1901.11081v2 [g-fin.CP] 17 Oct 2019

arXiv

Gaussian Process Regression for Derivative Portfolio
Modeling and Application to CVA Computations

Stéphane Crépey*
LaMME, Univ Evry, CNRS, Université Paris-Saclay, 91037, Evry, France

and

Matthew F. Dixon'
Department of Applied Mathematics, Illinois Institute of Technology.

October 18, 2019

Abstract

Modeling counterparty risk is computationally challenging because it requires the
simultaneous evaluation of all the trades with each counterparty under both market
and credit risk. We present a multi-Gaussian process regression approach, which is
well suited for OTC derivative portfolio valuation involved in CVA computation. Our
approach avoids nested simulation or simulation and regression of cash flows by learning
a Gaussian metamodel for the mark-to-market cube of a derivative portfolio. We model
the joint posterior of the derivatives as a Gaussian process over function space, with
the spatial covariance structure imposed on the risk factors. Monte-Carlo simulation
is then used to simulate the dynamics of the risk factors. The uncertainty in portfolio
valuation arising from the Gaussian process approximation is quantified numerically.
Numerical experiments demonstrate the accuracy and convergence properties of our
approach for CVA computations, including a counterparty portfolio of interest rate
swaps.

Keywords: Gaussian processes regression, surrogate modeling, mark-to-market cube, deriva-
tives, credit valuation adjustment (CVA), uncertainty quantification.

Mathematics Subject Classification: 91B25, 91G20, 91G40, 62G08, 68Q32.

*Stéphane Crépey is a Professor in the Department of Mathematics, University of Evry, Paris Saclay.
E-mail: stephane.crepey@univ-evry.fr. The research of S. Crépey benefited from the support of the Chair
Stress Test, RISK Management and Financial Steering, led by the French Ecole polytechnique and its
Foundation and sponsored by BNP Paribas.

TMatthew Dixon is an Assistant Professor in the Department of Applied Mathematics, Illinois Institute

of Technology, Chicago. E-mail: matthew.dixon@iit.edu. The research of M. Dixon is supported by a grant
from Intel Corp.
Acknowledgement: The authors are grateful to Marc Chataigner, Areski Cousin, Mike Ludkovski and the
anonymous referees, for insights and feedback, and to Bouazza Saadeddine for the generation of the mark-
to-market cube that served as a basis for the regression exercise of Section An earlier version of this
paper was presented at Quantminds 2019 in Vienna, SIAM FME 2019 in Toronto, and AMAMEF 2019 in
Paris.

1 Introduction

Post the global financial crisis of 2007-2008, banks have been subject to much stricter reg-
ulation and conservative capital and liquidity requirements. Pricing, valuing and managing
over-the-counter (OTC) derivatives has been substantially revised to more robustly capture
counterparty credit risk. Pricing and accounting now includes valuation adjustments collec-
tively known as XVAs (Abbas-Turki et al.| (2018); |[Kenyon and Green| (2014)); |Crépey et al.
(2014)). The BCBS pointed out that 2/3 of total credit losses during the 2007-2009 crisis
were CVA losses, i.e. CVA increases, where the CVA liability of a bank is its expected loss
triggered by future counterparty defaults. As a consequence, a CVA capital charge has been
introduced since the initial phase of the Basel III framework in December 2010.

Modeling counterparty risk is computationally challenging because it requires the eval-
uation of all the trades with each counterparty under market and credit simulation. For
instance, CVA computation requires pathwise pricing of each counterparty portfolio under
simulated market moves, with counterparty default modeled separately. The sensitivities of
the CVA, with respect to all the underlying market risk buckets, are required for hedging.

The main source of computational complexity in XVA computations arises from the ne-
cessity of revaluing portfolio holdings (including path dependent or early exercise options)
in numerous future dynamic scenarios. In the case of XVA (first-order) sensitivities, there
has been much progress towards real-time estimation using adjoint algorithmic differentia-
tion (Giles and Glasserman| (2005)); (Capriotti et al.| (2011)); |Capriotti| (2011); |[Antonov et al.
(2018); Huge and Savine| (2017)). However, algorithmic differentiation is still very chal-
lenging to implement at the level of a banking derivative portfolio, and it typically comes
at the cost of more or less drastic simplifications of the xVA metrics to be differentiated.
Hence, bump-and-revalue sensitivities remain useful (and are in fact unavoidable regarding
second-order sensitivities) and, again, multiple and fast valuation is required.

In this paper, we investigate the possible use of Gaussian processes (GP) regression
as a metamodel of the mark-to-market (MtM) cube, i.e. the value of client portfolios in
future time points and scenarios. Our approach consists in simulating the market risk
factors forward in time and then interpolating the mark-to-market cube from a set of model
generated, reference derivative prices. Such an approach is predicated on the notion that
a GP model, once trained, can provide fast and reliable prices (as well as the associated,
analytically differentiated Greeks).

We refer the reader to Rasmussen and Williams| (2006) for a general introduction to
Gaussian process regression, or simply Gaussian processes (GPs). As opposed to frequentist
machine learning techniques, including neural networks or support vector machines, which
only provide point estimates, GPs quantify the uncertainty of their predictionsﬂ A high
uncertainty in a prediction might result in a GP model estimate being rejected in favor of
either retraining the model or even using full model revaluation. Another motivation for
using GPs is the availability of efficient training method for the model hyper-parameters.
In addition to a number of favorable statistical and mathematical properties, such as uni-
versality (see [Micchelli et al.| (2006)), the implementation support infrastructure is mature
and provided by open source machine learning packages such as GpyTorch, scikit-learn,
Edward, or STAN.

GPs have demonstrated much success in applications outside of finance and sometimes
under the name of kriging. The basic theory of prediction with Gaussian processes dates

IThrough out this paper, we will refer to ’prediction’ as out-of-sample point estimation. For avoidance
of doubt, the test point need not be in the future as the terminology suggests.

back to at least as far as the time series work of Kolmogorov or Wiener in the 1940s (see
Whittle and Sargent| (1983)). Examples of applying GPs to financial time series prediction
are presented in|Roberts et al.|(2013]). These authors helpfully note that AR(p) processes are
discrete time equivalents of GP models with a certain class of covariance functions, known
as Matérn covariance functions. Hence, GPs can be viewed as a Bayesian non-parametric
generalization of well known econometrics techniques. |da Barrosa et al.| (2016]) present a
GP method for optimizing financial asset portfolios.

The adoption of kriging methods in financial derivative modeling is more recent. The
underlying data to which the GP is fitted are then typically generated by the user itself in
a model, rather than market data—somewhat counter the motivation for adopting machine
learning, but also the case in other recent computational finance applications such as Her-
nandez| (2017)), |E et al.| (2017)), or Biihler et al.| (2018). The motivation is then fast pricing,
once the prediction algorithm has been trained off-line as a pre-processing stage.

Cousin et al.| (2016)) introduce shape-constrained GPs to ensure non-arbitrable and error-
controlled yield-curve and CDS curve interpolation. [Ludkovski and Gramacy| (2015) and
Ludkovski| (2018)) reformulate the Bermudan option pricing problem as a response surface
metamodeling problem, which they address by kriging. In the context of expected shortfall
computations, |[Liu and Staum| (2010) and [Ludkovski and Risk (2018) use GPs to infer
portfolio values in a given scenario, based on inner-level simulation of nearby scenarios. This
significantly reduces the required computational effort by restricting inner-level simulations
to few selected scenarios, while naturally taking account of the variance that arises from
inner-level simulation.

Spiegeleer et al| (2018) propose offline learning of a derivative pricing function through
Gaussian process regression. Specifically, the authors configure the training set over a grid
and then use the GP to interpolate at the test points. They demonstrate the speed up of GPs
relative to Monte-Carlo methods and tolerable accuracy loss applied to pricing and Greek
estimation with a Heston model, in addition to approximating the implied volatility sur-
face. The increased expressibility of GPs compared to cubic spline interpolation, a popular
numerical approximation techniques useful for fast point estimation, is also demonstrated.

However, the applications shown in |Spiegeleer et al.| (2018)) are limited to single instru-
ment pricing, they do not consider the portfolio aspects. In particular, their study is limited
to single-response GPs, as opposed to also multi-response GPs in this work (respectively
referred to as single- vs. multi-GPs for brevity). In a single-GP setting, individual GPs are
used to model the posterior of each predicted derivative price under the assumption that the
derivative prices are independent, conditional on the training data and test input. Given
that either the derivatives may share common underlyings, or the underlyings are different
but correlated, this assumption is clearly violated in practice. By contrast, multi-GPs (see
Alvarez et al. (2012)) for a survey) directly model the uncertainty in the prediction of a
vector of derivative prices (responses) with spatial covariance matrices specified by kernel
functions. Thus the amount of error in the mark-to-market cube prediction (the prediction
itself does not change) can only be adequately modeled using multi-GPs.

Outline This paper uses single- and multi-GPs for learning the posterior distribution of
a mark-to-market cube, which is then used in the context of CVA computations. Section
reviews single-response GPs and Section |3 illustrates their use for derivative pricing and
Greeking applications. Section [4] extends the setup to a multi-response generalization of
GPs. Section [f] deals with CVA computations using a Monte Carlo GPs approach, whereby
the GP predicted MtM cube is used for valuing the derivative portfolio of the bank at the

nodes of a Monte Carlo simulation for the bank CVA. The concluding Section [6] summarizes
our findings and puts GPs in perspective with either simpler or more elaborate regression
alternatives. Some of the numerical examples are illustrated with Python code excerpts
demonstrating the key features of our approach. All performances are based on a 2.2 GHz
Intel Core i7 laptop. These and additional examples are provided in the Github repository
https://github.com/mfrdixon/GP-CVA. The examples can be run using the command
ipython notebook (once the required packages have been loaded).

Note that our setup involves both the randomness of financial risk factors and the
Bayesian uncertainty relative to GP estimation. For clarity of exposition, we denote by P
and E the probability and expectation with respect to a pricing measure, and by E (respec-
tively var or cov) a GP point (respectively variance or covariance) estimate. A confidence
interval refers to a Monte Carlo estimate relative to the randomness of the financial risk
factors, whereas an uncertainty band refers to the GP estimation procedure (both computed
at the 95% probability level).

2 Single-Output Gaussian Processes

This section is a primer on (standard, single-) Gaussian processes inference, written in the
classical Bayesian statistics style. Financial readers not acquainted with it may refer to
Rasmussen and Williams| (2006) MacKay| (1998]), and [Murphy| (2012, Chapter 15) for more
background and detail.

Statistical inference involves learning a function ¥ = f(X) of the data, (X,Y) :=
{(xi,y;) | © = 1,...,n}. The idea of Gaussian processes (GPs) is to, without parame-
terizingﬂ f(X), place a probabilistic prior directly on the space of functions. The GP is
hence a Bayesian nonparametric model that generalizes the Gaussian distributions from
finite dimensional vector spaces to infinite dimensional function spaces. GPs are an exam-
ple of a more general class of supervised machine learning techniques referred to as ‘kernel
learning’, which model the covariance matrix from a set of parametrized kernels over the
input. GPs extend and put in a Bayesian framework spline or kernel interpolators, as well
as Tikhonov regularization (see Rasmussen and Williams| (2006]) and |Alvarez et al.| (2012)).
Neall (1996) also observed that certain neural networks with one hidden layer converge to a
Gaussian process in the limit of an infinite number of hidden units.

In this section we restrict ourselves to the simpler case of single-response GPs where f
is real-valued (multi-response GPs will be considered in Section .

2.1 Gaussian Processes Regression and Prediction

We say that a random function f : RP — R is drawn from a GP with a mean function
u and a covariance function, called kernel, k, i.e. f ~ GP(u, k), if for any input points
X1,X2,...,X, in RP, the corresponding vector of function values is Gaussian:

[f(xl)af(XQ)a .. af(xn)] ~ N(/U‘7KX,X)7

2This is in contrast to nonlinear regressions commonly used in finance, which attempt to parameterize a
non-linear function with a set of weights.

for some mean vector p, such that p; = u(x;), and covariance matrix Ky x that satisfies
(Kx,x)ij = k(xi,%;). Unless specified otherwise, we follow the conventiorﬂ in the literature
of assuming p = 0.

Kernels k£ can be any symmetric positive semidefinite function, which is the infinite-
dimensional analogue of the notion of a symmetric positive semidefinite (i.e. covariance)
matrix, i.e. such that

Z k(x;,x;)&€&; > 0, for any points x; € RP and reals &.
i,j=1

Radial basis functions (RBF) are kernels that only depend on ||x —x’||, such as the squared
exponential (SE) kernel

1
k(x,x') = exp{——||x — x||*}, 1

(x.%) = exp{— 55— %1%} (1)
where the length-scale parameter £ can be interpreted as “how far you need to move in input
space for the function values to become uncorrelated”, or the Matern (MA) kernel

v

21~ Ix—x']1\" lIx — x|
um(“”e>19<“”<z> @)

(which converges to in the limit where v goes to infinity), where £ and v are non-negative
parameters, I' is the gamma function, and K, is the modified Bessel function of the second
kind. One advantage of GPs over interpolation methods is their expressability. In particular,
one can combine the kernels by convolution (cf. [Melkumyan and Ramos| (2011))). Moreover,
the regularity of the GP interpolation is controllable through the one of the kernel.

GPs can be seen as distributions over the reproducing kernel Hilbert space (RKHS)
of functions which is uniquely defined by the kernel function, & (see |[Scholkopf and Smola
(2001)). GPs with RBF kernels are known to be universal approximators with prior support
to within an arbitrarily small epsilon band of any continuous function (see [Micchelli et al.
(2006)).

GPs also provide “differential regularity” — GPs are RKHSs defined in terms of differ-
ential operators, with the Hilbert norm of the latent function having the effect of penalizing
the gradients. Regularity of the GP interpolation is thus controllable through the choice of
the kernel and smoothing parameters (see Section 6.2 of |Rasmussen and Williams| (2006])).

One limitation of the kernel is that it does not reveal any hidden representations —
failing to identify the useful features for solving a particular problem. The issue of feature
discovery can be addressed by GPs through imposing “spike-and-slab” mixture priors on
the covariance parameters (see Savitsky et al.| (2011)).

Assuming additive Gaussian i.i.d. noise, y | x ~ N (f(x),0?), and a GP prior on f(x),
given training inputs x € X and training targets y € Y, the predictive distribution of the
GP evaluated at arbitrary test points X, is:

k(x,x') =

f* |X,Y,X*NN(E[f*|X,Y,X*],var[f*|X,Y,X*D, (3)

3This choice is not a real limitation in practice (since it only regards the prior and it does not prevent
the mean of the predictor from being nonzero).

where the moments of the posterior over X, are

E[f.|X,Y, X.] = ux, + Kx, x[Kx x +0°I]'Y,

Var[f*|X, Y, X*] = KX*,X* — KX*,X[KX,X + 0'2]]_1KX,X*~ (4)
Here, Kx, x, Kx x,, Kx x, and Kx_ x, are matrices that consist of the kernel, k : RP x
R?P — R, evaluated at the corresponding points, X and X,, and pyx, is the mean function
evaluated on the test inputs X,.

In the context of derivative pricing applications, X may correspond to a set of risk
factor grid nodes, Y to the corresponding model prices (valued by analytical formulas or
any, possibly approximate, classical numerical finance pricing schemes), F[f.|X,Y,x.] to
the GP regressed prices corresponding to the new value x, € X, of the risk factors, and
var[f«| X, Y, x,] to the corresponding interpolation uncertainty. Note that the latter is only
equal to 0 if x, € X and one is in the noise-free case where ¢ has been set to 0.

We emphasize that, in a least square Monte-Carlo regression approach a la|Longstaff and
Schwartz (2001) (see e.g. |Crépey| (2013, Part IV)), we train function approximators, usually
as linear combinations of fixed basis functions, on simulated samples. By contrast, GPs are
trained on values (not samples), on a (structured or not, deterministically or stochastically
generated) grid, like a sophisticated interpolator.

2.2 Hyper-parameter Tuning

GPs are fit to the data by optimizing the evidence-the marginal probability of the data given
the model with respect to the learned kernel hyperparameters.
The evidence has the form (see e.g. [Murphy| (2012, Section 15.2.4, p. 523)):

logp(Y | X,A) = — [YT(Kx x +0°I) 'Y + logdet(Kx,x + 0°I)] — glog o, (5)

where the kernel hyperparameters A include o in (b)) and parameters of Kx x (e.g. A = [(, 0],
assuming an SE kernel as per or an MA kernel for some exogenously fixed value of v in
).

The first and second term in the brackets in can be interpreted as a model fit and
a complexity penalty term (see Rasmussen and Williams| (2006, Section 5.4.1)). Max-
imizing the evidence with respect to the kernel hyperparameters, i.e. computing * =
argmax, logp(Y | X,), results in an automatic Occam’s razor controlling the trade-off
between the regression fit and the regularity of the interpolator (see |Alvarez et al.| (2012}
Section 2.3) and Rasmussen and Ghahramani| (2001)). In practice, the negative evidence
is minimized by stochastic gradient descent (SGD). The gradient of the evidence is given
analytically by

Mlogp(Y | X, \) =tr (aa” — (Kx,x +021)") O\(Kx x +0°I)", (6)

where o := (Kx x +02I)7'Y, 0,(Kx x +0%I)7' = —20(K x,x + 0?I)™?, and, in the case
of the SE or MA kernels,

(Kxx+0o*)™" = —(Kxx+021)20Kx x (7)

(with, in the SE case, d¢k(x,x’) = £73||x — x||?k(x, x')).

2.3 Computational Properties

Training time, required for maximizing numerically, scales poorly with the number
of observations n. This stems from the need to solve linear systems and compute log
determinants involving an n X n symmetric positive definite covariance matrix K. This task
is commonly performed by computing the Cholesky decomposition of K incurring O(n?)
complexity. Prediction, however, is faster and can be performed in O(n?) with a matrix-
vector multiplication for each test point, and hence the primary motivation for using GPs
is real-time risk estimation performance.

If uniform grids are use, we have n = H]Z:l ng, where ny are the number of grid points
per variable. However, mesh-free GPs can be used as described in Section [3.3

In terms of storage cost, although each kernel matrix Kx x is n x n, we only store the
n-vector « in @, which brings reduced memory requirements.

Massively scalable Gaussian processes Massively scalable Gaussian processes (MSGP)
are a recent significant extension of the basic kernel interpolation framework described above.
The core idea of the framework, which is detailed in |Gardner et al. (2018), is to improve
scalability by combining GPs with ‘inducing point methods’. Using structured kernel in-
terpolation (SKI), a small set of m inducing points are carefully selected from the original
training points. Under certain choices of the kernel, such as RBFs, a Kronecker and Toeplitz
structure of the covariance matrix can be exploited by fast Fourier transform (FFT). Fi-
nally, output over the original input points is interpolated from the output at the inducing
points. The interpolation complexity scales linearly with dimensionality p of the input
data by expressing the kernel interpolation as a product of 1D kernels. Overall, SKI gives
O(pn + pmlogm) training complexity and O(1) prediction time per test point, using the
LanczOs Variance Estimates of [Pleiss et al.| (2018). In this paper, we primarily use the
basic interpolation approach for simplicity.

Online learning If the option pricing model is recalibrated intra-day, then the corre-
sponding GP model should be retrained. Online learning techniques permit performing this
incrementally (see [Pillonetto et al| (2010)). To enable online learning, the training data
should be augmented with the constant model parameters. Each time the parameters are
updated, a new observation (x',y’) is generated from the option model prices under the
new parameterization. The posterior at test point x, is then updated with the new training
point following

"y XY, x,)
XY Xy x) = LY X Y X 8
(X, Y %y %) T, oy X, Vo) & (8)
where the previous posterior p(f.| X, Y, x.) becomes the prior in the update and f. € Z C R.
Hence the GP learns over time as model parameters (which are an input to the GP) are
updated through pricing model recalibration.

3 Pricing and Greeking With Single-Response Gaus-
sian Processes

3.1 Pricing

In the following example, a portfolio holds a long position in both a European call and a
put option struck on the same underlying, with K = 100. We assume that the underlying
follows Heston dynamics (in risk-neutral form):

d
% _ rdt + /V;dW},
t
AV = k(0 —Vi)dt + oV, dW?, 9)
AW W2, = pdt,

where the notation is defined in Table We use a Fourier Cosine method by [Fang and
Oosterlee (2008) to generate the European Heston option price training and testing data
for the GP. We also use this method to compare the GP Greeks, obtained by differentiating
the kernel function.

Table|l|also lists the values of the Heston parameters and terms of the European call and
put option contract used in our numerical experiments. Additionally, the data is generated
using an Euler time stepper for @ using 100 time steps over a two year horizon.

Parameter description | Symbol Value
Initial stock price So 100
Initial variance Vo 0.1
Mean reversion rate K 0.1
Mean reversion level 0 0.15
Vol. of Vol. o 0.1
Risk free rate r 0.01
Strike K 100
Maturity T 2.0
Correlation p -0.9

Table 1: This table shows the values of the parameters for the Heston dynamics and terms
of the European call and put option contracts.

For each ¢; in a grid of dates (which in the context of CVA would correspond to the MtM
exposure simulation times t;, see Section , we simultaneously fit numerous GPs to both
gridded call and put prices over stock price S and volatility vV (keeping time to maturity
fixed). Then we fit a GP to the Heston pricing function from Heston prices computed
by Fourier formulas for the gridded values of S and vV. We emphasize that the Heston
dynamics @ are not used in the simulation mode in this procedure.

Listing [I| details how the GP and data are prepared to predict prices over the two
dimensional grid, for a fixed time to maturity and strike. Figures [1| and [I| (top) show the
comparison between the gridded semi-analytic and GP call and put price surfaces at various
time to maturities, together with the GP estimate. Within each column in the figures,
the same GP model has been simultaneously fitted to both the call and put price surfaces

U

oo W

; lmbda

over a 30 x 30 grid C © := [0,1] x [0,1] of stock prices and Volatilitiesﬂ for a given
time to maturity. The bottom panel of the figure shows the error surfaces between the GP
and semi-analytic estimates. The scaling to the unit domain is not essential. However, we
observed superior numerical stability when scaling.

Across each column, corresponding to different time to maturities, a different GP model
has been fitted. The GP is then evaluated out-of-sample over a 40 x 40 grid Qp C €, so
that many of the test samples are new to the model. This is repeated over the various dates
t;. The option model versus GP model are observed to produce very similar values.

(a) Price: T —t=1.8 (b) Price: T—t=1.0 (c) Price: T —t=0.2

— Exact — Exact
— @ — G

v 150 ° v 150

04 04 0.4

Vofyy,, 06 - %0 S Yo/34;, 06 - %0 S Vol 06 - 50 S

iy, 08 30 Wiy, oo a0 iy, og 300
10 :0 w0 B0 10 30

— Exact
— G

(a) Error: T —t=1.8 (b) Error: T —t=1.0 (c) Error: T —t=0.2

Figure 1: This figure compares the gridded Heston GP and semi-analytic (’exact’) model
call prices (top) and error (bottom) surfaces at various time to maturities. The GP esti-
mate is observed to be practically identical (on average it’s slightly above the semi-analytic
solution). Within each column in the figure, the same GP model has been simultaneously
fitted to both the Heston model call and put price surfaces over a 30 x 30 grid of prices and
volatilities, fixing the time to maturity. Across each column, corresponding to different time
to maturities, a different GP model has been fitted. The GP is then evaluated out-of-sample
over a 40 x 40 grid, so that many of the test samples are new to the model. This is repeated
over various time to maturities.

import PyHeston

S= 100
v0 = 0.1

meanV
sigma
r = 0.01
K = 100

[
o O O
— =
(S

4Note that the plot uses the original coordinates and not the re-scaled co-ordinates.

T

1b

(a) Price: T —t=1.8

— Bract
— @

M
’%%%,”;%IMIIIIWIIHIII
”lﬂlﬂlllllﬂ;{"]

i
it

i
T
. . HIEIH g l”,ﬁ%ij’,%'

04 .
05 300~
“ol, Uy, 08 507"
w0 w0

(a) Error: T —t=1.8

— Emor

(b) Price: T —t=1.0

— Bt
—

(m
3 J%5%%%%%%%’
w
) [
”/”[I’/]lf”””ﬂ”lI”Ilflllﬂll’ll
- I

S .]
06 3
olati) < ™

(b) Error: T —t=1.0

0z SR

04 B R
Vol 2 S

(c) Price: T —t=0.2

5”:%1mmmmm,rmm
11171

I
[l
l%’” o

L
i

- 04 - 200
06 - E
ol %0

(c) Error: T —t=0.2

Figure 2: Similar as Figurefor the put (instead of call) options.

= 2.0
rho =-0.9
step-size = 0.4 #used

=1

7 ub = 400

portfolio = {}
portfolio [’ call ’]={}
portfolio ['put’]={}

tr
te

x1_train = np.array(np.linspace (0.0,1.0,
reshape (training_number ,
x2_train = np.array (np.linspace (0.05,1.0,
reshape (training_number ,

X

%< o

X _

aining_number = 30
sting_-number = 40

1_train ,

) 2)

X2_train = np.meshgrid(x1l_train
train = np.zeros(len(X1_train.flatten ())*2).reshape(len(X2_train. flatten ())

internally by Heston pricer

1)
1)

x2_train)

train [: ,0] = X1_train.flatten ()

x_train [:,1] = X2_train. flatten ()

x1_test = np.array(np.linspace (0.0,1.0,
reshape (testing_-number ,
x2_test = np.array(np.linspace (0.05,1.0,
reshape (testing_-number ,

10

training_number), dtype=’float32’).

training_.number), dtype=’float32’).

testing_number), dtype=’float32’).

testing_number), dtype=’float32’).

X1_test, X2_test = np.meshgrid(xl_-test, x2_test)

) x_test = np.zeros(len(X1_test.flatten ())=2).reshape(len(X2_test.flatten()),

2)
x_test [:,0] = X1l_test.flatten ()
x_test [:,1] = X2_test.flatten ()
portfolio[’call’][price’]= lambda x,y,z: PyHeston.HestonCall(lb+(ub—1lb)x*x, y

, K, z, r, lmbda, meanV, sigma, rho, step_size)

5 portfolio[’put’|[' price’]= lambda x,y,z: PyHeston.HestonPut(lb+(ub—1lb)x*x, y,

K, z, r, lmbda, meanV, sigma, rho, step_sizez)

for key in portfolio.keys():

portfolio [key|['GPs’] = trainGPs(x_train, portfolio[key]|[price’],
timegrid)

portfolio[key]|[' y-tests’], portfolio[key][preds’], portfolio[key][’
sigmas’| = predictGPs(x-test , portfolio[key][price’], portfolio [key][GPs
'], timegrid)

Listing 1: This Python 3.0 code excerpt illustrates how to use a GP to fit to option prices
under a Heston model. 1 and o are gridded underlying stock values and wvolatilities
respectively. Note that the listing provides the salient details only and the reader should
refer to Example-6-GP-Heston.ipynb in Github for the full implementation.

Extrapolation One instance where kernel combination is useful in derivative modeling is
for extrapolation—the appropriate mixture or combination of kernels can be chosen so that
the GP is able to predict outside the domain of the training set. Noting that the payoff
is linear when a call or put option is respectively deeply in and out-of-the money, we can
configure a GP as a combination of a linear kernel and, say, a SE kernel. The linear kernel is
included to ensure that prediction outside the domain preserves the linear property, whereas
the SE kernel captures non-linearity. Figure [3] shows the results of using this combination
of kernels to extrapolate the prices of a call struck at 110 and a put struck at 90. The
linear property of the payoff function is preserved by the GP prediction and the uncertainty
increases as the test point is further from the training set.

The above examples are trained on (semi)-analytic Black-Scholes and Heston prices, so
the quality of the approximator can be assessed.

In a realistic application where approximators are trained on more general products in
more general models, more complex, possibly approximate pricing schemes (including Monte
Carlo inner simulations) could be required to find the values on the knot points.

3.2 Greeking

The GP provides analytic derivatives with respect to the input variables
Ix. E[f|X,Y, X\] = Ox, px., + (0x, Kx, x)o (10)

where Ox, Kx, x = %z(X—X*)KX*,X and we recall from after @ that a = [Kx x+021]71Y
(and in the numerical experiments we set 1 = 0). Second order sensitivities are obtained by
differentiating once more with respect to X,.

Note that « is already calculated at (pricing) training time by Cholesky matrix factor-
ization of [Kx x + 0%I] with O(n®) complexity, so there is no significant computational
overhead from Greeking. Once the GP has learned the derivative prices, Equation is

11

1
2
3
1

100

500 + Observed Data + Observed Data
=== Exact (test) B0 - === Exact (test)
400 — Mean — Mean
Confidence &0 | Confidence
300
- =
200 40 4
100 20 -
o
100 200 300 400 50 100 IS0 200 250 300 350
) 5
(a) call price (b) put price

Figure 3: This figure assesses the GP option price prediction in the setup of a Black—
Scholes model. The GP with a Linear and SE kernel is trained on n = 50 X, Y pairs, where
X € Q" € (0,300] is the gridded underlying of the option prices and Y is a vector of call or
put prices. These training points are shown by the black '+’ symbols. The exact result using
the Black-Scholes pricing formula is given by the black line. The predicted mean (blue solid
line) and variance of the posterior are estimated from Equation over m = 100 gridded
test points, X, € Q" C [300,400], for the (left) call option struck at 110 and (center) put
option struck at 90. The shaded envelope represents the 95% uncertainty band about the
mean of the posterior. This uncertainty band is observed to increase the further the test
point is from the training set. The time to maturity of the options are fized to two years.

used to evaluate the first order MtM Greeks with respect to the input variables over the
test set. Example source code illustrating the implementation of this calculation is given in
Listing [2|

Figure 4 shows (left) the GP estimate of a call option’s delta A := % and (right) the
error between the Black—Scholes (BS) delta and the GP estimate. We emphasize that the
GP model is trained on underlying and option pricing data and not using the option’s delta.
The GP delta is observed to closely track the BS formula for the delta. Figureshows (left)
the GP estimate of a call option’s vega v := %, having trained on the implied volatility,
and BS option model prices and not using the option’s vega. The right hand pane shows
the error between the BS vega and the GP estimate. The GP vega is observed to closely
track the BS formula for the vega.
import scipy as sp
import numpy as np

from BlackScholes import x
from sklearn import gaussian_process

5 from sklearn.gaussian_process.kernels import ConstantKernel, RBF

10

11

12

13

14

15

set BS model parameters

r = 0.0002 # risk—free rate

S= 100 # Underlying spot

KC = 130 # Call strike

KP = 70 # Put strike

sigma = 0.4 # implied volatility

T = 2.0 # Time to maturity

Ib = 0.001 # lower bound on domain

12

— Exact

— e — GPEmor
000125

000100

000075

000050

Errorin &

000025

0.00000

-0.00025

00 —~0.00050

Z

150 200 20 00 [] EY 100 180 200 %0 20
H s

Figure 4: This figure shows (left) the comparison of the GP estimate of the call option’s
delta A := % and the BS delta formula. (Right) The error between the BS delta and the
GP estimate.

— Exact

— &

— GPEmor

Errorinv

-0.06

-0.08

-0.10

Figure 5: This figure shows (left) the comparison of the GP estimate of the call option’s
vega v = ‘g—g and the BS vega formula. (right) The error between the BS vega and the GP
estimate.

16 ub = 300 # upper bound on domain
17 sigma_.n = le—8 # additive noise in GP

10 call = lambda x,y: bsformula(l, lb+(ub—lb)xx, KC, r, T, y, 0)][0]
o put = lambda x,y: bsformula(—1, 1b+(ub—lb)*x, KP, r, T, y, 0)[0]

2 training_number = 100
3 testing_number = 50

5 X_train = np.array(np.linspace(0.01,1.2, training_-number), dtype='float32’).
reshape (training_number , 1)

26 X-test = np.array (np.linspace (0.01,1.0, testing_-number), dtype=’float32’).

reshape (testing_.number, 1)

28 y_train = []

30 for idx in range(len(x-train)):

31 y-train.append(call (x_train [idx], sigma))

32 y-train = np.array(y-train)

33

32 sk_kernel = RBF(length_scale=1.0, length_scale_bounds=(0.01, 10000.0))

35 gp = gaussian_process.GaussianProcessRegressor (kernel=sk_kernel ,
n_restarts_optimizer=20)

gp. fit (x_train ,y_train)

13

y-pred, sigma_hat = gp.predict(x-test, return_std=True)

1 = gp.kernel_.length_scale
rbf= gaussian_process.kernels .RBF(length_scale=1l)

Kernel= rbf(x_-train, x_-train)
K.y = Kernel + np.eye(training_number) * sigma.n
L = sp.linalg.cho_factor (K.y)

; alpha_p = sp.linalg.cho_solve(np.transpose (L), y-train)

k_s = rbf(x_test, x_train)

k_s_prime = np.zeros ([len(x-test), len(x_-train)])
for i in range(len(x-test)):
for j in range(len(x-train)):
k_s_prime[i,j]=(1.0/1%*2)«(x_train[j]—x_test [1])xk_s[i,]]

53 # Calculate the gradient of the mean using Equation in Greeking sub—section

55
56

58

of paper.
f_prime = np.dot(k_s_prime, alpha_p)/(ub—lb)

show error between BS delta and GP delta

delta = lambda x,y: bsformula (1, 1b+(ub—1b)*x, KC, r, T, y, 0)[1]

delta (x_test , sigma)—f_prime

Listing 2: This Python 3.0 code excerpt, using scikit-learn, illustrates how to calculate the
Greeks of an option by differentiating the GP price model. x are gridded underlying stock
values, so that f_prime is the estimate of the delta. If x were gridded volatilities, then
f-prime would be the estimate of the vega. The listing provides the salient details only
and the reader should refer to Example-2-GP-BS-Derivatives.ipynb in Github for the full
implementation.

3.3 Mesh-Free GPs

The above numerical examples have trained and tested GPs on uniform grids. This approach
suffers from a stringent curse of dimensionality issue, as the number of training points grows
exponentially with the dimensionality of the data (cf. Section . Hence, in practice, in
order to estimate the MtM cube, we advocate divide-and-conquer, i.e. the use of numerous
low input dimensional space, p, GPs run in parallel on specific asset classes (see Section
and |Guhaniyogi et al.| (2017).

Moreover, use of fixed grids is by no means necessary. We show here how GPs can show
favorable approximation properties with a relatively small number of simulated reference
points (cf. |Gramacy and Apley| (2015)).

Figure [6] shows predicted Heston call prices using (left) 50 and (right) 100 simulated
training points, indicated by “+”s, drawn from a uniform random distribution. The Heston
call option is struck at K = 100 with a maturity of T = 2 years. Figure [7| (left) shows the
convergence of the GP MSE of the prediction, based on the number of Heston simulated
training points.

3.4 Massively Scalable GPs

Fixing the number of simulated points to 100, but increasing the input space dimensionality,
p, of each observation point (i.e. including more and more Heston parameters), Figure

14

— GP Pregiction —— GP Prediction
— Analytical Model — Analytical Model

) ® 160 10 10 160 180 200 N) & 160 120 10 160 180 %0

S S

Figure 6: Predicted Heston Call prices using (left) 50 and (right) 100 simulated training
points, indicated by '+’s, drawn from a uniform random distribution.

110 -

MSE
training time (s)

a0 &0 & 100 120 140 1 2 3 4 5 3 7
Number of training samples

Figure 7: (Left) The convergence of the GP MSE of the prediction is shown based on the
number of simulated Heston training points. (Right) Fixzing the number of simulated points
to 100, but increasing the dimensionality p of each observation point (including more and
more Heston parameters), the figure shows the wall-clock time for training a GP with SKI.

(right) shows the wall-clock time for training a GP with SKI (see Section [2.3). Note that
the number of SGD iterations has been fixed to 1000.

Figure [8] shows the increase of MSGP training time and prediction time against the
number of training points n from a Black Scholes model. Fixing the number of inducing
points to m = 30 (see Section , we increase the number of observations, n, in the p =1
dimensional training set.

Setting the number of SGD iterations to 1000, we observe an approximate 1.4 increase
in training time for a 10x increase in the training sample. We observe an approximate 2x
increase in prediction time for a 10x increase in the training sample. The reason that the
prediction time grows with n (instead of being constant, cf. Section is due to memory
latency in our implementation—each point prediction involves loading a new test point into
memory. Fast caching approaches can be used to reduce this memory latency, but are
beyond the scope of this research.

Note that training and testing times could be improved with CUDA on a GPU, but are
not evaluated here.

15

k time for training (s)
w
k time per test point{ms)

Wall-cloc
.
-]
Wall-cloc
=
o

200 a00 500 800 1000 200 a00 600 800 1000
training size training size

Figure 8: (Left) The elapsed wall-clock time is shown for training against the number of
training points generated by a Black-Scholes model. (Right) The elapsed wall-clock time for
prediction of a single point is shown against the number of testing points. The reason that
the prediction time increases (whereas the theory reviewed in Section says it should be
constant) is due to memory latency in our implementation—each point prediction involves
loading a new test point into memory.

4 Multi-response Gaussian Processes

A multi-response Gaussian process is a collection of random vectors, any finite number of
which have matrix-variate Gaussian distribution. We borrow from |Chen et al.| (2017)) the
following formulation of a separable noise-free multi-response kernel specification as per
Alvarez et al.| (2012, Eq. (9)):

By definition, f is a d variate Gaussian process on RP with vector-valued mean function
o RP — R? kernel k : RP x RP +— R, and positive semi-definite parameter covariance
matrix Q € R4 if the vectorization of any finite collection of vectors f(x1), ..., f(x,) have
a joint multi-variate Gaussian distribution,

vec([f(x1),...,f(x,)]) ~ N (vec(M), X ® Q),

where f(x;) € R? is a column vector whose components are the functions {f;(x;)}& ,, M is
a matrix in R¥" with Mj; = p(x;), ¥ is a matrix in R®*" with Yij = k(x4,%;),and X ®Q
is the Kronecker product

Y11 .- Y12

PN O AEETEID I ¢
Sometimes ¥ is called the column covariance matrix while € is the row (or task) covari-

ance matrix. We denote f ~ MGP(u,k,Q). As explained after Eq. (10) in |Alvarez et al.
(2012), the matrices ¥ and Q encode dependencies among the inputs, respectively outputs.

4.1 Multi-Output Gaussian Process Regression and Prediction with
Noisy Observations

In practice, the observations are not drawn from a function but exhibit noise. Given n
pairs of noisy observations {(x;,y:)}",,x; € RP,y; € R? we assume the model y; =
f(x;)+e i€{l,...,n}, where y ~ MGP(u, k', Q) with k' = k(x;,x;) + ;;02, in which o2

16

is the variance of an additive Gaussian i.i.d. noise, e. The vectorization of the collection of
functions [f(x1),...,f(x,)] therefore follows a multivariate Gaussian distribution

vec([f(x1),...,f(x,)]) ~ N(0, Kx x ®Q),

where K x, x is the nxn covariance matrix of which the (¢, j)-th element [Kx x]i; = k(x;,X;).

To predict a new variable f, = [f,1,. .., fi] at the test locations X, = [Xp41,- -+, Xntm)s
the joint distribution of the training observations Y = [y1, ..., ¥»] and the predictive targets
f. are given by

Y K KT
~ MN[0, | XX XX O, 11
L’*] ([KX*,X Kx. x. (11)

where K y is an n x n matrix of which the (4, j)-th element [K'y y|ij = k' (zi,2;), Kx, x
is an m x n matrix of which the (¢, j)-th element [Kx, x]ij = k(Zn+yi,x;), and Kx, x,
is an m x m matrix with the (4,)-th element [Kx, x.]ij = k(2n4i,2n4;). Thus, taking
advantage of the conditional distribution of the multivariate Gaussian process, the predictive
distribution is:

p(vec(f.)| X, Y, X.) = N(vec(M), ¥ @ Q), (12)
where

M = K%Y x(Kxx)'Y, (13)

Y = KX*,X*—K)T(*,X(Kg(,x)flKX*,Xv (14)

O = Q. (15)

The hyperparameters and elements of the covariance matrix €2 are found by minimizing
over (A, Q) the negative log marginal likelihood of observations:

LY|X,\,Q) = %d In(2) + gln K% x|+ gln 1| + %tr((K}(VX)_lYQ_lYT). (16)

Further details of the multi-GP are given in [Bonilla et al.| (2007)), |Alvarez et al.| (2012),
and |Chen et al| (2017). The computational remarks made in Section also apply here,
with the additional comment that the training and prediction time also scale linearly (pro-
portionally) with the number of dimensions d. Note that the task covariance matrix € is
estimated via a d—vector factor b by Q = bb” 4 w?I (where the w? component corresponds
to a standard white noise term). An alternative computational approach, which exploits
separability of the kernel, is described in Section 6.1 of |Alvarez et al.[(2012), with complexity
O(d® +n?).

4.2 Portfolio Value and Market Risk Estimation

The value 7 of a portfolio of d financial derivatives can typically be expressed as a linear
combination of the components of a d-vector f of a set of underlying risk factors x, i.e.

m(x) = wlf(x). (17)

We estimate the moments of the predictive distribution p(m.|X,Y, X.) by
Em|X,Y,X.,] = wiM (18)
cov(m | X, Y, X,) = wll®Ow, (19)

17

where

M = KX x(Exx)'Y, (20)

¥ = Kx.x.— Ky, x(Kx x) 'Kx, x. (21)

In particular, yields an expression for estimating the GP uncertainty in the point
estimate of a portfolio, given the underlying risk factors, which accounts for the dependence
between the financial derivative contracts. In general financial derivative contracts in the
portfolio share common risk factors and the risk factors are correlated. Hence, a multi-GP
approach, if not too demanding computationally, should be the meta-modelling method of
choice for the {f;(x;)}L ;.

Once the vector-function f in has been learned, evaluating any portfolio spanned
by f becomes very fast. Hence the practical utility of a multi-GP approach is the ability
to quickly predict portfolio values, together with an error estimate which also accounts for
covariance of the derivative prices over the test points (conditional on the training points).

Note that the meta-model only refers to f (as opposed to the portfolio weights). Thus the
predictive distribution of the portfolio remains valid even when the portfolio composition
changes (e.g. in the context of trade incremental XVA computations, see |Albanese et al.
(2019, Section 5)). Note that, if a new derivative is added to the portfolio, we need not
necessarily retrain all the GPs—the mean posterior estimate of the original portfolio value
remains valid. However, the kernels must be relearned to update the covariance estimate.
By construction, a derivative can be subtracted from the portfolio by simply setting the
weight to zero—mno retraining is required.

GP divide-and-conquer strategies We reiterate that the benefit of using GPs is pri-
marily for fast real-time computation.

Since different GPs involved in the MtM cube computation are independent (cf. Section
, they can be trained in parallel over a grid of compute nodes such as a GPU or many-
core CPU. In the case single-GPs are used, typically the number of input variables per model
is small, and hence the training set consists of relatively few observations. The training of
multi-GPs is more challenging since it involves fitting several instruments in the portfolio.

In practice, we can identify the subset of derivatives sharing common risk factors and fit
a multi-GP to each subset. The computational overhead of multi-GP is justified by more
accurate uncertainty estimates.

Instead of fitting a GP component (correlated with the others or not) to each derivative in
a sub-portfolio as suggested above, an alternative can be to fit one single-GP per overall sub-
portfolio value. However, if the weights of the portfolio are changed, then the corresponding
GP must be re-trained. We mention these pros and cons so that the most suitable approach
can be assessed for each risk application.

4.3 Numerical Illustration

The above concepts are illustrated in Figures [0] and [I0] for a portfolio holding two long
positions in a call option struck at 110 (left) and a short position in a put option struck
at 90 (center), where Sy = 100. Recall there is one risk factor which is common to both
options—the underlying instrument S—and the maturity of each option is 2 years.

To illustrate the uncertainty band under multi-GP regression, a bivariate-GP with a MA
kernel (with v fixed to 2.5) is trained to a Black-Scholes model as a function of S on fifty

18

1

2

training points, with additive Gaussian i.i.d. noise, as displayed in Listing[3] Typically, one
would use hundreds of training points. After 300 iterations the fitted kernel lengthscale and
noise is A = [0.208, 1.356355], and the fitted task covariance matrix is

O 36.977943 —1.1028435
—1.1028435 3.068603 |-

The bivariate-GP subsequently estimates the values of the options and the portfolio at
a number of test points. Some of these test points have been chosen to coincide with the
training set and others are not in the set. The uncertainty in the point estimates is shown
by the grey bands, denoting the 95% GP uncertainty. In the portfolio case this uncertainty
is a weighted combination of the uncertainty in the point estimate of each option price and
the cross-terms in the covariance matrix in Equation . If, instead, single GPs were used
separately for the put and the call price, then the uncertainty in the point estimate of the
portfolio would neglect the cross-terms in the covariance matrix.

(a) call price (b) put price (¢) portfolio price

Figure 9: This figure compares the multi-GP option price prediction with the Black—Scholes
model. The multi-GP with a MA kernel is trained on n = 50 XY pairs, where X 1is the
underlying gridded price and Y is a d = 2-vector of corresponding call and put prices. The
predicted mean (red line) and variance of the posterior are estimated from FEquations (|18))
and over m = 100 gridded test points, S, for the (left) call option (center) put option
and (right) portfolio. The gray shaded envelope represents the 95% confidence interval about
the mean of the posterior. The exact result, using the Black-Scholes pricing formula, is
given by the black line. The time to maturity of the options are fized to two years.

To gain more insight into the components of the uncertainty, Figure [10] shows the dis-
tribution of uncertainty in the point estimates of £ = (fi,fs)" over 100 testing points. Two
experiments, with 5 and 50 training samples, are chosen to illustrate various properties in
the multi-GP setting. The former experiment (left plot in figure) is chosen to highlight the
importance of the cross-term in the posterior covariance cov(fy., fao. | X,Y, X,), which is
negative in this example. We reiterate that such a term is only represented in the multi-GP
setting. In the case of noisy data or for a large portfolio, it may yield a non-negligible
contribution to the portfolio value uncertainty.
import math
import torch
import gpytorch
import numpy as np
from scipy import

from BlackScholes import x
from scipy import stats

r = 0.0 # risk—free rate

19

201 I — var(fy | X, V. K-) 5] i — sarifi | X, Y. X.)
) ! — arfa [XK — arifiz | X, Y.X0)
|= COvar(fafiz [X, ¥,X0) covar(fufiz | X, ¥, X.)
15 - i 6 ¢
|:]
o
ol A
4 1 0 & 41 I
n H
i !
11} .:
05 b 21 b
i‘f ' h
[H
0.0 — L= 04 -
=5 0 5 05 P) 0 1 2 3 1 5
anertainty uncertainty
(a) 5 training points (b) 50 training points

Figure 10: This figure shows how multi-GPs are capable of attributing the uncertainty in the
point estimate of the portfolio value to the constituent instruments. The multi-GP with a MA
kernel is trained on X,Y pairs, where X is the gridded underlying of the option and Y is a
d = 2-vector of corresponding call and put prices. The elements of the posterior covariance
matriz are plotted as a distribution over the test set of m = 100 points. (left) Using 5
training points, we show the components of the posterior covariance. The cross terms in
the posterior covariance, which are not given by single-GPs, are observed to be negative and
material. (right) The posterior covariance with 50 training points. Each element is observed
to shrink and is more homogeneous (i.e. concentrated), leading to an overall reduction in
portfolio value uncertainty, explaining the narrow homogeneous grey uncertainty band in

Figure[9

S= 100 # Underlying spot

KC = 110 # Call strike

KP = 90 # Put strike

sigma = 0.3 # implied volatility

T = 2.0 # Time to maturity

call = lambda x: bsformula(l, lb+4(ub—1b)xx, KC, r, T, sigma, 0)[0]
put = lambda x: bsformula(—1, lb+(ub—lb)xx, KP, r, T, sigma, 0)[0]
Ib = 0.001 # lower bound on domain

ub = 300 # upper bound on domain

training_number = 50 # Number of training samples

testing_number = 100 # Number of testing samples
train-x = torch.linspace (0, 1.0, training_-number)

train_.yl = torch.FloatTensor(call(np.array(train_x)))
train_y2 = torch.FloatTensor(put(np.array (train_x)))

#Create a train_y which interleaves the two
train_.y = torch.stack ([train_yl, train_y2], —1)

class MultitaskGPModel (gpytorch . models.ExactGP) :
def __init__(self, train_x, train.y, likelihood):
super (MultitaskGPModel, self).__init__(train_x, train_y , likelihood)
self . mean_module = gpytorch.means. MultitaskMean (
gpytorch.means. ConstantMean (), num_tasks=2

20

self.covar_-module = gpytorch.kernels. MultitaskKernel (gpytorch. kernels
.ScaleKernel (
gpytorch. kernels. MaternKernel (nu=2.5)), num-_tasks=2, rank=1

)

def forward(self, x):
mean_x = self.mean_module(x)
covar_x = self.covar_-module(x)

return gpytorch.distributions.MultitaskMultivariateNormal (mean_x,
covar_x)

test-x = torch.linspace(0, 1.0, testing_number)
test_-yl = torch.FloatTensor(call (np.array(test-x)))
test_y2 = torch.FloatTensor (put(np.array (test_x)))
test_y = torch.stack ([test-yl, test_-y2], —1)

likelihood = gpytorch.likelihoods.MultitaskGaussianLikelihood (num_tasks=2)
model = MultitaskGPModel (train_x , train_y , likelihood)

model. train ()
likelihood . train ()

Use the adam optimizer

optimizer = torch.optim.Adam /(|
{’params’: model.parameters()}, # Includes GaussianLikelihood parameters
], 1r=0.1)

7" Loss” for GPs the marginal log likelihood
mll = gpytorch.mlls. ExactMarginalLogLikelihood (likelihood , model)

n_iter = 300
for i in range(n.iter):
optimizer.zero_grad ()
output = model(train_x)
loss = —mll(output, train_y)
loss . backward ()
print ('Iter %d/%d Loss: %.3f lengthscale: %.3f” % (i + 1, n_iter , loss.
item (), model.covar_-module.data_covar_-module.base_kernel.kernels [0].
lengthscale))

optimizer.step ()

Make predictions
model. eval ()
likelihood . eval ()

) with torch.no_grad (), gpytorch.settings.fast_pred_var():

y-hat= likelihood (model(test_x)) #Equation 15
lower , upper = y_hat.confidence_region () #Equation 16

Fitted parameters

5 B = model. covar_module. task_covar_module. covar_factor.clone () .detach ()

v = model.covar_module. task_covar_-module.var.clone ().detach ()

Omega = np.outer (B,B) + np.diag(v)

lengthscale=model.covar_module.data_covar_module. base_kernel.kernels [0].
lengthscale

Listing 3: This Python 3.0 code excerpt, using GPyTorch, illustrates how to train a MC-GP
for predicting the value of a toy portfolio containing a call and a put option (priced under
Black-Scholes). We used the Adam update rule for SGD. Note that the listing provides
the salient details only and the reader should refer to Example-1-MGP-BS-Pricing.ipynb in

21

Github for the full implementation.

5 CVA Computations

In this section, as an example of a portfolio risk application, we consider the estimation of
counterparty credit risk on a client portfolio. The expected loss to the bank associated with
the counterparty defaulting is given by the (unilateral, see |Albanese et al. (2019} Section
4.3)) CVA. Taking discounted expectation of the losses triggered by the client default with
respect to a pricing measure and the related discount process 3, we obtain (assuming no
collateral for simplicity)

T
cwwzu—Rm/‘m@awm (22)
0

where §, is a Dirac measure at the client default time 7 and R is the client recovery rate.

Assuming 7 endowed with a stochastic intensity process v and a basic immersion setup
between the market filtration and the filtration progressively enlarged with 7 (see |Albanese
and Crépey| (2019} Section 8.1)), we have

T
CVAo = (L= RE | Gire i 7toyat (23)
0

Under Markovian specifications, m; is a deterministic function of time and suitable risk
factors Xy, i.e. mp = 7(t, Xy); likewise, in the case of intensity models, v, = v(t, X;). Factors
common to 7 and v allow modeling wrong way ris i.e. the risk of adverse dependence
between the risk of default of the client and the corresponding market exposure.

In the special case where the default is independent of the portfolio value expressed in
numeraire units, then the expression simplifies to

T
mm:u—mAEmﬁmwu (24)

where p(t) is the probability density function of 7. To compute the CVA numerically based
on in this independent case, a set of N dates ty,...,txy = T is chosen over which to
evaluate the so-called expected positive exposure E[B;7;"|. The probabilities Ap; = P(t; <
T < ti4+1) can be bootstrapped from the CDS curve of the client (or some proxy if such
curve is not directly available).

In stochastic default intensity models, one can evaluate likewise the E[8;, W::e_ I Yedsny,)
and compute the CVA based on , or simulate 7 and compute the CVA based on .

Note that the portfolio weights w; in are all 0 or 1 in the context of trade incremental
XVA computations (cf. |Albanese et al.| (2019, Section 5)).

The above approximation uses Gaussian process regression to provide a fast approxima-
tion for 7 valuation. A metamodel for « is fitted to model generated data, assuming a data
generation process for the risk factors. Our GP regression provides an estimation of the
GP error in the point estimate of the portfolio value (also accounting for the dependence
between the portfolio ingredients, i.e. between the f; in , provided multi-GP is used).

50r, at least, soft wrong way risk, whereas hard wrong way risk may be rendered through common jump
specifications (see |Crépey and Song| (2016])).

22

Hence, we use machine learning to learn the component derivative exposures as a function
of the underlying and other parameters, including (by slicing in time) time to maturity.
The ensuing CVA computations are then done by Monte Carlo simulation based on this
metamodel for w. This procedure is referred to as MC-GP CVA computational approach
hereafter. It saves one level of nested (such as inner Monte-Carlo) full revaluation (referred
to as MC-reval hereafter), while avoiding parametric regression schemes for = (at each t;),
which have little adaptivity and error control.

5.1 MC-GP Estimation of CVA
First we consider the independent case , which entails the following Monte-Carlo esti-
mate of the CVA over M paths, along which the market risk factors are sampled:

(ti, X8 Aps, (25)
1

M
VA, ~ L IDAE

N
M ,
=1 1=

<.

where the exact portfolio value m(¢;, Xg))+ is evaluated for simulated risk factor XS) in

path j at time ;.

Then we replace the exact portfolio value by the mean of the posterior function condi-
tioned on the simulated market risk factors X;,, which results in the following CVA estimate
(assuming a uniform time-grid with step At):

o 1-RAt L XL ,
CVAy = %ZZ@@(E[WX,Y’X*=X§f)])+Api

j=1i=1
In the stochastic intensity case (23], the above formulas become

M N
; ; _ ©) ;
ZZﬁﬁf)w(tnXS))*e At 3, o v(EXg,)w(ti7X§f)) (26)

j=11i=1

(1 - R)At

CVAO ~ i

and

M N
% _ (1-R)At) G+
CVAg = ———> > 87 (E[m|X, Y, x. = X;”)])
M j=11i=1 (27)

AT XD (g, XD,
The MC sampling error in the GP-MC estimate of the CVA is given by

M N
S [0 RACYT B (Bl X, Yok = X))
j=1 i=1

(28)
; , 12
e A Euc X (1, X (7)) — CVA, |
In the context of CVA on equity or commodity derivatives, structural default models may
be found more suitable than default intensity models (see e.g. Ballotta and Fusai| (2015))).
A Monte Carlo GP approach is then still workable, by relying on the native formulation

(22) of the CVA. The latter can be implemented based on client default simulation, which
does not require that the client default time has an intensity.

23

2

5.2 Expected Positive Exposure Profile and Time 0 CVA

We continue with the same portfolio and option model (for data generation) as in the
example of Section (of course, in practice XVAs are mainly for OTC derivatives, instead
of exchange tradeable options in this example, but our purpose is purely expository). Table
shows the values for the Euler time stepper used for simulating Black-Scholes dynamics
over a two year horizon.

Parameter description | Symbol Value
Number of simulations M 1000
Number of time steps N 100
Initial stock price So 100

Table 2: This table shows the values for the Euler time stepper used for market risk factor
simulation.

Figure[11]compares the (left) MC-reval (i.e., with full reevaluation of the portfolio, in this
case by the Black Scholes formula) and MC-GP estimate of E(7;"), the expected positive
exposure (EPE) of the portfolio, over time. The error in the MC-GP estimate and 95%
uncertainty band, exclusive of the MC sampling error, is also shown against time (right).

In order to illustrate CVA estimation using both credit and market simulation, we in-
troduce the following dynamic pre-default intensity (cf. Bielecki et al.| (2011)):

v(Se) = 2(g)™ (29)
t
where (79,71) = (0.02,1.2). The time 0 CVA is then computed based on as displayed
in Listing [4]
Setting R = 40% hereafter, Figureshows how the standard error in the MC-GP CVA,q
estimate versus MC-reval decays against the number of training samples used for each GP
model. The 95% uncertainty band of the GP prediction is also shown.

— Eror in Expected Positive Exposure

f

Time Time

Figure 11: (Left) MC-reval and MC-GP estimates of the EPE of the portfolio over time (the
two graphs are practically indistinguishable). (Right) The error in the MC-GP estimate of
the EPE (black) and (grey) the 95% GP uncertainty band are also shown against time.

def CVA_simulation (sim_params, model_params, def_model):

n_sim_dt
M

sim_params [’n_sim_dt’] # number of Euler stpes
sim_params [M’] # number of paths

24

NN

~

—— MC-reval
0.1750 - — MC-GP

01745 -

0.1740 -

0.1735 -

CVAy

0.1730 -
0.1725 -
01720 -
01715 -

10000 20000 30000 40000 50000 60000 70000 80000 50000
Number of scenarios

Figure 12: This figure shows the Monte Carlo convergence properties of the MC-GP CVAj
estimate. Using 100 training samples, the MC-GP CVAyq is estimated over an increasingly
larger number of test samples. The 95% Monte Carlo confidence interval in the GP-MC
CVAy is also shown by the gray band centered around the MC-GP CVAq point estimate.
Also shown is the MC-reval CVAq estimate, which is practically indistinguishable from the
other—the difference in the GP CVAy estimate and the CVAqg with revaluation is much
smaller than the MC sampling error.

nt = sim_params | 'nt’] # number of exposure dates
timegrid = sim_params|[’timegrid’] # time grid of exposure dates
r = model_params|[’r’]

sigma = model_params | 'sigma’]

T = model_params|[T’]

t0 = model_params|[’t0’]

S0 = model_params [’S0’]

gamma_0 = def_model [’ ’gamma_0’]

gamma_-l = def_model [gamma_1’]

stride = n_sim_dt/(nt—1)
idx = np.arange(0,n_sim_dt+1,stride , dtype=int)

pi = {}

pi[’tilde’] = np.array ([0.0]*(nt—1)*M, dtype=’float32’).reshape((nt—1), M
) # GP portfolio value

pi[’exact’] = np.array ([0.0]*(nt—1)+«M, dtype=’'float32’).reshape((nt—1), M
) # BS portfolio value

pi[’tilde_var’] = np.array ([0.0]*(nt—1)*M, dtype='float32’).reshape ((nt
—1), M) # GP portfolio variance
gamma = np.array ([0.0]*(nt—1)«M, dtype='float32’).reshape ((nt—1), M)
hazard rates
dPD = np.array ([0.0]*(nt—1)*M, dtype='float32’).reshape ((nt—1), M)
default probabilities

#simulate underlying Black—Scholes dynamics using Euler
S = gbm(S0, r, sigma, T—t0, n_sim_dt, M)

25

o g oA W N

SR

I B B SRS RN B B |

if (def-model[’calibrate’]):
x = np.exp(S0/S)**gamma_l
default probability (assumed to be estimated from credit spread)
dt = timegrid[1]—timegrid [0]
f = lambda y: np.abs(np.mean(np.prod (x**(—y*xdt), axis=0))—
def_model ['p’])
res = sp.optimize.basinhopping(f, 0.1, niter=10)
i=1
while (abs(res.fun) >le—3):
res = sp.optimize.basinhopping (f, 0.1, niter=100%i)
i %= 2
gamma_ 0= res.x[0]

print (” calibration:”

, gamma_ 0, gamma_l, f(gamma0), res.fun)

for m in range(M):
i=1
exp-_factor=1

for time in timegrid [1:]:
dt = timegrid[i]—timegrid [i—1]

S.= S[idx[i],m] # simulated S
avoid simulated S breaching boundaries of domain

if (S-<l1b):
mins=S_
S_=lb

if (S->ub):
S_=ub
maxs==S _

pred_ = 0

v =0

var. =0

for key in portfolio.keys():

pred, std = portfolio[key][’GPs’][i]. predict(np.array ([(S-—1b)/(ub

—1b)]) .reshape(l,—1),return_std=True)
pred. += portfolio [key]['weight]|+ pred
var_ += (portfolio [key][weight 'J*std)**2

if key=—="call ’:
v_ += portfolio [key]['weight ']+ bsformula (1, S_, KC, r, time,
sigma, 0)[0]
else:
v_ += portfolio [key]['weight ']xbsformula(—1, S_, KP, r, time,
sigma, 0)[0]
pi[’tilde’][i—1,m] = np.maximum(pred_,0)
pi[’exact’][i—1,m] = np.maximum(v_,0)
pi[’tilde_var’][i—1m] =var_

default intensity model
gamma|[i—1,m] = gamma_0%(S0/S_)**gamma_l

compute default probabilities
exp_factor*=np.exp(—dt*gammali—1,m])

dPD[i—1,m|= gamma[i—1m]xexp_factor

i4=1

26

90

92

94

95

96

101

102

103

104

105

compute CVA

i=0

VA =(}

CVA[’'tilde’] =0
CVA[’exact’] = 0
CVA[’tilde-up’] =0
CVA|['tilde_down’] = 0
CVA[’var_tilde’] =0

for time in timegrid [1:]:
dt = timegrid [i+1]—timegrid [i]
CVA[' tilde’] 4= np.mean(dPD[i ,:]x pi[tilde "][i,:])*np.exp(—r*(time—t0

)) xdt

CVA[’var_tilde’] 4+= np.var(dPD[i,:]*pi[’tilde ’|[i,:]*np.exp(—r=(time—
t0))xdt)

CVA[’exact’] += np.mean(dPD[i,:]* pi[’ ’exact’][i,:]) *np.exp(—r*(time—t0
)) *dt

i+=1
CVA[’tilde-up’] = (1—def-model [’ ’recovery ’])*(CVA[’tilde ’] + 2*np.sqrt (CVA
[’var_tilde ’]/M))
CVA[’tilde_-down’] = (1—def_-model [’recovery ’]) *(CVA[’tilde '] ———2%np.sqrt (

CVA[’var_tilde ’]/M))
CVA[’tilde’] *= (1—def_-model[’recovery’])
CVA[’exact’] *= (1—def_-model[’recovery’])

return (CVA)

Listing 4: This Python 3.0 code excerpt, using scikit-learn, illustrates how to simulate the
time 0 CVA of a portfolio using MC-GP. The implementation assumes BS pricing with a
dynamic default intensity model given by Equation , Note that the listing provides the
salient details only and the reader should refer to Example-3-MC-GPA-BS-CVA.ipynb in
Github for the full implementation.

5.3 Incremental One-Year CVA VaR

In this section, we demonstrate the application of GPs to the estimation of the Value-at-
risk (VaR, i.e. quantile) of level a of the one year incremental CVA. The purpose of the
calculation is to estimate, at the confidence level «, the extent to which to CVA liability of
a bank may increase over the next year. For this purpose, we estimate the distribution of
the incremental CVA over one year, i.e. of the random variable (CVA; — CVAy).

For the purpose of illustration, we again use the dynamic pre-default intensity in ,
for fixed parameters 79 = 0.02 and v; = 1.2 in , and the same market portfolio as before.
However, we now model the (pre-default) CVA process such that (with zero interest rates)

L1« CVA(t, St) = Lo, B[1, o (n(7, S7)) | Siyt < 7). (30)

We fix the pre-default intensity model parameters. Overall, the MC-GP estimation of
VaR(CVA; — CVAy) is implemented as a nested simulation, with an outer loop over the
simulation of the underlying out to one year, and a nested MC simulation for the point
estimation of the one year CVA along each path. The CVAy, by contrast, is estimated with
only an outer simulation loop and is a non-negative scalar.

Figure 13| (left) shows the distribution of CVA;, as estimated with a MC-reval (i.e. using
Black-Scholes formulas at time 1) or a MC-GP method. Also, not shown, CVAy = 0.2, and

27

hence the random variable (CVA; — CVAy) can be negative. In order to isolate the effect
of the GP approximation, we use identical random numbers for each method.

The MC-GP and MC-reval graphs are practically indistinguishable from each other. The
reason for sharp approximation is three-fold: (i) the dimension (in the sense of the number of
risk factors) is only 1, (ii) the statistical experiment has been configured as an interpolation
problem, with many of the gridded training points close to the gridded test points; and (iii)
the training sample size of 200 is relatively large to approximate smooth surfaces (with no
outliers). The right hand plot shows the distribution of v = ~(S;) at various times over the
simulation horizon.

0.0
— MC-reval 1750 - —— Time: 0.2
175 === MC-GP —— Time: 0.6
MC-GP (lower) 1500 - Time: 1.0
15.0 MC-GP {upper) —— Time: 1.4
125 1250 - Time: 18
= 21000 -
B 100 & oo
@ (=4
15 ¥ 750 -
5o 500 -
25 250 - \
00{ — 0-
00 05 10 15 20 0.0020 0.0025 0.0030 0.0035 0.0040 0.0045 0.0050 0.0055 0.0060
v,

1

Figure 13: (Left) The distribution of CVA;, as estimated by MC-reval (MC with full repricing
using Black-Scholes formulas) versus a MC-GP method with 95% confidence intervals. The
default model uses fived parameters vg = 0.02 and v = 1.2. In order to isolate the effect
of the GP approximation, we use identical random numbers for each method. (Right) The
distribution of v = v(S;) at various times over the simulation horizon for a fixed parameters:
v =0.02, vy = 1.2.

5.4 CVA Uncertainty Quantification

In this section, we demonstrate the application of GPs to the uncertainty quantification of
CVA computations, given a prior on the credit risk model parameters.

Namely, the parameters, (y9,71), of the dynamic intensity model are now in one-
to-one correspondence through the constraint

Ee~Jo 71804t — p(r > T), (31)

in which the right-hand side is a given target value extracted from the client CDS curve (or
a suitable proxy for the latter). Instead of fixing (y0,71), we now place a chi-squared prior
over <1, which is centered at 1.2. For each sample of 1, the corresponding value of 7, is
determined by time discretization and numerical root finding through)

Figure |14/ shows the density of the time 0 CVA posterior, as estimated by MC-reval (MC
with full repricing using Black-Scholes formulas) versus MC-GP.

Next we show the estimation of the one year CVA VaR with uncertainty quantification.
As displayed in Listing[5] the MC-GP estimation is implemented as a doubly nested simula-
tion, with an outer loop for the sampling from the prior distribution on 7;, a middle nested
loop for simulation of the underlying out to one year, and an inner nested MC simulation
for the point estimation of the one year CVA along each path.

28

N

i\ MC-GP (lower)
8 \ MC-GP (upper]
Al

000 025 050 075 100 125 150 175 24
Y1

00 25 50 75 100 125 150 175 200

Y1

Figure 14: The default model uses 1000 simulated parameter values with a chi-squared prior
centered at 1 = 1.2 (left) and 7o is found by a constrained optimization. (center) The
density of the time 0 CVA posterior, as estimated by MC-reval (MC with full repricing
using Black-Scholes formulas) versus a MC-GP method (with 95% Monte Carlo confidence
intervals centered about the MC-GP estimates). (right) CVAq is shown against y1 with 95%
Monte Carlo confidence intervals centered about the MC-GP estimates.

Figure [15|shows the distribution of the 99% VaR of (CVA; — CVAy) under a chi-squared
prior on the parameter v; and the corresponding value of 7 is found from solving with
P(t > 2) = 0.05. The MC-GP and MC-reval 99% CVA VaRs are observed to be practically
identical under the same random numbers.

— — MC-reval
0025 4 MC-GP
MC-GP [lower)
0020 4 MC-GF [upper)
& 0015 4
v
=
4
0Lo1D 4
0.005 4
0000 4

20 0 20 a0 &0 80 100
99% VaR of CVA; - CVA

Figure 15: This figure shows the distribution of the 99% VaR of (CVA; — CVAy) under a
chi-squared prior on vy, in Equation and prior on o which satisfies the constraint
with P(t > 2) = 0.05. 1000 outer-simulations are used for sampling from the prior on 7.
The MC-GP and MC-reval 99% CVA VaRs are observed to be practically identical under
the same random numbers.

J= 1000 # number of outer simulations (from prior)
M = 1000 # number of middle simulations

CVA = []

CVAO = []

5 gamma_l= np.array ([0.0]xJ, dtype=’float32’)

29

6

7 # Sample from prior distribution wusing
s # non—centered chi—squared random variates

9

gamma-1 = (1.2 + 1.0xnp.random.randn(J))**2
for j in range(J): # outer loop

def_model [’gamma_0’] 0.02

def_model [’gamma_1’] gamma_1[j]

model_params[’t0’] = 0.0

sim_params [’ timegrid '] = timegrid

CVA 0. append (CVA_simulation (sim_params, model_params, def_-model))

S = gbm(S0, r, sigma, 1.0, n_sim_dt, M)

model_params|[’t0’] = 1.0

sim_params [’timegrid’] = timegrid [5:]

for m in range(M): # middle loop
model_params[’S0’] = S[—1, m]

CVA. append (CVA _simulation (sim_params, model_params, def_-model))

Listing 5: This Python 3.0 code excerpt, using scikit-learn, illustrates how to simulate the
CVA-VaR of a portfolio using MC-GP. The implementation assumes a Black—Scholes model
with a dynamic default intensity model given by Equation . The BS parameters and
portfolio configuration are the same as the previous listing. Note, for conciseness, that
this excerpt should only be run after running the previous excerpt. Note that the listing
provides the salient details only and the reader should refer to Example-4-MC-GPA-BS-
CVA-VaR.ipynb in Github for a complete implementation.

5.5 Scalability of the Approach

We demonstrate the application of our GP meta-model to the CVA estimation on a coun-
terparty portfolio of interest rate swaps (IRSs). The portfolio holds both short and long
positions in 20 IRSs on a total of eleven interest rates and 10 FX rates. The contracts range
from 5 to 10 years in maturity.

The short interest and FX rates data are generated from mean reverting processes with
a quasi-homogeneous correlation structure between the driving Brownian motions of our
factors. Specifically, we set the correlation between interest rates to 0.45, between interest
rates & FX to 0.3 and 0.15 between FX rates. In our experiment, n = 10, giving a total of
21 factors.

We use the multi-factor Hull-White model for the short rates. For completeness the
details of the models are given in Appendix [A]

These models are simulated under a Euler scheme with a time step of 0.01. Every ten
time steps, i.e. for a coarse At = 0.1, we store the simulated rates and evaluate the IRS
prices.

The IRS contracts are spot-starting, with the first reset at time ¢ty and subsequent resets
every 6 = 0.5 years at times {t,},,,<n- To price the swap, let’s denote by L(t,T’) the
simple rate prevailing at time t for a maturity T, which is deterministic function of the
short rate given by the Hull-White model. Then the foreign price of the IRS at reset dates
to the party receiving floating and paying fixed is given in units of notional denominated in

30

the foreign currency as:

1
-1 L(+ 1<n<N
p(tn) +OL (tn1,tn) = 14+ (N —n)dL (tn,tN) —o8 Zl+z5L (tnstnts)’ AR
(32)

and
1 N 1
- - -

p(to) L+ NoL (to, tn) 55;1+n5L(t,tn) (33)

For non-reset dates, i.e. any t €]t,, tnt1[,0 <n < N — 1 we have:

1+ 6L (ty, tns1) 1
p(t)_1+(tn+1—t)L(t,tn+1)_1+(tN—t)§L (t,tn) Z

n+z - t) L (t» tn+i) .

(34)
Except for ¢ = g, we note that the price p(t) is always a function of both the short rate at
t and at the previous reset date.

Each GP model therefore uses up to three inputs to learn the swap price: the domestic
or foreign short rate, the same rate at the latest reset date, and if foreign the FX rate into
Euros. Hence a GP model for a domestic interest rate swap price has two input variables
and a foreign interest rate has three.

To train each GP model, we use 1000 paths of short and FX rates and Euro denominated
mark-to-market TRS prices at the coarse time step At = 0.1. Each GP model is trained as
a surrogate of each IRS contract in the portfolio. With ten periods, there are therefore 200
GP models trained.

The above numerical examples have trained and tested GPs on uniform grids. This
approach suffers from a stringent curse of dimensionality issue, as the number of training
points grows exponentially with the dimensionality of the data (cf. Section [2.3)). Hence, in
practice, in order to estimate the MtM cube, we advocate divide-and-conquer, i.e. the use of
numerous low input dimensional space, p, GPs run in parallel on specific asset classes (see
Section . In the present example, we even train one GP per instrument. As seen in the
end of Section the advantage of this extreme case of a divide-and-conquer approach is
that the portfolio can then be rebalanced without the need to retrain the GP.

All variables, including the prices, are rescaled to the unit interval to resolve potential
scaling issues. The GP is configured to use Matern kernels with v = 0.5. See Example-5-
MC-GP-IRS-CVA.ipynb in Github for further details.

The EPE profile (cf. Section of the IRS portfolio evaluated using the pricing formula
(MC-reval) versus the MC-GP is shown in Figure The CVA(using the MC-GP or MC-

reval model is given in Table The mean of GP model estimate (ﬂo is found to be
within 0.25% of the GP-reval estimate CVAy. The 95% upper and lower confidence intervals
for the MC sampling are also given.

=1

6 Conclusion
This paper introduces a Gaussian process regression and Monte Carlo simulation (MC-GP)

approach for fast evaluation of derivative portfolios, their sensitivities, and related coun-
terparty credit risk metrics such as the EPE and the CVA. The approach is demonstrated

31

—— GP Prediction
— Analytical Model

25000

20000

15000

EPE (Eurc)

10000

5000

o 2 4 & i1
time (years)

Figure 16: The EPE profile (Euros) of the IRS portfolio as evaluated using an analytic model
versus the GP (with Matern Kernels). The grey band denotes the 95% GP uncertainty band.

Estimator Mean lower C.I. upper C.I.
CVA, 3357.846 3179.715 3535.978
CVA, 3177.103 3522.072 3571.0287

Table 3: The CVAy using the MC-reval model is compared with the mean of GP model,

51740, and is found to be within 0.25% of the GP-reval estimate. The 95% upper and lower
confidence intervals for the MC sampling are also given.

by estimating the CVA on a simple portfolio with numerical studies of accuracy and con-
vergence (in terms of both the numbers of training points and of sample paths) of our
MC-GP estimates. Once the kernels have been learned, there is no need to use expensive
derivative pricing or Greeking functions. The kernels permit a closed form approximation
for the sensitivity of the portfolio to the risk factors and the approach preserves the flex-
ibility to rebalance the portfolio. Efficient hyper-parameter optimization procedures are
available. Moreover, the advantage is not just computational: The risk estimation approach
is Bayesian—the uncertainty in a point estimate which the model hasn’t seen in the training
data is quantified. The approach is scalable through a divide-and-conquer approach, pos-
sibly implemented in parallel, where a different GP is used for each sub-portfolio of assets
depending on the same (few) risk factors.

Compared with simpler alternatives such as splines or kernel smoothers, GP regressions
offer a metamodeling framework with a probabilistic Bayesian interpretation and a quan-
tification of the associated numerical uncertainty. Marginal likelihood maximization yields
a convenient way of setting the hyperparameters. GPs can cope with noisy data but they
are also interpolating in the noise-free limit. As opposed to Chebyshev interpolation, which
uses a deterministic node location imposed by the scheme (in conjunction with suitable in-
terpolation weights, see |GaB et al.| (2017))), GPs can use an arbitrary, possibly unstructured
(e.g. stochastically simulated) grid of observations.

Compared with richer alternatives such as deep neural networks (DNN), GPs typically
require much less data to train. They also inherently provide “differential regularization”

32

without the need to adopt cumbersome cross-validation techniques to tune regularization
hyper-parameters, as in DNNs. Also, despite recent Bayesian deep learning developments
meant to enable deep learning in small data domains, DNNs are still difficult to cast in
a Bayesian framework. However, unlike DNNs, a kernel view does not give any hidden
representations, failing to identify the useful features for solving a particular problem. More
elaborate choice of priors can be used to address this issue.

Our usage of “uncertainty” in this paper refers to the GP regression error estimate.
However, GPs could also potentially be used for uncertainty quantification in the sense of
quantifying model risk. Model risk is, in particular, an important and widely open XVA
issue, which we leave for future research.

A Multi-Factor Rates Model

We consider a correlation matrix R. For every currency ¢, we consider a vector of inde-
pendent Brownian motions W), where the superscript i indicates that the process is a
Brownian motion in the Q" world, which in turn is where cash-flows in the currency i are
priced. Also, e; denotes the vector with i** coordinate equal to 1 and all other components
equal to 0.

The Hull-White model for short rates is given by

&%U):(Qdﬂ-—aﬂgﬁ»dt+oi<R%Q’dW4ﬂ>

with 6; an exogenous deterministic function to be able to fit the forward curve at time 0.
Or equivalenty, we may write r;(t) = x;(t) + 5;(t) with j; being a deterministic function
and: 4
da:l(t) = —aixi(t)dt + 0; <f%%€i7 th z)>
If £;(0,.) is the time-0 instantaneous forward curve for rate i, then:

0_2

V> 0,8:(8) = fi(0,1) + 57 (1 —e7"")?

i

The FX rates are given by a mean-reverting process as follows. Consider, for ease of
exposition to case when n =1,

dFX,.(t) . i
m = (ri(t) —r;(t))dt + o503 <R2e3,th()>
where a1 o = —1 and ap; = 1. By comparing with the dynamics obtained by FX inversion,

one can deduce the following Brownian motion change between the Q1) and the Q) worlds:
dw? = dwV — g3 R eqdt

or equivalently:

()
aQ® /,

, 2
exp (fot o3 <R%63,de(l)> — éfot o2 HR%e;;H ds)

t
= Fxe2 (5 exp ([y (ras) = ra(s))ds)

33

References

Abbas-Turki, L. A., S. Crépey, and B. Diallo (2018). XVA Principles, Nested Monte Carlo
Strategies, and GPU Optimizations. International Journal of Theoretical and Applied
Finance 21, 1850030.

Albanese, C., M. Chataigner, and S. Crépey (2019). Wealth transfers, indifference pricing,
and XVA compression schemes. In Y. Jiao (Ed.), From Probability to Finance—Lecture
note of BICMR summer school on financial mathematics, Mathematical Lectures from
Peking University Series. Springer. Forthcoming.

Albanese, C. and S. Crépey (2019). XVA analysis from the balance sheet. Working paper
available at https://math.maths.univ-evry.fr/crepey.

Alvarez, M., L. Rosasco, and N. Lawrence (2012). Kernels for vector-valued functions: A
review. Foundations and Trends in Machine Learning 4 (3), 195-266.

Antonov, A., S. Issakov, A. McClelland, and S. Mechkov (2018). Pathwise XVA Greeks for
early-exercise products. Risk Magazine (January).

Ballotta, L. and G. Fusai (2015). Counterparty credit risk in a multivariate structural model
with jumps. Finance 36, 39-74.

Bielecki, T. R., S. Crépey, M. Jeanblanc, and M. Rutkowski (2011). Convertible bonds in
a defaultable diffusion model. In A. Kohatsu-Higa, N. Privault, and S.-J. Sheu (Eds.),
Stochastic Analysis with Financial Applications, Basel, pp. 255-298. Springer Basel.

Bonilla, E. V., K. M. A. Chai, and C. K. I. Williams (2007). Multi-task gaussian process
prediction. In Proceedings of the 20th International Conference on Neural Information
Processing Systems, NIPS’07, USA, pp. 153-160. Curran Associates Inc.

Biihler, H., L. Gonon, J. Teichmann, and B. Wood (2018). Deep hedging. Quantitative
Finance. Forthcoming (preprint version available as arXiv:1802.03042).

Capriotti, L. (2011). Fast greeks by algorithmic differentiation. Journal of Computational
Finance 14(3), 3-35.

Capriotti, L., J. Lee, and M. Peacock (2011). Real-time counterparty credit risk management
in monte carlo. Risk 24(6).

Chen, Z., B. Wang, and A. N. Gorban (2017, March). Multivariate Gaussian and Student—t
Process Regression for Multi-output Prediction. ArXiv e-prints.

Cousin, A., H. Maatouk, and D. Rulliere (2016). Kriging of financial term structures.
European Journal of Operational Research 255, 631-648.

Crépey, S. (2013). Financial Modeling: A Backward Stochastic Differential Equations Per-
spective. Springer Finance Textbooks.

Crépey, S. and S. Song (2016). Counterparty risk and funding: Immersion and beyond.
Finance and Stochastics 20(4), 901-930.

Crépey, S., T. Bielecki, and D. Brigo (2014). Counterparty Risk and Funding. New York:
Chapman and Hall/CRC.

34

da Barrosa, M. R., A. V. Salles, and C. de Oliveira Ribeiro (2016). Portfolio optimization
through kriging methods. Applied Economics 48(50), 4894-4905.

E, W., J. Han, and A. Jentzen (2017). Deep learning-based numerical methods for high-
dimensional parabolic partial differential equations and backward stochastic differential
equations. arXiv:1706.04702.

Fang, F. and C. W. Oosterlee (2008). A novel pricing method for european options based
on fourier-cosine series expansions. SIAM J. SCI. COMPUT.

Garduner, J., G. Pleiss, R. Wu, K. Weinberger, and A. Wilson (2018). Product kernel
interpolation for scalable gaussian processes. In International Conference on Artificial
Intelligence and Statistics, pp. 1407-1416.

GaBl, M., K. Glau, and M. Mair (2017). Magic points in finance: Empirical integration for
parametric option pricing. SIAM Journal on Financial Mathematics 8, 766-803.

Giles, M. and P. Glasserman (2005). Smoking adjoints: fast evaluation of greeks in monte
carlo calculations. Technical report.

Gramacy, R. and D. Apley (2015). Local gaussian process approximation for large computer
experiments. Journal of Computational and Graphical Statistics 24(2), 561-578.

Guhaniyogi, R., C. Li, T. Savitsky, and S. Srivastava (2017). A divide-and-conquerBayesian
approach to large-scale kriging. arXiv:1712.09767.

Hernandez, A. (2017). Model calibration with neural networks. Risk Maga-
zine (June 1-5). Preprint version available at SSRN.2812140, code available at
https://github.com/Andres-Hernandez/CalibrationNN.

Huge, B. and A. Savine (2017). LSM Reloaded — Differentiate xVA on your iPad Mini.
ssTn.2966155.

Kenyon, C. and A. Green (2014). Efficient XVA management: Pricing, hedging, and attri-
bution using trade-level regression and global conditioning. Technical report.

Liu, M. and J. Staum (2010). Stochastic kriging for efficient nested simulation of expected
shortfall. Journal of Risk 12(3), 3-27.

Longstaff, F. A. and E. S. Schwartz (2001). Valuing american options by simulation: A
simple least-squares approach. The Review of Financial Studies 14 (1), 113-147.

Ludkovski, M. (2018). Kriging metamodels and experimental design for Bermudan option
pricing. Journal of Computational Finance 22(1), 37-77.

Ludkovski, M. and R. Gramacy (2015). Sequential design for optimal stopping problems.
SIAM Journal on Financial Mathematics 6(1), 748-775.

Ludkovski, M. and J. Risk (2018). Sequential design and spatial modeling for portfolio tail
risk measurement. Papers, arXiv.org.

MacKay, D. J. (1998). Introduction to gaussian processes. In C. M. Bishop (Ed.), Neural
Networks and Machine Learning. Springer-Verlag.

35

Melkumyan, A. and F. Ramos (2011). Multi-kernel gaussian processes. In Proceedings of the
Twenty-Second International Joint Conference on Artificial Intelligence - Volume Volume
Two, IJCAT’11, pp. 1408-1413. AAAT Press.

Micchelli, C. A., Y. Xu, and H. Zhang (2006, December). Universal kernels. J. Mach. Learn.
Res. 7, 2651-2667.

Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. The MIT Press.

Neal, R. M. (1996). Bayesian learning for neural networks, Volume 118 of Lecture Notes in
Statistics. Springer.

Pillonetto, G., F. Dinuzzo, and G. D. Nicolao (2010, Feb). Bayesian online multitask learn-
ing of gaussian processes. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 32(2), 193-205.

Pleiss, G., J. R. Gardner, K. Q. Weinberger, and A. G. Wilson (2018). Constant-time
predictive distributions for gaussian processes. CoRR abs/1803.06058.

Rasmussen, C. E. and Z. Ghahramani (2001). Occam’s razor. In In Advances in Neural
Information Processing Systems 13, pp. 294-300. MIT Press.

Rasmussen, C. E. and C. K. I. Williams (2006). Gaussian Processes for Machine Learning.
The MIT Press.

Roberts, S., M. Osborne, M. Ebden, S. Reece, N. Gibson, and S. Aigrain (2013). Gaussian
processes for time-series modelling. Philosophical Transactions of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences 871(1984).

Savitsky, T., M. Vannucci, and N. Sha (2011, 02). Variable selection for nonparametric
gaussian process priors: Models and computational strategies. Statist. Sci. 26(1), 130
149.

Scholkopf, B. and A. J. Smola (2001). Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. Cambridge, MA, USA: MIT Press.

Spiegeleer, J. D., D. B. Madan, S. Reyners, and W. Schoutens (2018). Machine learn-
ing for quantitative finance: fast derivative pricing, hedging and fitting. Quantitative
Finance 18(10), 1635-1643.

Whittle, P. and T. J. Sargent (1983). Prediction and Regulation by Linear Least-Square
Methods (NED - New edition ed.). University of Minnesota Press.

36

	1 Introduction
	2 Single-Output Gaussian Processes
	2.1 Gaussian Processes Regression and Prediction
	2.2 Hyper-parameter Tuning
	2.3 Computational Properties

	3 Pricing and Greeking With Single-Response Gaussian Processes
	3.1 Pricing
	3.2 Greeking
	3.3 Mesh-Free GPs
	3.4 Massively Scalable GPs

	4 Multi-response Gaussian Processes
	4.1 Multi-Output Gaussian Process Regression and Prediction with Noisy Observations
	4.2 Portfolio Value and Market Risk Estimation
	4.3 Numerical Illustration

	5 CVA Computations
	5.1 MC-GP Estimation of CVA
	5.2 Expected Positive Exposure Profile and Time 0 CVA
	5.3 Incremental One-Year CVA VaR
	5.4 CVA Uncertainty Quantification
	5.5 Scalability of the Approach

	6 Conclusion
	A Multi-Factor Rates Model

