
Nowcasting Networks†

Marc Chataigner1, Stéphane Crépey2, and Jiang Pu3

December 9, 2020

Abstract

We devise a neural network based compression/completion methodology
for financial nowcasting. The latter is meant in a broad sense encompassing
completion of gridded values, interpolation, or outlier detection, in the context
of financial time series of curves or surfaces (also applicable in higher dimen-
sions, at least in theory). In particular, we introduce an original architecture
amenable to the treatment of data defined at variable grid nodes (by far the
most common situation in financial nowcasting applications, so that PCA or
classical autoencoder methods are not applicable). This is illustrated by three
case studies on real data sets. First, we introduce our approach on repo curves
data (with moving time-to-maturity as calendar time passes). Second, we show
that our approach outperforms elementary interpolation benchmarks on an eq-
uity derivative surfaces data set (with moving time-to-maturity again). We also
obtain a satisfying performance for outlier detection and surface completion.
Third, we benchmark our approach against PCA on at-the-money swaption
surfaces redefined at constant expiry/tenor grid nodes. Our approach is then
shown to perform as well as (even if not obviously better than) the PCA (which,
however, is not be applicable to the native, raw data defined on a moving time-
to-expiry grid).

Keywords: data compression, data completion, outliers, neural networks, autoen-
coders, equity derivative Black–Scholes implied volatilities, swaption implied normal
volatilities, repo rates.

Mathematics Subject Classification: 62M45, 62P05, 62M40.

JEL Classification: C450, G170, G120.
1 LaMME, Université de Paris-Saclay
2 LPSM, Université de Paris
3 Léonard de Vinci Pôle Universitaire, Research Center, Paris La Défense
† This article has been accepted for publication in Journal of Computational Finance, published

by Incisive Media Ltd.
Acknowledgement: This research has been conducted with the support of the Research Initia-

tive “Modélisation des marchés actions, obligations et dérivés” financed by HSBC France under
the aegis of the Europlace Institute of Finance. All data sets in our case studies have been put
at our disposal by HSBC. The views and opinions expressed in this presentation are those of the
author alone and do not necessarily reflect the views or policies of HSBC Investment Bank, its sub-
sidiaries or affiliates. The research of Marc Chataigner is co-supported by a public grant as part
of investissement d’avenir project, reference ANR-11-LABX-0056-LLH LabEx LMH. The authors
would like to thank Daniel Girard, Nicolas Grandchamp des Raux, Hugo Lebrun, and Guillaume
Macey, for their advice and encouragement during the conduct of this study. The authors also
thank Maud Thomas for her bibliographical assistance regarding the outlier detection literature
review of Section 2.3.

1

1 Introduction

In this paper, we devise a neural network based methodology for financial now-
casting. The latter is meant in a broad sense encompassing completion of gridded
values, interpolation, or outlier detection, in the context of financial time series
of curves or surfaces. Toward this end we develop a generic two-step methodol-
ogy, whereby a pre-processing compression stage is followed by a completion stage.
Moreover, we detail two variations along this baseline, corresponding to two slightly
different perspectives and significantly distinct neural network architectures.

As such our approach is not bound to vectors and matrices. For generality and
notational convenience it is presented in the methodological part on arbitrary ten-
sors (but we do not address the strong aspect of dimension reduction that typically
comes with genuine tensors as opposed to matrices and vectors).

Under the so called convolutional approach, which is of the autoencoder type,
we assume that the information contained in an observed tensor can be encoded
into a reduced set of variables, dubbed factors. Conversely, given the factors, we can
reconstruct the whole tensor with a decoder. As a limiting case, we obtain a linear,
principal component analysis (PCA) kind of approach, but one itself implemented in
the optimization training mode, as an autoencoder with linear activation functions
(as opposed to spectral decomposition in the classical PCA case).

Under the so called functional approach, factors are rather used as a way to
adjust a map taking as input a location (coordinates that may be part or not of the
original tensor nodes) and returning the corresponding reconstructed value.

The convolutional approach is more particularly dedicated to completion of val-
ues on a fixed grid of coordinates, whereas the functional approach can handle
moving grids, which corresponds to the vast majority of applications in financial
nowcasting applications (unless the data have been transformed in a preprocess-
ing stage to make them fit a fixed grid, entailing an undesirable layer of approx-
imation). Moreover, in the functional approach, including additional variables is
straightfoward.

The use of autoencoders as a nonlinear extension of the PCA can be traced
back to the 1980s (see Chapter 14 in Bengio, Goodfellow, and Courville (2017)
for a survey of autoencoder-based learning). Autoencoders have also already been
used in data completion (see Kiran, Thomas, and Parakkal (2018), Strub, Gaudel,
and Mary (2016)). In contrast, the neural network architecture of our functional
approach is new to the best of our knowledge.

At the intersection between neural networks and finance, the related paper by
Kondratyev (2018) is more about forecasting. Accordingly, we work in a mostly
unsupervised setting, whereas Kondratyev (2018) is in a mostly supervised setting.
Kondratyev (2018) predicts a new curve given a shock on a curve. The neural
network is trained for shocks applied to a particular location. Hence, to consider a
new shock, the model needs to be retrained. In contrast, our convolutional network
has a latent structure capturing interdependencies between all points in the grid.
This is even more obvious in the case of our functional approach, where extra
variables can be provided as direct inputs to the model.

Autoencoders (hence, unsupervised learning) are also considered in Section 5.4
in Kondratyev (2018). However, this is then with a focus on curve regularization

2

on a fixed grid, which can be done directly by decoding. The completion problem
that we are dealing in this work is more general and it requires one additional
layer of numerical optimization. Moreover, Kondratyev (2018) only deals with the
univariate case of curves, for which spatial regularity is a much less challenging
issue.

The paper is outlined as follows. Sections 2 and 3 introduce the problems
and models. By the latter, we mean different algorithmic strategies and neural
network architectures that can be used for addressing the former. Section 4 lays an
experimental setup putting the different models on comparable grounds. Sections
5, 6 and 7 present repo curves, equity derivative implied volatility surfaces and
at-the-money swaption implied volatility surfaces case studies on real data sets.
Section 8 concludes and discusses further research perspectives in connection with
the quantitative finance and machine learning literatures.

Any notation of the form minx Λ(x, y) means that we minimize in x a loss Λ
given the value y of additional parameters; x? then refers to a numerical minimizer
of Λ(x, y) (which is typically nonconvex in x), for this given y.

2 Problems

We consider a data set consisting of a time series of observations, each consisting
of m points, or features, structured as a multivariate tensor. By the latter, we
mean a discretized cube (curve or surface in our case studies, but the methodology
is generic) of values of homogenous quantities, such as rates of different terms,
implied volatilities of different strikes and maturities, etc., defined at each tensor
grid node.

2.1 Compression

The compression problem is mainly a pre-processing stage that aims at reducing
the dimensionality m of a feature space, i.e. the number of grid nodes in each
tensor (here assumed constant across observations ω, see Section 3.3 regarding the
variant of the functional approach with a possibly variable mω). Assume that each
observation takes its values in (a subset of) Rm. We call encoder E any injective
map from a relevant subset S of Rm to a space Rf of factors, where f � m is
the number of factors. Conversely, one would like to be able to reconstruct the
m values of a tensor from any set of factors, or code, thanks to a map, called
decoder, D : Rf → S. The compression challenge is to build D and E such that
D ◦ E : S → S is bijective and “as close as possible to identity” (cf. Bengio,
Goodfellow, and Courville (2017, Chapter 14)).

The inspection of common financial time series of tensors suggests that, in their
case, this challenge is somehow not unreasonable. Indeed, structural constraints
often exist between the values at different tensor nodes, e.g. arbitrage pricing re-
lationships throughout the option chain. Moreover, usual financial tensors exhibit
some spatial regularity, in the sense that values at grid nodes vary smoothly with
respect to node location (think of interest rates with respect to their term or im-
plied volatilities with respect to the maturity and strike of an option). In addition,
some coordinates may have a regularizing effect. For instance, in the region of large

3

expiries, the at-the-money swaption implied volatility surface is mostly affected by
translation moves (and not so much by steepening, etc.) as time passes (see Section
7). Last, some (monotonicity, convexity,...) patterns are often apparent (e.g. the
well-known volatility smile in equity derivative, and some similar features in interest
rate swaption implied volatility surfaces, cf. Figure 7.1).

Both maps E and D are sought within classes of neural networks with respective
parameters ε and δ, collectively denoted by θ. The motivation for using neural
networks in this context is their nonparametric (or, at least, very expressive) and
nonlinear features. Gaussian processes for instance would be much less flexible,
with only a few, e.g. two, kernel hyperparameters for squared exponential kernel
to calibrate a full data set of thousands of tensors.

We include into θ weights, biases, as well as any variable calibrated during the
compression stage. Denoting E = Eε and D = Dδ in reference to this parameter-
ization, the compression stage is the training of the neural networks according to
the following optimization problem:

min
θ=(δ,ε)

∑
ω∈Ω

∑
(n,y)∈ω

(
y −

(
Dδ

(
Eε(ω)

))
n

)2
, (1)

where Ω stands for the training data set (cf. Section 4).
Certain additional properties are desirable for D and E. The parameterization θ

should allow for a robust and fast numerical solution to the problem (1). This may
be harder to achieve for some deep neural networks too sensitive to the initialization
of their parameters. In particular, two similar tensors should give rise to similar
codes and vice versa, i.e. we want D and E to be “sufficiently smooth” in such way
as to preserve distance in the subspace.

2.2 Completion

Having found a parametrization θ? = (δ?, ε?) that ensures a satisfying reconstruc-
tion loss in (1), the completion task consists in the exploitation of Dδ? in order
to find the missing values of an incomplete observation ω (of the current day, say,
to be completed based on the complete observations of the previous days, used as
training set).

Toward this end, we introduce the following optimization problem:

min
c

∑
(n,y)∈ω

(
y −

(
Dδ(c)

)
n

)2
, (2)

considered for δ = δ?. The completed tensor is then defined as the image Dδ?(c?)
of the code c? by the decoder Dδ? . Obviously, the more missing values, the harder
the completion task (higher overfitting risk, unless some appropriate regularization
is used).

Note that, thanks to the compression step, the number of variables to estimate
is drastically reduced in (2), to some reference number, i.e. the dimensionality of c
(e.g. 4, 15, or 8 in our repo, equity index derivative and interest-rate swaption case
studies), independent of the number of unknowns in the native, “uncompressed”
completion problem (such as the number of missing implied volatility values in a

4

to-be-completed surface). Moreover, a factorial representation with f � m filters
out the unlikely tensors (as outlined by the reconstruction error from our neural
networks, cf. Section 2.3) that could otherwise arise from a decoding due to the ill-
posedness of large-scale arg-minimization problems. The regularity of the map Dδ?

can sometimes be exploited to ease the completion, by initializing the numerical
solution of (2) with the encoding of the last fully observed (e.g. already completed)
tensor.

Literature Review The literature on completion primarily deals with data struc-
tured on a fixed grid. This means that columns in the data set refer to the same
feature (in our case: financial instrument). This is not consistent with most finan-
cial nowcasting applications, for which, in particular, the time-to-maturity decreases
with calendar time. To the best of our knowledge, only naive interpolation methods
on a given tensor, without possible exploitation of a data set, are available in the
case of a moving grid.

The standard completion framework relies on a low rank representation of the
data set (see Nguyen, Kim, and Shim (2019)). Along this line (but on a possibly
moving grid), we compress each observation in a code which can be seen as a
latent vector. However, in contrast with methods such as SVD, alternating least
squares (see Hastie, Mazumder, Lee, and Zadeh (2015)), or denoising autoencoders
(see Strub and Mary (2015)), which learn a user matrix, we do not consider the
interaction between the observations (i.e. the dynamics): at this stage at least, we
focus on the interaction between the variables (instruments).

Finally, standard completion methods in recommender systems assume missing
completely at random (MCAR) values dispersed throughout the whole data set. In
our case studies missing values are located completely at random but only for the
current observation.

2.3 Outlier Detection

Hawkins (1980) defines outliers as “observation which deviates so much from other
observations as to arouse suspicion it was generated by a different mechanism”.
Outlier detection is of course a crucial issue in finance. For instance, investment
banks receive market information from a data provider. Sometimes, the data can
be polluted with errors of various sources, or “different mechanism”, whether it is
data feed bugs, fat finger of other market participants, or failure from computation
processes (for instance, implicitation of volatility surface from option prices). It can
be either a punctual outlier, i.e. a single value of the tensor is too far away from
what it should be, or the whole tensor may have a shape that is very unlikely.

To detect the punctual outliers, many simple methods are available, based on
smoothness metrics or on historical percentile ranges of the values. To detect shape
outliers, some criteria can be checked for very specific data sets, e.g. non-arbitrage
butterfly/calendar spread conditions in the case of option prices.

Here we propose a general method to detect both punctual outliers and shape
aberration. The functional variant of our method works on an unstructured grid.

To say that the tensors generated from the “normal mechanism” is of a certain
form is equivalent to say that the mechanism generates values that lie in a sub-

5

manifold S of the initial feature space (cf. Section 2.1). Finding this sub-manifold
is equivalent to detecting anomalies. From this point of view, anomaly detection
and compression/decompression are two sides of the same coin. Indeed, from an
information theory point of view, there is an equivalence between being an anomaly
and being hard to reconstruct (large reconstruction error in a lossy data compression
setup, low or even negative compression rate in a lossless data compression setup):
See the seminal paper by Shannon (1948) or Chapter 4 in MacKay and Mac Kay
(2003). That is, a compression/decompression setup provides a natural anomaly
detection tool.

Specifically, we identify an outlier as an observation whose reconstruction error
(cf. (1)) is above a predefined threshold.

Some key practical questions in outlier detection are how a threshold for outlier
detection should be chosen or how one can validate the method. In principle this
can only be addressed by human expertise. An expert would gradually diminish the
threshold until the newly detected ‘outliers’ are no longer considered such by the
expert. The method is valid and performs well if the outlier detection in a validation
set is consistent with the expert view (so that, in particular, the threshold is stable
through time and does not need to be reassessed too frequently).

However, our compression methodology also provides a validation tool for the
quality of our outlier detection method. Namely, one can corrupt some of the data
(manually or in an automated fashion) and check whether the outlier detection
procedure identifies the corrupted data.

Our approach also provides guidance to a human expert for anomaly correction.
Currently experts only rely on naive heuristics, such as interpolation between dif-
ferent points of a surface, who cannot automatically exploit the overall data set of
surfaces. In the outlier detection validation framework of the previous paragraph,
one can also check whether the correction that our approach provides is closer to
the true data than to the corrupted ones.

Literature Review Among many related references on outlier detection:

• Patcha and Park (2007), Chandola, Banerjee, and Kumar (2009), Omar,
Ngadi, and Jebur (2013), or Anandakrishnan, Kumar, Statnikov, Faruquie,
and Xu (2018) provide surveys, the last one specialized in finance and the
next-to-last one on machine learning techniques;

• Lakhina, Joseph, and Verma (2010) use PCA, An and Cho (2015) varia-
tional autoencoders, Schlegl, Seeböck, Waldstein, Langs, and Schmidt-Erfurth
(2019) generative adversarial networks, Lakhina, Joseph, and Verma (2010)
and Cappozzo, Greselin, and Murphy (2020) semi-supervised learning. Chaloner
and Brant (1988) and Cansado and Soto (2008) resort to Bayesian method-
ologies;

• Ro, Zou, Wang, and Yin (2015) is about high-dimensional data, Anandakrish-
nan, Kumar, Statnikov, Faruquie, and Xu (2018) about high dimensional big
data, Rocke and Woodruff (1996) about multivariate data, Goix, Sabourin,
and Clémençon (2017) and Goix, Sabourin, and Clémençon (2015) about de-
tection of anomalies among extremes.

6

3 Models

The main innovation of this work is the functional approach. The description of
the PCA and linear projection methods are mainly provided so that the reader can
compare carefully both frameworks. The PCA and linear projection methods are
also used for benchmarking purposes in the swaption case study of Section 7 for
which both approaches are available. The base PCA method is of course standard.
The linear projection variant of it is detailed in Section 3.2. The description is
short because the method falls directly under the umbrella of sections 2.1 and 2.2
(as opposed to the functional approach of section 3.3, which requires a specific
development).

3.1 The Convolutional (Autoencoder) Approach

Typical autoencoder architectures are composed of two successive feedforward neu-
ral networks E and D, the encoder and the decoder. Both networks can be con-
stituted of several layers, intermediated by nonlinear activation functions, with an
overall bottleneck structure (to enforce compression in the middle).

Convolutional layers have been introduced for image processing and, more gen-
erally, any data structure represented as a tensor. These networks aim to model the
interactions between close points (whereas dense layers bind any output unit to all
input units). Spatial regularity properties are handled by a convolutional structure
of the neural network architectures, whereby the only (non-zero) connections are
between units corresponding to adjacent (in a suitable sense) grid nodes (cf. Figure
7.3). The network then also uses fewer parameters, which reduces the complexity of
the corresponding compression problem. For implementation details such as kernels
and padding, we refer to Chapter 9 in Bengio, Goodfellow, and Courville (2017).

3.2 The Linear Projection Approach

It is well known that an autoencoder with linear activation functions and an L2

reconstruction error is equivalent to a PCA (see Chapter 14 in Bengio, Goodfel-
low, and Courville (2017)). As a limiting case of the above, we consider a linear,
PCA kind of benchmark, but one itself implemented as an autoencoder with lin-
ear activation functions (as opposed to spectral decomposition for classical PCA
implementation). With respect to classical PCA (which will also be included in
our case studies), this approach involves an additional bias parameter. Moreover,
it allows benefiting from the implicit regularization provided by early stopping in
the related training procedure (see Section 4), as opposed to a regularization pro-
vided by truncation of the lowest eigenvalues in spectral decomposition based PCA
implementation.

3.3 The Functional Approach

We introduce a variant of the above, especially suited to interpolation purposes
(without reference to a fixed grid of nodes). This approach relies on a parameterized
function D = Dδ(c, n) of a code c and a node location n, where the latter no longer
needs belong to a pre-determined grid. Here δ corresponds to the parameters of

7

the decoder D, whereas the approach does not entail any encoder (at least, not
explicitly).

The compression is written as (compare with (1), using a similar notation as
well as C = (Cω)ω∈Ω)

min
δ,C

∑
ω∈Ω

∑
(n,y)∈ω

(
y −Dδ

(
Cω, n

))2
. (3)

Then, given a single, possibly partial observation ω, the completion is given as
(similar to (2))

min
c

∑
(n,y)∈ω

(
y −Dδ

(
c, n
))2

, (4)

considered for ω = ω? and δ = δ?. Importantly, for each given δ, the minimization
(3) decouples into one (full observation) minimization (4) for each ω ∈ Ω. Hence,
the larger compression problem (3) can be solved numerically as a succession of
smaller problems (4), in conjunction with gradient iterations in the direction of δ.
This ensures the scalability of the approach. It also makes it amenable to online
learning. The above observation also shows the consistency between (3) and (4)
in the sense that, if a full observation ω is used in (4), it should yield c? = C?ω
(assuming global and unique minima to all problems for the sake of the argument).

Under this approach, dubbed functional, the decoder takes as input the location
n of the point, in addition to the factors c (see Figure 5.1). It rebuilds each point
individually, as per n→ Dδ(c, n). The network is thus able to interpolate between
the nodes of the data grid. The concept of neighborhood intervenes through the
argument n of D, but the parameterization δ as well as the code c are common
to all locations n. The compression (3) can also accommodate incomplete data or
discretization changes, i.e. varying grids in the training data. This feature allows
training the functional network with “missing completely at random data” (MCAR,
in the statistical missing data terminology).

By comparison, under the convolutional approach of Section 3.1, the concept
of neighborhood intervenes through θ = (δ, ε), since each point of the grid is only
sensitive to a subset of connections (the convolutional architecture only connects
neighbouring points, cf. Figure 7.3). The encoding c is obtained directly thanks to
E, when the observation is complete, or by numerical completion (as always under
the functional approach) otherwise.

3.4 Synthesis

To conclude this section, Tables 3.1 and 3.2 summarize and put into perspective
the different approaches referred to in the above.

Also note that, from a numerical complexity point of view, the functional ap-
proach is less sensitive to the dimension than, say, a classical autoencoder on a fixed
grid (including our convolutional approach), for which the size of the grid typically
grows exponentially with the dimension.

8

Encoder
Implicit and non-linear

ĉ = argmin
c

∑
(n,y)∈ω

(
y −Dδ

(
c, n
))2

Decoder
Analytic and non-linear

ŷ = Dδ

(
c, n
)

Compression (training)
step

Optimization w.r.t. (δ, c)

minδ,C
∑

ω∈Ω

∑
(n,y)∈ω

(
y −Dδ

(
Cω, n

))2

Reconstructed surface
Reconstruction

Implicit

ŷ = D

(
argmin

c

∑
(n,y)∈ω

(
y −Dδ

(
c, n
))2

, n

)
Completed

surface
ŷ = D

(
argmin

c

∑
(n,y)∈ω

(
y −Dδ

(
c, n
))2

, n

)

Table 3.1: The functional approach.

PCA Convolutional

Encoder
Analytic and Linear

ĉ = Eε(y)
Analytic and non-linear

ĉ = Eε(y)

Decoder
Analytic and linear

ŷ = Dδ

(
c
) Analytic and non-linear

ŷ = Dδ

(
c
)

Compression (training)
step

Optimization w.r.t. (δ, ε)

minθ=(δ,ε)

∑
ω∈Ω

∑
(n,y)∈ω

(
y −

(
Dδ

(
Eε(ω)

))
n

)2
Optimization w.r.t. (δ, ε)

minθ=(δ,ε)

∑
ω∈Ω

∑
(n,y)∈ω

(
y −

(
Dδ

(
Eε(ω)

))
n

)2

Reconstructed surface
Reconstruction

Explicit/analytic
ŷ = D (E(y))

Explicit/analytic
ŷ = D (E(y))

Completed
surface

ŷ = D

(
argmin

c

∑
(n,y)∈ω

(
y −Dδ

(
c
))2
)

ŷ = D

(
argmin

c

∑
(n,y)∈ω

(
y −Dδ

(
c
))2
)

Table 3.2: PCA and convolutional approaches.

4 Experimental Methodology and Setting

The data and code for the equity and repo case studies can be found on a public
github repository https://github.com/mChataign/smileCompletion (the data
and code for the swaption case study are proprietary).

In this section, we devise an experimental methodology and the learning proce-
dures, so that all models are set on comparable grounds.

All the optimization (compression or completion) problems are solved with the
Adam adaptive learning rate stochastic gradient algorithms of Kingma and Ba
(2015). The output of a neural network is by construction non-convex with respect
to its parameters. So are therefore all our loss functions. The Adam algorithm
has proven its robustness in non-convex optimization context. With the help of
automatic adjoint differentiation, it provides fast training for most neural networks
architectures. However, no convergence is guaranteed theoretically.

For the compression stage, we make a 80 : 20 split of a full data set into a
training set and a test set. The split is chronological in order to avoid look-ahead
bias (cf. Ruf and Wang (2019)). The training set is further split into a calibration
and a validation data set. The former is used for computing the gradients driving
the numerical optimization in the training problem, whereas the latter is used for
determining an early stopping rule that provides implicit regularization, as detailed
below.

The learning rate of the Adam optimizer is set to 0.001. Mini-batch learning is
used in the repo and equity index derivative case studies, whereas batch-learning
is employed with swaption volatilities. The gradient descent is driven by the loss
computed on the calibration set, but the validation error is the loss function com-

9

puted on the validation data set. The learning procedure is stopped when we do not
observe any decrease of the validation error during a certain number of iterations,
called patience. The parametrization returned by the compression is the one that
minimizes the validation error. Early stopping in this sense limits the generaliza-
tion error (cf. Engl et al. (1996)), i.e. the gap between the reconstruction errors
computed on the calibration data set and a new, unobserved data set, the role of
which is played by the test set. Sometimes, as detailed later, a penalization term is
added to the compression loss function in order to provide a more regular and sta-
ble minimization. A maximum number of iterations is fixed to 104 at compression
stage and 103 at completion stage, in order to cap the length of the optimizations.

All approaches are implemented in Python, using the tensorflow package in the
swaption case study and pytorch in the two others. Note that all hyperparameters
are chosen manually, rather than by grid search or random search techniques. Grid
search is not possible because we have too many hyperparameters. Exploring dif-
ferent neural net architectures would be too demanding computationally. However,
some of the hyperparameters can be fixed based on human expertise. For instance,
15 factors in our case study of Section 6 is the number of factors that equity deriva-
tive traders commonly use in PCAs (after interpolation on a fixed grid, as they are
faced with moving grids).

4.1 Performance Metrics

We want to assess, for each approach, the performance of the corresponding com-
pression and completion procedures, as well as the behavior (distribution and dy-
namics) of the resulting factors. For the compression, we consider the average root
mean square reconstruction error RMSEω on the test set Ω′ (root mean square er-
ror RMSEω between the values at the nodes of the tensor ω and their reconstructed
counterparts, i.e. √√√√ 1

m

∑
(n,y)∈ω

(
y −

(
Dδ?

(
Eε?(ω)

))
n

)2
(5)

(or the analogous quantities withmω andDδ?
(
C?ω, n

)
instead ofm and

(
Dδ?

(
Eε?(ω)

))
n
,

as relevant). In the case of the functional approach the encoder E is implicit and
its definition is detailed in table 3.1. We refer to (5) as the reconstruction loss in
the compression stage of our case studies given that ω is a complete surface.

In constrast with (5), √√√√ 1

m

∑
(n,y)∈ω

(
y −

(
Dδ?

(
ĉ
))

n

)2
(6)

(or mω rather than m in the case of the functional approach) is called the comple-
tion loss when we compare the complete original observation with the completed
observation. This completed observation is given by the decoder for code values ĉ
which are calibrated on the incomplete view provided by ω.

In the case of interpolation benchmarks, there is no compression stage and no
code is involved at the completion stage: the completion loss is then defined by the

10

RMSE between the interpolated surface (from an incomplete ω) and the original
complete ω.

We provide a focus on the observation ω leading to the worst RMSEω over
the test set, in order to identify the locations that are less well handled (e.g. short
option maturities). In addition, we display the time series of the codes. A good
compression should exploit each factor in the code (we should not observe factors
stuck at zero).

The quality of the completion is assessed by a backtest on the test set. Each
day of Ω′, we solve the problem (2) or (4), initialiazing the factors with the fully
informed encoding of the previous day. We then mask 90 % of the points in each
tensor of the test set. For each such observation ω ∈ Ω′, we check the reconstruction
RMSEω between the completed surface and the true one. Like for compression, we
plot the worst completion obtained on the test set Ω′.

4.2 Introduction to the Case Studies

We provide numerical results on three daily time series of real financial data: re-
purchase agreement yield rates, equity implied volatility surfaces and at-the-money
swaption implied volatilities. However, the swaption implied volatilities have been
preprocessed by our data provider to fit a fixed grid (whereas the native, raw data
had a moving time-to-expiry). A preprocessing entails an unquantifiable bias and
our recommendation would be to apply the functional approach to the original
data (whenever available). The main motivation for the third example is that one
can then benchmark the functional approach against PCA and the convolutional
approach.

The advantage of working with yield rates or implied volatilities, instead of the
corresponding option prices, is that these are scaled quantities, exempt from first
order dependence on contract characteristics such as nominal, time-to-maturity,
actual level of the underlying in at-the-money option data, etc., which should oth-
erwise be added to the set of explanatory variables in all learning procedures. The
ensuing arbitrage issue is discussed in the next subsection.

4.3 Discussion of the Arbitrage Issue

Arbitrage constraints can be expressed naturally in terms of options prices using
calendar spread and butterfly. But in terms of implied volatility, they are non-
trivial, even in the simplest case of equity derivatives (for which they are fully
stated in Roper (2010)). No compression/completion method applied to implied
volatility surfaces provides a way to deal with those constraints without coming
back inherently to option prices. In order to circumvent that problem, one could
apply our approach to the coefficients of a (e.g. local vol) model, from which non
arbitrable prices and implied volatilities could be derived in a second step. However,
we do not choose this route because:

• the market practitioners, who play both the roles of human experts and users,
have built intuitions over decades on implied volatilities. They think of option
prices directly in terms of implied volatilities. Providing them with a good

11

recommendation tool in terms of a quantity that is familiar to them is of great
value and the primary purpose of our approach;

• most of the times, the starting point for calibrating a model (e.g. Dupire) is
nothing else than the implied volatilities. Therefore the trader must correct
the anomalies before the implied volatility surface can be plugged as an input
to model calibration. Hence one of the requirements of our proposed approach
is that it should be model-free;

• Having said this, if one assumes that, on the one hand, most of the surfaces in
our database are arbitrage-free and, on the other hand, a more regular surface
is less prone to arbitrage opportunities, then one concludes that our model
should tend to remove part of the arbitrages present in the data. This can
actually be seen empirically on some of the examples in Section 6. This is
a natural by-product of anomaly correction and it also eases the calibration
process.

Similar comments apply on most markets (beyond equity implied volatility), in-
cluding the ones of our three case studies, i.e. repo contracts, handled by traders
in terms of yield curves, and equity index derivatives and swaptions, which are
handled in terms of implied volatility.

5 Repo Curves

Our first case study bears on the nowcasting of repo rates, based on an 2013–2019
daily time series of repo yield curves (repo rates, where repo is a shorthand for
repurchase agreement).

The grid of nodes in the data is unstructured, in the sense that the corresponding
dates (time-to-maturities of bonds with standardized maturity dates) vary, in both
number and location, from day to day (with as little as two or three points on
particularly idle days), see e.g. Figure 5.2. Indeed, as the expiration dates used to
compute the repo curve are fixed, and the variable of interest for the repo curve
shape is rather time to expiry, the latter decreases as the expiry date approaches.
For a given repo curve, the times to expiry for which the repo value is available
is not known in advance for that reason. Therefore, there is no canonical way to
have a systematic representation of repo curves on a fixed grid, one would need
to introduce artificial time to expiry of interest and interpolate/extrapolate (which
poses issues of its own) the repo curve to get the values, and then working on
transformed data. This is the situation the functional approach is tailored for. By
not making any assumptions on the domain of input (time to expiry), the functional
approach enables to handle unaltered data, by treating the time-to-maturity of a
transaction as an input value (cf. Figure 5.1).

5.1 Functional Network Architecture

Our functional approach is implemented by a single feed-forward neural network
composed of three fully-connected layers with 20, 20 and 1 units (see Figure 5.1).
Hyperbolic tangent activation is applied to each but the output layer for the same
reasons as above (and the output layer is linear).

12

Input Layer ⁵∈ ℝ⁵ ℝ⁵ Hidden Layer ²∈ ℝ⁵ ℝ⁵ ⁰ Hidden Layer ²∈ ℝ⁵ ℝ⁵ ⁰ Output Layer ¹∈ ℝ⁵ ℝ⁵

Time to maturity T

4 factors
Yield (T)

Figure 5.1: Network of the functional approach used in the repo case study. Here
and in Figures 6.1 and 7.2 below, the graphs have been produced using the style
FCNN of the NN-SVG software: the units and the connections between them are
represented by circles and edges.

13

5.2 Numerical Results

As the bottom panels of Figure 5.2 illustrate, the parameterization is flexible and
can accomodate different curve shapes or node localizations.

As explained in Section 2.3, the compression stage can be used for detecting an
abnormal curve and correcting it with a more likely one. The distinction between
inliers and outliers is determined by a threshold on the reconstruction error. A
bad reconstruction is taken as a signal that the codebook is not able to explain
the corresponding observation. We then conclude that the latter does not lie in
the manifold S of the “usual” curves, hence we classify it as an outlier (see Section
2.3). We can then correct (replace) these data by the curve reconstructed from the
decoder with the factors calibrated on the current values, i.e. by the output of the
corresponding completion (4).

The lower panels of Figure 5.2 show the gap between the observed data points
and the reconstructed ones. The upper left panel spots the outliers at a 0.035 abso-
lute RMSE threshold. The upper right panel gives an example of outlier correction.

Figure 5.2: (Bottom) Interpolation of two inlier repo curves; (Top left) Time series
of the (absolute) RMSEs on the repo data and 0.035 RMSE threshold; the spotted
values correspond to the outliers at the chosen threshold. (Top right) Interpolation
of an outlier repo curve.

6 Equity Derivative Implied Volatility Surfaces

As a second experiment, we apply our functional approach to Black–Scholes implied
volatilities surfaces of equity index derivatives. The corresponding volatilities price
options on the Nikkei 225 index from 2015 to 2018 (included), corresponding to
1544 observable surfaces. The order of magnitude of implied volatilities fluctuates

14

between 0.15 and 1.2. We include the forward rate as an exogenous variable that
can be plugged into the functional network (5.1) along with log-maturity and log-
moneyness.

As in the repo case study, the grid of nodes in the data is unstructured, in
the sense that the corresponding dates (time-to-maturities of equity index options
with standardized maturity dates) But, again, this is the situation the functional
approach is tailored for (cf. Figure 5.1). The corresponding architecture of the
functional approach is then similar to the one used for repo curves in the previous
section, except that the log-time-to-maturity and the log-moneyness are used as the
(two dimensional) localization inputs, and that 15 latent variables are used (instead
of only 4 previously): see Figure 6.1. Moreover, one can also easily incorporate the
forwards as exogenous variables. For taking them into account, it suffices to add
to the network of Figure 6.1 an additional feature (input unit) containing the level
of the forward swap rate with maturity T . Hence, the units for the maturity T
indicate the common location of the corresponding volatilities and forward rates.

Input Layer ¹⁷∈ ℝ¹⁷ ℝ¹⁷ Hidden Layer ²∈ ℝ¹⁷ ℝ¹⁷ ⁰ Hidden Layer ²∈ ℝ¹⁷ ℝ¹⁷ ⁰ Output Layer ¹∈ ℝ¹⁷ ℝ¹⁷

Log Moneyness X

Log Maturity T

15 factors

Implied Volatility
at (X,T)

Figure 6.1: Network of the functional approach used in the equity case study (style
FCNN of the NN-SVG software, cf. Figure 5.1).

6.1 Compression

We first calibrate our functional approach with the compression stage. Toward this
end, we execute the optimization (1) on the training set and then calibrate codes
with (2) for each observation in both testing and training data sets. The quality
of the compression is assessed through the reconstruction errors reported in Table
6.1. By reconstruction error we mean the gap between the original surface and the
surface induced by the code calibrated from (2).

15

We emphasize the difference between a reconstucted surface (as above) and a
completed surface (considered later): the code leading to the completed surface is
calibrated from an incomplete surface whereas the one for the reconstructed surface
is obtained from a complete real surface.

Functional
Functional

with Forward

Training set 0.0070 0.0063

Testing set 0.0058 0.0064

Table 6.1: RMSEs for reconstructed implied volatilities.

In all four cases, the RMSEs in Table 6.1 are very small compared to the order
of magnitude of implied volatilities (between 0.15 and 1.2). The results show no
sign of overfitting (the reconstructions error are similar on the training set and
the testing set). Moreover the comparison between the two columns of the table
indicates that there is no benefit in including the forward price as an exogenous
variable in our network.

Another way to assess the performance of the compression stage is to consider
the worst compression, i.e. the surface yielding the highest reconstruction error.
This worst reconstruction corresponds to a RMSE of 0.0096. It is represented in
Figure 6.2, with the real surface on the top-left corner, the reconstructed couterpart
on the top-right corner and the pointwise absolute difference between the two at
the bottom.

We notice that the errors are concentrated on the upper tail (deep in the money
call options) and for short maturities, which corresponds to illiquid options.

A bad reconstruction of a surface can also be used for qualifying it as an outlier.
For instance, Figure 6.3 shows the implied volatility values corresponding to the
most extreme strikes in Figure 6.2: original data points as dots and curves from
the reconstructed surface. The left panel corresponding to the illiquid upper tail
shows around the maturity 1.5 year a very low point that an expert would indeed
qualify as an anomaly. The correction (i.e. the reconstructed surface) ignores this
anomaly and has a more reasonable shape from a practitioner of view.

The left part of Figure 6.5 shows that the corrected surface is not prone to
calendar arbitrage: the sensitivity to the maturity of the corresponding implied
total variance is positive for every maturity T .1 Sensitivity is computed thanks to
adjoint automatic differentiation from neural network.

The above example shows that the functional neural network is indeed apt to
learn from the compression stage a low-dimensional representation of likely obser-
vations. The low-dimensional representation gives large reconstruction errors to
the surfaces of the testing set atypical with respect to the past observations (the
training set in our experiments) and their latent structure.

1Regarding butterfly arbitrages, Durrleman’s condition on the density (involving sensitivity
with respect to forward log-moneyness, cf. Roper (2010)) can unfortunately not be checked for
lack of data regarding dividends and discounting.

16

Figure 6.2: Original surface vs compressed surface yielding worst RMSE.

Figure 6.3: Tails of compressed surface vs original implied volatilities.

17

6.2 Outlier Detection and Correction

To confirm our views on outliers, we propose the following sanity check. An obser-
vation (first volatility surface in the testing set) is chosen and articially corrupted
by doubling the values on four randomly chosen points: see the top-left corner in
Figure 6.4.

Then we run the optimization (2) on this corrupted surface and obtain recal-
ibrated codes. These code produce with the decoder the reconstructed surface
(called correction) on the top-right corner. The correction is a smooth surface in
which the corrupted values have been overwritten by values close to the original
(non corrupted) ones. The bottom-left panel shows that only the corrupted values
have been modifed significantly by the correction stage. The bottom-right figure
indicates that the corrected surface is very close to the original one. The RMSE
between the corrupted and the corrected surface is 0.0446 whereas the one between
the correction and the original surface is 0.0151.

Note that the calendar arbitrage condition is still respected (see figure 6.5) for
the correction, which exhibits a positive sensitivity of the implied total variance
with respect to the maturity of the option.

This experiment confirms that a high reconstruction error is a good indicator of
an outlier. The calibrated latent structure of the functional network smoothes the
corresponding surface by identifying and correcting its anomalous points.

18

Figure 6.4: Outlier correction : Corrupted surface (Top-left), Corrected surface
(Top-right), absolute error between corruption and correction (bottom-left), abso-
lute error between correction and original surface before corruption (bottom-right)

19

Figure 6.5: Implied total variance theta for worst reconstruction on top-left, outlier
correction on top-right and worst completion at the bottom.

20

6.3 Completion

We now want to leverage on the calibrated low-dimensional latent structure of the
functional network to recover a complete surface from partial information. Our hope
is that this procedure will generate likely surfaces while approaching the available
values (including on moving grids).

For each observation (surface) in the testing set, we select 40 points among the
255 points and remove all the others. Then we calibrate the latent variables by
solving numerically the problem (2) with loss corresponding to these 40 points.

In order to benchmark the functional approach and assess the contribution of
the historical data to the performance of the method, we report average completion
errors 2 on the testing set for standard interpolation procedures (within each given
surface, without exploitation of the information provided by the others):

1. Linear interpolation: given a triangulation of the 2D maturity and log-moneyness
space base on the locations of the 40 available points, the interpolated value
is taken as the barycenter on each triangle;

2. Spline interpolation: uses in each triangle as above a piecewise cubic interpo-
lating Bezier polynomial (see Alfeld (1984) and the scipy documentation of
the CloughTocher2DInterpolator method);

3. Gaussian process regression and squared exponential kernel: denoting by X
the observed locations (maturity and log-moneyness), by Y the observed log-
normal volatilities at locations X, by X? the locations without values and by
Y ? the unknown (looked for) implied volatilities, a Gaussian process regres-
sion assumes a Gaussian distribution

(Y, Y ?) ∼ N (0,

(
K(X,X) K(X,X?)
K(X?, X) K(X?, X?)

)
) with K(X,X?)ij = σ exp

(
−‖xi − xj‖

2

l2

)
,

(7)

where σ and l are two hyperparameters calibrated by log-likelihood to the
available values. In (7),

‖xi − xj‖2 = (Ti − Tj)2 + (ln (mi)− ln (mj))
2 ,

where T denotes a maturity and ln (m) a log-moneyness;

4. Gaussian process regression with flat extrapolation; similar to 3, except that
the Gaussian process predictor is only used for interpolation purposes; extrap-
olation whenever required is performed by the nearest neighbour method.

Again, a major difference between our functional (or neural net more generally)
approach and these interpolation benchmarks is that, in order to interpolate a given
surface, the neural network takes into account the information contained in all the
surfaces of the data set, which is used as training set at the compression stage. In
contrast, the above interpolation benchmarks only use the information provided by
the available points of the currently interpolated surface, without consideration of
the other surfaces in the data set. In particular, by Gaussian process regression in 3.

2Gap between the original surface and the completed one.

21

and 4., we just mean interpolation within a given surface, using the available points
in this surface as training set (unrelated to the potential use of Gaussian processes
as an alternative to neural networks in our compression/completion approaches,
which would be unrealistic as discussed in Subsection 2.1).

Accordingly, the functional approach exhibits significantly smaller completion
errors. In Table 6.2, we reported these errors for two different choices of the 40
visible points :

• Less correlated points, i.e. locations for which the implied volatilities are the
less correlated;

• Uniformly spread points, i.e.a random selection of at least 2 points per matu-
rity. The lowest maturity can be assigned 3 visible points in order to reach a
total number of 40 points.

As the loss in (2) is now computed on much fewer points (partial information in this
sense), the compression errors of the functional approach are obviously higher than
the reconstruction errors from Table 6.1. Smaller error are reported in the second
case above because less correlated points are rather located on short maturities, so
that, in the first case little information, is available for the long maturities.

Functional
Functional

with Forward
Linear

interpolation
Spline

interpolation
Gaussian process
no extrapolation

Gaussian process
flat extrapolation

Less correlated points 0.0262 0.0265 0.0632 0.0462 0.0555 0.0459

Uniformly spread points 0.0076 0.0091 0.0211 0.0168 0.0201 0.0208

Table 6.2: RMSEs for completed implied volatilities.

All the completion results reported hereafter correspond to the case of uniformly
spread visible points.

The completion method provided by the functional approach is also robust: even
the worst completion does not produce an outlier, i.e.

• the completed surface is smooth,

• the completed surface has a shape similar to the one of the original surface
(the pointwise errors between the original and the completed surfaces are
uniformly distributed),

• the implied total variance sensitivity with respect to the maturity is still
positive (see Figure 6.5), inducing no calendar arbitrage opportunity,

• tails are consistent with the original points (see Figure 6.7) and not irregular.

Such robustness is not provided by the interpolation benchmarks. For instance,
in the case of the worst completion with the spline interpolation, the completed
surface (top-right corner of Figure 6.8) is irregular in the tails.

22

Figure 6.6: Original surface vs. completed surface yielding the worst RMSE. Black
crosses mark visible points.

Figure 6.7: Tails of completed surface vs. original implied volatilities.

23

Figure 6.8: Original surface vs. completed surface yielding the worst RMSE with
spline interpolation. Black crosses mark visible points.

24

7 At-the-Money Swaption Surfaces

The previous section was showing a case where the functional approach outperforms
elementary interpolation benchmarks in an situation (in fact, the most common in
the context of financial nowcasting applications) involving a moving grid.

We now consider an application where the grid is constant (after a preprocessing
by our data provider) so that PCA or more classical autoencoder approaches are
also available. The results show that the functional approach then performs as
well as these classical benchmarks (which, however, would not be available on the
original data with variable time-to-maturity).

A swaption is a financial contract allowing a client to enter into an interest rate
swap with some strike K at some future expiry date U , for some tenor length T . A
large body of literature deals with the swaption implied volatility as a function of
the strike parameter.

By contrast, very few works are dealing with the swaption implied volatility as a
function of the expiry and tenor parameters (see Figure 7.1). One exception is Trolle

Figure 7.1: Different patterns of at-the-money swaption volatility surface.

and Schwartz (2010), who, based on a time series of swaption cubes, investigate how
the conditional moments of the underlying swap rate distributions vary with expiry,
tenor, and calendar time. One possible reason for this relative lack of literature may
be that swaption arbitrage pricing relationships are mainly known along the strike
direction. Across expiries and tenors, one only has “statistical arbitrage” relations,
reflecting the overlap between the cash flow streams of the underlying swaps.

In the following case study, we focus on at-the-money (ATM, which are also the
most liquid) swaption implied volatilities as a function of U and T . The approach
is model free in the sense that we do not formulate or use any hypothesis on the
underlying forward swap rate processes.

Our study is conducted on a daily database of monocurrency (euro) ATM swap-

25

tion normal3 implied volatilities, covering 2400 business days corresponding to the
period from 2007 to 2017. The training calibration and validation set Ω covers
the 2007 to 2014 sub-period (1900 first observation days of the data set), whereas
the test set Ω′ ranges from 2015 to 2017 (500 subsequent ones). The data have
been preprocessed by our provider so that all the ATM implied volatility surfaces
are defined on a common rectangular grid of eighty (U, T) nodes, without missing
implied volatility values at any day or node, corresponding to the ten expiries (with
M for month and Y for year)

U ∈ (1M, 3M, 6M, 1Y, 2Y, 5Y, 7Y, 10Y, 20Y, 30Y)

and the eight tenors

T ∈ (3M, 1Y, 2Y, 5Y, 10Y, 15Y, 20Y, 30Y).

For testing our completion approach, we mask 90% of the points in each surface
of the test set Ω′, only keeping the volatility points corresponding to the grid nodes
(U, T) in

(1M, 3M), (1M, 10Y), (1M, 30Y), (6M, 2Y),

(6M, 15Y), (5Y, 1Y), (5Y, 20Y), (10Y, 5Y).
(8)

Such specification is in line with the reality of a market where the shortest expiries
are the most liquidly traded ones (as well as the most volatile). Hence, our com-
pletion exercise corresponds to the intraday situation of a swaption trader facing
mostly short expiry ATM implied volatility data, and left with the task of guessing
the “most likely values” of the remaining implied volatilities.

7.1 Network Architectures

The corresponding architecture of the functional approach is then similar to the one
used for equity derivatives in Section 5.1, except that the expiry U and tenor T are
used as the localization inputs, and only 8 latent variables are used (instead of 15
previously): see Figure 7.2. Moreover, one can also incorporate the forward swap
rates as exogenous variables. These are the underlyings of the swaptions and they
are structured similarly to the ATM implied volatilities of the latter, located by an
expiry and a tenor. For taking them into account, it suffices to add to the network
of Figure 7.2 an additional feature (input unit) containing the level of the forward
swap rate with expiry U and tenor T . Hence, the units for the expiry U and the
tenor T indicate the common location of the corresponding ATM volatilities and
forward swap rates.

The convolutional autoencoders use feed-forward neural networks for the en-
coder and the decoder, with four hidden layers each: one dense layer is applied on
top of three convolutional layers for the encoder and, symmetrically, three decon-
volutional layers are built on top of one dense layer. The data set is reshaped as a
(10, 8) tensor per day. The convolution layers are built with the respective kernels
(used for specifying the localization of the weights) (5, 4), (4, 3), and (3, 3). Each

3rather than Black–Scholes, because of the negative rates environment.

26

Input Layer ¹∈ ℝ¹⁰ ℝ¹⁰ ⁰ Hidden Layer ²∈ ℝ¹⁰ ℝ¹⁰ ⁰ Hidden Layer ²∈ ℝ¹⁰ ℝ¹⁰ ⁰ Output Layer ¹∈ ℝ¹⁰ ℝ¹⁰

Expiry U

Tenor T

8 factors

Implied Volatility
at (U,T)

Figure 7.2: Network of the functional approach used in the swaption case study
(style FCNN of the NN-SVG software, cf. Figure 5.1).

1 Tensor
of dimension (10,8)

3 Tensors
of dimension (6,5)

9 Tensors
of dimension (3,3)

Vector
of 27 elements

Factors : Vector
of 8 elements

Figure 7.3: Architecture of the convolutional encoder used in our ATM swaption
case study. Graph produced using the style LeNet of the NN-SVG software: Each
of the four layers is represented by a triangle; The inputs of each of the three
convolutional layers are displayed as collections of tensors; The ones of the last,
dense layer are represented as a series of dots.

27

convolution layer produces 3 channels (see Figure 7.3) and, symmetrically, each
deconvolution layer has in input 3 times more channels than in output. Padding
is set as VALID in order to reduce the size of the hidden units after each convo-
lution layer. As output of the three convolution layers, we have a hidden layer of
27 units, corresponding to 27 channels of size (1, 1). A softplus (regularized ReLU)
activation function is chosen after each convolution layer. This results in sparsity
of the calibrated network (the compression stage sets very negative biases on the
intermediate units that the neural network wants to ignore, cf. Bengio (2012)), as
well as positivity and regularity of the ensuing implied volatility surface. The dense
layers between the factors and the (de)convolution layers are linear. Hence, the
convolution layers can be seen as a kernel that linearly separates the features.

Following a divide-and-conquer, sequential training strategy, we train the con-
volutional layers by pairs, from the most outer to the most inner ones, i.e. the layers
surrounding the latent variables (greedy layer-wise pre-training as per Hinton, Osin-
dero, and Teh (2006) and Bengio, Lamblin, Popovici, and Larochelle (2007)). A
final optimization fine-tunes the weights of all the layers together. This also allows
exploiting any hierarchical structure of the data (cf. Masci, Meier, Cireşan, and
Schmidhuber (2011)): The outer layers detect the greatest patterns, while inner
layers detect the finest ones.

In the case of the fully connected networks that are used in the linear projection
and in the functional approaches, we use the Glorot and Bengio (2010) initialization
rule for the weights, with a centered normal distribution of standard deviation equal

to
√

4
ninputs+noutputs

. In the case of the convolutional layers we use a truncated

normal distribution with 0.1 standard deviation. All biases are initialized to zero.

Each iteration leads to the computation of the loss gradient on the whole calibra-
tion data set. Indeed, given the relatively small size of our data sets, full gradient
evaluation is not an issue in practice. Moreover, mini-batch would require that
each batch sample has approximately the same distribution, which is notoriously
violated in the case of (non-stationary) financial time series.

Penalization is used at the compression stage for regularizing the calibrated
parameters. More precisely, ridge regularization is used for the kernel weights of
the fully-connected layers of the convolutional and of the functional approaches,
with a penalization coefficient of 0.1 intended to balance the reconstruction loss
and the penalization term at the minimum.

7.2 Numerical Results

Table 7.1 is a report on the errors of all our approaches (cf. Section 4.2). It is based
on the absolute daily RMSEs (cf. (5) and (6)).

The last row of Table 7.1 displays the corresponding training times for all but
the standard PCA approach, which involves no training and is in fact much faster
than all the others (as it essentially reduces to the inversion of an m×m matrix, with
m = 80). The dates in brackets in the tables identify the observations corresponding
to the worst errors.

At the completion stage, we take as initial factor values the volatility encoding
of the previous day. Figure 7.4 shows the stability through calendar time of the
codes obtained by the linear projection approach.

28

Standard
PCA

Linear
projection

Convolutional
autoencoder

Functional
approach

Functional approach
with forward rate

Average compression error
on Ω

1.23 1.58 1.97 1.85 2.29

Average compression error
on Ω′ 3.71 3.54 6.19 3.77 3.02

Worst compression error
on Ω [day] ([day])

4.15
[2008-12-03]

3.98
[2008-12-09]

7.18
[2008-12-08]

8.32
[2008-10-09]

6.93
[2008-10-10]

Worst compression error
on Ω′ [day] ([day])

5.76
[2016-04-28]

5.18
[2016-04-28]

12.0
[2015-07-07]

6.34
[2015-12-21

5.16
[2015-12-18]

Average completion error
on Ω′ 6.19 4.07 5.03 6.41 5.19

Worst completion error
on Ω′ [day] ([day])

12.6
[2015-06-30]

6.50
[2015-07-10]

9.89
[2015-07-10]

12.8
[2015-03-09]

9.09
[2016-01-14]

Training time in seconds ∅ 9 411 1287 276

Table 7.1: RMSEs in the sense of (5) and (6)

Figure 7.4: Time series of the factors obtained by encoding of the training obser-
vations under the linear projection approach.

29

As shown by Figure 7.5 in the case of the linear projection approach (but this
is also true of the nonlinear approaches), the dominant errors are concentrated on

Figure 7.5: Linear projection approach: (Top left) Original (full) tensor; (Top right)
Tensor Dδ?(c?) completed based on the 8 points of the latter given by (8); (Bottom)
Pointwise absolute error between the two, for the worst observation in Ω′.

the shortest expiries. This is because the implied volatilities corresponding to these
shortest expiries are the more volatile. Hence, their spatial dependence structure
is less informative. To recover these points better, one could think of providing
extra information through exogenous variables, such as the level of the underlying
forward swap rates. Under the functional approach, this can easily be done in the
way explained in Section 5.1. However, the last columns in Table shows that this
only has a minor positive impact.

The linear approaches are as accurate as the nonlinear ones and the convolu-
tional approach is typically outperformed by at least the linear projection or the
functional approach.

30

Figure 7.7 illustrates that the functional approach enables to interpolate smoothly
the surface over an arbitrarily fine grid, in this case 104 points obtained by the cor-
responding interpolation of the tensor of Figure 7.6.

Figure 7.6: Complete tensor corresponding to the first observation in Ω′. The
black crosses designate the “available points”, specified by (8), that are used in the
completion exercise.

Figure 7.7: Surface with 104 points obtained by the functional approach applied to
the first observation in Ω′.

8 Conclusions and Perspectives

We have devised a generic neural network based curve or surface (or more general
tensor) compression/completion methodology, for which we propose two concrete

31

specifications: the functional approach, amenable to the treatment of unstructured
data with varying grid nodes (as natively the case in most financial nowcasting
applications), and a convolutional autoencoder approach, including PCA or PCA-
like projections as linear special cases, applicable in the special case of a constant
grid (natively or possibly after some preprocessing). The compression stage also
allows for outlier detection and correction by generating surfaces or curves in line
with training samples.

The analysis of the corresponding reconstruction errors suggests that linear
methods are sufficient to compress structured tensors, corresponding to a constant
grid of nodes, into few factors coefficients. The completion stage allows recovering
with success about 90% values of the data, starting from about 10% of known
values. But the functional approach is the only one that is able to directly deal
(without preprocessing) with the most common situation of unstructured tensors.
The only alternative is then naive interpolation benchmarks that do not exploit the
data set, and which the functional approach is shown to outperform in our equity
derivative case study.

All approaches suffer from non-stationarities occurring during extreme events or
change of market regimes. This can be seen as an advantage with respect to anomaly
detection. For other purposes, it would plead in favor of further modeling of the
factor dynamics, whether this relies on times series machine learning or Markov
chain Monte Carlo (filtering) techniques. More generally, it would be interesting
to extend this study in several directions, such as the introduction of backtesting
hedging criteria (cf. Garcia and Gençay (2000)), scenario simulation in a context of
variational networks (see Tschannen, Bachem, and Lucic (2018)), application of the
method to the whole swaption volatility cube, strike dimension included (cf. Trolle
and Schwartz (2010)), or specification of dynamics on the factors (for instance by
Kalman filters).

References

Alfeld, P. (1984). A trivariate clough—tocher scheme for tetrahedral data. Com-
puter Aided Geometric Design 1 (2), 169–181.

An, J. and S. Cho (2015). Variational autoencoder based anomaly detection using
reconstruction probability. Special Lecture on IE 2 (1), 1–18.

Anandakrishnan, A., S. Kumar, A. Statnikov, T. Faruquie, and D. Xu (2018).
Anomaly detection in finance: editors’ introduction. In KDD 2017 Workshop
on Anomaly Detection in Finance, pp. 1–7.

Bengio, Y. (2012). Practical recommendations for gradient-based training of deep
architectures. In Neural networks: Tricks of the trade, pp. 437–478. Springer.

Bengio, Y., I. Goodfellow, and A. Courville (2017). Deep Learning, Volume 1.
Citeseer.

Bengio, Y., P. Lamblin, D. Popovici, and H. Larochelle (2007). Greedy layer-
wise training of deep networks. In Advances in neural information processing
systems, pp. 153–160.

32

Cansado, A. and A. Soto (2008). Unsupervised anomaly detection in large
databases using Bayesian networks. Applied Artificial Intelligence 22 (4), 309–
330.

Cappozzo, A., F. Greselin, and T. B. Murphy (2020). Anomaly and novelty
detection for robust semi-supervised learning. Statistics and Computing , 1–
27.

Chaloner, K. and R. Brant (1988). A Bayesian approach to outlier detection and
residual analysis. Biometrika 75 (4), 651–659.

Chandola, V., A. Banerjee, and V. Kumar (2009). Anomaly detection: A survey.
ACM computing surveys (CSUR) 41 (3), 1–58.

Engl, H., M. Hanke, and A. Neubauer (1996). Regularization of Inverse Problems.
Kluwer.

Garcia, R. and R. Gençay (2000). Pricing and hedging derivative securities with
neural networks and a homogeneity hint. Journal of Econometrics 94 (1-2),
93–115.

Glorot, X. and Y. Bengio (2010). Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics, pp. 249–256.

Goix, N., A. Sabourin, and S. Clémençon (2015). On anomaly ranking and excess-
mass curves. In Artificial Intelligence and Statistics, pp. 287–295.

Goix, N., A. Sabourin, and S. Clémençon (2017). Sparse representation of mul-
tivariate extremes with applications to anomaly detection. Journal of Multi-
variate Analysis 161, 12–31.

Hastie, T., R. Mazumder, J. D. Lee, and R. Zadeh (2015). Matrix completion
and low-rank svd via fast alternating least squares. The Journal of Machine
Learning Research 16 (1), 3367–3402.

Hawkins, D. M. (1980). Identification of outliers, Volume 11. Springer.

Hinton, G. E., S. Osindero, and Y.-W. Teh (2006). A fast learning algorithm for
deep belief nets. Neural computation 18 (7), 1527–1554.

Kingma, D. P. and J. Ba (2015). Adam: A method for stochastic optimization.
In International Conference on Learning Representations.

Kiran, B. R., D. M. Thomas, and R. Parakkal (2018). An overview of deep learn-
ing based methods for unsupervised and semi-supervised anomaly detection
in videos. Journal of Imaging 4 (2), 36.

Kondratyev, A. (2018). Curve dynamics with artificial neural networks. Risk Mag-
azine, May. Preprint version available at https://ssrn.com/abstract=3041232.

Lakhina, S., S. Joseph, and B. Verma (2010). Feature reduction using principal
component analysis for effective anomaly–based intrusion detection on NSL-
KDD.

MacKay, D. J. and D. J. Mac Kay (2003). Information theory, inference and
learning algorithms. Cambridge university press.

33

Masci, J., U. Meier, D. Cireşan, and J. Schmidhuber (2011). Stacked convolu-
tional auto-encoders for hierarchical feature extraction. In International Con-
ference on Artificial Neural Networks, pp. 52–59. Springer.

Nguyen, L. T., J. Kim, and B. Shim (2019). Low-rank matrix completion: A
contemporary survey. IEEE Access 7, 94215–94237.

Omar, S., A. Ngadi, and H. H. Jebur (2013). Machine learning techniques for
anomaly detection: an overview. International Journal of Computer Applica-
tions 79 (2).

Patcha, A. and J.-M. Park (2007). An overview of anomaly detection techniques:
Existing solutions and latest technological trends. Computer networks 51 (12),
3448–3470.

Ro, K., C. Zou, Z. Wang, and G. Yin (2015). Outlier detection for high-
dimensional data. Biometrika 102 (3), 589–599.

Rocke, D. M. and D. L. Woodruff (1996). Identification of outliers in multivariate
data. Journal of the American Statistical Association 91 (435), 1047–1061.

Roper, M. (2010). Arbitrage free implied volatility sur-
faces. Preprint University of Sydney available at
https://talus.maths.usyd.edu.au/u/pubs/publist/preprints/2010/roper-
9.pdf.

Ruf, J. and W. Wang (2019). Neural networks for option pricing and hedging: a
literature review. arXiv:1911.05620.

Schlegl, T., P. Seeböck, S. M. Waldstein, G. Langs, and U. Schmidt-Erfurth
(2019). f-anogan: Fast unsupervised anomaly detection with generative ad-
versarial networks. Medical image analysis 54, 30–44.

Shannon, C. E. (1948). A mathematical theory of communication. Bell system
technical journal 27 (3), 379–423.

Strub, F., R. Gaudel, and J. Mary (2016). Hybrid recommender system based
on autoencoders. In Proceedings of the 1st Workshop on Deep Learning for
Recommender Systems, pp. 11–16. ACM.

Strub, F. and J. Mary (2015). Collaborative filtering with stacked denoising au-
toencoders and sparse inputs. In NIPS workshop on machine learning for
eCommerce.

Trolle, A. B. and E. S. Schwartz (2010, November). An empirical analysis of the
swaption cube. Working Paper 16549, National Bureau of Economic Research.

Tschannen, M., O. Bachem, and M. Lucic (2018). Recent advances in
autoencoder-based representation learning. arXiv preprint arXiv:1812.05069 .

34

