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Abstract. We explore the abilities of two machine learning approaches for no-arbitrage interpo-6
lation of European vanilla option prices, which jointly yield the corresponding local7
volatility surface: a finite dimensional Gaussian process (GP) regression approach under8
no-arbitrage constraints based on prices, and a neural net (NN) approach with penaliza-9
tion of arbitrages based on implied volatilities. We demonstrate the performance of these10
approaches relative to the SSVI industry standard. The GP approach is proven arbitrage-11
free, whereas arbitrages are only penalized under the SSVI and NN approaches. The GP12
approach obtains the best out-of-sample calibration error and provides uncertainty quan-13
tification. The NN approach yields a smoother local volatility and a better backtesting14
performance, as its training criterion incorporates a local volatility regularization term.15
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1. Introduction. There have been recent surges of literature about the learning17

of derivative pricing functions by machine learning surrogate models, i.e. neural nets18

and Gaussian processes that are respectively surveyed in [11] and [4, Section 1].19

There has, however, been relatively little coverage of no-arbitrage constraints when20

interpolating prices, and of the ensuing question of extracting the corresponding21

local volatility surface.22

Tegnér & Roberts [12, see their Eq. (10)] first attempt the use of GPs for local23

volatility modeling by placing a Gaussian prior directly on the local volatility surface.24

Such an approach leads to a nonlinear least squares training loss function, which is25

not obviously amenable to gradient descent (stochastic or not), so the authors resort26

to a MCMC optimization. Zheng et al. [13] introduce shape constraint penalization27

via a multi-model gated neural network, which uses an auxiliary network to fit the28

parameters. The gated network is interpretable and lightweight, but the training is29
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expensive and there is no guarantee of no-arbitrage. They do not consider the local30

volatility and the associated regularization terms, nor do they assess the extent to31

which no-arbitrage is violated in a test set.32

Maatouk & Bay [9] introduce finite dimensional approximation of Gaussian pro-33

cesses (GP) for which shape constraints are straightforward to impose and verify.34

Cousin et al. [3] apply this technique to ensure arbitrage-free and error-controlled35

yield-curve and CDS curve interpolation.36

In this paper, we propose an arbitrage-free GP option price interpolation, which37

jointly yields the corresponding local volatility surface, with uncertainty quantifica-38

tion. Another contribution of the paper is to introduce a neural network approx-39

imation of the implied volatility surface, penalizing arbitrages on the basis of the40

Dupire formula, which is also used for extracting the corresponding local volatility41

surface. This is all evidenced on an SPX option dataset.42

Throughout the paper we consider European puts on a stock (or index) S with43

dividend yield q, in an economy with interest rate term r, with q and r constant in44

the mathematical description and deterministic in the numerics.45

Given any rectangular domain of interest in time and space, we tacitly rescale46

the inputs so that the domain becomes Ω = [0, 1]2. This rescaling avoids any47

one independent variable dominating over another during any fitting of the market48

prices.49

2. Gaussian process regression for learning arbitrage-free price surfaces. We50

denote by P∗(T,K) the time-0 market price of the put with maturity T and strike51

K on S, observed for a finite number of pairs (T,K). Our first goal is to construct,52

by Gaussian process regression, an arbitrage-free and continuous put price surface53

P : R+ × R+ → R+, interpolating P∗ up to some error term, and to retrieve the54

corresponding local volatility surface σ(·, ·) by the Dupire formula.55

In terms of the reduced prices p(T, k) = eqTP (T,K), where k = Ke−(r−q)T , the56

Dupire formula [5] reads (assuming p of class C1,2 on {T > 0}):57

(2.1)
σ2(T,K)

2
=

∂T p(T, k)

k2∂2
k2p(T, k)

=: dup(T, k).58

Obviously, for this formula to be meaningful, its output must be nonnegative, which59

holds if the interpolating map p exhibits nonnegative derivatives w.r.t. T and second60

derivative w.r.t. k, i.e.61

(2.2) ∂T p(T, k) ≥ 0 , ∂2
k2p(T, k) ≥ 0,62

In this section, we consider a zero-mean Gaussian process prior on the mapping63

p = p(x)x∈Ω with correlation function c given, for any x = (T, k), x′ = (T ′, k′) ∈ Ω,64

by65

(2.3) c(x, x′) = σ2γT (T − T ′, θT )γk(k − k′, θk).66

Here (θT , θk) = θ and σ2 correspond to length scale and variance hyper-parameters67

of the kernel function c, whereas the functions γT and γk are kernel correlation68

functions.69
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Without consideration of the conditions (2.2), (unconstrained) prediction and70

uncertainty quantification are made using the conditional distribution p | p(x)+ε =71

y, where y = [y1, . . . , yn]> are n noisy observations of the function p at input points72

x = [x1, . . . , xn]>, corresponding to observed maturities and strikes xi = (Ti, ki);73

the additive noise term ε = [ε1, . . . , εn]> is assumed to be a zero-mean Gaussian74

vector, independent from p(x), and with an homoscedastic covariance matrix given75

as ς2In, where In is the identity matrix of dimension n. Note that bid and ask prices76

are considered here as (noisy) replications at the same input location.77

2.1. Imposing the no-arbitrage conditions. To deal with the constraints (2.2),78

we adopt the solution of Cousin et al. [3] that consists in constructing a finite di-79

mensional approximation ph of the Gaussian prior p for which these constraints can80

be imposed in the entire domain Ω with a finite number of checks. One then recov-81

ers the (non Gaussian) constrained posterior distribution by sampling a truncated82

Gaussian process.83

Remark 1. Switching to a finite dimensional approximation can also be viewed84

as a form of regularization, which is also required to deal with the ill-posedness of85

the (numerical differentiation) Dupire formula.86

We first consider a discretized version of the (rescaled) input space Ω = [0, 1]2

as a regular grid (ıh)ı, where ı = (i, j), for a suitable mesh size h and indices i, j
ranging from 0 to 1/h (taken in N?). For each knot ı = (i, j), we introduce the hat
basis functions φı with support [(i − 1)h, (i + 1)h] × [(j − 1)h, (j + 1)h] given, for
x = (T, k), by

φı(x) = max(1− |T − ih|
h

, 0) max(1− |k − jh|
h

, 0).

We take V = H1(Ω) = {u ∈ L2(Ω) : Dαu ∈ L2(Ω), |α| ≤ 1}, where Dαu is a87

weak derivative of order |α|, as the space of (the realizations of) p. Let V h ⊂ V88

denote the finite dimensional linear subspace spanned by the M linearly independent89

basis functions φı. The (random) surface p in V is projected onto V h as90

(2.4) ph(x) =
∑
ı

p(ıh)φı(x), ∀x ∈ Ω.91

If we denote %ı = p(ıh), then % = (%ı)ı is a zero-mean Gaussian column vector92

(indexed by ı) with M ×M covariance matrix Γh such that Γhı, = c(ıh, h), for any93

two grid nodes ı and . Let φ(x) denote the vector of size M given by φ(x) =94

(φı(x))ı. The equality (2.4) can be rewritten as ph(x) = φ(x) · %. Denoting by95

ph(x) = [ph(x1), . . . , ph(xn)]> and by Φ(x) the n × M matrix of basis functions96

where each row ` corresponds to the vector φ(x`), one has ph(x) = Φ(x) · %. By97

application of the results of [9]:98

Proposition 2. (i) The finite dimensional process ph converges uniformly to p on99

Ω as h→ 0, almost surely,100

(ii) ph(T, k) is a nondecreasing function of T if and only if %i+1,j ≥ %i,j ,∀(i, j),101

(iii) ph(T, k) is a convex function of k if and only if %i,j+2 − %i,j+1 ≥ %i,j+1 −102

%i,j ,∀(i, j).103
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In view of (i), denoting by I the set of 2d continuous positive functions which are104

nondecreasing in T and convex in k, we choose as constrained GP metamodel for105

the put price surface the law of ph conditional on106 {
ph(x) + ε = y
ph ∈ I.107

In view of (ii)-(iii), ph ∈ I if and only if % ∈ Ih, where Ih corresponds to the set of108

(ı indexed) vectors ρ = (ρı)ı such that ρi+1,j ≥ ρi,j and ρi,j+2−ρi,j+1 ≥ ρi,j+1−ρi,j109

∀(i, j). Hence, our GP metamodel for the put price surface can be reformulated as110

the law of % conditional on111 {
Φ(x) · %+ ε = y
% ∈ Ih.(2.5)112

2.2. Hyper-parameter learning. Hyper-parameters consist in the length scales113

θ and the variance parameter σ2 in (2.3), as well as the noise variance ς. Up to a114

constant, the so called marginal log likelihood of % at λ = [θ, σ, ς]> can be expressed115

as (see e.g. [10, Section 15.2.4, p. 523]):116

L(λ) = −1

2
y>
(
Φ(x)ΓhΦ(x)> + ς2In

)−1
y − 1

2
log
(

det
(
Φ(x)ΓhΦ(x)> + ς2In

))
.117

We maximize L for learning the hyper-parameters λ (MLE estimation).118

Remark 3. The above expression does not take into account the inequality con-119

straints in the estimation. However, Bachoc et al. [1, see e.g. their Eq. (2)] argue120

(and we observed empirically) that, unless the sample size is very small, condition-121

ing by the constraints significantly increases the computational burden with negligible122

impact on the MLE.123

2.3. The most probable response surface and measurement noises. We com-
pute the joint MAP (ρ̂, ê) of the truncated Gaussian vector % and of the Gaussian
noise vector ε,

(ρ̂, ê) = arg max
(ρ,e)

Prob
(
% ∈ [ρ,ρ+ dρ], ε ∈ [e, e+ de] | Φ(x) · %+ ε = y, % ∈ Ih

)
(for the probability measure Prob underlying the GP model). As (%, ε) is Gaussian124

centered with block-diagonal covariance matrix with blocks Γh and ς2In, this implies125

that the MAP (ρ̂, ê) is a solution to the following quadratic problem :126

(2.6) arg min
Φ(x)·ρ+e=y,ρ∈Ih

(
ρ>(Γh)−1ρ+ e>(ς2In)−1e

)
.127

We define the most probable measurement noise to be ê and the most probable128

response surface p̂h(x) = Φ(x) · ρ̂. Distance to the data can be an effect of arbitrage129

opportunities within the data and/or misspecification / lack of expressiveness of the130

kernel.131
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2.4. Sampling finite dimensional Gaussian processes under shape constraints.132

The conditional distribution of % | Φ(x) · % + ε = y is multivariate Gaussian with133

mean ηy(x) and covariance matrix Cy(x) such that134

ηy(x) = ΓhΦ(x)>(Φ(x)ΓhΦ(x)> + ς2In)−1y(2.7)135

Cy(x) = ΓhΦ(x)>(Φ(x)ΓhΦ(x)> + ς2In)−1Φ(x)Γh.(2.8)136

In view of (2.5), we thus face the problem of sampling from this truncated mul-137

tivariate Gaussian distribution, which we do by Hamiltonian Monte Carlo, using138

the MAP %̂ of % as the initial vector (which must verify the constraints) in the139

algorithm.140

2.5. Local volatility. Due to the shape constraints and to the ensuing finite-141

dimensional approximation with basis functions of class C0 (for the sake of Proposi-142

tion 2), ph is not differentiable. Hence, exploiting GP derivatives analytics, as done143

for the mean in [4, cf. Eq. (10)] and also for the covariance in [8], is not possible for144

deriving the corresponding local volatility surface here. Computation of derivatives145

involved in the Dupire formula is implemented by finite differences with respect to146

a coarser grid (than the grid of basis functions). Another related solution would147

be to formulate a weak form of the Dupire equation and construct a local volatility148

surface approximation using a finite element method.149

See Algorithm 2.1 for the main steps of the GP approach.150

Algorithm 2.1 The GP algorithm for local volatility surface approximation.

Data: Put price training set p?
Result: M realizations of the local volatility surface {duphi }Mi=1

1 λ̂ ← Maximize the marginal log-likelihood of the put price surface ph w.r.t. λ
// Hyperparameter fitting

2 (ρ̂, ê)← Minimize quadratic problem (2.6) based on λ̂ // Joint MAP estimate

3 ρ̂→ Initialize a Hamiltonian MC sampler

4 ph1 , . . . , p
h
M ← Hamiltonian MC Sampler // Sampling price surfaces

5 duphi ← Finite difference approximation using each phi , i := 1→M

3. Neural networks implied volatility metamodeling. Our second goal is to use151

neural nets (NN) to construct an implied volatility (IV) put surface Σ : R+ × R→152

R+, interpolating implied volatility market quotes Σ∗ up to some error term, both153

being stated in terms of a put option maturity T and log-(forward) moneyness154

κ = log( k
S0

) = log
(
K
S0

)
− (r − q)T . The advantage of using implied volatilities155

rather than prices (as previously done in [2]), both being in bijection via the Black-156

Scholes put pricing formula as well known, is their lower variability, hence better157

performance as we will see.158

The corresponding local volatility surface σ is given by the following local volatil-159

ity implied variance formula, i.e. the Dupire formula stated in terms of the implied160
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total variance1 Θ(T, κ) = Σ2(T, κ)T (assuming Θ of class C1,2 on {T > 0}):161

(3.1)

σ2(T,K) =
∂TΘ

1− κ
Θ∂κΘ + 1

4

(
− 1

4 −
1
Θ + κ2

Θ2

)
(∂κΘ)2 + 1

2∂κ2Θ
(T, κ) =:

calT (Θ)

buttk(Θ)
(T, κ).162

We use a feedforward NN with weights W, biases b and smooth activation
functions for parameterizing the implied volatility and total variance, which we
denote by

Σ = ΣW,b , Θ = ΘW,b.

The terms calT (ΘW,b) and buttk(ΘW,b) are available analytically, by automatic dif-163

ferentiation, which we exploit below to penalize calendar spread arbitrages, i.e. neg-164

ativity of calT (Θ), and butterfly arbitrage, i.e. negativity of buttk(Θ).165

The training of NNs is a non-convex optimization problem and hence does not166

guarantee convergence to a global optimum. We must therefore guide the NN opti-167

mizer towards a local optima that has desirable properties in terms of interpolation168

error and arbitrage constraints. This motivates the introduction of an arbitrage pen-169

alty function into the loss function to select the most appropriate local minima. An170

additional challenge is that maturity-log moneyness pairs with quoted option prices171

are unevenly distributed and the NN may favor fitting to a cluster of quotes to the172

detriment of fitting isolated points. To remedy this non-uniform data fitting prob-173

lem, we re-weight the observations by the Euclidean distance between neighboring174

points. More precisely, given n observations χi = (Ti, κi) of maturity-log moneyness175

pairs and of the corresponding market implied volatilities Σ∗(χi), we construct the176

n × n distance matrix with general term d(χi, χj) =
√

(Tj − Ti)2 + (κj − κi)2. We177

then define the loss weighting wi for each point χi as the distance wi = min
j,j 6=i

d(χi, χj).178

with the closest point. These modifications aim at reducing error for any isolated179

points. In addition, in order to avoid linear saturation of the neural network, we180

apply a further log-maturity change of variables (adapting the partial derivatives181

accordingly).182

Learning the weights W and biases b to the data subject to no arbitrage soft183

constraints (i.e. with penalization of arbitrages) then takes the form of the following184

(nonconvex) loss minimization problem:185

(3.2) arg min
W,b

√√√√ 1

n

∑
i

(
wi

ΣW,b(χi)− Σ∗(χi)

Σ∗(χi)

)2

+
µw
m

∑
ξ∈Ωh

λTR(ΘW,b)(ξ),186

where λ = [λ1, λ2, λ3]> ∈ R3
+ and187

R(Θ) = [cal−T (Θ), butt−k (Θ),
( calT

buttk
(Θ)− a

)+
+
( calT

buttk
(Θ)− a

)−
]>188

is a regularization penalty vector evaluated over a penalty grid Ωh with m nodes189

as detailed below. The error criterion is calculated as a root mean square error on190

relative difference, so that it does not discriminate high or low implied volatilities.191

1This follows from the Dupire formula by simple transforms detailed in [6, p.13].
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The first two elements in the penalty vector R(Θ) favor the no-arbitrage conditions192

(2.2) and the third element favors desired lower and upper bounds 0 < a < a193

(constants or functions of T ) on the estimated local variance σ2(T,K). In order to194

adjust the weight of penalization, we multiply our penalties by the weighting mean195

µw := 1
m

∑
i
wi. Suitable values of the “Lagrange multipliers” λ, ensuring the right196

balance between fit to the market implied volatilities and the constraints, is then197

obtained by grid search. Of course a soft constraint (penalization) approach does198

not fully prevent arbitrages. However, for large λ, arbitrages are extremely unlikely199

to occur, except perhaps very far from Ω. With this in mind, we use a penalty grid200

Ωh that extends well beyond the domain of the IV interpolation. This is intended201

so that the penalty term penalizes arbitrages outside of the domain used for IV202

Interpolation.203

See Algorithm 3.1 for the pseudo-code of the NN approach.204

Algorithm 3.1 The NN-IV algorithm for local volatility surface approximation.

Data: Market implied volatility surface Σ∗

Result: The local volatility surface
√

calT
buttk

(ΘŴ,b̂)

1 (Ŵ, b̂)← Minimize the penalized training loss (3.2) w.r.t. (W,b);

2

√
calT
buttk

(ΘŴ,b̂)← AAD differentiation of the trained NN implied vol. surface

4. Numerical results.205

4.1. Experimental design. Our training set is prepared using SPX European206

puts with different available strikes and maturities ranging from 0.005 to 2.5 years,207

listed on 18th May 2019, with S0 = $2859.53. Each contract is listed with a bid/ask208

price and an implied volatility corresponding to the mid-price. The associated in-209

terest rate is constructed from US treasury yield curve and dividend yield curve210

rates are then obtained from call/put parity applied to the option market prices211

and forward prices. We preprocess the data by removing the shortest maturity212

options, with T < 0.055, and the numerically inconsistent observations for which213

the gap between the listed implied volatility and the implied volatility calibrated214

from mid-price with our interest/dividend curves exceeds 5% of the listed implied215

volatility. But we do not remove arbitrable observations. The preprocessed training216

set is composed of 1720 market put prices. The testing set consists of a disjoint set217

of 1725 put prices.218

All results for the GP method are based on using Matern ν = 5/2 kernels over a219

[0, 1]2 domain with fitted kernel standard-deviation hyper-parameter σ̂ = 185.7611,220

length-scale hyper-parameters θ̂k = 0.3282 and θ̂T = 0.2211, and homoscedastic221

noise standard deviation, ς̂ = 0.6876.2 The grid of basis functions for constructing222

the finite-dimensional process ph has 100 nodes in the modified strike direction and223

25 nodes in the maturity direction. The Matlab interior point convex algorithm224

quadprog is used to solve the MAP quadratic program (2.6).225

2When re-scaled back to the original input domain, the fitted length scale parameters of the 2D
Matern ν = 5/2 are θ̂k = 973.1901 and θ̂T = 0.5594.
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Regarding the NN approach, we use a three layer architecture similar to the one226

based on prices (instead of implied volatilities in Section 3) in [2], to which we refer227

the reader for implementation details. We use a penalty grid Ωh with m = 50× 100228

nodes. In the moneyness and maturity coordinates, the domain of the penalty grid229

is [0.005, 10]× [0.5, 2].230

4.2. Arbitrage-free SVI. We benchmark the machine learning results with the231

industry standard provided by the arbitrage free stochastic volatility inspired (SVI)232

model of [7]. Under the “natural parameterization” SVI = (∆, µ, ρ, ω, ζ), the implied233

total variance is given, for any fixed T , by234

(4.1) ΘSVI(κ) = ∆ +
ω

2

(
1 + ρ(κ− µ)ζ +

√
(ζ(κ− µ) + ρ)2 + (1− ρ2)

)
.235

Our SSVI parameterization of a surface corresponds to SVIT = (0, 0, ρ,ΘT , φ(ΘT ))236

for each T , where ΘT is the at-the-money total implied variance and we use for φ a237

power law function φ(ϑ) = η
ϑγ(1+ϑ)1−γ . [7, Remark 4.4] provides sufficient conditions238

on SSVI parameters (η(1 + |ρ|) ≤ 2 with γ = 0.5) that rule out butterfly arbitrage,239

whereas SSVI is free of calendar arbitrage when ΘT is nondecreasing.240

We calibrate the model as in [7]:3 First, we fit the SSVI model; Second, for241

each maturity in the training grid, the five SVI parameters are calibrated, (starting242

in each case from the SSVI calibrated values. The implied volatility is obtained243

for new maturities by a weighted average of the parameters associated with the244

two closest maturities in the training grid, T and U , say, with weights determined245

by ΘT and ΘU . The corresponding local volatility is extracted by finite difference246

approximation of (3.1).247

As, in practice, no arbitrage constraints are implemented for SSVI by penaliza-248

tion (see [7, Section 5.2]), in the end the SSVI approach is in fact only practically249

arbitrage-free, much like our NN approach, whereas it is only the GP approach that250

is proven arbitrage-free.251

4.3. Calibration results. Training times for SSVI, GP, and NNs are reported252

in the last row of Table 1 which, for completeness, also includes numerical results253

obtained by NN interpolation of the prices as per [2]. Because price based NN results254

are outperformed by IV based NN results we only focus on the IV based NN in the255

figures that follow, referring to [2] for every detail on the price based NN approach.256

We recall that, in contrast to the SSVI and NNs which fit to mid-quotes, GPs fit to257

the bid-ask prices.258

The GP implementation is in Matlab whereas the SSVI and NN approaches259

are implemented in Python. On our (large) dataset, the constrained GP has the260

longest training time. Training is longer for constrained SSVI than for unconstrained261

SSVI because of the ensuing amendments to the optimization routine. There are262

no arbitrage violations observed for any of the constrained methods in neither the263

training or the testing grid. Unconstrained methods yield 18 violations with NN and264

177 with SSVI on the testing set, out of a total of 1725 testing points, i.e. violations265

in 1.04% and 10.26% of the test nodes. The unconstrained GP approach yields266

constraint violations on 12.5% of the basis function nodes ıh. The NN penalizations267

3Building on https://www.mathworks.com/matlabcentral/profile/authors/4439546.
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IV RMSE
(Price RMSE)

SSVI GP
IV based

NN
Price

based NN
SSVI

Unconstr.
GP

Unconstr.

IV based
NN

Unconstr.

Price
based NN
Unconstr.

Calibr. fit on
the training set

1.37%
(2.574)

0.58%
(0.338)

1.23%
(2.897)

13.70%
(9.851)

1.04%
(2.691)

0.60%
(0.321)

0.84%
(2.163)

5.65 %
(2.456)

Calibr. fit on
the testing set

1.52%
(2.892)

0.57%
(0.355)

1.29%
(2.966)

14.27%
(10.347)

1.09%
(2.791)

0.57%
(0.477)

0.86%
(2.045)

6.14%
(2.888)

MC backtest
8.69%

(22.826)
19.76%
(74.017)

2.95%
(4.989)

6.37%
(11.764)

N/A N/A N/A N/A

CN backtest
6.88%

(33.545)
7.86%

(35.270)
3.43%

(11.976)
5.56%

(26.785)
N/A N/A N/A N/A

Comput. time
(seconds)

33 856 191 185 1 16 76 229

Table 1: The IV and price RMSEs of the SSVI, GP and NN approaches. Last row:
computation times (in seconds).

(calT )− and (buttk)
− vanish identically on the penalty grid Ωh in the constrained268

case, whereas in the unconstrained case their averages across grid nodes in Ωh are269

(calT )− = 3.91× 10−6 and (buttk)
− = 1.60× 10−2 with the IV based NN.270

Fig. 1(a-b) respectively compare the fitted IV surfaces and their errors with271

respect to the market mid-implied volatilities, among the constrained methods. The272

surface is sliced at various maturities (more slices are available in the github) and273

the IVs corresponding to the bid-ask price quotes are also shown – the blue and red274

points respectively denote training and test observations.275

We generally observe good correspondence between the models and that each276

curve typically falls within the bid-ask spread, except for the shortest maturity con-277

tracts where there is some departure from the bid-ask spreads for observations with278

the lowest log-moneyness values. We see on Fig. 1(b) that the GP IV errors are279

small and mostly less than 5 volatility points, whereas NN and SSVI exhibit IV280

error that may exceed 15 volatility points. The green line and the red shaded en-281

velopes respectively denote the GP MAP estimates and the posterior uncertainty282

bands under 100 samples per observation. The support of the posterior GP process283

assessed on the basis of 100 simulated paths of the GP captures the majority of284

bid-ask quotes. The GP MAP estimate occasionally corresponds to the boundary285

of the support of the posterior simulation. This indicates that the posterior trun-286

cated Gaussian distribution is heavily skewed for some points, and that the MAP287

estimate consequently saturates the arbitrage constraints. This indicates a tension288

between these constraints and the calibration requirement, which cannot be fully289

reconciled, most likely because some of the (short maturity) data are arbitrable290

(they are at least illiquid and hence noisy). See notebook for location of arbitrages291

in the unconstrained approach.292

Fig. 1(a-b) suggest that the data may exhibit arbitrage at the lowest maturities293

where the methods depart from the bid-ask spreads. This is further supported294

in Fig. 2(a-b) which shows the corresponding methods without the no-arbitrage295

constraints. In Fig. 2(a-b) we observe that the estimated IVs now fall within close296

proximity of the bid-ask spreads–all methods exhibit an error typically less than 5297

volatility points. Note that the y-axis has been scaled for each plot in Fig. 2(b) to298
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accommodate the wide uncertainty band of the posterior for the unconstrained GP.299

Whereas the uncertainty band of the constrained GP spanned at most 10 volatility300

points, the uncertainty band of the unconstrained GP is an order of magnitude301

larger, sometimes spanning more than 100 volatility points.302

(a) Implied volatilities.

(b) Fitted IV errors with respect to mid-price IVs.

Figure 1: Slices of constrained GP (green), NN (purple), and SSVI (black) models
of SPX puts with training bid-asks IVs (+) and testing bid-asks IVs as a function of
log forward moneyness (+)(the bid-ask IVs are reconstructed numerically from the
corresponding bid-ask market prices). The shaded envelopes show 100 paths of the
constrained GP’s posterior.

Fig. 3 shows the local volatility surfaces that stem from the three constrained303

approaches. Fig. 3(a) shows the spiky local volatility surface generated by SSVI,304

capped at the 200% level for scaling convenience. Fig. 3(b) shows the capped local305

volatility surface constructed from the GP MAP price estimate. Fig. 3(c) shows the306

(complete) NN local volatility surface.307

4.4. In-sample and out-of-sample calibration errors. The error between the308

prices of the calibrated models and the market data are evaluated on both the309

training and the out-of-sample data set. The first two rows of Table 1 compare the310

in-sample and out-of-sample RMSEs of the prices and implied volatilities across the311

different approaches. The differences between the training and testing RMSEs are312

small, suggesting that all approaches are not over-fitting the training set. The GP313
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(a) Implied volatilities.

(b) Fitted IV errors with respect to mid-price IVs.

Figure 2: Same as Figure 1 but for unconstrained GP, NN and SSVI.

(a) The local volatility surface gen-
erated by SSVI with finite differences,
capped at the 200% level.

(b) The MAP estimate of the GP
local volatility surface, capped at the
200% level.

(c) The implied volatility based NN
local volatility surface (with the local
volatility penalization).

Figure 3: The GP, SSVI, and NN local volatility estimate.

exhibits the lowest price RMSEs.314

4.5. Backtesting results. The first repricing backtest estimates the prices of315

the European options corresponding to the testing set, by Monte Carlo sampling in316

each calibrated local volatility model (same methodology as in [2, Section 7.2]). The317

second approach uses finite differences to price the options with the calibrated local318

volatility surfaces. The pricing PDEs with local volatility are discretized using a319
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Crank-Nicolson (CN) scheme implemented on a 100×100 backtesting grid. The last320

two rows in Table 1 compare the resulting price backtest RMSEs across the different321

approaches. The NN fitted to implied volatilities exhibit significantly lower errors in322

the backtests, followed by NN based on prices, SSVI and GP. To quantify discretiza-323

tion error in these backtesting results (as opposed to the part of the error stemming324

from a wrong local volatility), we ran the same backtests in a Black-Scholes model325

with 20% volatility and the associated prices. The corresponding Monte Carlo and326

Crank-Nicholson backtesting IV(price) RMSEs are 2.90%(1.56) and 0.846%(4.10),327

confirming the significance of the above results.328

329

Conclusion. We approach the option quote fitting problem from two perspectives:330

(i) the GP approach assumes noisy data and hence the existence of a latent function.331

The mid-prices are not considered, rather the GP calibrates to bid-ask quotes; and332

(ii) the NN and SSVI approaches fit to the mid-prices under a noise-free assumption.333

While these two approaches are important to distinguish on theoretical grounds, in334

practice there are other factors which are more important for, in particular, local335

volatility modeling. In line with classical inverse problems theory, we find that336

regularization of the local volatility is critical for backtesting performance.337
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[2] Marc Chataigner, Stéphane Crépey, and Matthew Dixon. Deep local volatility.342

Risks, 8(3):82, 2020.343

[3] Areski Cousin, Hassan Maatouk, and Didier Rullière. Kriging of financial term-344

structures. European J. Oper. Res., 255(2):631–648, 2016.345
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