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Abstract: Since the 2008–09 financial crisis, banks have introduced a family of X-valuation1

adjustments (XVAs) to quantify the cost of counterparty risk and of its capital and funding2

implications. XVAs represent a switch of paradigm in derivative management, from hedging to3

balance sheet optimization. They reflect market inefficiencies that should be compressed as much as4

possible. In this work we present a genetic algorithm applied to the compression of credit valuation5

adjustment (CVA), the expected cost of client defaults to a bank. The design of the algorithm is6

fine-tuned to the hybrid structure, both discrete and continuous parameter, of the corresponding7

high-dimensional and nonconvex optimization problem. To make intensive trade incremental XVA8

computations practical in real-time as required for XVA compression purposes, we propose an9

approach that circumvents portfolio revaluation at the cost of disk memory, storing the portfolio10

exposure of the night so that the exposure of the portfolio augmented by a new deal can be obtained11

at the cost of computing the exposure of the new deal only. This is illustrated by a CVA compression12

case study on real swap portfolios.13

Keywords: Counterparty risk; credit valuation adjustment (CVA); XVA compression; genetic14

algorithm.15
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1. Introduction18

XVAs, where VA stands for valuation adjustment and X is a catch-all letter to be replaced by19

C for credit, F for funding, M for margin, and K for capital, have been implemented by banks in20

reaction to the regulatory changes aroused by 2008 financial turmoils. They monetize counterparty21

risk and its funding and capital consequences by add-ons to derivative entry prices sourced from22

clients. According to the cost-of-capital XVA approach of (Albanese and Crépey 2019), accounting for23

the impossibility for a bank to replicate the jump-to-default related cash flows, the final, all-inclusive24

XVA formula reads25

CVA + FVA + MVA + KVA, (1)

to be sourced by the bank from clients on an incremental run-off basis at every new deal.26

As stated by the (Basel Committee on Banking Supervision 2015), major counterparty credit losses27

on OTC derivative portfolios in 2008 arose from XVA accounting losses rather than from actual client28

defaults. In particular, a bank incurs a CVA loss when the market perceives a deterioration of the credit29

risk of a client. This has motivated the creation of XVA desks for dealing with these risks.30

Submitted to Risks, pages 1 – 20 www.mdpi.com/journal/risks

http://www.mdpi.com
http://www.mdpi.com/journal/risks


Version September 20, 2019 submitted to Risks 2 of 20

In this paper, we deal with CVA compression, i.e. the minimization of the CVA of a client portfolio31

by the introduction of an incremental trade, subject to the constraint of not altering too much the32

market risk of the portfolio. In the financial derivative industry, the term compression term is generally33

applied in the context of “trade compression”, i.e. the reduction of the gross notional of positions in34

the market. Trade compression aims notably at reducing certain capital requirements, the number of35

transactions, and their amount (see section 5.3 of (Gregory 2015)). As reflected by the proliferation of36

related industry presentations1, this kind of balance sheet optimization is very active in top tier banks37

at the moment.38

XVAs reflect market inefficiencies that should be compressed as much as possible. Here we39

focus on CVA compression for concreteness and simplicity, but the developed XVA compression40

methodology is generic. It could and should be applied to further XVA metrics, as soon as these are41

available with sufficient speed, for computation at the portfolio level, and accuracy, for numerical42

significance of the results at the incremental trade level: see Section 5 in (Albanese et al. 2018),43

which emphasizes the XVA compression perspective on the pricing and risk management of financial44

derivatives in the post-2008–09 global financial crisis era, and cf. (Kondratyev and Giorgidze 2017),45

who use a genetic algorithm for determining an optimal trade-off between MVA compression and46

transaction costs.47

The complexity of XVA compression problems stems, in particular, from the hybrid nature of the48

state space of the corresponding optimization problems. Indeed, a new trade (financial derivative) is49

described by a combination of continuous and discrete parameters. This rules out the use of standard50

convex optimization schemes for such problems. Instead, we are lead to the use of metaheuristic51

algorithms: In this paper, we show how a genetic algorithm with penalization can efficiently find a52

CVA offsetting trade, while limiting the impact of the trade on the market exposure profile. The latter53

is necessary for staying in line with the separation of mandates between the XVA desks, in charge of54

managing counterparty risk, and the other, dubbed “clean”, trading desks of the bank, in charge of55

hedging the market risk of the bank positions.56

The other XVA compression challenge is execution time, with intensive valuation of the involved57

XVA metrics as a bottleneck. The XVA metrics are primarily defined at the portfolio level: Time-058

XVAs can be formulated as expectations of nonlinear functionals of the bank derivative portfolio59

exposure, i.e. “clean” valuation (or “mark-to-market” MtM ignoring counterparty risk) of the bank60

portfolio, assessed at randomly sampled times and scenarios. Each new deal gives rise to XVA add-ons61

computed as the corresponding trade incremental XVA amounts, i.e. the differences between the XVAs62

of the portfolios including and excluding the new deal. To make intensive trade incremental XVA63

computations practical in real-time as required for XVA compression purposes, our proposed MtM64

store-and-reuse approach circumvents clean revaluation at the cost of disk memory, storing the portfolio65

exposure of the night so that the exposure of the portfolio augmented by a new deal can be obtained at66

the cost of computing the exposure of the new deal only.67

1.1. Outline and Contributions68

The paper is outlined as follows. Section 2 formulates the penalized CVA compression problem69

and introduces the related genetic optimization algorithm. Section 3 is about two key acceleration70

techniques in this regard. Section 4 presents a numerical case study on real swap portfolios. Section 571

concludes.72

The main contributions of the paper are the design of a parallelized genetic algorithm for the73

CVA compression task, the MtM store-and-reuse acceleration technique for trade incremental XVA74

computations, and the numerical CVA compression case study on real swap portfolios.75

1 cf. e.g. David Bachelier, panel discussion Capital & margin optimisation, Quantminds International 2018 conference, Lisbon,
16 May 2018.
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More broadly, this paper enriches the literature on the use of genetic (also called evolutionary)76

optimization algorithms in finance. (Cont and Hamida 2005) applied evolutionary algorithms to77

investigate a set of co-calibrated model parameterizations in order to assess the associated model78

risk. (Kroha and Friedrich 2014) compared different genetic algorithms for automatic trading. (Jin79

et al. 2019) applied evolutionary algorithms to optimal investment and consumption stochastic control80

problems. For wider reviews of genetic algorithms in finance, we refer the readers to (Drake and Marks81

2002) and (Chen 2012).82

We refer the reader to the end of the paper for a list of the main abbreviations.83

2. CVA Compression Modeling84

2.1. Credit Valuation Adjustment85

We consider a complete stochastic basis (Ω,F,P), for a reference market filtration (ignoring the86

default of the bank itself) F = (Ft)t∈R+
, satisfying the usual conditions, and a risk-neutral pricing87

measure P, calibrated to market quotes of fully collateralized transactions. All the processes of interest88

are F adapted and all the random times of interest are F stopping times. This holds at least after89

so-called reduction of all the data to F, starting from a larger filtration G including the default of the90

bank itself as a stopping time, assuming immersion from F into G for simplicity (see (Albanese and91

Crépey 2019) for the detail). The P expectation and (Ft,P) conditional expectation are denoted by E92

and Et.93

In developed markets, the overnight indexed swap (OIS) rate is together the reference94

remuneration rate for posted collateral and the best market proxy for a risk-free rate. We denote95

by r = (rt)t∈R+
an F progressive OIS rate process and we write β = e−

∫ ·
0 rsds for the corresponding96

risk-neutral discount factor.97

By clean valuation or mark-to-market of a contract (or portfolio), we mean the (trade additive)98

risk-neutral conditional expectation of its OIS discounted future promised cash flows, ignoring99

counterparty risk and its capital and funding implications.100

We consider a bank engaged into bilateral trading with a single corporate counterparty (client).101

with default time and recovery rate τc and Rc. This setup, which is chosen for simplicity, is consistent102

with a common situation where credit risk budget is assigned at each counterparty level within the103

bank. We denote by MtM the corresponding mark-to-market process of the client portfolio to the bank.104

The (time 0) CVA of the bank is its expected discounted loss in case of client default, i.e.105

CVA = E
[
1{τc≤T}β

−1
t βτc(1− Rc)MtM+

τc

]
. (2)

Assuming deterministic interest rates, this can be rewritten as106

CVA = (1− Rc)
∫ T

0
βtEPE(t)P(τc ∈ dt), (3)

where the expected positive exposure (EPE) is defined as107

EPE(t) = E(MtM+
s |s = τc)|τc=t. (4)

The formula (3) is popular with practitioners because it allows obtaining the CVA as the integral of the108

EPE against the client CDS curve. But it is only really practical in simplistic models where the market109

and credit sides of the problem are independent, so that EPE(t) = E(MtM+
t ). However, a key CVA110

modeling issue is wrong-way risk, i.e. the risk of adverse dependence between market and credit (see111

(Pykhtin 2012), (Hull and White 2012), (Li and Mercurio 2015), (Iben Taarit 2018), (Crépey and Song112

2016 2017), (Brigo and Vrins 2018),(Glasserman and Yang 2018)).113
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Assuming the client default time endowed with an intensity γc, a more flexible formula is114

CVA = (1− Rc)E
∫ T

0
βse−

∫ s
0 γc

uduγc
sMtM+

s ds. (5)

Under a credit support agreement (CSA), MtM should be replaced by (MtM− C) in all equations115

above, where C is the collateral posted by the counterparty. Obviously, collateral can mitigate the EPE116

and the CVA considerably. In the data of our case study there is no CSA, i.e. C = 0.117

Non-linearity of MtM+ with respect to the portfolio payoff components imposes CVA calculations118

at the counterparty portfolio (netting set) level.119

Similar approaches apply to FVA computations, with analogous comments, whereas the MVA120

can be computed based on quantile regression for the embedded dynamic initial margin calculations121

(see (Crépey et al. 2019)). In any case, the numerical bottleneck of XVA computations lies in intensive122

MtM calculations.123

2.2. Fitness Criterion124

By the augmented, respectively initial, portfolio, we mean the portfolio of the bank inclusive,125

respectively exclusive, of a newly considered deal with the client. The aim of an XVA compression126

problem is to find a new trade that minimizes the corresponding XVA metric of the augmented127

portfolio. This is equivalent to minimize the incremental CVA, which we denote by128

∆CVA = (1− Rc)E
∫ T

0
βse−

∫ s
0 γc

uduγc
s(MtMaugm

s )+ds− (1− Rc)E
∫ T

0
βse−

∫ s
0 γc

uduγc
s(MtMinit

s )+ds

= (1− Rc)E
∫ T

0
βse−

∫ s
0 γc

uduγc
s
(
(MtMaugm

s )+ − (MtMinit
s )+

)
ds,

(6)

where the indices init and augm refer to the initial portfolio and augmented portfolio. We emphasize129

that trade incremental CVA computations require two portfolio-wide calculations: one without the130

new trade and another one including it.131

Minimizing an XVA metric is most easily obtained through a significant deformation of the132

portfolio exposure process (especially in the context of this work of a portfolio with a single133

counterparty). But an XVA compression procedure should not affect too much the market risk of the134

portfolio, because market risk is the mandate of the clean desks of the bank, who, in particular, are135

subject to trading limits.136

This motivates the addition of a penalization to the incremental XVA criterion. In our case study,137

the incremental deal will consist of an interest rate swap. As such product is mostly sensitive to interest138

rate moves, a natural penalization is then in terms of its DV01 (dollar value of an 01), i.e. the variation139

of its mark-to-market (at time 0) under a parallel shift of the yield curve by one basis point (= 10−4).140

More precisely, an interest rate swap exchanges one leg indexed on a floating interest rate against141

one leg paying a fixed interest rate, called swap rate. The swap is said to be payer (resp. receiver) for142

the party that pays (resp. receives) the floating payments. A monocurrency swap exchanges both legs143

in the same currency. It is mainly sensitive to the fluctuations of the corresponding floating interest144

rate term structure. DV01 measures the associated risk as the difference between the prices of the swap145

under the baseline (actual market data observed in the real market) and for a bumped yield curve146

defined as the concatenation of the money market rates, forward rates, and swap rates, on the relevant147

(successive) time segments. Bumping the yield curve typically means adding 10−4 to each tenor of this148

curve and updating the other reference curves (zero coupon rates, forward rates, . . . ) accordingly.149

Focusing on the CVA metric in this paper, we obtain the following fitness minimization problem:

minimize
x∈A

f (x) = ∆CVA(x) + α|DV01(x)|, (7)



Version September 20, 2019 submitted to Risks 5 of 20

where x parameterizes a new deal (swap) to be found in a suitable search space A (see Sect. 4.1),150

∆CVA(x) is its incremental CVA (cf. (6)), DV01(x) is its DV01, and α is a penalization parameter151

controlling the trade-off between CVA reduction and market risk profile preservation. By solving (7),152

we aim at identifying a new deal which, if added to the current client portfolio of the bank, would153

diminish its counterparty risk without impacting too much its market risk. Note that, for scaling154

reasons (with, in particular, market penalization), we address the XVA compression problem in terms155

of trade incremental (as opposed to augmented portfolio) XVA numbers.156

A new deal is determined by a combination of quantitative (e.g. notional, maturity,...) and157

qualitative (e.g. currency, long or short direction,...) parameters, so that no gradient or Hessian158

is available for the fitness function f in (7). Moreover, one is interested in exploring a variety of159

local minima of f , to see different trading opportunities emerge from the optimization procedure.160

Furthermore, we can guess that some (crucial) parameters need be learned first, such as currency or161

maturity; other parameters, such as notional, can be refined in a second stage. All these features lead162

us to addressing (7) by means of a genetic optimization algorithm.163

2.3. Genetic Optimization Algorithm164

Genetic optimization algorithms belong to the class of derivative-free optimizers, which is165

surveyed and benchmarked numerically in (Rios and Sahinidis 2013) (including the CMA-ES and166

DAKOTA/EA genetic algorithms).167

The idea of genetic (or evolutionary) optimization algorithms is to evolve a population168

of individuals through cycles of modification (mutation) and selection in order to improve the169

performance of its individuals, as measured by a given fitness function. In addition, so-called crossover170

is used to enhance the search in parameter space. To the best of our knowledge, evolutionary algorithms171

were first explicitly introduced in (Turing 1950, chapter 7 Learning Machines, p.456). See the classical172

monographs by (Holland 1975), (Goldberg 1989), and (Back 1996). They then experienced the general173

artificial intelligence disgrace and comeback before and after the 2000s. But they always stayed an174

active field of research, seen from different perspectives, such as particle filtering, MCMC, or sequential175

monte carlo methods (see (Del Moral 2004)). Beyond its financial applications reviewed at the end of176

Sect. 1, genetic optimization has been used in many different fields, such as mechanics (Verma and177

Lakshminiarayanan 2006), calibration of neural networks hyperparameters (Young et al. 2015), or178

operational research (Larranaga et al. 1999).179

Genetic optimization offers no theoretically guaranteed rate of convergence, but it is often180

found the most efficient approach in practice for dealing with hybrid (partly continuous, partly181

discrete/combinatorial, hence without well defined gradient and Hessian), nonconvex (in the sense of182

one local minimum, at least, for each set of values of the discrete parameters), and high-dimensional183

optimization problems such as (7).184

At each iteration, the fitness f (x) is computed for each individual (also named chromosome) x of185

an initial population (a set of chromosomes). The values returned by the objective function are used186

for selecting chromosomes from the population. Among numerous selection methods (see (Blickle and187

Thiele 1995)), we can quote fitness proportionate selection, ranking proportionate selection (in order to188

avoid the overrepresentation of the chromosomes with the highest fitness values), and tournament189

selection (selection of the best among randomly drawn chromosomes). The common intention of these190

selection methods is to sample in priority individuals with the best fitness values. A genetic algorithm191

is dubbed elitist if the selection operator always keeps the chromosome with the best fitness value.192

Otherwise (as in our case), there is no guarantee that the best visited chromosome is contained in the193

population corresponding to the final iteration.194

The mutation stage is intended to maintain some diversity inside the population, in order to195

avoid the algorithm being trapped by local minima. A mutation randomly changes one gene, i.e. one196

component (e.g., in our case, the notional of a new swap) of a chromosome.197



Version September 20, 2019 submitted to Risks 6 of 20

Selection and mutation play opposite roles: a focus on fitness leads to a quicker convergence198

toward a local minimum; conversely, a too heavily mutated population results into a slow random199

research.200

In addition, a crossover operator plays the role of a reproduction inside the algorithm. The201

principle of crossover is to build two children chromosomes from parent chromosomes. A distribution202

(often the same as the one used for selection) is chosen for picking chromosomes from a population of203

the previous iteration and for recombining pairs of selected chromosomes. Children share gene values204

of their parents but a gene value from one parent cannot be inherited by both children. A crossover205

mask decides for each gene in which parent a child can copy the gene version. One of the most popular206

crossover masks is single point crossover (see Sect. A).207

The role of the crossover operator is paradoxical, as crossover can be seen as a combination of208

mutations, which increase the genetic diversity, while crossover also promotes chromosomes with209

higher fitnesses. Crossover aims at benefiting of a presupposed proximity of best solutions.210

The above operators are applied iteratively until a suitable stopping condition is satisfied. The211

most basic one is a fixed number of iteration, but customized criteria may also be used to limit further212

the number of iterations. For instance, the algorithm can be interrupted when the minimum (or213

sometimes even the maximum) fitness value within the population at the beginning of an iteration is214

below a predefined threshold.215

See Algorithm 1 and Figure 1 for the algorithm in pseudo-code and skeleton forms, denoting by216

rm the mutation rate, i.e. the percentage of individuals in a population affected by a mutation, and by217

rc the crossover rate, i.e. the percentage of individuals affected by crossover recombination.218

The behavior of a genetic optimization algorithm is essentially determined by the choice of the219

selection operator, the number of solutions affected by a mutation, and the number of chromosomes220

affected by a crossover. See (Tabassum and Kuruvilla 2014) for a user guide to the main genetic221

algorithm ingredients and (Carvalho et al. 2011) for applications of genetic optimization algorithms to222

benchmark functions.223

Data: An initial population Pinit of size P and the associated fitness values for each
chromosome, a crossover rate rc, and a mutation rate rm.

Initialization; while a stopping condition is not satisfied do
Save b(1− rc) ∗ Pc chromosomes, chosen by an appropriate selection method from Pinit, in
Pselected ; Save brc ∗ Pc chromosomes, chosen by an appropriate selection method from
Pinit, in Pcrossover ; Recombine, uniformly without replacement, b rc∗P

2 c pairs from
Pcrossover; Merge Pcrossover and Pselected in Pmutated; Mutate randomly brm ∗ Pc in Pmutated ;
for Each chromosome c in Pmutated do

Compute the fitness value of c;
end

end
Result: A new population and the associated fitness values.

Algorithm 1: Pseudo-code of an optimization genetic algorithm.

224
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Start

Sampling

Fitness Evaluation

Termination test

Crossover Selection

Mutation

Stop

Population of size P

Population with
associated fitness values.

Population of b rc∗P
2 c

recombined pairs
Selected population

of size b(1 − rc) ∗ Pc

Population with brm ∗ Pc
mutated chromosomes

Figure 1. Skeleton of an optimization genetic algorithm.

3. Acceleration Techniques225

Without suitable acceleration techniques, the above CVA compression approach is not workable in226

real time on realistic banking portfolios: on the examples of Section 4, a naive (desktop) implementation227

requires about 20 hours of computations. This becomes even more problematic for hyperparameters228

tuning (such as α, crossover rate rc, etc.). Hyperparameters are generally chosen with grid search,229

random search (see (Bergstra et al. 2011)), Bayesian optimization (see (Snoek et al. 2012)) or even230

evolutionary algorithms again (see (Young et al. 2015)). In any case, their calibration is greedy in terms231

of overall genetic algorithm execution.232

In this section we deal with the two following acceleration techniques, which may be used233

simultaneously:234

• A MtM store-and-reuse approach for trade incremental XVA computations, speeding up the235

unitary evaluation of the fitness function;236

• A parallelization of the genetic algorithm accelerating the fitness evaluation at the level of the237

population.238
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3.1. MtM Store-and-Reuse Approach for Trade Incremental XVA Computations239

Most of the time in portfolio-wide XVA calculations is spent in clean valuation (i.e. mark-to-market240

MtM) computations: by comparison, simulation of the risk factors or of the collateral are typically241

negligible.242

Our case study is based on the CVA metric. As observed after (6), by lack of trade-additivity of the243

(portfolio-wide) CVA, trade incremental XVA computations require two portfolio-wide calculations:244

one without the new trade and another one including it. But it is possible to store the (including245

MtM) paths simulated for the initial portfolio and reuse them each time we want to compute a new246

trade incremental XVA. Then, each trade incremental XVA computation only requires the forward247

simulation of the mark-to-market process of the new deal.248

The corresponding MtM store-and-reuse approach to trade incremental XVA computations249

circumvents repeated valuations at the cost of disk memory. It exploits the trade additivity of250

clean valuation by recording the MtM paths of the initial portfolio on a disk. For every new deal,251

the augmented portfolio exposure is obtained by adding, along the paths of the risk factors, the252

mark-to-market of the initial portfolio and of the new deal. This augmented portfolio exposure is then253

plugged into the XVA engine.254

An optimally implemented MtM store-and-reuse approach brings down trade incremental XVA255

computations to the time of generating the clean price process of the trade itself, instead of the one of256

the augmented portfolio as a whole. Another advantage of this approach is its compliance with desk257

segregation: As far as clean valuation is concerned, the XVA desks just use the pricers of the clean258

desks. Hence, the MtM process plugged into the XVA computations is consistent with the one used for259

producing the market risk hedging sensitivities.260

However, such an approach comes at the costs of memory disk (obviously), but also data slippage261

as, for consistency, it requires to anchor all the trade incremental XVA computations at the market data262

and parameters corresponding to the generation of the initial portfolio exposure. In practice, an MtM263

process at the overall portfolio level can only be generated during night runs, between two market264

sessions.265

Moreover, we have to distinguish between first order (or first generation) XVAs, which are options266

on the MtM process, and higher order (or second generation) XVAs (see (Crépey et al. 2019)), which267

can be viewed as compound options of order two or more on the MtM process. Second generation268

XVAs may also involve conditional risk measures, e.g. conditional value-at-risk for the dynamic initial269

margin calculations that are required for MVA 2 computations, as opposed to conditional expectations270

only in the case of first generation XVAs.271

A Monte Carlo simulation diffuses risk factors X (such as interest rates, credit spreads, etc.) along272

drivers Z (such as Brownian motions, Poisson processes, etc.), according to a model formulated as a273

Markovian system of stochastic differential equations, starting from some given initial condition X0274

for all risk factors, suitably discretized in time and space. Modulo calibration, X0 can be identified275

with the time 0 market data. We denote by Ŷ a suitable estimate of a process Y at all (outer) nodes of a276

Monte Carlo XVA engine. In particular, M̂tM is the fully discrete counterpart of the MtM process of277

the initial portfolio, namely the clean value of the portfolio at future exposure dates in a time grid and278

for different scenario paths.279

At first sight, an MtM store-and-reuse approach is unsuitable for second order XVAs, such as280

the MVA and the KVA (but also the CVA in the case of a CSA where the bank receives so-called281

initial margin), Indeed, in their case, the principle of swapping computations against storage would282

require to store not one portfolio exposure M̂tM, but a whole family of resimulated, future conditional283

portfolio exposures, (at least, over a certain time horizon), which seems hardly feasible in practice.284

However, even in the case of second order XVA metrics, an MtM store and reuse approach can be285

2 For details regarding the initial margin and the MVA, see (Crépey et al. 2019, sections 5.2 and 6.4).
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implemented with the help of appropriate regression techniques (at the cost of an additional regression286

error, see (Crépey et al. 2019)).287

Formalizing the above discussion, the conditions for a straightforward and satisfactory application288

of the MtM store-and-reuse approach to a given XVA metric are as follows, referring by indices init,289

incr, and augm to the initial portfolio, the new deal, and the augmented portfolio:290

1. (No nested resimulation of the portfolio exposure required) The formula for the corresponding291

(portfolio-wide, time-0) XVA metric should be estimatable without nested resimulation, only292

based on the portfolio exposure rooted at (0, X0). A priori, additional simulation level makes293

nonpractical the MtM store-and-reuse idea of swapping execution time against storage;294

2. (Common random numbers) M̂tM
incr

should be based on the same paths of the drivers as M̂tM
init

.295

Otherwise, numerical noise (or variance) would arise during M̂tM aggregation;296

3. (Lagged market data) M̂tM
incr

should be based on the same time, say 0, and initial condition297

X0 (including, modulo calibration, market data), as M̂tM
init

. This condition ensures a consistent298

aggregation of M̂tM
init

and M̂tM
incr

into M̂tM
augm

.299

These conditions have the following implications:300

1. seems to ban second order generation XVAs, such as CVA in presence of initial margin, but these301

can in fact be included with the help of appropriate regression techniques;302

2. implies to store the driver paths that were simulated for the purpose of obtaining M̂tM
init

; it also303

puts a bound on the accuracy of the estimation of MtMincr, since the number of Monte Carlo paths304

is imposed by the initial run. Furthermore, the XVA desks may want to account for some wrong305

way risk dependency between the portfolio exposure and counterparty credit risk (see Sect. 2.1);306

approaches based on correlating the default intensity and the market exposure in (5) are readily307

doable in the present framework, provided the trajectories of the drivers and/or risk factors are308

shared between the clean and XVA desks;309

3. induces a lag between the market data (of the preceding night) that are used in the computation310

of M̂tM
incr

and the exact MtMincr process; when the lag on market data becomes unacceptably311

high (because of time flow and/or volatility on the market), a full reevaluation of the portfolio312

exposure is required.313

Figure 2 depicts the embedding of an MtM store-and-reuse approach into the trade incremental XVA314

engine of a bank.315

Clean Pricers

Clean desks

Aggregate

XVA desks

XVA Engine X̂VA
augmDataBase

Market Data Database

Initial run : M̂tM
init

,
Ẑinit

Incremental run :
M̂tM

init
, Ẑinit

M̂tM
augm

, Ẑaugm

Incremental run :
M̂tM

incr
, Ẑincr

Incremental run : Ẑinit

Data from the night

Figure 2. MtM store-and-reuse implementation of a trade incremental XVA engine with drivers Z.
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3.2. Parallelization of the Genetic Algorithm316

Most of the XVA compression computational time is spent in the evaluation of the incremental317

XVA metric involved in the fitness criterion visible in (7). The MtM store-and-reuse approach allows318

reducing the complexity of such trade incremental XVA computations to trade (as opposed to portfolio)319

size. However, in order to achieve XVA compression in real time, this is not enough; another key step320

is the parallelization of the genetic algorithm that is used for solving (7).321

The genetic algorithm is a population based method, which implies to maintain a population322

of individuals (tentative new deals) through each iteration of the algorithm. The calculation of the323

objective function, for a given individual, does not depend on the fitness value of the other individuals.324

Therefore we can vectorize the computation of the fitness values within the population. Provided a325

suitable parallel architecture is available, a perfectly distributed genetic algorithm makes the execution326

time independent of the population size P (see Algorithm 1 and Figure 1).327

This makes an important difference with other metaheuristic optimization algorithm, such as328

simulated annealing or stochastic hill climbing, which only evaluate one or very few solutions per329

iteration, but need much more iterations to converge toward a good minimum (see (Adler 1993) and330

(Janaki Ram et al. 1996)). As discussed in (Pardalos et al. 1995), the above parallelization of the fitness331

function evaluation, for a given population, should not be confused with a parallel genetic algorithm332

in the sense of an independent evolution of several smaller populations.333

In our context where individuals only represent incremental trades, a parallelization of population
fitness evaluation is compatible with an MtM store-and-reuse approach for the trade incremental XVA
computations. Combining the two techniques results in an XVA compression time independent of the
sizes of the initial portfolio of the bank and of the population of the genetic algorithm used for the
optimization, which represents an XVA compression computation time gain factor of the order of

Number of trades in the initial portfolio× population size.

4. Case Study334

In the remainder of the paper, we present CVA compression results on real swap portfolios3,335

using an additional swap for the CVA compression. We aim at addressing issues such as:336

• Which type of swap is suitable for achieving the compression of the CVA, in the context of a given337

initial portfolio?338

• How does the compression distort the portfolio exposure, with or without penalization?339

To ease the implementation of the MtM store-and-reuse approach, we assume no CSA (cf. Sect. 3.1).340

4.1. New Deal Parameterization341

A swap is parameterized by its notional, its maturity, its direction, and its currency. The342

quantitative parameters are encoded through grids of values:343

• Notional: from 105 to 107 by step of 105 dollars,344

• Maturity: from 1 to 20 years by step of 1 year, 30 years and 50 years.345

The qualitative parameters are encoded as enumerations of values:346

• currency : Euro, US dollar, GBP or Yen.347

• direction : A binary variable for payer or receiver.348

3 The underlying interest rate and FX models are proprietary and cannot be disclosed in the paper. We use a deterministic
credit spread model for the counterparty, calibrated to the CDS term structure of the latter.
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Moreover we impose the additional swap to be at par so that it can be entered at no cost, which is349

equally desirable from the bank and the client perspectives.350

The above parameterization defines a discrete search space A with 100× 22× 4× 2 = 1.76× 104
351

elements.352

4.2. Design of the Genetic Algorithm353

We address the optimization problem (7) by a genetic algorithm as per Section 2.3. The new deal354

space A in (7) is viewed as a space of chromosomes x, the genes (deal parameters) of which evolve355

randomly along the iterations of the algorithm as detailed in Sect. 2.3.356

In the theoretical literature on genetic algorithms, an individual is represented as a bit string357

. In practice, however, bit string representation of parameters does not give enough control on the358

mutation distribution. Namely, in bit string representation, mutations affect all bits uniformly, whereas359

we might want to mutate some parameters more frequently (the quantitative parameters, in particular,360

as the algorithm tends to quickly identify the relevant values of the qualitative parameters). Hence, we361

rather model our individuals x by a variable string, a choice also made in (Kondratyev and Giorgidze362

2017).363

We choose rank proportionate selection to avoid fitness scaling issues. More precisely, if we have
a population P = {1, ..., P} of P individuals and the associated fitnesses ( fi)i∈P , then the probability
to select chromosome i is

pi =
2rank( fi)

P(P + 1)
,

where rank is a function that ranks chromosoms according to their fitness value (returning one for the364

highest value, in the context of a minimization problem).365

Regarding the crossover operator, we use a uniform crossover mask, i.e. the choice of gene366

inherited from one parent or another is drawn with a uniform probability.367

Regarding mutations, the probability to mutate a gene is proportional to the number of alleles368

(values) that it can take. The mutation operator then selects uniformly a new gene allele (value).369

In our experiments, the notional of the new swap can take 100 different values, its currency370

4 values, its position 2 values, its maturity 22 values. Hence, when a chromosome is selected for371

mutation, the probability to mutate each of its genes is equal to 100
128 for the notional, 22

128 for the maturity,372

4
128 for the currency, and 2

128 for the position. Indeed , a more frequent mutation of notional and373

maturity parameters are desirable. Diversity for currency and position is ensured at the initialization374

of the algorithm (with a large population) and maintained across the iterations thanks to the crossover375

operator. A prerequisite for a successful implementation is a reasonable specification of the search376

space A.377

Hyperparameters strongly impact the behavior of the algorithm. In the case of XVA compression,378

which is time-consuming, searching good values for the hyperparameters by a grid search method379

would be too demanding computationally. In our numerics, the mutation rate rm is set to 20% and380

the crossover rate rc to 50%. In the genetic algorithms literature the crossover rate is often close to381

one, but for problems with few genes (i.e. components of x, or parameters, only four in our case), it is382

recommended to select a smaller value.383

With parallelization in mind (see Sect. 3.2), we prefer to decrease the number of iterations even if it384

implies to explore more solutions. We set the genetic algorithm population size to P = 100 individuals385

and we limit the number of iterations to 5. Hence, we value the fitness function on 600 tentative new386

swaps x.387

4.3. Results in the Case of Payer Portfolio Without Penalization388

First, we consider a portfolio only composed of payer swaps. The expected exposure (EE) and the389

expected positive and negative exposures (EPE and ENE), i.e. EMtMt and EMtM±t , are shown as a390

function of time t in Figure 3, which illustrates the asymmetric market risk profile of the portfolio.391
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Figure 3. Market risk profile of the portfolio (payer portfolio without penalization)

Our first point is to verify that the algorithm without penalization, i.e. for α = 0 in (7), will select392

a receiver swap with a maturity comparable to those of the swap of the initial portfolio.393

Table 1 reports after each iteration the three best solutions (from top to bottom) ever found since394

the beginning of the algorithm (in terms of the fitness criterion (7) with α = 0, i.e. ∆CVA=). A negative395

incremental CVA means that the new swap decreases the counterparty risk of the bank. The initial396

portfolio CVA amounts to 34929e. We also report the |DV01|s of the augmented portfolios in order to397

be able to assess the impact of the penalization in our next experiment.398

Iter. Mat. (yrs) Not. (Ke) Rate (%) Curr. Pos. ∆CVA (e) −∆CVA
CVA (in %) |DV01|(e)

0
10 4800000 1.6471 GBP Receive -8019 23.0 4484
10 4700000 1.6471 GBP Receive -7948 22.8 4390
10 4600000 1.6471 GBP Receive -7872 22.5 4297

1
17 5600000 1.4623 EUR Receive -17249 49.4 8648
12 5400000 1.7036 GBP Receive -9163 26.2 5957
16 3900000 0.6377 JPY Receive -8760 25.1 6137

2
14 6600000 1.3416 EUR Receive -21680 62.1 8626
17 5100000 1.4623 EUR Receive -19729 56.5 7875
17 5600000 1.4623 EUR Receive -17249 49.4 8648

3
14 6600000 1.3416 EUR Receive -21680 62.1 8626
17 5100000 1.4623 EUR Receive -19729 56.5 7875
17 5600000 1.4623 EUR Receive -17249 49.4 8648

4
17 3300000 1.4623 EUR Receive -27300 78.2 5096
12 6100000 1.2203 EUR Receive -25382 72.7 6959
11 5600000 1.147 EUR Receive -23009 65.9 5908

5
17 3300000 1.4623 EUR Receive -27300 78.2 5096
12 6100000 1.2203 EUR Receive -25382 72.7 6959
12 5100000 1.2203 EUR Receive -25264 72.3 5818

Table 1. Evolution of optimal solutions after each iteration (payer portfolio without penalization).

As seen in Figure 4, a stabilization of the algorithm is observed after 4 iterations, on a new swap399

leading to a CVA gain of about 27300e, i.e. about 78% of the initial portfolio CVA. The maturity and400

the notional are found the two most sensitive genes in the optimization. The maturity of the swap is401

chosen by the algorithm so as to reduce the exposure peak: The decrease of the exposure on the first 8402

years of the portfolio is visible in terms of EPE profile on figure 5 and of CVA profile4 on Figure 6.403

4 Term structure obtained by integrating the EPE profile against the CDS curve of the counterparty from time 0 to an increasing
upper bound t ≤ T (cf. (3)).
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Figure 4. Fitness value as a function of iteration number (payer portfolio without penalization).

Figure 5. Market risk profile of the portfolio before and after optimization (payer portfolio without
penalization).

Figure 6. CVA profile before and after optimization (payer portfolio without penalization).
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4.4. Results in the Case of Payer Portfolio With Penalization404

We keep the same initial portfolio but we now penalize our objective function by the |DV01| of405

the new swap, setting the regularization parameter α to one in (7). As will be seen below, this choice406

achieves a good balance between the two terms ∆CVA and αDV01 in (7).407

Iter. Mat. (yrs) Not. (Ke) Rate (%) Curr. Pos. ∆CVA (e) −∆CVA
CVA (in %) |DV01|(e)

0
10 4500000 1.6471 GBP Receive -7790 22.3 4218
10 4600000 1.6471 GBP Receive -7871 22.5 4311
10 4700000 1.6471 GBP Receive -7947 22.8 4405

1
17 5600000 1.4731 EUR Receive -16892 48.4 8706
10 4500000 1.6471 GBP Receive -7790 22.3 4217
10 4600000 1.6471 GBP Receive -7871 22.5 4311

2
14 6600000 1.3336 EUR Receive -21888 62.7 8654
17 5600000 1.4731 EUR Receive -16892 48.4 8706
17 6100000 1.4531 EUR Receive -15038 43.1 9466

3
14 6600000 1.3336 EUR Receive -21888 62.7 8654
17 5600000 1.4731 EUR Receive -16892 48.4 8706
9 4500000 0.9584 EUR Receive -10454 29.9 3945

4
10 6600000 1.3336 EUR Receive -21888 62.7 8654
11 6600000 1.3999 EUR Receive -18825 53.9 9207
17 5600000 1.4731 EUR Receive -16892 48.4 8706

5
11 2900000 1.3811 EUR Receive -25059 71.7 4039
18 1500000 1.48 EUR Receive -18258 52.3 2442
17 1500000 1.4531 EUR Receive -16553 47.4 2327

Table 2. Evolution of optimal solutions after each iteration (payer portfolio with penalization).

Figure 7. Fitness as a function of iteration number (payer portfolio with penalization).

In the present context of a payer portfolio, |DV01| control and CVA gain are two antagonistic408

targets. This may explain why the algorithm seems to struggle in finding a stable solution: indeed, the409

last iteration still decreases the fitness significantly (see Figure 7).410

During the execution (see Table 2), the algorithm first optimizes the CVA and then (in iteration 5)411

reduces the |DV01|. This is due to the difference of order of magnitude between ∆CVA and |DV01|412

(recalling α = 1): ∆CVA is more important, hence the algorithm only takes care of the penalization413

once ∆CVA has been compressed.414

In the end, the gains in CVA are of the same order of magnitude as in the case without penalization415

(92% of the CVA gain without penalization), but for about 20% of |DV01| less than before. The second416

and third best solutions also achieve a great CVA gain, while diminishing the |DV01| by a factor three417

with respect to the nonpenalized case. By comparison with the unpenalized case (cf. Tables 1 and 2),418
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the trades identified by the algorithm have a lower maturity or a smaller notional, hence a smaller419

|DV01|.420

See Figures 8 and 9 for the corresponding market risk and CVA profiles before and after the421

optimization.

Figure 8. Market risk profile of portfolio before and after optimization (payer portfolio with
penalization).

Figure 9. CVA profile before and after optimization (payer portfolio with penalization).
422

4.5. Results in the Case of a Hybrid Portfolio With Penalization423

Next, we challenge our algorithm with a more balanced initial portfolio, as shown in Figure 10 (to424

be compared with Figure 3). The initial CVA is now 6410e. We set the regularization parameter α in425

(7)) to 0.3, as opposed to 1 in the previous case, in view of the lower CVA of the initial portfolio.426

As visible in Figure 11, the stabilization of the algorithm occurs after three iterations, showing that,427

for the hybrid portfolio, |DV01| penalization and ∆CVA play less antagonistic roles. This is obtained428

by a relatively small notional and a maturity limited to 9 years, versus 11 years in the previous case of429

a payer portfolio with penalization. The corresponding market risk and CVA profiles, before and after430

the optimization, are displayed in Figures 12 and 13. Figure 12 explains the choices operated by the431

algorithm : As we restrict our incremental strategy to one swap, the algorithm limits the EPE until the432

first positive peak before 2026. A better strategy, but one outside our search space A, would be to add433

a second swap with entry date in 2028 and end date in 2037.434
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Figure 10. Market risk profile of the portfolio (hybrid portfolio with penalization).

Iter. Mat. (yrs) Not. (Ke) Rate (%) Curr. Pos. ∆CVA (e) −∆CVA
CVA (in %) |DV01|(e)

0
1 6000000 0.025 JPY Receive 14 -0.2 609
1 6100000 0.025 JPY Receive 14 -0.2 619
1 6300000 0.025 JPY Receive 14 -0.2 640

1
8 1500000 0.8565 EUR Receive -1905 29.7 1177
6 2300000 0.586 EUR Receive -1166 18.2 1370
9 700000 1.608 GBP Receive -820 12.8 595

2
8 1500000 0.8565 EUR Receive -1905 29.7 1177
6 2300000 0.586 EUR Receive -1166 18.2 1370
9 700000 1.608 GBP Receive -82 12.8 595

3
9 1900000 0.9584 EUR Receive -2284 35.6 1665
8 1500000 0.8565 EUR Receive -1905 29.7 1177
7 2700000 0.7225 EUR Receive -1628 25.4 1865

4
9 1900000 0.9584 EUR Receive -2284 35.6 1665
8 1500000 0.8565 EUR Receive -1905 29.7 1177
7 2700000 0.7225 EUR Receive -1628 25.4 1865

5
9 1900000 0.9584 EUR Receive -2284 35.6 1665
8 1500000 0.8565 EUR Receive -1905 29.7 1177
9 2500000 0.9584 EUR Receive -1942 30.3 2192

Table 3. Evolution of optimal solutions after each iteration (hybrid portfolio with penalization).

Figure 11. Fitness value as a function of iteration number (hybrid portfolio with penalization)
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Figure 12. Market risk profile of portfolio before and after optimization (hybrid portfolio with
penalization).

Figure 13. CVA profile before and after optimization (hybrid portfolio with penalization).

5. Conclusion435

There exists a trade-off between CVA compression and DV01 penalization, which have436

antagonistic influences on the incremental exposure. Provided the search space for incremental437

trades is adequately chosen and parameterized, genetic optimization can result in significant CVA438

gains and, under DV01 penalization, this can be achieved without too much impact on the market risk439

of the bank position.440

On the portfolios considered in our case studies, with ten to twenty trades, a basic XVA441

compression run on a standard PC without the acceleration techniques of Section 3 takes about 20442

hours. The time gain resulting from an MtM store-and-reuse implementation of the trade incremental443

XVA computations as per Section 3.1 primarily depends on the size of the initial portfolio, but also444

on the maturity, and complexity more generally (vanilla vs. callable or path-dependent,...), of the445

constituting trades. Likewise, the time gain resulting from a parallel implementation of the genetic446

algorithm as per Section 3.2 primarily depends on the population size P, but it can be deteriorated447

by grid latency, hardware limitation, or data flow management, features. In our simulations, an448

MtM store-and-reuse implementation of the trade incremental XVA computations reduces the XVA449

compression time to about seven hours; A further parallel implementation of the genetic optimization450

algorithm lowers the execution time to about one hour.451

The case study of this paper is only a first step toward more complex optimizations. One could452

thus enlarge the search space with, e.g., crosscurrency swaps. In this case, the market risk penalization453

should be revisited to penalize other risk factors, beyond interest rate risk that is already accounted for454

by |DV01|. The penalization could also be refined with a focus on forward mark-to-market, i.e. market455

risk in the future (our current |DV01| penalization only controls spot market risk).456
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CVA compression strategies involving several additional trades could be implemented. A first step457

toward such a multi-variate, multi-trade, compression would be an iterated application of single-trade458

XVA compressions, whereby, after each compression, the optimally augmented portfolio becomes the459

initial portfolio for the next compression. The benefit of such an iterative approach would be the ability460

to work with a search space A (or a sequence of them) of constant size, as opposed to a global search461

space A that would need to grow exponentially with the number of new trades in the case of a single462

multi-trade compression cycle.463

Additional XVA metrics, and ultimately the all-inclusive XVA add-on (1), should be included in464

the compression (which, in particular, would allow one to identify possible XVA cuts across different465

netting sets).466
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Abbreviations481

The following abbreviations are used in this manuscript:482

483

CDS Credit default swap
CVA Credit valuation adjustment
DV01 Dollar value of an 01
EE Expected exposure
EPE Expected positive exposure
ENE Expected negative exposure
FVA Funding valuation adjustment
KVA Capital valuation adjustment
MtM Mark-to-market
MVA Margin valuation adjustment
OIS Overnight indexed swap
OTC Over-the-counter
XVA Generic “X” valuation adjustment

484

Appendix A. Single Point Crossover485

Let (p1, p2) be a pair of chromosomes chosen as parents and let (c1, c2) denote the children. We486

assume that each chromosome has four genes A, B, C, D, that p1 has gene versions {A1, B1, C1, D1}487

and p2 has gene versions {A2, B2, C2, D2}. For a single point crossover, we draw uniformly an integer i488

such the first i genes for c1 are inherited from p1 and the remaining genes are transferred from p2 to c1,489

and symmetrically so for c2. For instance, if we draw i = 2, then c1 has gene versions {A1, B1, C2, D2},490

and c2 has gene values {A2, B2, C1, D1}.491
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