk

m=1 ψm,k −
1
M ′k

∑M ′k
m=1 ψ

′
m ;

8 /* Update the conditional VaR and ES estimates */

9 ξk = ξk−1 − γkH1(ξk−1, Lk) ;

10 χk = χk−1 − γkH2(ξk, χk−1, Lk).

11 Return(The sequences {χk, 1 ≤ k ≤ K} and {ξk, 1 ≤ k ≤ K})
Algorithm 1: Estimates of VaR(z) and ES(z) with future liability esti-

mated by nested Monte Carlo.

Note that the random variables {Lk, k ≥ 1} have the same distribution, but

this distribution is not Q(z, ·), the distribution of L given by (2.1): there is a bias

which, roughly speaking, can be made as small as possible by choosing Mk,M
′
k

large enough.

We provide in Section 3.1 sufficient conditions on Q(z, ·) and on the sequences

{γk, k ≥ 1}, {Mk, k ≥ 1}, {M ′
k, k ≥ 1} for the P0-a.s. convergence of {ξk, k ≥ 0}

to VaR(z) and {χk, k ≥ 0} to ES(z). We also provide convergence rates in

Section 3.2 and show the benefit of considering the averaged outputs K−1
∑K

k=1 ξk
and K−1

∑K
k=1 χk as estimators of VaR(z) and ES(z).

2.4 With Future Liability Estimated by Regression

The regression approach relies on the following observation: The function Ψ in

(2.10) satisfies

Ψ = argminh∈H

∫
Rq

∫
R

(w − h(z1))2 Π(z1, dw)P(z, dz1), (2.11)
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where H denotes the set of Borel measurable, P(z, ·)-square integrable functions

from Rq to R. Since the integral in (2.11) is not explicit but sampling from the

conditional distribution of (ψ,Z1) given Z0 = z is possible, we define the estimate

Ψ̂(·) as the solution of the empirical criterion associated with (2.11), replacing

this integral by a Monte Carlo sum with i.i.d. samples.

If furthermore we replace the ‘complex’ functional space H by a space Ĥ
suitable to least squares estimation, typically a finite-dimensional vector space of

functions (but not necessarily, possibly also e.g. a neural network), we obtain a

version of (2.11) in which Ψ is approximated by the solution to a least squares

regression problem. The best choice for Ĥ will depend on the specific problem

at hand, typically on regularity assumptions regarding Ψ.

In order to make use of the distribution-free theory of non-parametric re-

gression (as explained, for instance, in [18]), it is better to deal with bounded

random variables to get nice statistical error estimates (through appropriate mea-

sure concentration inequalities). For this reason we consider the projection of the

real-valued random variable ψ on the interval [−B,B]:

ψB := ψ1[|ψ|≤B] +B sign(ψ)1[|ψ|>B],

where B is a large threshold assumed to be known by the user, and we write

ΨB(Z1) := E0[ψB|Z1].

This gives rise to the following Algorithm 2 for the estimation of ES(z), using

the embedded regression Algorithm 3.
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1 Input: B > 0, M,M ′ ∈ N∗, K ∈ N∗, a finite dimensional vector

space Ĥ of Borel measurable functions from Rq to R, a positive

sequence {γk, k ≥ 1}, ξ0 ∈ R, χ0 ∈ R and z ∈ Rq.

2 /* Regression step */

3 Compute an approximation Ψ̂B(·) of Ψ(·) by Algorithm 3 with

inputs B,M and Ĥ.

4 /* stochastic approximation step */

5 Sample M ′ independent copies {ψ′m, 1 ≤ m ≤M ′} with the

distribution Π′(z, ·);
6 for k = 1 to K, do

7 Sample (φk, βk, Zk
1 ) from the conditional distribution of

(φ, β, Z1) given Z0 = z, independently from the past draws;

Compute Lk := φk + βk Ψ̂B(Zk
1 )− 1

M ′

∑M ′

m=1 ψ
′
m ;

8 /* Update the conditional VaR and ES estimates */

9 ξk = ξk−1 − γkH1(ξk−1, Lk) ;

10 χk = χk−1 − γkH2(ξk, χk−1, Lk).

11 Return(The sequences {χk, 1 ≤ k ≤ K} and {ξk, 1 ≤ k ≤ K})
Algorithm 2: Estimates of VaR(z) and ES(z) with future liability esti-

mated by regression.

1 Input: B > 0, M ∈ N∗, a function space Ĥ of Borel measurable

functions from Rq to R,

2 Sample M independent copies D = {(ψm, Zm
1 ),m = 1, · · · ,M} from

the conditional distribution of (ψ,Z1) given Z0 = z ;

3 Compute

h̃ := arg min
h∈Ĥ

1

M

M∑
m=1

(
ψBm − h(Zm

1 )
)2

(2.12)

and set

Ψ̂B(·) := sign(h̃(·))
(
|h̃(·)| ∧B

)
; (2.13)

Return(The function Ψ̂B(·))
Algorithm 3: Approximation of Ψ in (2.10) by empirical regression.

The analysis of Algorithm 2 is established in Section 4.
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Theorem 4.1 gives a control of the deviation in the L1
P0
−norm of the respective

limits |ξ∞−VaR(z)| and |χ∞−ES(z)] from biases (or“deterministic errors”) given,

up to multiplicative constants, as the respective square and cube roots of

inf
h∈Ĥ

E0|h(Z1)−ΨB(Z1)|2 + E0[((|ψ| −B)+)2]. (2.14)

The control of (2.14) depends on analytic features of the problem at hand, typ-

ically on the regularity of Ψ for the choice of Ĥ and on the distribution of ψ

for the choice of B (see [18, Chapter 10] for a general discussion).2 Putting ev-

erything together, these results are telling us how we should choose the inputs

(Ĥ, B,M,M ′) in order to make the limit (χ∞, ξ∞) of the (χK , ξK) as close as

desired from the target values (χ?, ξ?).

3 Convergence Analysis of the Economic Capi-

tal SA Algorithm 1 (Future Liabilities Esti-

mated by Nested Monte Carlo)

Section 3.1 deals with the almost-sure convergence of Algorithm 1. Section 3.2

addresses the rate of convergence of Algorithm 1 along a converging sequence: a

central limit theorem is established as well as the rate of convergence when an

averaging technique is applied to the output of Algorithm 1.

3.1 Almost-sure Convergence

The difference between Algorithm 0 and Algorithm 1 is that βE0 [ψ|Z1]−E0 [ψ′|Z0]

in the definition of L (see (2.1)) is non zero. The expectations are untractable

and they are approximated by Monte Carlo sums. Hence, the random variables

{Lk, k ≥ 1} in Algorithm 1 are no more i.i.d. under the distribution Q(z, ·). Nev-

ertheless, when the number of Monte Carlo points tends to infinity, the Monte

Carlo error vanishes, and it is expected that Algorithm 1 inherits the same asymp-

totic behavior as the one of Algorithm 0, in which the Lk are i.i.d. with distri-

bution Q(z, ·). We provide sufficient conditions for this intuition to hold. H5

2Note also that the term E0[((|ψ|−B)+)2] controls the truncation error E0|Ψ(Z1)−ΨB(Z1)|2
by Jensen’s inequality:

E0|Ψ(Z1)−ΨB(Z1)|2 = E0|E0[(ψ − ψB)|Z1]|2 ≤ E0|ψ − ψB |2 = E0[((|ψ| −B)+)2].
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strenghtens H1 by showing how the stepsize γk and the number of Monte Carlo

points Mk,M
′
k have to be balanced; H3 is in echo to H2. H4 (see also H6) is

introduced to control the bias between the distributions of the Lk and Q(z, ·).
We assume

H3. Under P0, L := φ+βE0 [ψ|Z1]−E0 [ψ′|Z0 = z] ∼ Q(z, ·) and it has a density

with respect to the Lebesgue measure on R, bounded by C0(z) > 0. In addition,

E0

[
|L|2

]
=

∫
x2Q(z, dx) < +∞.

H4. There exists p? ≥ 2 such that

Cp?(z) := E0

[∫ ∣∣∣∣w − ∫ uΠ(Z1, du)

∣∣∣∣p? Π(Z1, dw)

]
+

∫ ∣∣∣∣w − ∫ uΠ′(z, du)

∣∣∣∣p? Π′(z, dw)

is finite.

H5. The sequences {Mk, k ≥ 1} and {M ′
k, k ≥ 1} are N?-valued, {γk, k ≥ 1} is

a (0, 1)-valued sequence, and there exists κ ∈ (0, 1] such that∑
k

γk = +∞,
∑
k

γ1+κ
k < +∞, (3.1)∑

k≥1

γ1−κ
k (Mk ∧M ′

k)
−p?/(1+p?)

< +∞,
∑
k≥1

γk (Mk ∧M ′
k)
−1/2

< +∞.(3.2)

Let us discuss the condition H5 in the case γk ∼ γ?k
−c(ln k)−c̄ and (Mk∧M ′

k) ∼
m?k

µ(ln k)µ̄ when k → +∞ (for some c, µ ≥ 0). Then (3.1) in H5 implies that

c ∈ [1/2, 1] (the case c = 1/2 implies κ = 1 and c̄ > 1).

When c = 1, we have to choose c̄ ≤ 1 and µ > 0 (note that the last condition

in (3.2) does not allow µ = 0). Therefore, the number of Monte Carlo points has

to increase, even slowly, along the iterations; this comes from the fact that the

Monte Carlo bias has to vanish along iterations to force Algorithm 1 to have the

same behavior as Algorithm 0.

When c = 1/2, the slowest rate for Mk ∧Mk is µ = 1 + 1/p?, and in that case,

µ̄ > 1 + 1/p? and c̄ > 1. Therefore, the number of Monte Carlo points has to

increase more than linearly with k.

When c ∈ (1/2, 1), the slowest rate for Mk ∧Mk is µ = 2(1 − c)(1 + 1/p?),

and in that case, c̄ > 1/c and µ̄ > (1 + 1/p?)(1− c̄(2− 1/c)).

The above discussion makes it apparent that either we choose a rapidly decay-

ing stepsize sequence, and we have the weakest Monte Carlo cost; or we choose
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a slowly decaying stepsize sequence, but the number of Monte Carlo points has

to increase more than linearly. It is known that for implementation efficiency,

a slow decaying rate for γk is better during the burn-in phase of the algorithm

(while it has not reached its asymptotic convergence rate).

If H4 is strenghtened into

H6. There exists C∞(z) > 0 such that for any δ > 0 and any integer M ,

P0

(∣∣∣∣∣ 1

M

M∑
m=1

ψm − E0 [ψ|Z1]

∣∣∣∣∣ > δ

)
∨ P0

(∣∣∣∣∣ 1

M

M∑
m=1

ψ′m − E0 [ψ′|Z0]

∣∣∣∣∣ > δ

)
≤ e−C∞(z)M δ2 ,

where conditionally to (Z0, Z1), {ψm,m ≥ 1} are i.i.d. with distribution Π(Z1, dw),

and {ψ′m,m ≥ 1} are i.i.d. with distribution Π′(z, dw).

then the condition (3.2) in H5 is weakened into∑
k≥1

γ1−κ
k

log(Mk ∧M ′
k)

(Mk ∧M ′
k)

< +∞,
∑
k≥1

γk (Mk ∧M ′
k)
−1/2

< +∞.

The above discussion on the choice of (c, µ) is essentially modified as follows (the

choice of the logarithmic terms c̄, µ̄ is not detailed): either c = 1 and µ > 0, or

c ∈ [1/2, 1) and µ = 2(1− c).

The following proposition is fundamental in the proof of Theorem 3.1. It

allows the control of the error induced by drawing samples Lk under a distribution

approximating Q(z, ·) instead of sampling from Q(z, ·). Its proof is postponed to

Appendix A.4.

Lemma 3.1. Assume H3 and H4. Let L′ be a random variable such that

|L− L′| ≤ cβ

∣∣∣∣∣ 1

M

M∑
m=1

ψm −
∫
wΠ(z1, dw)

∣∣∣∣∣+

∣∣∣∣∣ 1

M ′

M ′∑
m=1

ψ′m −
∫
wΠ′(z, dw)

∣∣∣∣∣ ,
where conditionally on (Z1, Z0), {ψm,m ≥ 1} (resp. {ψ′m,m ≥ 1}) are i.i.d. with

distribution Π(Z1, ·) (resp. Π′(z, ·)). Then,

sup
ξ∈R

E0 [|1L>ξ − 1L′>ξ|] ≤ (1 ∨ cβ)p?
2p? (C0(z) + cp?Cp?(z))

(M ∧M ′)p?/(2(1+p?))
, (3.3)

sup
ξ∈R

E0

[∣∣(L− ξ)+ − (L′ − ξ)+
∣∣p?] ≤ (1 ∨ cβ)p?

cp? Cp?(z)

(M ∧M ′)p?/2
, (3.4)
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where cp? is a universal constant depending only on p?. When H4 is replaced with

H6, then for any M,M ′ ≥ 3,

sup
ξ∈R

E0 [|1L>ξ − 1L′>ξ|] ≤ 2

(
1 +

C0(z)√
2C∞(z)

) √
log(M ∧M ′)

(M ∧M ′)
. (3.5)

We can now prove that the output of Algorithm 1 provides strongly consistent

estimators of VaR(z) and ES(z). The proof of the next theorem is postponed to

Appendix A.4.

Theorem 3.1. Let {(ξk, χk), k ≥ 1} be the output of Algorithm 1. Assume H3,

H4, and H5. Then there exists a bounded random variable ξ∞ and a real χ∞
satisfying P0-a.s. (2.6) and such that for any p ∈ (0, 2)

P0

(
lim
k→∞

(ξk, χk) = (ξ∞, χ∞)
)

= 1, lim
k→∞

E0 [|ξk − ξ∞|p] = 0.

3.2 Rates of Convergence of Algorithm 1

We establish a rate of convergence in L2 and a central limit theorem, along a

sequence {(ξk, χk), k ≥ 1} converging to (ξ?, χ?), where (ξ?, χ?) is a solution to

(2.6); this solution is fixed throughout this section. These results are derived

under the following conditions.

H 7. (ξ?, χ?) solves (2.6). H3 holds and is strenghtened as follows: under P0,

the density of L := φ + βE0 [ψ|Z1]− E0 [ψ′|Z0 = z] ∼ Q(z, ·) w.r.t. the Lebesgue

measure on R, denoted by f(z, ·), is continuously differentiable in a neighborhood

of ξ? and strictly positive at ξ?. In addition, there exists ν? > 0 such that

E0

[
|L|2+ν?

]
=

∫
|x|2+ν?Q(z, ·) < +∞.

H4 is strenghtened as follows: there exists p? > 2 such that

Cp?(z) := E0

[∫ ∣∣∣∣w − ∫ uΠ(Z1, du)

∣∣∣∣p? Π(Z1, dw)

]
+

∫ ∣∣∣∣w − ∫ uΠ′(z, du)

∣∣∣∣p? Π′(z, dw)

(3.6)

is finite.

To make the assumptions simpler, we consider the case where the stepsize

sequence {γk, k ≥ 1} is polynomially decreasing.
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H8. When k →∞, γk ∼ γ?k
−c where c ∈ (1/2, 1] and γ? > 0; in the case c = 1,

2γ? > (1 ∧ (f(z, ξ?)/(1− α)))−1. In addition, c,Mk,M
′
k satisfy

lim
k
kc/2 (Mk ∧M ′

k)
−p?/(2(1+p?))

= 0, (3.7)

where p? is given by H7.

When Mk ∧M ′
k ∼ m?k

µ when k → ∞, the condition (3.7) is satisfied with

µ > c(1+1/p?). In the case the condition (3.6) is replaced with H6, the condition

(3.7) gets into

lim
k
kc/2

√
log(Mk ∧M ′

k)

Mk ∧M ′
k

= 0,

which is satisfied with µ > c.

Set θk := (ξk, χk) and θ? := (ξ?, χ?). Lemma 3.2 shows that θk−θ? is bounded,

in some sense, by
√
γk. Theorem 3.2 provides a central limit theorem, prov-

ing that, along converging paths, the normalized error γ
−1/2
k (θk − θ?) behaves

asymptotically as a Gaussian distribution.

Lemma 3.2. Assume H7 and H8. Then, there exist positive random variables

Xk, Yk such that P0(supk |Xk| <∞) = 1, supk E0 [|Yk|] <∞ and

γ−1
k |θk − θ?|

2
1limq θq=θ? ≤ Xk Yk.

Set

Γc :=
1

2

α(1− α)2 (f(z, ξ?))
−1 2α

(
1 + f(z,ξ?)

1−α

)−1

2α
(

1 + f(z,ξ?)
1−α

)−1

Var0

[
(L− ξ?)+]


and

Γ1 :=

 (1− α)
(

2γ?
f(z,ξ?)

1−α − 1
)−1

E0

[
(L− ξ?)+] (γ?(1 + f(z,ξ?)

1−α )− 1
)−1

E0

[
(L− ξ?)+] (γ?(1 + f(z,ξ?)

1−α )− 1
)−1

Var0

[
(L− ξ?)+] (2γ? − 1)−1 (αγ?)

−1 .


Theorem 3.2. Assume H7 and H8. Let {θk, k ≥ 1} be the output of Algo-

rithm 1. Then, under the conditional probability P0 (·| limq θq = θ?), the sequence

{γ−1/2
k (θk − θ?), k ≥ 1} converges in distribution to the centered bivariate nor-

mal distribution with covariance matrix (1− α)−2Γc in the case c ∈ (1/2, 1), and

(1− α)−2αγ?Γ1 in the case c = 1 (where c is given by H8).
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The proof of Theorem 3.2 is postponed to Appendix A.6. Lemma 3.2 is a

consequence of [16, Lemma 3.1.], applied to the same decomposition of θk− θ? as

in the proof of Theorem 3.2; details are omitted.

Theorem 3.2 shows that (i) the maximal rate of convergence is reached with a

stepsize γk decaying at a rate 1/k as soon as γ? is large enough (see H8 in the case

c = 1); (ii) the limiting variance depends on γ?. In practice, the condition on γ? is

difficult to check since the quantity f(z, ξ?) is unknown in many applications; in

addition, it is known (see e.g. [8, Lemma 4, Chapter 3, Part I] or [16, Section 3])

that the optimal variance for an SA algorithm targeting the roots of the function

θ = (ξ, χ) 7→
[

1− (1− α)−1P0(L > ξ)

χ− ξ − (1− α)−1E0

[
(L− ξ)+]]

is given by

Γ? :=

 α(1−α)
f2(z,ξ?)

α
1−α

E0[(L−ξ?)+]
f(z,ξ?)

α
1−α

E0[(L−ξ?)+]
f(z,ξ?)

Var0[(L−ξ?)+]
(1−α)2

 .
We prove in Theorem 3.3 that the optimal rate O(1/k) and this optimal limiting

variance Γ? can be obtained by a simple post-processing of the output of Algo-

rithm 1 run with γk ∼ γ?k
−c for some c ∈ (1/2, 1). The proof of Theorem 3.3

is postponed to Appendix A.6. This post-processing technique is known in the

literature as the Polyak-Ruppert averaging (see [21, 22]). Set

θ̄k :=
1

k

k∑
`=1

[
ξ`
χ`

]
Theorem 3.3. Let {θk, k ≥ 1} be the output of Algorithm 1. Assume H7, γk ∼
γ?k

−c with c ∈ (1/2, 1) and γ? > 0, and

lim
k
kc (Mk ∧M ′

k)
−p?/(2(1+p?))

= 0, lim
k
k−1/2

k∑
l=1

(Ml ∧M ′
l )
−p?/(2(1+p?))

= 0.

(3.8)

Then, under the conditional probability P0 (·| limq θq = θ?), the sequence {k1/2 (θ̄k−
θ?), k ≥ 1} converges in distribution to the centered bivariate normal distribution

with covariance matrix Γ?.

When Mk ∧M ′
k ∼ m?k

µ, (3.8) is satisfied with µ > 2c(1 + 1/p?). In the case

where the condition (3.6) is replaced with H6 in Theorem 3.3, then the condition
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(3.8) becomes

lim
k
kc

ln(Mk ∧M ′
k)

(Mk ∧M ′
k)

1/2
= 0, k−1/2

k∑
l=1

ln(Ml ∧M ′
l ) (Ml ∧M ′

l )
−1/2 = 0;

it is satisfied if µ > 2c. Note that these conditions on µ are slightly more restric-

tive than what we obtained for the convergence of the sequence {θk, k ≥ 1} in

the case c ∈ (1/2, 1).

4 Convergence Analysis of the Economic Cap-

ital SA Algorithm 2 (Future Liabilities Esti-

mated by Regression)

In order to properly define Ψ̂B(Z1) in L̂B as a random variable, we assume that

the function space Ĥ is pointwise measurable.3 We introduce the following object

(cf. (4.1)):

ΨB := E0[ψB|Z1], LB:= φ+ βΨB(Z1)−Ψ′(z). (4.1)

For any fixed g ∈ Ĥ, we define

LgB := φ+ β gB(Z1)− 1

M ′

M ′∑
m=1

ψ′m, (4.2)

where gB : Rq → R is the truncation of g by B: gB := sign(g)(|g| ∧B). Last, for

the approximation of ΨB obtained by regression (see (2.12) and (2.13)), we write

L̂B := φ+ β Ψ̂B(Z1)− 1

M ′

M ′∑
m=1

ψ′m. (4.3)

4.1 Existence of a Limit

H9. φ, β, Z1 are independent from the regression sample D (defined in Algorithm

3) and {ψ′m : 1 ≤ m ≤ M ′} are i.i.d. with distribution P0. They are inde-

pendent from the ψm. In addition we have the square integrability conditions :

E0 [|φ|2 + |ψ′|2] < +∞.

3I.e. there exists a countable subfamily of Ĥ with the property that every function in Ĥ is a

pointwise limit of these functions. It includes finite dimensional vector spaces, neural networks

with continuous activation function,. . .
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Observe that the above assumption ensures in particular that, for any g ∈ Ĥ,

E0

[
|LgB |2

]
< +∞.

We require an additional condition on LgB .

H 10. For every g ∈ Ĥ, LgB in (4.2) has a continuous cumulative distribution

function under P0.

Lemma 4.1. Assume H1, H9, and H10. Let {(ξk, χk), k ≥ 1} be the ouput of

Algorithm 2. Then, conditionally on D, there exist random variables (ξ∞, χ∞),

finite a.s. which are a solution of (2.4)-(2.5) for L = L̂B under P0( · | D), and

such that P0 (limk(ξk, χk) = (ξ∞, χ∞) | D) = 1.

Proof. Given g ∈ Ĥ, H1, H9 and H10 imply that the hypotheses of Theorem 2.1

are verified for every LgB as in (4.2) under the distribution P0. Hence, for fixed

D, the same is true for L̂B in (4.3) under the conditional distribution P0( · | D).

The conclusion follows by application of Theorem 2.1.

4.2 Error Analysis With a Given Approximate Model for

the Regression Function

The next step is to bound the error between the initial model for L and the

truncated and approximate model LgB , where we use the function gB (for a given

g ∈ Ĥ) as a model of Ψ. For this we need Assumption 2 a) on the cumulative

distribution function of L in (2.2) and its stronger version

H 11. Assume Assumption H2 a). Denote by (ξ?, χ?) a solution to (2.4)-(2.5)

with L = φ+ βΨ(Z1)−Ψ′(z). The distribution of L, with P0 c.d.f. F , admits a

density f under P0 bounded by Cf , this density is positive and continuous on a

neighborhood of the interval

[ξ? − ζ, ξ? + ζ],

where

ζ := 21/3(2Cf + 1)

(
E0|βgB(Z1)− βΨ(Z1)|2 +

Var0(ψ)

M ′

)1/3

.
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Lemma 4.2. Assume H9-H10 and H2 a), let g ∈ Ĥ be given and let (ξgB ,?, χgB ,?)

be a solution to (2.4)-(2.5) for L there defined by LgB in (4.2), then

|χgB ,? − χ?| ≤
1

1− α

(
E0|βgB(Z1)− βΨ(Z1)|+

(
Var0(ψ)

M ′

)1/2
)
. (4.4)

If the stronger condition H11 holds (for g), then

|ξgB ,? − ξ?| (4.5)

≤ 21/3 (2Cf + 1) sup
x∈[ξ?−ζ,ξ?+ζ]

|f(F−1(x))|−1

(
E0|βgB(Z1)− βΨ(Z1)|2 +

Var0(ψ)

M ′

)1/3

.

Proof. We begin by proving (4.5), by an application of Corollary A.4. For this,

we first estimate the Kolmogorov distance dkol(LgB , L): actually Corollary A.5

with p = 2 gives

dkol(LgB , L) ≤ (2Cf + 1)(E0|LgB − L|2)1/3. (4.6)

The difference in the expectation (4.6) is bounded as (see definitions (2.2) and

(4.2))

|LgB − L|2 ≤ 2 |βgB(Z1)− βΨ(Z1)|2 + 2

(
1

M ′

M ′∑
m=1

(ψm −Ψ′(z))

)2

.

Therefore, we deduce

dkol(LgB , L) ≤ 21/3(2Cf + 1)

(
E0|βgB(Z1)− βΨ(Z1)|2 +

Var0(ψ)

M ′

)1/3

= ζ.

Consequently, we can apply Corollary A.4 with r = s = ζ, to get (4.5).

The inequality (4.4) follows in an easier way via (A.16) in Lemma A.6.

4.3 Error Analysis for the Randomly Optimal Regression

Function

Observe that by taking formally gB = Ψ̂B, we obtain, as a corollary of the previous

proposition, a pathwise control between (ξ∞, χ∞) (associated to L̂B) and (ξ?, χ?)

(associated to L), for a given regression sample D. By reintegrating over the

learning sample D, we shall obtain an estimate about the corresponding mean
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L1 error. This strategy works nicely, in particular if we allow Assumption H11

to be valid with a

ζ = 21/3(2Cf + 1)

(
E0|βgB(Z1)− βΨ(Z1)|2 +

Var0(ψ)

M ′

)1/3

uniform in the learning sample D. For this, set

ζ∞ := 21/3(2Cf + 1)

(
C2
βE0

[
max
ε=±1
|εB −Ψ(Z1)|2

]
+

Var0(ψ)

M ′

)1/3

(4.7)

which stands for a (rough) upper bound for ζ. This explains the following new

assumption.

H12. Assume Assumption H11 with ζ = ζ∞ defined in (4.7).

Regarding the error analysis about the limits of Algorithm 2 (given by Lemma

4.1), our main result is now the following.

Theorem 4.1. Assume H1, H9, H10, and H12. Let B > 0 and let Ĥ be a

pointwise measurable function space with finite Vapnik-Chervonenkis dimension4

VCĤ. Set

E(Ĥ,M,B) := C?B
2VCĤ

(1 + logM)

M
(4.8)

+ 4 inf
h∈Ĥ

E0[|h(Z1)−ΨB(Z1)|2] + 4E0[((|ψ| −B)+)2],

where C? is the constant that appears in (A.20). We have

E0|χ∞ − χ?| ≤
1

1− α

(
Cβ(E(Ĥ,M,B))1/2 +

(Var0(ψ)

M ′

)1/2
)

(4.9)

E0|ξ∞ − ξ?| ≤ 21/3 (2Cf + 1) sup
x∈[ξ?−ζ∞,ξ?+ζ∞]

|f(F−1(x))|−1

(
|β|2∞E(Ĥ,M,B) +

Var0(ψ)

M ′

)1/3

.

Theorem 4.1 gives a precise and useful guide for tuning the parameters all

together. Namely, to make the (asymptotic) errors E0|χ∞ − χ?| and E0|ξ∞ − ξ?|
less than some tolerance ε, we can choose Ĥ and B such that the “bias” given

by the second line in (4.8) is sufficiently small; then one can choose M and M ′

large enough so that the right hand sides in (4.9) are less than ε. Unsurprisingly,

4See [18, Section 9.4].
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when the complexity of Ĥ increases, the bias term (infh∈Ĥ . . . ) goes to 0 and the

variance term explodes (VCĤ → +∞), hence one has to find a trade-off between

those types of error. When one increases the threshold B, the bias decreases

E0[((|ψ| −B)+)2] but the variance increases (factor C?B
2 . . . ).

Proof. First, by H1, H9, H10 and Lemma 4.1, the limits

ξ∞ = lim
k
ξk, χ∞ = lim

k
χk

indeed exist for every fixed D and they correspond to solutions of (2.4)-(2.5) for

L = L̂B (see (2.2)) under P0( · | D). Now apply Lemma 4.2, valid for any D since

H2 a) holds for all gB owing to the choice ζ = ζ∞. As β is bounded, we obtain

|χ∞ − χ?| ≤
1

1− α

(
Cβ

(
E0

(
|Ψ̂B(Z1)−Ψ(Z1)|2 | D

))1/2

+

(
Var0(ψ)

M ′

)1/2
)
,

(4.10)

|ξ∞ − ξ?| ≤ 21/3 (2Cf + 1) sup
x∈[ξ?−ζ∞,ξ?+ζ∞]

|f(F−1(x))|−1 (4.11)

×
(
C2
βE0

(
|Ψ̂B(Z1)−Ψ(Z1)|2 | D

)
+

Var0(ψ)

M ′

)1/3

.

Now, write

E0

(
|Ψ̂B(Z1)−Ψ(Z1)|2 | D

)
≤2E0

(
|Ψ̂B(Z1)−ΨB(Z1)|2 | D

)
+ 2E0

(
|ΨB(Z1)−Ψ(Z1)|2

)
.

Note that the first expectation of the right hand side is exactly controlled using

Theorem A.6. For the second term, write

|ΨB(Z1)−Ψ(Z1)| ≤ E0(| −B ∨ ψ ∧B − ψ| | Z1) ≤ E0((|ψ| −B)+ | Z1).(4.12)

We now easily obtain the desired estimates by taking the expectation in (4.10)-

(4.11), applying Theorem A.6 and using (4.12), together with E(|Z|1/p) ≤ (E(|Z|))1/p

for any p ≥ 1.

5 Risk Margin

5.1 Dynamization of the Setup

Let there be given an Rq valued process Z = {Zt, t ≥ 0}, with Z0 = z, non-

homogeneous Markov in its own filtration on our probability space (Ω,A,P).
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The process Z plays the role of observable risk factors. Conditional probabilities,

expectations, value-at-risks and expected shortfalls at a level a ∈ (0, 1), given

Zt, are denoted by Pt, Et, VaRa
t , and ESat . Other sources of randomness arising

in (Ω,A,P) may be unobservable factors (like hidden financial variables, private

information). We assume that Z can be simulated exactly (in other words, we

ignore for the sake of simplicity a vanishing time discretization bias regarding Z,

which could be considered without major difficulty). We denote by Z̄t = (t, Zt)

the time-homogenized Markov extension of Z. We write Z[s,t] and Z̄[s,t] for the

paths of Z and Z̄ on the interval [s, t]. We define the discount factor

β(Z̄[0,t]) := e−
∫ t
0 r(Z̄s)ds,

for some bounded from below, continuous interest rate function r (hence, in

particular, a bounded discount factor). We may then consider the following

specification of (2.1):

L := φ(Z̄[0,1]) + β(Z̄[0,1])E1

[
ψ(Z̄[1,T ])

]
− E0

[
ψ′(Z̄[0,T ])

]
, (5.1)

where φ and ψ are real valued measurable functions.

Remark 5.1. The functions φ and ψ could depend on variables other than Z, it

would not have any significant impact on the analysis.

For instance, we could consider a Euro Median Term Note (EMTN), issued by

a bank, with a performance linked to the 1 year Euribor rate denoted by Z; then

the cashflow for the bank may take the form ϕ(Z1)1τ≥1 = ψ′(Z̄[0,1], τ), where τ

is the default time for the bank (assumed independent from Z for simplicity).

In the regression setup of Algorithm 2, this flexibility of using “Z smaller

than an underlying high-dimensional factor process” allows embedding in our

framework the common industry practice of “partial regressions” with respect to

reduced sets of factors.

More broadly, let, for t ≥ 0 (cf. (5.1) for t = 0),

Ltt+1 := φ(Z̄[t,t+1]) + β(Z̄[t,t+1])Et+1[ψ(Z̄[t+1,T ])]− Et[ψ(Z̄[t,T ])].

Let VaRa
t [L

t
t+1] denote a value-at-risk at level a ∈

(
1
2
, 1
)

of Ltt+1 for the conditional

distribution5 of Ltt+1 given Ft, i.e.

Pt
(
Ltt+1 > VaRa

t [L
t
t+1]
)

= 1− a.
5assumed atomless, cf. Assumptions 2.a), 3, and 2 a) again in the basic, nested, and regressed

setups of Algorithms 0, 1, and 2, respectively.
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Let

ES(Z̄t) := (1− α)−1

∫ 1

α

VaRa
t [L

t
t+1] da

denote the corresponding expected shortfall of (fixed) level α ∈
(

1
2
, 1
)
.

5.2 Theoretical Risk Margin Estimate

The risk margin RM (called KVA in banking parlance) estimates how much it

would cost the firm (bank or insurance) to remunerate its shareholders at the

hurdle rate h > 0 (e.g. 10%) for their capital at risk ES(Z̄t) at any future time

t (see Section 1). Given the final maturity T of the portfolio, the corresponding

formula in [10] reads as

RM = hE
[∫ T

0

e−htβtES(Z̄t)dt

]
= E

[
βζES(Z̄ζ)1ζ≤T

]
, (5.2)

where the second equality follows by randomization of the integral with an inde-

pendent exponential time ζ of parameter h.

Accordingly, we propose the risk margin estimator

E
[
βζES(Z̄ζ) 1ζ≤T

]
≈ 1

N

N∑
n=1

βζnÊS(Z̄n
ζn)1ζn≤T , (5.3)

where {Z̄n
ζn , n ≥ 1} are independent random variables with the same distribution

as Z̄ζ and where ÊS(·) is one of the estimators of ES(·) considered in the previous

sections, now made conditional on Zt.

The convergence of the ensuing estimator to the risk margin obtained by

sampling an outer expectation of inner conditional expected shortfall estimates

could be established by taking an outer expectation of the errors for ÊS(Z̄n
ζn)

estimates of the ES(Z̄n
ζn) in (5.3), errors obtained from the conditional version of

the results of Sections 3 and 4 (or, more precisely, of the awaited but technical

developments of these results in terms of convergence rates). By contrast, how

to “make conditional” the convergence arguments of [17] or [9] and “aggregate

them” to establish the convergence of an outer risk margin estimate is far from

clear.

5.3 KVA Case Study

Our case study is based on the setup of Armenti and Crépey [4], Section 4 (see also

Section 4.4 in [1]), which we recall as a starting point. We consider a clearing
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house (or central counterparty, CCP for short) with a finite number (≥ 2) of

clearing members labeled by i. We denote by:

• T : an upper bound on the maturity of all claims in the CCP portfolio,

also accounting for a constant time δ > 0 of liquidating the positions of

defaulting clearing members;

• Di
t: The cumulative contractual cash flow process of the CCP portfolio of

the member i, cash flows being counted positively when they flow from the

clearing member to the CCP;

• MtMi
t = Et[

∫ T
t
β−1
t βsdD

i
s]: The mark-to-market of the CCP portfolio of the

member i;

• τi, τ δi = τi+δ and δτδi (dt): The default and liquidation times of the member

i, a Dirac measure at time τ δi ;

• ∆i
τδi

=
∫

[τi,τδi ]
β−1
t βsdD

i
s: The cumulative contractual cash flows of the mem-

ber i, accrued at the OIS rate, over the liquidation period of the clearing

member i;

• IMi
t: The initial margin (IM) posted by the member i as a guarantee in

case it defaults, given at time t as a conditional value-at-risk (at a given

confidence level ama) of β−1
t

(
βt+δ(MtMi

t+δ + ∆i
t+δ)−MtMi

t

)+
.

Beyond the first ring of defense provided by initial margin (and, of course, vari-

ation margin, which we assume equal to the process MtMi
t stopped at time τi),

a CCP maintains an additional resource, known as the default fund, against ex-

treme and systemic risk. The current EMIR regulation sizes the default fund of a

CCP by the Cover 2 rule, i.e. enough to cover the joint default of the two clearing

members with the greatest CCP exposures, which purely relies on market risk.

By contrast, we consider in the setup of this case study a broader risk-based spec-

ification, in the form of an economic capital of the CCP, which would be defined

as a conditional expected shortfall, at some confidence level adf , of its one-year

ahead loss-and-profit if there was no default fund, as it results from the combi-

nation of the credit risk of the clearing members and of the market risk of their

portfolios. As developed in [4], such a specification can be used for allocating the

default fund between the clearing members, after calibration of the quantile level

adf to the Cover 2 regulatory rule at time 0.
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Specifically, we define the loss process of a CCP that would be in charge

of dealing with member counterparty default losses through a CVAccp account

(earning the risk-free rate r) as, for t ∈ (0, T ] (starting from some arbitrary

initial value, since it is only the fluctuations of Lccp that matter in what follows),

βtdL
ccp
t =

∑
i

(
βτδi (MtMi

τδi
+ ∆i

τδi
)− βτi(MtMi

τi
+ IMi

τi
)
)+

δτδi (dt)

+ βt(dCVAccp
t − rtCVAccp

t )dt,

(5.4)

where the CVA of the CCP is given as

CVAccp
t = Et

∑
t<τδi <T

β−1
t

(
βτδi (MtMi

τδi
+ ∆i

τδi
)− βτi(MtMi

τi
+ IMi

τi
)
)+
, 0 ≤ t ≤ T

(in particular, Lccp is constant from time T onward).

We define the corresponding economic capital process of the CCP as

ECccp
t = ESadft

(∫ t+1

t

β−1
t βsdL

ccp
s

)
, (5.5)

where, by (5.4),

β−1
t

∫ t+1

t

βsdL
ccp
s = β−1

t

∑
t<τδi ≤t+1

(
βτδi (MtMi

τδi
+ ∆i

τδi
)− βτi(MtMi

τi
+ IMi

τi
)
)+

+ (β−1
t βt+1CVAccp

t+1 − CVAccp
t ).

(5.6)

The KVA (or risk margin) of the CCP estimates how much it would cost the

CCP to remunerate all clearing members at some hurdle rate h for their capital

at risk in the default fund from time 0 onward, namely, assuming a constant

interest rate r (cf. (5.2), (5.5), and [4]):

KVAccp = hE
[∫ T

0

e−(r+h)sECccp
s ds

]
.

For our numerics we consider the CCP toy model of Section 4 in [4] and Sec-

tion 4.4 in [1], where nine members are clearing (interest rate or foreign exchange)

swaps on a Black–Scholes underlying rate process X, with all the numerical pa-

rameters used there. The default times of the clearing members are defined

through the common shock model or dynamic Marshall-Olkin copula (DMO)

model of [12], Chapt. 8–10 and [13] (see also [14, 15]).
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5.3.1 Mapping with the General Setup

This model, where defaults can happen simultaneously with positive probabilities,

results in a Markovian pair Z = (X, Y ) made of, on the one hand, the underlying

Black–Scholes rate X and, on the other hand, the vector Y of the default indicator

processes of the clearing members. As a consequence, all conditional expectations,

value-at-risks (embedded in the IMi numbers), and expected shortfalls (embedded

in the ECccp numbers) are functions of the pair (t, Z), so that, with Z = (X, Y )

as above, we can identify

Ltt+1 ←
∫ t+1

t

β−1
t βsdL

ccp
s ,

ES(t, z)← ESadf
(∫ t+1

t

β−1
t βsdL

ccp
s

∣∣∣Zt = z

)
.

The ensuing KVA can be computed by Algorithms 0 (for validation purposes,

building on the explicit CVAccp formulas that are available in our stylized setup,

cf. [4, Section A]), 1, or 2 for the inner ECccp computations, which are then ag-

gregated as explained above. However, for GPU optimization reasons developed

in [1, Appendices A and B], we do not rely on the randomized version (given by

the right-hand side formulation) of the risk margin in (5.2), i.e. we do not use the

unbiased estimator (5.3), resorting instead on a Riemann sum approximation of

step six months of the time integral that is visible in the left-hand side in (5.2).

Depending on the algorithm that is used, we can identify further β(Z̄[s,u]) =

e−r(u−s) and:

• In the case of Algorithm 0:

φ(Z̄[t, t+ 1])← Ltt+1, ψ ← 0;

• In the case of Algorithms 1 or 2 :

φ(Z̄[s, u]) = ψ(Z̄[s,u])← β−1
s

∑
s<τδi ≤u

(
βτδi (MtMi

τδi
+ ∆i

τδi
)− βτi(MtMi

τi
+ IMi

τi
)
)+
.

With respect to the general setup of previous sections, the methodological

assumptions, such as the ones on the sequences γk of the SA parameters or the
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requirement made in H9 of using a regression sample independent from the rest

of the simulation in the context of Algorithm 2, can always be met at implemen-

tation stage.

Regarding now the abstract assumptions there, we only make a general com-

ment that they should all hold in our lognormal model for X combined with

randomized sampling at the times of defaults of the counterparties, which are all

times with an intensity, recalling the corresponding modeling assumptions related

to Algorithms 0 (SA scheme for the basic case without liabilities), 1 (SA scheme

with nested simulation of future liabilities) and Algorithm 2 (SA scheme with

regression of future liabilities), respectively:

• H2 a) [continuous cdf of the loss L], H2 b) [second moment of L],

• H3 [density and second moment of the loss] (the density part should follow

from Malliavin calculus considerations), H4 [moments of order ≥ 2 of the

(present and future) liabilities in L], H6 [concentration inequalities related

to (and implying exponential moments of) the present and future liabilities

in L], H7 [second moment of L, moments of order > 2 of the (present and

future) liabilities in L];

• H2 a) again, H9 [square integrability of future loss components], H10 [con-

tinuous cdf of the loss where one replaces the future liability function Ψ

by an arbitrary regression basis function g ∈ Ĥ], H11 [bounded density of

L, positive and continuous on an interval (specified further in H12) around

ξ?].

Regarding the regression algorithm for CVAccp
t+1 that is required in the con-

text of Algorithm 2, we apply to CVAccp
t+1 = Et+1ψ(Z̄[t+1,T ]) the approach that is

used for computing the “CA process” in Section 4.4 of [1], using as a regression

basis 1, Xt+1, X2
t+1 (recall X is the underlying Black–Scholes rate) and the de-

fault indicator processes at time (t + 1) of the clearing members. In the present

case of CVAccp
t+1 the situation is in fact a bit simpler as no time-stepping is re-

quired, i.e. we just need one regression for each time (t + 1) that occurs via the

discretization times t of the integral visible in (5.2), because CVAccp
t+1 is a condi-

tional expectation, as opposed to the above-mentioned CA process, which only

solves a semi-linear BSDE.

For an SA scheme launched at time t of the outer KVA simulation, we use

γk = γ0
(100+k0.75)

× (T−t)
T

, starting from the initial condition ξ0 = χ0 = 0.

30



5.3.2 Numerical Results

All our simulations are run on a laptop that has an Intel i7-7700HQ CPU and

a single GeForce GTX 1060 GPU programmed with the CUDA/C application

programming interface (API).

Table 1 shows the time 0 (unconditional) expected shortfalls over the first

year, obtained by four variants of the SA scheme and for three levels of the

quantile adf .

K adf ES(a) ES(b) ES(c) ES(d)

85% 311.23 248.05 253.11 259.13

104 95.5% 924.72 924.72 924.72 924.72

99% 2406.77 2406.77 2406.77 2406.77

85% 296.24 202.27 207.81 211.32

105 95.5% 858.72 858.72 858.72 858.72

99% 2347.83 2347.83 2347.83 2347.83

85% 287.85 200.12 206.05 209.37

5× 105 95.5% 849.12 849.12 849.12 849.12

99% 2327.45 2327.45 2327.45 2327.45

Table 1: Time 0 unconditional expected shortfalls, computed: [ES(a)] by Algo-

rithm 0 without the CVA terms, i.e. forgetting about the second line in (5.6), in

order to assess, by comparison with the other results, the impact of these CVA

terms on economical capital, depending on the confidence level adf ; [ES(b)] by

Algorithm 0 with the CVA terms computed by the explicit formulas that are

available in the lognormal market model of this case study; [ES(c)] by Algorithm

1 with the CVA1 terms computed by nested Monte Carlo (and CVA0 computed

by outer Monte Carlo); [ES(d)] by Algorithm 2 with the CVA1 terms computed

by regression against X1 and the default indicators of the clearing members at

time 1 (and CVA0 computed by outer Monte Carlo).

In the case adf = 85%, Figure 1 shows the corresponding (time discretized) ES

processes obtained after K = 104 and K = 5× 105 iterations of the SA schemes;

Table 2 shows the ensuing KVAs, computed with N = 1024 outer trajectories.

6 Conclusion and Perspectives

In this paper we propose convergent stochastic approximation estimators for the

economic capital of a loss random variable L that entails a future liability (con-
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Figure 1: ES(a),ES(b),ES(c), and ES(d) processes (top to bottom) for adf = 85%

and N = 1024 outer trajectories. Left: K = 104. Right: K = 5× 105.
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Figure 2: ES benchmark process obtain by tri method for adf = 85%, N = 1024

outer trajectories and Mec = 32∗100 inner trajectorires. Left: case without CVA

terms. Right: case with CVA terms computed by the explicit formulas.

K KVA(a) KVA(b) KVA(c) KVA(d)

104 66.70 32.62 34.71 37.31

105 57.54 24.09 26. 85 29.11

5× 105 54.89 23.57 25.08 28.76

Table 2: KVA for adf = 85% and N = 1024 outer trajectories.

ditional expectation). The latter is estimated either by nested Monte Carlo as

in Gordy and Juneja [17], or by regression as in Broadie, Du, and Moallemi [9].

Then we embed conditional versions of the above into outer risk margin (or KVA)

computations.

From a practical point of view, an incremental SA scheme uses a limited

amount of memory but, being a loop, is less easy to parallelize than a simulation-

and-sort algorithm, on which several processors can fruitfully be used (see [1,

Appendix C]). On the other hand SA schemes can be efficiently combined with

importance sampling as studied in [6, 7], whereas [17] and [9] introduce respective

jacknife and weighted regression acceleration procedures for the simulation-and-

sort schemes.

From a theoretical point of view, the stochastic approximation viewpoint leads

to stronger convergence results under considerably smoother assumptions than

together [17] and [9]. In particular, our assumptions (recalled in Section 5.3.1)

only bear on the limiting problem, as opposed to unverifiable (not to say implau-

sible) assumptions on the perturbed approximating problems in [17] and [9]:
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• Assumptions on the density of the nested Monte Carlo surrogate of the loss

in [17];

• Supposing invertibility of the empirical covariance matrix of the regressors

and an orthonormal basis of empirical regressors in [9], whereas we do not

need assume a vector space of theoretical regressors, which can for instance

be given in the fom of a neural network.

About now the results:

• [17] only shows mean square convergence, whereas we show almost sure

convergence;

• [9] considers a very stylized proxy of expected shorfall in the form of E(L−
ξ)+, for a known and fixed ξ, instead of the value-at-risk of L that needs

be estimated in the first place in a genuine expected shorfall perspective.

Moreover, their study is asymptotic in the number of simulations for a

fixed number of basis functions, they do not address the global convergence

problem when the size of the regression basis and the number of simulations

jointly go to infinity.

Last, regarding the comparison between the stochastic approximation schemes

with nested versus regressed estimation of future liabilities, the assumptions that

allow establishing the convergence of either approach are discussed and compared

along the paper. In order to compare the fine convergence properties of each

approach, it would be useful to push the computations to obtain the L2 errors in

both cases, which we leave for further research.

A Technical Developments

We denote by |x| the (Euclidean) norm of x ∈ Rd and by 〈x, y〉 the inner product

of two vectors x, y ∈ Rd. Vectors x ∈ Rd are column-vectors, and AT denotes the

transpose of a matrix A.

Some of the results are general (not specific to the setup of the main body of

the paper) and therefore stated in terms of an abstract probability measure Q,

with related expectation denoted by E.
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A.1 Two Identities

Lemma A.1. Let α ∈ (0, 1) and µ be a probability distribution on R having a

first order moment. If ξ∞ 6= ξ′∞ are two solutions of ξ : 1−α =
∫∞
ξ
µ(dx) then

ξ∞ +
1

1− α

∫
(x− ξ∞)+µ(dx) = ξ′∞ +

1

1− α

∫
(x− ξ′∞)+µ(dx).

Proof. We can assume that ξ∞ < ξ′∞. Since∫ +∞

ξ∞

µ(dx) =

∫ +∞

ξ′∞

µ(dx) = 1− α,

then
∫ ξ′∞
ξ∞

µ(dx) = 0. Upon noting that

ξ∞ +
1

1− α

∫
(x− ξ∞)+µ(dx) =

1

1− α

∫ +∞

ξ∞

xµ(dx)

we obtain

ξ∞ +
1

1− α

∫
(x− ξ∞)+µ(dx) = ξ′∞ +

1

1− α

∫
(x− ξ′∞)+µ(dx).

Lemma A.2. Let {γk, k ≥ 1} be a positive sequence such that
∑

k γk = +∞ and

limk γk = 0. Given a Rd-valued sequence {Vk, k ≥ 1} and θ0 ∈ Rd, define the

sequence {θk, k ≥ 0} by

θk+1 = (1− γk+1)θk + γk+1Vk+1.

Set S0 = 1 and Sk :=
∏k

j=1(1 − γj)−1 for any k ≥ 1. Then limk Sk = +∞ and

when it exists,

lim
k
θk = lim

k

1

Sk

k∑
j=1

SjγjVj.

Proof. The proof is adapted from [6]. Note that Sk+1(1− γk+1) = Sk, hence, for

all k large enough such that γk → 0, lnSk+1 + ln(1− γk+1) = lnSk, i.e.

lnSk+1 − lnSk = − ln(1− γk+1) ≥ γk+1.

Since
∑

k γk =∞, then limk Sk = +∞.

We write

Sk+1θk+1 = Sk+1(1− γk+1)θk + Sk+1γk+1Vk+1 = Skθk + Sk+1γk+1Vk+1.

Hence, by induction, Sk+1θk+1 = S0θ0 +
∑k+1

j=1 SjγjVj, which implies the result

and the conclusion follows from this.
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A.2 A General Convergence Result for Stochastic Ap-

proximation Algorithms

Let H : Rd×Rq → Rd be a measurable function and let {γk, k ≥ 1} be a sequence

of positive numbers. Let Rq-valued random variables {Vk, k ≥ 0} and θ0 ∈ Rd

be defined on a probability space (Ω,A,Q). Theorem A.1 provides sufficient

conditions for the almost-sure convergence and the Lp-convergence, p ∈ (0, 2), of

the sequence {θk, k ≥ 0} given by

θk+1 = θk − γk+1 H(θk, Vk+1). (A.1)

These conditions are general enough to cover the case when the r.v. {Vk, k ≥ 1}
are not i.i.d. but have a distribution converging, in some sense, to the distribution

of a r.v. V?.

We write

H(θk, Vk+1) = h(θk) + ek+1 + rk+1, (A.2)

where

h(θ) := E [H(θ, V?)] ,

ek+1 := H(θk, Vk+1)− E [H(θk, Vk+1)|Gk] ,
rk+1 := E [H(θk, Vk+1)|Gk]− h(θk),

and where the filtration {Gk, k ≥ 1} is defined by Gk := σ {V1, · · · , Vk}.

Theorem A.1. Suppose that

(i) {γk, k ≥ 1} is a deterministic positive sequence such that
∑

k γk = +∞ and

there exists κ ∈ (0, 1] such that
∑

k≥1 γ
1+κ
k <∞,

(ii) H : Rd × Rq → Rd is measurable and h : Rd → Rd is continuous,

(iii) the set L := {h = 0} is a non-empty compact subset of Rd and for any

θ∗ ∈ L and θ /∈ L, we have 〈θ − θ∗, h(θ)〉 > 0.

Let {θk, k ≥ 0} be given by (A.1) where the r.v. {Vk, k ≥ 0} satifsy

(iv)
∑

k≥1 γ
1−κ
k |rk|2 < +∞ Q-a.s.

(v) There exist non-negative constants CH,1, CH,2 such that, for any θ ∈ Rd,

sup
k≥1

E
[
|H|2(θ, Vk)

]
≤ CH,1 + CH,2|θ|2.
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Then there exists a L-valued random variable θ∞ such that Q(limk θk = θ∞) = 1.

If, in addition,

(vi)
∑

k≥1 γ
1−κ
k E[|rk|2] < +∞ ,

then supk≥0 E[|θk − θ∞|2] < +∞ and for any p ∈ (0, 2), limk E [|θk − θ∞|p] = 0.

Proof. Step 1. Almost-sure boundedness and convergence. Let θ∗ ∈ L.

We have, by (A.2),

|θk+1 − θ∗|2 = |θk − θ∗ − γk+1 (h(θk) + ek+1 + rk+1)|2

= |θk − θ∗|2 − 2γk+1〈θk − θ∗, h(θk)〉
− 2γk+1〈θk − θ∗, ek+1〉 − 2γk+1〈θk − θ∗, rk+1〉+ γ2

k+1|H|2(θk, Vk+1).

Since {ek, k ≥ 1} is a martingale-increment w.r.t. the filtration {Gk, k ≥ 1} and

θk is Gk-measurable, we have for any k,

E
[
|θk+1 − θ∗|2|Gk

]
≤ |θk − θ∗|2 − 2γk+1〈θk − θ∗, h(θk)〉+ γ1+κ

k+1 |θk − θ
∗|2 + γ1−κ

k+1 |rk+1|2

+γ2
k+1CH,1 + γ2

k+1CH,2|θk|2,

where we used the inequality−2γ〈a, b〉 ≤ γ1+κ|a|2+γ1−κ|b|2, the equality E[rk+1|Gk] =

rk+1 and the assumption (v). Hence, by using |θk|2 ≤ 2|θk − θ∗|2 + 2|θ∗|2,

E
[
|θk+1 − θ∗|2|Gk

]
≤
(
1 + 2γ2

k+1CH,2 + γ1+κ
k+1

)
|θk − θ∗|2− (A.3)

2γk+1〈θk − θ∗, h(θk)〉+ γ1−κ
k+1 |rk+1|2 + γ2

k+1C
′,

where C ′ := CH,1 + 2CH,2|θ∗|2. From the assumptions (i), (iii), and (iv), we have

that, Q-a.s.,

∀k ≥ 0 γk+1〈θk − θ∗, h(θk)〉 ≥ 0,
∑
k≥0

(γ1−κ
k+1 |rk+1|2 + γ2

k+1 + γ1+κ
k+1 ) < +∞.

By the Robbins-Siegmund lemma (see [23]), Q-a.s. (for an almost-sure set de-

pending upon θ∗)

lim
k
|θk − θ∗| exists,

∑
k≥0

γk+1〈θk − θ∗, h(θk)〉 < +∞.

Since L is bounded and θ∗ ∈ L, this implies that the sequence {θk, k ≥ 0}
is bounded with probability one. Using the separability of Rd and since θ′ 7→
limk |θk − θ′| is continuous, we have Q-a.s.:

∀ θ′ ∈ L, the limit lim
k
|θk − θ′| exists. (A.4)
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Set ς := lim infk→+∞〈θk− θ∗, h(θk)〉. By (iii), ς ≥ 0. As
∑

k≥0 γk = +∞, we have

{ς > 0} ⊆
∑

k≥0 γk+1〈θk − θ∗, h(θk)〉 = +∞; the probability of the second event

is zero. Hence Q(ς = 0) = 1.

Therefore, with probability one, there exists a subsequence {nk, k ≥ 1} such

that limk〈θnk − θ∗, h(θnk)〉 = 0. Since the sequence {θnk , k ≥ 1} is bounded a.s.,

we can still assume (up to extraction of another subsequence) that {θnk , k ≥ 1}
converges to some limit θ∞. By assumption (ii), we have 〈θ∞ − θ∗, h(θ∞)〉 = 0,

and by assumption (iii), this implies that θ∞ ∈ L. But using (A.4) we get

limk |θk − θ∞| = limk |θnk − θ∞| = 0. This implies that limk θk = θ∞.

Step2. Uniform boundedness in L2. Let a (deterministic) point θ∗ ∈ L
be given. By taking expectation in (A.3), we have

E
[
|θk+1 − θ∗|2

]
≤
(
1 + 2γ2

k+1CH,2 + γ1+κ
k+1

)
E
[
|θk − θ∗|2

]
+γ1−κ

k+1E[|rk+1|2]+C ′γ2
k+1.

Applying again the Robbins-Siegmund lemma with the assumptions (i) and (vi),

we deduce that the sequence limk E [|θk − θ∗|2] exists and thus supk E [|θk|2] <∞
since L is bounded. This implies supk E [|θk − θ∞|2] < +∞ for any L-valued

random variable θ∞, using again that L is bounded.

Step 3. Convergence in Lp. Let C > 0 and p ∈ (0, 2). We write

E [|θk − θ∞|p] = E
[
|θk − θ∞|p 1|θk−θ∞|<C

]
+ E

[
|θk − θ∞|p 1|θk−θ∞|≥C

]
.

The first term converges to zero by the dominated convergence theorem. For the

second term, Hölder’s and Markov’s inequalities give that

E[|θk − θ∞|p1|θk−θ∞|≥C ] ≤ E[|θk − θ∞|2]

C2−p ≤
supl≥0 E[|θl − θ∞|2]

C2−p ;

which is lower than ε > 0 for some C large enough. This holds true for any ε,

thus concluding the proof.

A.3 Proof of Theorem 2.1

For the study of the sequence {ξk, k ≥ 1}, we check the assumptions of Theo-

rem A.1, applied to θk ← ξk (so that d = 1), Q← P0, Vk ← Lk, the distribution

of V? is Q(z, ·) and

H(θ, V )← H1(ξ, L) = 1− 1

1− α
1L>ξ

(cf. (2.3)). By H1, the condition (i) is satisfied. In addition, by H2a, the function

ξ 7→ h(ξ) := 1− 1

1− α

∫ +∞

ξ

Q(z, dx)
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is continuous on R, so that (ii) holds. The set L := {h = 0} is the set of

the points ξ? satisfying P0(L > ξ?) = 1 − α: under H2a, this set is non empty

and compact and for any ξ < ξ? (resp. ξ > ξ?) such that h(ξ) 6= 0, h(ξ) < 0

(resp. h(ξ) > 0). Hence, (iii) is satisfied. In this algorithm, we have rk = 0

since h(·) = E0 [H(·, L)] and Lk+1 is independent of ξk. Hence, (iv) and (vi)

hold. Finally, supξ∈R,L∈R |H(ξ, L)|2 ≤ CH,1 := (1 − α)−2 so that (v) holds with

CH,2 = 0.

For the results on the sequence {χk, k ≥ 1}, we check the assumptions of

Lemma A.2 with θk ← χk (so that d = 1) and Vk+1 ← ξk +(1−α)−1(Lk+1−ξk)+.

We write

Vk+1 = ξk + (1− α)−1

∫
(x− ξk)+Q(z, dx) + ẽk+1 (A.5)

ẽk+1 := (1− α)−1

(
(Lk+1 − ξk)+ −

∫
(x− ξk)+Q(z, dx)

)
.

Set S0 := 1 and Sk :=
∏k

j=1(1 − γj)−1 for any k ≥ 1, so that Sk(1 − γk) = Sk−1

and Sk − Sk−1 = γkSk. By H1 and Lemma A.2, limk Sk = +∞ so that from the

above almost-sure convergence on {ξk, k ≥ 1} and from the Cesaro lemma,

lim
k→∞

1

Sk

k∑
j=1

Sjγjξj = lim
k→∞

1

Sk

k∑
j=1

(Sj − Sj−1)ξj = ξ∞ P0 − a.s.

By H2a, the second term in the RHS of (A.5) is a continuous function of ξk.

Therefore, by similar arguments,

lim
k→∞

1

Sk

k∑
j=1

Sjγj

∫
(x− ξj)+Q(z, dx) =

∫
(x− ξ∞)+Q(z, dx) P0 − a.s.

Finally, {ẽk, k ≥ 1} is a Gk-martingale increment; by using |(a− c)+− (b− c)+| ≤
|a| + |b| and (|a| + |b|)2 ≤ 2a2 + 2b2, and since {Lk, k ≥ 1} are i.i.d. with

distribution Q(z, ·), we have

E0

[∣∣∣∣(Lj+1 − ξj)+ −
∫

(x− ξj)+Q(z, dx)

∣∣∣∣2
]
≤ 2

∫
x2Q(z, dx)+2

(∫
|x|Q(z, dx)

)2

;

by H2b, the RHS is finite. Therefore, H1, [19, Corollary 2.2.] and the Kronecker

Lemma (see e.g. [19, Section 2.6, page 31]) imply that

lim
k→+∞

1

Sk

k∑
j=1

Sjγj

(
(Lj+1 − ξj)+ −

∫
(x− ξj)+Q(z, dx)

)
= 0, P0 − a.s.
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By Lemma A.2, we obtain that P0-a.s., limk χk exists and solves

lim
k
χk = ξ∞ +

1

1− α

∫
(x− ξ∞)+Q(z, dx).

A.4 Proofs of the Results of Section 3.1

We start the proof with two preliminary lemmas.

Lemma A.3. Let {ϕm,m ≥ 1} be R-valued random variable defined on (Ω,A,Q),

i.i.d. with distribution µ. Assume that µ has a finite moment of order p? > 1

and set Cp? :=
∫
|w −

∫
wµ(dw)|p? µ(dw). Then for any M ≥ 1,

E

[∣∣∣∣∣ 1

M

M∑
m=1

ϕm −
∫
w µ(dw)

∣∣∣∣∣
p?]
≤ cp? Cp?
M (p?/2)∧(p?−1)

,

where cp := (18p
√
q)p and q is the Hölder conjugate of p.

Proof. Set µ[1] :=
∫
wµ(dw). The Burkholder inequality (see e.g. [19, Theorem

2.10]) applied to the sequence 1
M

(ϕm − µ[1]),m = 1, . . . ,M, yields

E

[∣∣∣∣∣ 1

M

M∑
m=1

ϕm − µ[1]

∣∣∣∣∣
p?]
≤ cp?
Mp?

E

∣∣∣∣∣
M∑
m=1

(ϕm − µ[1])2

∣∣∣∣∣
p?/2
 .

If p? ≥ 2, we obtain by the Minkowsky inequality,

E

∣∣∣∣∣
M∑
m=1

(ϕm − µ[1])2

∣∣∣∣∣
p?/2
 ≤ ( M∑

m=1

(E [|ϕm − µ[1]|p? ])2/p?

)p?/2

≤ Cp?M
p?/2.

If p? < 2, by using (x+ y)p?/2 ≤ xp?/2 + yp?/2 for any x, y ≥ 0, we have

E

∣∣∣∣∣
M∑
m=1

(ϕm − µ[1])2

∣∣∣∣∣
p?/2
 ≤ E

[
M∑
m=1

|ϕm − µ[1]|p?
]

= Cp?M.

This concludes the proof.

Lemma A.4. Vet V, V ′, {ϕm,m ≥ 1} and {ϕ′m,m ≥ 1} be R-valued random

variables defined on (Ω,A,Q) and B ⊂ A be a σ-field on Ω such that conditionally

on B, {ϕm,m ≥ 1} are i.i.d. and {ϕ′m,m ≥ 1}) are i.i.d. Assume
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(i) the distribution of V admits a density with respect to the Vebesgue measure

on R, which is upper bounded by C0 > 0;

(ii) there exists p? > 1 such that ϕ1 and ϕ′1 have finite p?-moments; set

Cp? := E [|ϕ1 − E[ϕ1 | B]|p? ] ∨ E [|ϕ′1 − E[ϕ′1 | B]|p? ] .

(iii) there exists a constant C > 0 such that

|V − V ′| ≤ C

M

∣∣∣∣∣
M∑
m=1

(ϕm − E [ϕ1|B])

∣∣∣∣∣+
1

M ′

∣∣∣∣∣
M ′∑
m=1

(ϕ′m − E [ϕ′1|B])

∣∣∣∣∣ .
Then for any positive integer M ,

sup
ξ∈R

E [|1V >ξ − 1V ′>ξ|] ≤ 2p?(1∨C)p? (C0 + cp? Cp?) (M∧M ′)−
(p?/2)∧(p?−1)

1+p? , (A.6)

where cp only depends on p (see its definition in Lemma A.3). If, in addition,

(iv) there exists C∞ > 0 such that for any δ > 0 and any positive integer M ,

Q

(∣∣∣∣∣ 1

M

M∑
m=1

ϕm − E [ϕ1|B]

∣∣∣∣∣ ≥ δ

)
∨ Q

(∣∣∣∣∣ 1

M

M∑
m=1

ϕ′m − E [ϕ′1|B]

∣∣∣∣∣ ≥ δ

)
≤ e−C∞Mδ2 ,

then, for any integers M,M ′ ≥ 3,

sup
ξ∈R

E [|1V >ξ − 1V ′>ξ|] ≤ 2

(
1 +

C0√
2C∞

) (
log(M ∧M ′)

(M ∧M ′)

)1/2

.

Proof. We have |1V >ξ − 1V ′>ξ| = 1V >ξ≥V ′ + 1V ′>ξ≥V . Vet δ > 0. On the set

{|V − V ′| < δ}, it holds

{V > ξ ≥ V ′} ⊂ {V > ξ > V − δ}, {V ′ > ξ ≥ V } ⊂ {V + δ > ξ ≥ V },

so that

E
[
|1V >ξ − 1V ′>ξ|1|V−V ′|<δ

]
≤ E

[
1|V−ξ|<δ1|V−V ′|<δ

]
≤ Q (|V − ξ| < δ) .

By using (i), it holds

E[|1V >ξ − 1V ′>ξ|] ≤ Q[|V − ξ| < δ] + Q (|V − V ′| ≥ δ) ≤ 2C0δ + Q (|V − V ′| ≥ δ) .

(A.7)

41



By (ii), (iii) and Lemma A.3, and by using (x + y)p? ≤ 2p?−1(xp? + yp?) for any

x, y ≥ 0,

E
[
|V − V ′|p?

]
= E

[
E
[
|V − V ′|p? Big|B

]]
≤ 2p? (1 ∨ C)p? cp? Cp?

(M ∧M ′)(p?/2)∧(p?−1)
.

The Chebyshev inequality implies

Q(|V − V ′| ≥ δ) ≤ 2p? (1 ∨ C)p? cp? Cp?
δp? (M ∧M ′)(p?/2)∧(p?−1)

. (A.8)

We then obtain (A.6) from (A.7) and (A.8) applied to δ ← (M ∧M ′)−p̃?/(1+p?)

with p̃? := (p?/2) ∧ (p? − 1).

Under (iv), the second term in (A.7) is upper bounded by

exp
(
−C∞M δ2/(4C2)

)
+exp

(
−C∞M ′ δ2/4

)
≤ 2 exp

(
− C∞

4(1 ∨ C)2
δ2(M ∧M ′)

)
.

Hence we have, by setting C̃∞ := C∞/(4(1 ∨ C)2) and M := M ∧M ′,

E[|1V >ξ − 1V ′>ξ|] ≤ 2C0δ + 2e−C̃∞ δ2M ≤
√

2
C0√
C̃∞

√
lnM

M
+

2√
M
,

where the last inequality is obtained by choosing δ ←
√

(logM)/(2C̃∞M). This

concludes the proof since
√

lnM ≥ 1 for M ≥ 3.

Proof of Lemma 3.1. We apply Lemma A.4 with Q ← P0, B ← σ(Z0, Z1),

Ci ← Ci(z) for i ∈ {0, p?,∞}, C ← cβ and p? ≥ 2. This yields the inequalities

(3.3) and (3.5). Since |a+ − b+| ≤ |a− b| and p? ≥ 1, we have

E0

[∣∣(L− ξ)+ − (L′ − ξ)+
∣∣] ≤ (E0

[∣∣(L− ξ)+ − (L′ − ξ)+
∣∣p?])1/p? ≤

(
E0

[
|L− L′|p?

])1/p?
.

We conclude the proof of (3.4) by Lemma A.3.

Proof of Theorem 3.1. As in the proof of Theorem 2.1, we first establish the

results on the sequence {ξk, k ≥ 0} by application of Theorem A.1. We then

prove the results on the sequence {χk, k ≥ 0} by application of Lemma A.2.

We check the assumptions of Theorem A.1 with θk ← ξk (so that d = 1),

Q← P0, Vk ← Lk, the distribution of V? is Q(z, ·), Gk ← σ(Lj, j ≤ k) and

H(θ, V )← 1− 1

1− α
1V >θ, h(θ)← 1− 1

1− α
P0(L > θ).
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Under H5 and H3, the conditions (i), (ii), (iii) and (v) hold; the proof is on

the same lines as in the proof of Theorem 2.1 and is omitted. We establish the

condition (vi) (which also implies the condition (iv)) with

rk+1 ← E0 [H(ξk, Lk+1)|Gk]− E0

[
H(ξk, L̃k+1)|Gk

]
where

L̃k+1 := φk+1 + βk+1Ψ(Zk+1
1 )−Ψ′(z).

Note that since the r.v. (φk+1, βk+1, Zk+1
1 ) are independent from Gk and, condi-

tionnally to Gk, have the same distribution as the processes (φ, β, Z1), then the

distribution of L̃k+1 given Gk is Q(z, ·). Hence,

E0

[
H(ξk, L̃k+1)|Gk

]
= h(ξk). (A.9)

We write

rk+1 = E0

[
H(ξk, Lk+1)−H(ξk, L̃k+1)

∣∣∣Gk] =
1

1− α
E0

[(
1L̃k+1>ξk

− 1Lk+1>ξk

) ∣∣∣Gk]
so that, by Lemma 3.1, there exists a constant c such that for any k ≥ 1, P0-a.s.

|rk+1| ≤ c
(
Mk+1 ∧M ′

k+1

)−p?/(2(1+p?))
;

this implies, by H5,
∑

k≥1 γ
1−κ
k E0[|rk|2] < +∞, thus proving (vi). This concludes

the proof of the results on the sequence {ξk, k ≥ 1}.
For the results on the sequence {χk, k ≥ 1}, we check the assumptions of

Lemma A.2 with θk ← χk (so that d = 1) and Uk+1 ← ξk+(1−α)−1(Lk+1−ξk)+.

We write

Uk+1 = ξk + (1− α)−1

∫
(x− ξk)+Q(z, dx) + ẽk+1 + r̃k+1

r̃k+1 := (1− α)−1
(
(Lk+1 − ξk)+ − (L′k+1 − ξk)+

)
ẽk+1 := (1− α)−1

(
(L′k+1 − ξk)+ −

∫
(x− ξk)+Q(z, dx)

)
.

As in the proof of Theorem 2.1, we prove by using H5, H3, that

lim
k→∞

1

Sk

k∑
j=1

Sjγjξj = ξ∞ P0 − a.s.,

lim
k→∞

1

Sk

k∑
j=1

Sjγj

∫
(x− ξj)+Q(z, dx) =

∫
(x− ξ∞)+Q(z, dx) P0 − a.s.

lim
k→+∞

1

Sk

k∑
j=1

Sjγj ẽj+1 = 0, P0 − a.s.
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By Lemma 3.1 and H5,
∑

k γkE0 [|r̃j+1|] <∞ so that by the Kronecker Lemma,

lim
k→+∞

1

Sk

k∑
j=1

Sjγj r̃j+1 = 0, P0 − a.s.

By Lemma A.2, we obtain that P0-a.s., limk χk exists and solves

lim
k
χk = ξ∞ +

1

1− α

∫
(x− ξ∞)+Q(z, dx).

A.5 A Central Limit Theorem for Stochastic Approxima-

tion Algorithms

We recall in this section sufficient conditions for a central limit theorem (CLT) to

hold for random variables {θk, k ≥ 0} defined through a stochastic approximation

algorithm: given a deterministic sequence {γk, k ≥ 1}, a function h : Rd → R,

θ0 ∈ Rd and Rd-valued random variables {ek, k ≥ 1} and {rk, k ≥ 1} defined on

(Ω,A,Q), define for k ≥ 0,

θk+1 = θk + h(θk) + γk+1ek+1 + γk+1rk+1. (A.10)

Theorem A.2 corresponds to [16, Theorem 2.1.]. It provides sufficient conditions

for a CLT along a converging sequence {limq θq = θ?} where θ? ∈ Rd is fixed

(deterministic). On the mean field h and the limit point θ?, it is assumed

C1. a) The mean field h : Rd → Rd is measurable and twice continuously differ-

entiable in a neighborhood of θ?, where h(θ?) = 0.

b) The gradient ∇h(θ?) is a Hurwitz matrix. Denote by −`, (` > 0), the largest

real part of its eigenvalues.

The sequence {ek, k ≥ 1} satisfies

C2. a) {ek, k ≥ 1} is a Gk-adapted Q-martingale increment sequence: E [ek|Gk−1] =

0 Q-a.s. for any k ≥ 1.

b) For some C > 0, there exists τ > 0, such that

sup
k

E
[
|ek+1|2+τ

1|θk−θ?|≤C
]
<∞.
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c) There exists a symmetric positive definite matrix D? and a sequence {Dk, k ≥
1} of Rd-valued random variables, such that Q-a.s.

E
[
ek+1e

T
k+1|Gk

]
= D? +Dk, lim

k
Dk1limq θq=θ? = 0.

The sequences {rk, k ≥ 1} and {γk, k ≥ 1} satisfy

C3. rk is Gk-adapted and γ
−1/2
k |rk|1limq θq=θ? ≤ Xk Yk where Q(supk |Xk| <∞) =

1 and and limk E[|Yk|] = 0.

C4. One of the following condition holds

a) γk ∼ γ?/k and γ? > 1/(2`).

b) γk ∼ γ?/k
c where c ∈ (1/2, 1).

Theorem A.2. [16, Theorem 2.1.] Let {θk, k ≥ 1} be the sequence given by

(A.10) for some θ0 ∈ Rd. Assume C1, C2, C3 and C4. Let Γ be the positive

definite matrix satisfying Q-a.s. on the set {limq θq = θ?}

Γ(Id + 2γ?∇h(θ?)
T ) + (Id + 2γ?∇h(θ?))Γ = −2γ?D? under C4a,

Γ∇h(θ?)
T +∇h(θ?)Γ = −D? under C4b.

Then under the conditional probability Q(. | limq θq = θ?) the sequence {γ−1/2
k (θk−

θ?), k ≥ 1} converges in distribution to a random variable with the characteristic

function
1

Q(. | limq θq = θ?)
E0

[
1limq θq=θ? exp(−1

2
tTΓt)

]
.

Theorem A.3 corresponds to [16, Theorem 3.2.]; it provides sufficient condi-

tions for a CLT for the averaged sequence

θ̄k :=
1

k

k∑
l=1

θl,

along a converging sequence {limq θq = θ?} where θ? ∈ Rd is fixed (deterministic).

It is established under essentially the same assumptions as in Theorem A.2 that,

if C3 is strenghtened into

C5. rk is Gk-adapted and γ
−1/2
k |rk|1limq θq=θ? ≤ XkYk where Q(supk |Xk| <∞) =

1 and liml kE [|Yk|2] = 0. In addition, k−1/2
∑k

l=1 rl1limq θq=θ? converges to 0 in

probability,
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then:

Theorem A.3. [16, Theorem 3.2.] Assume C 1, C2, C4b, and C5. Then for

any t ∈ Rd,

lim
k

E
[
exp(i

√
ktT (θ̄k − θ?))| lim

q
θq = θ?

]
= exp

(
−1

2
tT∇h(θ?)

−1D?(∇h(θ?)
−1)T t

)
,

where D? is introduced in C2.

A.6 Proofs of the Results of Section 3.2

Throughout this section, set θ := (ξ, χ), and

h(θ) := −

[
1− 1

1−αP0 (L > ξ)

χ− ξ − 1
1−αE0

[
(L− ξ)+]

]
, H(θ,X) := −

[
1− 1

1−α1X>ξ

χ− ξ − 1
1−α (X − ξ)+

]
.

(A.11)

We start with a preliminary lemma.

Lemma A.5. Assume H7. Then

E0

[
(H(θ, L)− h(θ)) (H(θ, L)− h(θ))T

]
= D? +D(θ), (A.12)

where

D? :=
1

(1− α)2

[
α(1− α) αE0 [(L− ξ?)+]

αE0 [(L− ξ?)+] Var0 [(L− ξ?)+]

]
(A.13)

and limkD(θk)1limq θq=θ? = 0 P0-a.s

Proof. By H7, L ∼ Q(z, ·) under P0 so E0 [H(θ, L)] = h(θ). We have

E0

[
(H(θ, L)− h(θ)) (H(θ, L)− h(θ))T

]
= E0

[
H(θ, L)H(θ, L)T

]
− h(θ)h(θ)T .

Denote by H(θ) the first 2× 2 symmetric matrix on the RHS. Then

H(θ)1,1 = 1 +
P0 (L > ξ)

(1− α)2
− 2

1− α
P0 (L > ξ)

H(θ)1,2 = χ− ξ − 1

1− α
E0

[
(L− ξ)+

]
− 1

1− α
P0 (L > ξ) (χ− ξ) +

1

(1− α)2
E0

[
(L− ξ)+

]
H(θ)2,2 = (χ− ξ)2 +

1

(1− α)2
E0

[(
(L− ξ)+

)2
]
− 2

1− α
(χ− ξ)E0

[
(L− ξ)+

]
.

Under H7, θ 7→ h(θ) and θ 7→ H(θ) are continuous at θ?. This implies (A.12),

where the expression (A.13) for

D? = H(θ?)− h(θ?)h(θ?)
T .

follows by using that θ? satisfies (2.6) (which implies that h(θ?) = 0).

46



Proof of Theorem 3.2 The proof consists in applying Theorem A.2. We check

its assumptions with Q ← P0, θk ← (ξk, χk), θ? ← (ξ?, χ?), the function h given

by (A.11). The random variables ek, rk are set equal to

ek+1 ← H(θk, L̃k+1)− h(θk) rk+1 ← H(θk, Lk+1)−H(θk, L
′
k+1)

where h and H are given by (A.11) and

L̃k+1 := φk+1 + βk+1Ψ(Zk+1
1 )−Ψ′(z).

With these definitions, note that Algorithm 1 updates the parameter θk+1 by

θk+1 = θk + γk+1H(θk, Lk+1).

Since θ? satisfies (2.6), we have h(θ?) = 0. By H7, the function h is twice

continuously differentiable in a neighborhood of θ? and the gradient is given by

∇h(θ?) = − 1

1− α

[
f(z, ξ?) 0

−(1− α) + P0(L > ξ?) 1− α

]
= −

[
1

1−αf(z, ξ?) 0

0 1

]
(A.14)

where we used (2.6) in the last equality. Hence, by H7, the condition C1 is

verified.

Set Gk := σ (Lj, j ≤ k); note that h(θk) = E0

[
H(θk, L̃k+1)|Gk

]
– see (A.9) in

the proof of Theorem 3.1. Hence, {ek, k ≥ 1} is a Gk-adapted P0-martingale incre-

ment sequence. Since θ 7→ h(θ) is continuous at θ? and θ? is fixed (deterministic),

for fixed C > 0, there exists a constant C ′ such that P0-a.s., supk |h(θk)|1|θk−θ?|≤C ≤
C ′. In addition

|H(θ,X)| ≤ (1 + 1/(1− α)) + 2|θ|+ (1− α)−1(X − ξ)+.

By H7, since L̃k+1 has the same distribution as L under P0, there exists a constant

C ′′ (depending upon C) such that

sup
k

E0

[
|H(θk, L̃k+1)|2+τ?1|θk−θ?|≤C

]
≤ C ′′.

Hence, the conditions C2a-b are verified. The condition C2c follows from Lemma A.5.

We write

E0 [|rk+1|] = E0 [E0 [|rk+1| |Gk]]

≤ 1

1− α

(
sup
ξ∈R

E0

[∣∣∣1Lk+1>ξ − 1L̃k+1>ξ

∣∣∣]+ sup
ξ∈R

E0

[∣∣∣∣(Lk+1 − ξ)+ −
(
L̃k+1 − ξ

)+
∣∣∣∣]) .
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By Lemma 3.1, under H7, the LHS is upper bounded by

O
(

(Mk ∧M ′
k)
−p?/(2(1+p?))

+ (Mk ∧M ′
k)
−1/2

)
= O

(
(Mk ∧M ′

k)
−p?/(2(1+p?))

)
.

Hence, by H8, the condition C3 is verified. Finally, the condition C4 holds by H8

and (A.14). This concludes the proof of the theorem.

Proof of Theorem 3.3 The proof consist in an application of Theorem A.3.

We use the same notations as in the proof of Theorem 3.2; it was already proved

that C1 and C2 hold. We check C5: we have

E0

[
|rk+1|2

]
≤ 1

(1− α)2
sup
ξ∈R

(
E0

[∣∣∣1Lk+1>ξ − 1L̃k+1>ξ

∣∣∣]+ E0

[∣∣∣(Lk+1 − ξ)+ − (L̃k+1 − ξ)+
∣∣∣2]) .

By Lemma 3.1, there exists a constant C such that for any k ≥ 0,

E0

[
|rk+1|2

]
≤ C

(Mk ∧M ′
k)
p?/(2(1+p?))

.

Therefore, the condition on γ
−1/2
k rk is satisfied by (3.8). In addition, by Lemma 3.1

again, there exists a constant C ′ such that for any δ > 0,

P0

(
k−1/2

∣∣∣∣∣
k∑
l=1

rl

∣∣∣∣∣ > δ

)
≤ k−1/2δ−1E0

[∣∣∣∣∣
k∑
l=1

rl

∣∣∣∣∣
]

≤ C ′k−1/2δ−1

(
k∑
l=1

1

(Ml ∧M ′
l )
p?/(2(1+p?))

)
.

Therefore, the condition C5 holds by (3.8).

A.7 Sensitivities of Value-at-Risk and Expected Shortfall

to Perturbations of the Input Distribution

We develop in this section some estimates relative to the perturbation of the

value-at-risk and expected shortfall that arise when we use different distributions

for the underlying loss variable Z. We use the notation VaRα(Z) and ESα(Z) for

the Q value-at-risk and expected shortfall of Z

Q(Z > VaRα(Z)) := 1− α, ESα(Z) :=
1

1− α

∫ 1

α

VaRa(Z) da,

where VaRα(Z) defined on the left is the infimum of such values.
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Definition A.1. The Kolmogorov distance dkol(X, Y ) between two scalar ran-

dom variables X and Y is the sup norm between their cumulative distribution

functions:

dkol(X, Y ) := sup
ξ∈R
|Q[X ≤ ξ]−Q[Y ≤ ξ]|.

We show that if X, Y are integrable scalar random variables with a contin-

uous density, then for any α > 0 fixed, the difference |[VaRα(X),ESα(X)] −
[VaRα(Y ),ESα(Y )]| is bounded, up to a multiplicative constant depending of α

and the density of X, by the L1 and the Kolmogorov distances between X and

Y .

Our first proposition has to do with the relationship between the Kolmogorov

distance and the behavior of VaRβ(·) as a function of β.

Lemma A.6. Let X and Y be scalar random variables having a continuous

cumulative distribution function. Then for any α ∈ (0, 1) and every VaRα(Y ) we

have

VaRα−dkol(X,Y )(X) ≤ VaRα(Y ) ≤ VaRα+dkol(X,Y )(X). (A.15)

for some elements from the respective VaRα(X) sets and with the convention

VaRβ = −∞ (respectively VaRβ =∞) if β < 0 (respectively β > 1).

If X and Y are also integrable then

|ESα(X)− ESα(Y )| ≤ 1

1− α
E|X − Y |. (A.16)

Proof. Let α ∈ (0, 1) be given, and let d := dkol(X, Y ). From the definition of

the Kolmogorov distance it follows that for every ξ ∈ R

Q[X ≤ ξ]− d ≤ Q[Y ≤ ξ] ≤ Q[X ≤ ξ] + d,

so that for every ξα such that Q[Y ≤ ξα] = α (i.e. for every VaRα element of Y )

we have

|Q[X ≤ ξα]− α| ≤ d,

thus showing that VaRα−d(X) ≤ ξα ≤ VaRα+d(X) for some elements in the

respective VaR sets.

For the second equality note that, by the characterization in [6, Section 2.1]-

[24, Theorem 1] of ESα(Z), for Z = X or Z = Y (under the assumptions of

continuous c.d.f.),

ESα(Z) = inf
x

(
x+

1

1− α
E
[
(Z − x)+]) . (A.17)
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Now consider the function

G(x, z) := x+
1

1− α
(z − x)+

and note that, for fixed x, the function G(x, ·) is a uniformly Lipschitz function of

z with Lipschitz constant 1/(1− α). This implies in particular, by taking Z = X

and Z = Y , that for every x

E [G(x,X)]− E [G(x, Y )] | ≤ 1

1− α
E|X − Y |.

Taking the inf in x in the above and using (A.17), we get (A.16) as desired.

Inspired from [5], we develop further estimates on the Kolmogorov distance

between X and Y that might depend on higher moments for the difference be-

tween these random variables. We apply these estimates to the error analysis of

Algorithm 2, in which the bias due to fixing an approximation procedure for the

samplings of Ψ has to be controlled in order to have useful criteria for the choice

of the parameters of the algorithm.

Corollary A.4. Assume that the scalar random variable X has a c.d.f. F

which is continuously differentiable and strictly increasing in a neighborhood of

VaRα(X), let f := dF/dλ be the respective density (where it exists), and let δ be

such that the inverse F−1 of F exists in an δ−neighborhood of α. Then for any

scalar random variable Y and any 0 < r, s < δ, the condition

VaRα−r(X) ≤ VaRα(Y ) ≤ VaRα+s(X)

implies that

|VaRα(X)− VaRα(Y )| ≤ sup
x∈[α−r,α+s]

|f(F−1(x))|−1dkol(X, Y ).

Proof. This follows from the fact that, under the given hypotheses

VaRβ(X) = F−1(β)

whenever |β − α| < δ. The hypotheses on r and s imply now that

|VaRα(X)− VaRα(Y )| ≤ max
(
VaRα(X)− VaRα−r(X),VaRα+s(X)− VaRα(X)

)
(A.18)

= max
(
F−1(α)− F−1(α− r), F−1(α + s)− F−1(α)

)
.
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It follows from the mean value theorem and the inverse function theorem that

|VaRα(X)− VaRα(Y )| ≤ sup
x∈[α−r,α+s]

|f(F−1(x))|−1 max(r, s)

which implies the desired conclusion if max(r, s) < dkol(X, Y ).

If this is not the case, for instance if r ≤ dkol(X, Y ) < s, a similar argument

using (A.15) (available since X has a continuous c.d.f.) to replace the second

term in the maximum (A.18) gives

|VaRα(X)− VaRα(Y )| ≤ sup
x∈[α−r,α+dkol(X,Y )]

|f(F−1(x))|−1max(r, dkol(X, Y ))

≤ sup
x∈[α−r,α+s]

|f(F−1(x))|−1dkol(X, Y ).

The other cases are treated similarly.

In order to pass to controls that depend only on the L1 distance, we present

now two estimates of dkol(X, Y ) that are related to the actual difference between

X and Y . These will be combined to estimate the expected error induced by

the application of the stochastic approximation procedure to the sequence of

samplings produced via regression.

Lemma A.7. Assume that the scalar random variable X admits a density which

is bounded by C0. Then for any scalar random variable Y and any δ > 0

dkol(X, Y ) ≤ 2C0δ + P [|X − Y | > δ] . (A.19)

Proof. The following argument was presented already in the proof of Lemma A.4,

thus we give here a summarized version: for δ > 0 given and any ξ ∈ R, we have

|P [X ≤ ξ]− P [Y ≤ ξ] | ≤ E
[
|1[X≤ξ] − 1[Y≤ξ]|

]
= E

[
1[X≤ξ<Y ] + 1[Y≤ξ<X]

]
≤ E

[
1[−δ+X≤ξ≤X+δ]

]
+ E

[
1[|X−Y |>δ]

]
≤ 2C0δ + E [|X − Y | > δ] ,

using the hypothesis.

Corollary A.5. Assume that the scalar random variable X admits a density

which is bounded by C0. Then for any scalar random variable Y and any p > 0

we have

dkol(X, Y ) ≤ (2C0 + 1)(E|X − Y |p)1/(1+p).
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Proof. For the case in which E|X − Y |p = +∞ the conclusion is trivially true.

For the p−integrable case, take δ = (E|X − Y |p)1/(1+p) in equation (A.19) and

apply Markov’s inequality.

A.8 A Nonasymptotic Estimate for Regressions

The following result is used to control the error due to the introduction of a

regression procedure in Algorithm 2:

Theorem A.6 ([18, Theorem 11.5]). Let (X, Y ) be a random vector in Rd ×
R, let F be a pointwise measurable set of functions f : Rd → R, with finite

Vapnik-Chervonenkis dimension VCF ≥ 1. Assume that the random variable Y

is bounded by B > 0. If Dn = ((Xk, Yk))
n
k=1 is any vector of independent copies

of (X, Y ) and if we define the random function fDn by

fDn := f̂Dn1|f̂Dn |≤B +B1f̂Dn>B −B1f̂Dn<−B

where

f̂Dn := arg min
f∈F

1

n

n∑
k=1

|f(Xk)− Yk|2,

then there exists a universal constant C? such that for any copy (X ′, Y ′) of (X, Y )

independent of Dn,

E
[
|fDn(X ′)− E[Y ′ | X ′]|2

]
(A.20)

≤ C?B
2VCF

(1 + log n)

n
+ 2 inf

f∈F
E
[
|f(X)− E[Y | X]|2

]
.

Remark A.1. It may be useful to recall the meaning of (A.20): if µX = QX−1

is the law of X, then for any Dn−measurable nonnegative (random) function

g = gDn and any copy X ′ of X independent of Dn,

E
[
gDn (X ′) | Dn

]
=

∫
Rd
gDn (x)dµX(x). (A.21)

Now, if m is a (deterministic) function with the property that

m(X) = E[Y | X], Q− a.s.
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(and therefore m(X ′) = E [Y ′ | X ′] because (X, Y ) ∼ (X ′, Y ′)), and if we apply

(A.21) to gDn := |fDn −m|2, we get that

E
[
|fDn(X ′)− E [Y ′ | X ′] |2|Dn

]
≥ inf

f∈F
E
[
|f ◦X ′ −m ◦X ′|2

]
= inf

f∈F
E
[
|f(X)− E [Y | X] |2

]
,

and therefore (A.20) tells us that, up to a factor of 2 (which can be improved

by looking carefully at the proofs), the accuracy of fDn as a predictor constructed

from F of Y as a function of X deviates from the optimal L2−accuracy

inf
f∈F

E
[
|f(X)− E [Y | X] |2

]
for no more than

CB2VCF
(1 + log n)

n

units, on L2
Q− expectation.

About estimating the Vapnik-Chervonenkis dimension of a neural network,

see for instance [3]. When F is a vector space, we can replace the factor VCF
by the dimension of the vector space plus one.
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