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Abstract

This paper discusses the main modeling approaches that have been developed so far for handling port-
folio credit derivatives, with a focus on the question of hedging. In particular the so called top, top down
and bottom up approaches are considered. We give some mathematical insights regarding the fact that in-
formation, namely, the choice of a relevant model filtration, is the major modeling issue. In this regard,
we examine the notion of thinning that was recently advocated for the purpose of hedging a multi-name
derivative by single-name derivatives. We then illustrate by means of numerical simulations (semi-static
hedging experiments) why and when the portfolio loss process may not be a “sufficient statistic” for the
purpose of valuation and hedging of portfolio credit risk.
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1 Introduction

Presently, most if not all credit portfolio derivatives have cash flows that are determined solely by the evolu-
tion of the cumulative loss process generated by the underlying portfolio. Thus, as of today, credit portfolio
derivatives can be considered as derivatives of the cumulative loss process L. The consequence of this is that
most of the models of portfolio credit risk, and related derivatives, focus on modeling of the dynamics of the
process L, or, directly on modeling of the dynamics of the related conditional probabilities, such as

Prob(L takes some values at future time(s) ∣ given present information).

In this paper we shall study various methodologies that have been developed for this purpose, particularly
the so called top, top down and bottom up approaches. In addition, we shall discuss the issue of hedging of
loss process derivatives, and we shall argue that loss process may not provide a sufficient basis for this, in the
sense described later in the paper. In fact, we engage in some in depth study of the role of information with
regard to valuation and hedging of derivatives written on the loss process.

The paper is organized as follows. In Section 2 we provide an overview of the main modeling approaches
that have been developed so far for handling portfolio credit derivatives. In Section 3 we revisit the notion
of thinning that was recently advocated for the purpose of hedging a multi-name credit derivative by single-
name credit derivatives, such as CDS contracts. In Section 4 we illustrate by means of numerical simulations
why and when the portfolio loss process may not be a “sufficient statistic” for the purpose of valuation and
hedging of portfolio credit risk. Conclusions and perspectives are drawn in Section 5. Finally, an Appendix
gathers definitions and results from the theory of processes that we use repeatedly in this paper, such as, for
instance, the definition of the compensator of a non-decreasing adapted process.

2 Top, Top-Down and Bottom-Up Approaches: an Overview

This section provides an overview and a discussion about the so called top, top-down and bottom-up ap-
proaches in portfolio credit risk modeling. Some related discussion can also be found in Inglis et al. [23].

Let us first introduce some standing notation:
∙ If X is a given process, we denote by FX its natural filtration satisfying usual conditions (perhaps after
completion and augmentation);
∙ By the F-compensator of an F-stopping time � , where F is a given filtration, we mean the F-compensator
of the (non-decreasing) one point process 1�≤t (see section A.2);
∙ For every d, k ∈ ℕ, we denote ℕk = {0, ⋅ ⋅ ⋅ , k}, ℕ∗k = {1, ⋅ ⋅ ⋅ , k} and ℕdk = {0, ⋅ ⋅ ⋅ , k}d.

From now on, t will denote the present time, and T > t will denote some future time. Suppose that �
represents a future payment at time T , which will be derived from the evolution of the loss process L on a
credit portfolio, and representing a specific (stylized1) credit portfolio derivative claim. There may be two
tasks at hand:
∙ to compute the time-t price of the claim, given the information that we may have available and we are
willing to use at time t;
∙ to hedge the claim at time t. By this, we mean computing hedging sensitivities of the claim with respect to
hedging instruments that are available and that we may want to use.

For simplicity we shall assume that we use spot martingale measure, say ℙ, for pricing, and that the
interest rate is zero. Thus, denoting by F = (ℱt)t∈[0,T ] a filtration that represents flow of information we use
for pricing, and by E the expectation relative to ℙ, the pricing task amounts to computation of the conditional
expectation E(� ∣ ℱt) (� being assumed ℱT -measurable and ℙ-integrable).

More specifically, on a standard stochastic basis (Ω,ℱ ,F,ℙ), we consider a (strictly) increasing sequence
of stopping times ti, for i ∈ ℕ∗n, representing the ordered default times of the names in the credit pool, and

1Of course most credit products are swapped and involve therefore coupon streams, so in general we need to consider a cumulative
ex-dividend cash flow �t on the time interval (t, T ].
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we define the (F-adapted) portfolio loss process L by, for t ≥ 0 :

Lt =

n∑
i=1

1ti≤t (1)

(assuming for simplicity zero recoveries). So L is a non-decreasing càdlàg process stopped at time tn, taking
its values in ℕn, with jumps of size one (L is in particular a point process, see, e.g., Brémaud [6], Last and
Brandt [25]).

We shall then consider (stylized) portfolio loss derivatives with payoff � = �(LT ), where �(⋅) is appro-
priately integrable function.

In all the paper we work under the standing assumption that the ti’s are totally inaccessible F-stopping
times, which is tantamount to assuming that their compensators Λi’s are continuous processes (and are there-
fore stopped at the ti’s, cf. Appendix A.2). The compensator Λ =

∑n
i=1 Λi of L is therefore in turn

continuous and stopped at tn.

Let �i, i ∈ ℕ∗n, denote an arbitrary collection of (mutually avoiding) random (not necessarily stopping)
times on (Ω,ℱ ,ℙ), and let �(i), i ∈ ℕ∗n, denote the corresponding ordered sequence, that is �(1) < �(2) <

⋅ ⋅ ⋅ < �(n). We denote Hi
t = 1�i≤t. Accordingly, we set H(i)

t = 1�(i)≤t. So, obviously,
∑n
i=1 H

i =∑n
i=1 H

(i), and the representation

L =

n∑
i=1

Hi (2)

holds if and only if
ti = �(i), i ∈ ℕ∗n (3)

(in which case the �(i)’s are F-stopping times).

From now on we assume that (2) is satisfied. The random times �i can thus be interpreted as the default
times of the pool names, andHi as the default indicator process of name i. We stress that for any i the random
time �i may or may not be an F-stopping time, and thus the process Hi may or may not be F-adapted, though
all the �(i)’s are F-stopping times in this case.

We denote ℍi = FHi

, ℍ =
⋁
i∈ℕ∗

n
ℍi.

2.1 Information is it!

Various approaches to valuation of derivatives written on credit portfolios differ between themselves depend-
ing on what is the content of the model filtration F. Thus, loosely speaking, these approaches differ between
themselves depending on what they presume to be sufficient information so to price, and consequently to
hedge, credit portfolio derivatives.

The choice of a filtration is of course a crucial modeling issue. In particular the compensator Λ of an
adapted non-decreasing (and bounded, say) process K, defined as the predictable non-decreasing Doob-
Meyer component of K (see section A.2), is an information- (i.e. filtration-) dependent quantity. So is,
therefore, the intensity process (time-derivative of Λ, assumed to exist) of K.

Let thus K denote an F-adapted non-decreasing process and G be a filtration larger than F (so K is
of course G-adapted). Let Λ and Γ denote the F-compensator and the G-compensator of K, respectively.
The following general result, which is proved in section A.3 (see also sections A.1 and A.2 for the various
notions of projections involved), establishes the relation between Λ and Γ and the related F- and G- intensity
processes � and 
 (whenever they exist, for the latter).

Proposition 2.1 (i) Λ is the dual predictable projection of Γ on F.
(ii) Moreover, in case Λ and Γ are time-differentiable with related F- and G- intensity processes � and 
,
then � is the optional projection of 
 on F.
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Figure 1: Simulated sample path of the pre-default intensity of �1 with respect to ℍ1 ∨ FZ , ℍ1 ∨ℍ2 ∨ FZ or
ℍ1 ∨ℍ2 ∨ℍ3 ∨ FZ , with Z trivial (constant) on the left side versus Z = W on the right side.

Figure 1 provides an illustration of the dependence of intensities on information in a simple model with
n = 3 stopping times2. The figure shows a trajectory over the time interval [0, 5]yr of the pre-default intensity
of �1 with respect to ℍ1∨FZ ,ℍ1∨ℍ2∨FZ and ℍ1∨ℍ2∨ℍ3∨FZ (curves respectively labelled lambda1,
lambda2 and lambda3 in Figure 1), where the ℍi’s correspond to the filtrations generated by the Hi’s,
and:
∙ the reference filtration FZ is trivial on the left side,
∙ it is given as a (scalar) Brownian filtration FZ = FW on the right side.

We refer the reader to Zargari [30] for more details about these simulations. In this example we have �2 =
1.354, �3 = 0.669 in the case where FZ is trivial and �2 = 1.3305, �3 = 0.676 in the case where FZ = FW
(the same random numbers were used in the two experiments). Observe that:
∙ lambda2 and lambda3 jump at �2 (= 1.354 in the left graph and 1.3305 in the right one),
∙ only lambda3 jumps at �3 (= 0.669 in the left graph and 0.676 in the right one), and
∙ lambda1 does not jump at all.

The facts that lambda2 does not jump at �3 and lambda1 does not jump at all are of course consistent with
the definitions of lambda1 and lambda2 as the pre-default intensities of �1 with respect to ℍ1 ∨ FZ and
ℍ1 ∨ℍ2 ∨FZ , respectively. Also note the effect of adding a reference filtration (noisy pre-default intensities
on the right side, versus pre-default intensities ‘deterministic between default times’ on the left side).

2.2 Top and Top-Down Approaches

The approach, that we dub the pure top approach takes as F the filtration generated by the loss process alone.
Thus, in the pure top approach we have that F = FL. Examples of this approach are Laurent, Cousin and
Fermanian [26], Cont and Minca [8], or (most of) Herbertsson [22].

The approach that we dub the top approach takes as F the filtration generated by the loss process and
by some additional relevant (preferably low dimensional) auxiliary factor process, say Y . Thus, in this
case, F = FL ∨ FY . Examples of this approach are Bennani [2], Schönbucher [28], Sidenius, Piterbarg and
Andersen [29], Arnsdorf and Halperin [1] or Ehlers and Schönbucher [13].

The so-called top-down approach starts from top, that is, it starts with modeling of evolution of the

2We thank Behnaz Zargari from the Mathematics Departments at University of Evry, France, and Sharif University of Technology,
Tehran, Iran, for these simulations.



T.R. BIELECKI, S. CRÉPEY AND M. JEANBLANC 5

portfolio loss process subject to information structure F. Then, it attempts to decompose the dynamics of the
portfolio loss process down to the individual constituent names of the portfolio, so to deduce the dynamics
of processes Hi (for the purpose typically of hedging of credit portfolio derivatives by vanilla individual
contracts such as default swaps). This decomposition is done by a method of random thinning formalized in
Giesecke and Goldberg [19] (see also Halperin and Tomecek [20]), and which will be discussed in detail in
Section 3.

2.3 Bottom-Up Approaches

The approach that we dub the pure bottom-up approach takes as F the filtration generated by the state of the
pool process H = (H1, . . . ,Hn), i.e. F = FH = ℍ. (see, for instance, Herbertsson [21]).

The approach that we dub the bottom-up approach takes as F the filtration generated by process H and
by an auxiliary factor process Z. Thus, in this case, F = FH ∨ FZ . Examples of this approach are Duffie
and Garleanu [12], Frey and Backhaus [15, 16], Bielecki, Crépey, Jeanblanc and Rutkowski [3], or Bielecki,
Vidozzi and Vidozzi [4].

2.4 Discussion

The pure top approach is undoubtedly the best suited for fast valuation of portfolio loss derivatives, as it
only refers to a single driver – the loss process itself. However, this approach may produce incorrect pricing
results, as it is rather unlikely that financial market evaluates derivatives of the loss process based only on the
history of evolution of the loss process alone. Note in particular that loss process is not a traded instrument.

Thus, it seems to be advisable to work with a larger amount of information than the one carried by filtra-
tion FL alone. This is quite likely the reason why several versions of the top approach have been developed.
Enlarging filtration from FL to FL ∨ FY may lead to increased computational complexity, but at the same
time it is quite likely to increase accuracy in calculation of important quantities, such as CDO tranche spreads
and/or CDO prices.

From the hedging perspective both the pure top approach and the top approach may not be adequate.
Indeed, operating on the top level prohibits computing sensitivities of a loss process derivative with respect
to constituents of the credit portfolio. So, for example, when operating just on top level one cannot compute
sensitivities of CDO tranche prices with respect to prices of the CDS contracts underlying the portfolio. In
these approaches, it is only possible to hedge one loss derivative by another (e.g., hedging a CDO tranche
using iTraxx). However, as we shall see in section 4, in certain circumstances this kind of hedging may not
be quite precise, or even not possible at all.

This is of course the problem that led to the idea of the top-down approach, that is the idea of thinning.
But, as we shall now see, it seems to us that thinning cannot really help in developing a consistent approach
to hedging credit loss derivatives by single-name credit derivatives.

3 Thinning Revisited

Note that processes Hi and H(i) are sub-martingales, and can therefore be compensated, with respect to any
filtration for which they are adapted, as non-decreasing processes (see section A.2). Thinning refers to the
recovery of individual compensators of H(i) and Hi, starting from the loss compensator Λ as input data.
Since the compensator is an information- (filtration-) dependent quantity, thinning of course depends on the
filtration under consideration.

A preliminary question regarding thinning is why would one wish to know the individual compensators.

Suppose that all one wants to do is pricing, in other words computing the expectation E(� ∣ ℱt) for 0 ≤
t < T, where the integrable random variable � = �(LT ) represents the stylized payoff of a portfolio loss
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derivative. Under Markovian assumptions, or conditionally Markovian assumptions (assuming further factors
Y ), about process L with respect to the filtration F, then, in principle, the expectation E(� ∣ ℱt) can be
computed (at least numerically). For computation of E(� ∣ ℱt), one does not really need to know the individual
compensators of the �i’s (which do not even need to be assumed to be F-stopping times in this regard). So,
with regard to the problem of pricing of derivatives of the loss process, a top model may be fairly adequate.
In particular, the filtration F may not necessarily contain the pool filtration ℍ. Also, the representation L =∑n
i=1 H

i (cf. (2)) need not be considered at all in this context.

But computing the price E(� ∣ ℱt) is just one task of interest. Another key task is hedging. From the
mathematical point of view hedging relies on the derivation of a martingale representation of E(� ∣ ℱt),
which is useful in the context of computing sensitivities of the price of � with respect to changes in prices of
liquid instruments, such as credit indices and/or CDS contracts, corresponding to the credit names composing
the credit pool underlying the loss process L. Typically, assuming here that the �i’s are F stopping times, one
will seek a martingale representation in the form

E (� ∣ ℱt) = E� +

n∑
i=1

∫ t

0

�isdM
i
s +

m∑
j=1

∫ t

0

�jsdN
j
s , (4)

where the M i’s are some fundamental martingales associated with the non-decreasing processes Hi’s, and
the N j’s are some fundamental martingales associated with all relevant auxiliary factors included in the
model. The coefficients �i’s and �j’s can, in principle, be computed given a particular model specification;
now, for the practical computation of the �i’s and �j’s, but also for the very definition of the M i’s and N j’s,
one will typically need to know the compensators Λi’s.

3.1 Thinning of the Ordered Default Times

Let Λ(i) denote the F-compensator of �(i) (recall that the �(i) are F-stopping times).

Proposition 3.1 We have, for t ≥ 0,

Λ
(i)
t = Λt∧�(i) − Λt∧�(i−1)

. (5)

So in particular Λ(i) = 0 on the set t ≤ �(i−1).

Proof. Note first that
Lt∧�(i) − Λt∧�(i) (6)

is an F-martingale, as it is equal to the F-martingale L−Λ (cf. equation (21) in the Appendix) stopped at the
F-stopping time �(i). Taking the difference between expression in (6) for i and i− 1 yields that H(i)

t − Λ̄
(i)
t ,

with Λ̄
(i)
t defined as the RHS of (5), is an F-martingale (starting at �(i−1) and stopped at �(i)). Hence (5)

follows, due to uniqueness of compensators (recall Λ is continuous, so Λ̄(i) is continuous, hence predictable).
□

Formula (5) represents the ‘ordered thinning’ of Λ. Note that Proposition 3.1 is true regardless of whether
the �i’s are F-stopping times or not. This reflects the fact that modeling the loss process L is the same
as modeling the ordered sequence of the �(i)’s, no matter what is the informational context of the model
otherwise.

3.2 Thinning of the Default Times

Let us first denote by Λi the F-compensator of �i, assumed to be an F-stopping time. We of course have that

Λ =

n∑
i=1

Λi. (7)
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Moreover, the following is true.

Proposition 3.2 There exists F-predictable non-negative processes Zi, i ∈ ℕ∗n, such that Z1 + Z2 + ⋅ ⋅ ⋅ +
Zn = 1 and

Λi =

∫ ⋅
0

ZitdΛt, i ∈ ℕ∗n. (8)

Proof. In view of (7), existence of Zi = dΛi

dΛ follows from Theorem VI 68, page 130, in Dellacherie and
Meyer [11] (see also Giesecke and Goldberg [19]). □

In the special case where the random times �i’s constitute an ordered sequence, so �i = �(i), then the
ordered thinnning formula (5) yields that Zit = 1�i−1<t≤�i .

Proposition 3.2 tells us that, if one starts building a model from top, that is, if one starts building the
model by first modeling the F-compensator Λ of the loss process L, then the only way to go down relative to
the information carried by F, i.e., to obtain F-compensators Λi, is to do thinning in the sense of equation (8).
We shall refer to this as to F-thinning of Λ.

3.2.1 Thinning with respect to a Sub-filtration

Now, suppose that Fi is some sub-filtration of F and that �i is an Fi-stopping time. We want to compute the
Fi-compensator Λ̂i of �i, starting with Λ.

The first step is to do the F-thinning of Λ, that is, to obtain the F-compensator Λi of �i (cf. (8)). The
second step is to obtain the Fi-compensator Λ̂i of �i from Λi. The following results follows by application of
Proposition 2.1.

Proposition 3.3 Λ̂i is the dual predictable projection of Λi on Fi. Moreover, in case Λ̂i and Λi are time-
differentiable with related Fi- and F- intensity processes �̂i and �i, then �̂i is the optional projection of �i

on Fi.

Remark 3.1 Note that Λ̂i is also the dual predictable projection of Hi on Fi (see section A.2).

Proposition 3.3 is important regarding the issue of calibration of a portfolio credit model to marginal data,
one of the key issues in relation with hedging a credit loss derivative by single-name credit instruments. For
example, one may want to calibrate the credit portfolio model to spreads on individual CDS contracts. If the
spread on the itℎ CDS contract is computed using conditioning with respect to Fi, then the Fi-intensity �̂i

of �i will typically be used as an input data in the calibration (for determining an F-adapted process �i with
Fi-optional projection �̂i given in the market).

3.3 The case when �i’s are not stopping times

In case �i is not an F-stopping time, Giesecke and Goldberg [19] introduce a notion of (we call it top-down)
intensity of �i, defined as the time-derivative, assumed to exist, of the dual predictable projection of Hi on F.
In view of Remark 3.1, this is indeed a generalization of the usual notion of intensity to the case where �i is
not an F-stopping time.

However, our opinion is that such a top-down intensity does not make much sense. Indeed the market
intensity of name i (intensity of name i as extracted from the marginal market data on name i, typically the
CDS curve on i) corresponds to an intensity in a filtration adapted to �i, which in particular vanishes after
�i (contrarily to a top-down intensity, unless �i is an F-stopping time). A top-down intensity is thus not
represented in the market, and it can therefore not be calibrated (unless, again, �i is an F-stopping time).
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3.4 Limitations of Thinning

In view of the above observations, one must, in our opinion, restrict consideration of thinning to the case
where all �i’s are F-stopping times, that is, to the case thinning in the sense of section 3.2. Observe though
that thinning in this sense is equivalent to building the model from the bottom up. This is because modeling
of processes Λ and Zi’s, that show in Proposition 3.2, is equivalent to modeling the processes Λi’s. The
relevance of top-down construction of a model by thinning with respect to a filtration containing all the ℍi’s
(so, a bottom-up model, ultimately) thus seems questionable.

In a defense of such an approach one might say that, since this approach starts from top, then it gives the
modeler a better control over designing the dynamics of the portfolio loss process L so to tailor-design this
process through a ‘nice’ and simple dynamics. But the point is precisely that in a model with a ‘nice’ and
simple top portfolio loss process L, there is no need of use of single-name instruments for hedging. In fact,
typically a small number of other loss derivatives will be able to do the hedging job (see, for instance, Laurent,
Cousin and Fermanian [26]). Models with a ‘too simple’ loss process L are actually not a good family for
considering the issue of hedging credit loss derivatives by single-name instruments, because single-name
instruments are, in principle, not required for hedging in such model.

4 Sufficient Statistics

For credit derivatives with stylized payoff given as � = �(LT ) at maturity time T, it is tempting to adopt a
Black–Scholes like approach, modeling L as a Markov process and performing factor hedging of one deriva-
tive by another, balancing the related sensitivities computed by the Itô-Markov formula (see, for instance,
Laurent, Cousin and Fermanian [26]). However, since the loss process L may be far from Markovian in the
market, there may be circumstances under which L is not a “sufficient statistic” for the purpose of valuation
and hedging of portfolio credit risk. In other words, ignoring the potentially non-Markovian dynamics of L
for pricing and/or hedging may cause significant model risk, even though the payoffs of the products at hand
are given as functions of LT .

In this section we want to illustrate this point by means of numerical hedging simulations (see also Cont
and Kan [7] for an extensive empirical study of the real-life hedging performances of a variety of top models
on pre- as well as post-crisis data sets). For these numerical experiments we introduce a non-zero recovery
R, taken as a constant R = 40%. We thus need to distinguish the cumulative default process Nt =

∑n
i=1 H

i
t

and the cumulative loss process Lt = (1−R)Nt.

We shall consider the benchmark problem of pricing and hedging a stylized loss derivative. Specifi-
cally, for simplicity, we only consider protection legs of of equity tranches, resp. super-senior tranches (i.e.
detachment of 100%), with stylized payoffs

�(NT ) =
LT
n
∧ k , resp.

(
LT
n
− k
)+

at a maturity time T . The ‘strike’ (detachment, resp. attachment point) k belongs to [0, 1]. In this formalism
the stylized credit index corresponds to the equity tranche with k = 100% (or senior tranche with k = 0).
With a slight abuse of terminology, we shall refer to our stylized loss derivatives as to tranches and index,
respectively.

We shall now consider the problem of hedging the tranches with the index, using a simplified market
model of credit risk.

4.1 Homogeneous Groups Model

We consider a Markov chain model of credit risk as of Frey and Backhaus [16] (see also Bielecki et al. [3]).
Namely, the n names of a pool are grouped in d classes of � − 1 = n

d homogeneous obligors (assuming n
d
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integer). The cumulative default processes N l, l ∈ ℕ∗d of different groups are jointly modeled as a d-variate
Markov point process N , with FN -intensity of N l given as

�lt = (� − 1−N l
t)�̃

l(t,Nt) , (9)

for some pre-default individual intensity functions �̃l = �̃l(t, {), where { = (i1, ⋅ ⋅ ⋅ , id) ∈ ℕd�−1. The related
infinitesimal generator at time t may then be written in the form of a �d-dimensional (very sparse) matrix,
say At. Also note that N =

∑
N l.

For d = 1, we recover the well-known local intensity model (N modeled as a Markov birth point process
stopped at level n) of Laurent, Cousin and Fermanian [26] or Cont and Minca [8]. At the other extreme, for
d = n, we are in effect modeling the vector of the default indicator processes of the pool names. As d varies
between 1 and n, we thus get a variety of models of credit risk, ranging from pure top models for d = 1 to
pure bottom-up models for d = n.

Remark 4.1 Observe that in the homogeneous case where �̃l(t, {) = �̂(t,
∑
j ij) for some function �̂ =

�̂(t, i) (independent of l), the model effectively reduces to a local intensity model (with d = 1 and pre-
default individual intensity �̂(t, i) therein).
Further specifying the model to �̂ independent of i corresponds to the situation of homogeneous and inde-
pendent obligors.
In general, introducing parsimonious parameterizations of the intensities allows one to account for inhomo-
geneity between groups and/or defaults contagion. It is also possible to extend this set-up to more general
credit migrations models, or to generic bottom-up models of credit migrations influenced by macro-economic
factors (see Bielecki et al. [3, 4] or Frey and Backhaus [17]).

4.1.1 Pricing in the Homogeneous Groups Model

SinceN is a Markov process andNt is a function ofNt, the related tranche price process writes, for t ∈ [0, T ]
(assuming �(NT ) integrable):

Πt = E(�(NT ) ∣ ℱNt ) = u(t,Nt) , (10)

where u(t, {) or u{(t) for t ∈ [0, T ] and { ∈ ℕd�−1, is the pricing function (system of time-functions u{).
Using the Itô formula in conjunction with the martingale property of Π, the pricing function can then be
characterized as the solution to the following pricing equation (system of ODEs):

(∂t +At)u = 0 on [0, T ) (11)

with terminal condition u{(T ) = �({), for { ∈ ℕd�−1. In particular, in the case of a time-homogeneous
generator A (independent of t), one has the semi-closed matrix exponentiation formula,

u(t) = e(T−t)A� . (12)

Pricing in this model can be achieved by various means, like numerical resolution of the ODE system (11),
numerical matrix exponentiation based on (12) (in the time-homogeneous case) or Monte Carlo simulation.
However resolution of (11) or computation of (12) by deterministic numerical schemes is typically precluded
by the curse of dimensionality for d greater than a few units (depending on �). So for high d simulation
methods appear to be the only viable computational alternative. Appropriate variance reduction methods
may help in this regard (see, for instance, Carmona and Crépey [9]).

The distribution of the vector of time-t losses (for each group), that is, q{(t) = ℙ(Nt = {) for t ∈ [0, T ]
and { ∈ ℕd�−1, and the portfolio cumulative loss distribution, p = pi(t) = ℙ(Nt = i) for t ∈ [0, T ] and
i ∈ ℕn, can be computed likewise by numerical solution of the associated forward Kolmogorov equations
(for more detail, see, e.g., [9]).
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4.1.2 Hedging in the Homogeneous Groups Model

In general, in the Markovian model described above, it is possible to replicate dynamically in continuous
time any payoff provided d non-redundant hedging instruments are available (see Frey and Backhaus [15]
or Bielecki, Vidozzi and Vidozzi [4]; see also Laurent, Cousin and Fermanian [26] for results in the special
case where d = 1). From the mathematical side this corresponds to the fact that in general this model is
of multiplicity d (model with d fundamental martingales, see, e.g., Davis and Varaiya [10]). So, in general,
it is not possible to replicate a payoff, such as tranche, by the index alone in this model, unless the model
dimension d is equal to one (or reducible to one, cf. Remark 4.1). Now our point is that this potential lack of
replicability is not purely speculative, but can be very significant in practice.

Since delta-hedging in continuous time is expensive in terms of transaction costs, and because main
changes occur at default times in this model (in fact, default times are the only events in this model, if not for
time flow and the induced time-decay effects), we shall focus on semi-static hedging in what follows, only
updating at default times the composition of the hedging portfolio. More specifically, denoting by t1 the first
default time of a reference obligor, we shall examine the result at t1 of a static hedging strategy on the random
time interval [0, t1].
Let Π and P denote the tranche and index model price processes, respectively. Using a constant hedge ratio
�̂0 over the time interval [0, t1], the tracking error or profit-and-loss of a delta-hedged tranche at t1 writes:

et1 = (Πt1 −Π0)− �̂0(Pt1 − P0) . (13)

The question we want to consider is whether it is possible to make this quantity ‘small’, in terms, say, of
variance, relative to the variance of Πt1 − Π0 (which corresponds to the risk without hedging), by a suitable
choice of �̂0. It is expected that this should depend:
∙ First, on the characteristics of the tranche, and in particular on the value of the strike k: A high strike equity
tranche or low strike senior tranche is quite close to the index in terms of cash flows, and should therefore
exhibit a higher degree of correlation and be easier to hedge with the index, than a low strike equity tranche
or high strike senior tranche;
∙ Second, on the ‘degree of Markovianity’ of the loss process L, which in the case of the homogeneous
groups model depends both on the model nominal dimension d and on the specification of the intensities
(see, e.g., Remark 4.1).

Moreover, it is intuitively clear that for too large values of t1 time-decay effects matter and the hedge
should be rebalanced at some intermediate points of the time interval [0, t1] (even though no default occurred
yet). To keep it as simple as possible we shall merely apply a cutoff and restrict our attention to the random
set {! : t1(!) < T1} for some fixed T1 ∈ [0, T ].

4.2 Numerical Results

We work with the above model for d = 2 and � = 5. We thus consider a two-dimensional model of a stylized
credit portfolio of n = 8 obligors. The model generator is a �d ⊗ �d – (sparse) matrix with �2d = 54 = 625.
Recall that the computation time for exact pricing using matrix exponentiation based on (12) in such model
grows as �2d, which motivated the previous modest choices for d and �.

Moreover we take the �̃l’s given by (cf. (9)),

�̃1(t, {) =
2(1 + i1)

9n
, �̃2(t, {) =

16(1 + i2)

9n
. (14)

So in this case, which is an admittedly extreme case of inhomogeneity between two independent groups of
obligors, the individual intensities of the obligors of group 1 and 2 are given as 1+i1

36 and 8(1+i2)
36 , where i1

and i2 represent the number of currently defaulted obligors in groups 1 and 2, respectively.
For instance, at time 0 with N0 = (0, 0), the individual intensities of obligors of group 1 and 2 are equal to
1/36 and 8/36, respectively; the average individual intensity at time 0 is thus equal to 1/8 = 0.125 = 1/n.
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We set the maturity T equal to 5 years and the cutoff T1 equal to 1 year. We thus make a focus on the
random set of trajectories for which t1 < 1, meaning that a default occurred during the first year of hedging.

In this toy model the simulation takes the following very simple form:
Compute Π0 for the tranche and P0 for the index by numerical matrix exponentiation based on (12). Then,
for every j = 1, ⋅ ⋅ ⋅ ,m:
∙ Draw a pair (t̃j1, t̂

j
1) of independent exponential random variables with parameter (cf. (9), (14))

(�1
0, �

2
0) = 4× (

1

36
,

8

36
) = (

1

9
,

8

9
) ; (15)

∙ Set tj1 = min(t̃j1, t̂
j
1) and Nt1 = (1, 0) or (0, 1) depending on whether tj1 = t̃j1 or t̂j1;

∙ Compute Πtj1
for the tranche and Ptj1 for the index by (12).

Doing this for m = 104, we got 9930 draws with t1 < T = 5yr, among which 6299 ones with t1 <
T1 = 1yr, subdividing themselves into 699 defaults in the first group of obligors and 5600 defaults in the
second one.

4.2.1 Pricing Results

We consider two T = 5yr-tranches in the above model: an ‘equity tranche’ with k = 30%, corresponding to
a payoff (1−R)NT

n ∧ k = ( 60NT

8 ∧ 30)% (of a unit nominal amount), and a ‘senior tranche’ defined simply as
the complement of the equity tranche to the index, thus with payoff ( (1−R)NT

n − k)+ = ( 60NT

8 − 30)+%.

We computed the portfolio loss distribution at maturity by numerical matrix exponentiation corresponding
to explicit solution of the associated forward Kolmogorov equations (see, e.g., [9]).

Note that there is virtually no error involved in the previous computations, in the sense that our simulation
is exact (without simulation bias), and the prices and loss probabilities are computed by numerical quasi-exact
matrix exponentiation.

The left side of Figure 2 represents the histogram of the loss distribution at the time horizon T ; we indicate
by a vertical line the loss level x beyond which the equity tranche is wiped out, and the senior tranche starts
being hit (so (1−R)x

n = k, i.e. x = 4).
The right side of Figure 2 displays the equity (labeled by +), senior (×) and index (∘) tranche prices at t1
(in ordinate) versus t1 (in abscissa), for all the points in the simulated data with t1 < 5 (9930 points). Blue
and red points correspond to defaults in the first (Nt1 = (1, 0)) and in the second (Nt1 = (0, 1)) group of
obligors, respectively. We also represented in black the points (0,Π0) (for the equity tranche and the senior
tranche) and (0, P0) (for the index).

Note that in the case of the senior tranche and of the index, there is a clear difference between prices at t1
depending on whether t1 corresponds to a default in the first or in the second group of obligors, whereas in
the case of the equity tranche there seems to be little difference in this regard.
In view of the portfolio loss distribution in the left side, this can be explained by the fact that in the case of
the equity tranche, the probability conditional on t1 that the tranche will be wiped out at maturity is important
unless t1 is rather large. Therefore the equity tranche price at t1 is close to k = 30% for t1 close to 0.
Moreover for t1 close to T the intrinsic value of the tranche at t1 constitutes the major part of the equity
tranche price at t1, for the tranche has low time-value close to maturity. In conclusion the state ofN at t1 has
a low impact on Πt1 , unless t1 is in the middle of the time-domain.
On the other hand, in the case of the senior tranche or in case of the index, the state of N at t1 has a high
impact on the corresponding price, unless t1 is close to T (in which case intrinsic value effects are dominant).
This explains the ‘two-track’ pictures seen for the senior tranche and for the index in the right side of Figure
2, except close to T (whereas the two-tracks are superimposed close to 0 and T in the case of the equity
tranche).

Looking at these results in terms of price changes Π0 − Πt1 of a tranche versus the corresponding index
price changes P0 − Pt1 , we obtain the graphs of Figure 3 for the equity tranche and 4 for the senior tranche.
We consider all points with t1 < T in the left sides and focus on the points with t1 < T1 in the right sides.
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We use the same blue/red color code as above, and we further highlight in green in the left sides the points
with t1 < 1, which are focused upon in the right sides.
Figure 3 gives a further graphical illustration of the low level of correlation between price changes of the
equity tranche and of the index. Indeed the cloud of points on the right side is obviously “far from a straight
line”, due to the partitioning of points between blue points / defaults in group one on one segment versus red
points / defaults in group two on a different segment.
On the opposite (Figure 4), at least for t1 not too far from 0 (see the zoom on the points for which t1 < 1 in
the right side), there is an evidence of linear correlation between price changes of the senior tranche and of
the index, since in this case the blue and the red segments are not far from being on a common line.

Figure 2: (Left) Portfolio loss distribution at maturity T = 5yr; (Right) Tranche prices at t1 for t1 < T = 5
(equity tranche (+), senior tranche (×) and index (∘)).). On this and the following figures, blue and red
points correspond to defaults in the first and in the second group of obligors, respectively.

Figure 3: Equity tranche vs Index Price Changes between 0 and t1 (Left: t1 < T = 5; Right: zoom on
t1 < T1 = 1).
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Figure 4: Senior tranche vs Index Price Changes between 0 and t1 (Left: t1 < T = 5; Right: zoom on
t1 < T1 = 1).

4.2.2 Hedging Results

We then computed the empirical variance of Πt1 − Π0 and of the profit-and-loss et1 in (13) on the subset
t1 < T1 = 1 of the trajectories, using for �̂0 the empirical regression delta of the tranche with respect to the
index at time 0, so

�̂0 =
ℂ̂ov(Πt1 −Π0, Pt1 − P0)

V̂ar(Pt1 − P0)
. (16)

Moreover, we also did these computations restricting further attention to the subsets of t1 < 1 corresponding
to defaults in the first and in the second group of obligors (blue and red points on the figures), respectively. The
latter results are to be understood as giving proxies of the situation that would prevail in a one-dimensional
complete model of credit risk (‘local intensity model’ for N , see section 4.2.3).

The results are displayed in Tables 1 and 2.

In Table 1 we denote by:
∙ Σ0 = 104

kT Π0 or 104

(1−R−k)T Π0 (for the equity or senior tranche) or S0 = 104

(1−R)T P0 (for the index), stylized
‘bp spreads’ corresponding to the time zero prices Π0 and P0 of the equity or senior tranche and of the index;
∙ �1

0 , �
2
0 and �0, the functions �1u

�1v , �
2u
�2v and the continuous time min-variance delta function (as it follows

easily by application of a bilinear regression formula)

�1(�1u)(�1v) + �2(�2u)(�2v)

�1(�1v)2 + �2(�2v)2
=

�1(�1v)2

�1(�1v)2 + �2(�2v)2
(
�1u

�1v
) +

�2(�2v)2

�1(�1v)2 + �2(�2v)2
(
�2u

�2v
)

evaluated at t = 0 and { = N0− = (0, 0), so

�1
0 =

u1,0−u0,0

v1,0−v0,0 (0) , �2
0 =

u0,1−u0,0

v0,1−v0,0 (0) (17)

�0 =
�1
0(u1,0−u0,0)(v1,0−v0,0)+�2

0(u0,1−u0,0)(v0,1−v0,0)

�1
0(v1,0−v0,0)2+�2

0(v0,1−v0,0)2
(18)

where we recall from (15) that (�1
0, �

2
0) = ( 1

9 ,
8
9 ).

The three deltas �1
0 , �

2
0 and �0 were thus computed by matrix exponentiation based on (12) for the various

terms u, v{(0) involved in formulas (17), (18). Note that the prices and deltas of the equity and senior tranche
of same strike k respectively sum up to P and to one, by construction (see also Table 2 for �̂0). So the results
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for the senior tranche could be deduced from those for the equity tranche and conversely. However we present
detailed results for the equity and senior tranche, for the reader’s convenience.

Remark 4.2 The instantaneous min-variance delta �0 (which is a suitably weighted average of �1
0 and �2

0)
can be considered as a measure of the distance to the index of a tranche: far-from-the-index low strike equity
tranche or high strike senior tranche with �0 less than 0.5, versus close-to-the-index high strike equity tranche
or low strike senior tranche with �0 greater than 0.5. The further from the index a tranche and/or ‘the less
Markovian’ a porfolio loss process L, the poorer the hedge by the index (cf. end of section 4.1.2).

Π0 or P0 Σ0 or S0 �1
0 �2

0 �0
Eq 0.2821814 1881.209 0.1396623 0.7157741 0.2951399
Sen 0.03817907 254.5271 0.8603377 0.2842259 0.7048601

Table 1: Time t = 0 – Prices, Spreads and Instantaneous Deltas in the Semi-Homogeneous Model.

In Table 2 (cf. also (16)):
∙ � in column two is the empirical correlation of the tranche price increments Πt1−Π0 versus the index price
increments Pt1 − P0,

∙ R2 = 1 − V̂ar(et1 )

V̂ar(Πt1
−Π0)

in column three is the coefficient of determination of the regression, which, in the

present set-up of a simple linear regression, coincides with �2,

∙ Dev in column 4 stands for Ŝtdev(Πt1 −Π0)/Π0,

∙ The hedging variance reduction factor RedVar =
V̂ar(Πt1−Π0)

V̂ar(et1 )
in the last column is equal to 1

1−R2 = 1
1−�2 .

Remark 4.3 It is expected that �̂0 should converge to �0 in the limit where the cutoff T1 would tend to zero,
provided the number of simulations m jointly goes to infinity. For T1 = 1yr and m = 104 simulations
however, we shall see below that there is a clear discrepancy between �0 and �̂0, and all the more so that we
are in a non-homogeneous model with low correlation between the tranche and index price changes between
times 0 and t1. The reason is that the coefficient of determination of the linear regression with slope �̂0 is
given by R2 = �2. In case � is small, R2 is even smaller, and the significance of the estimator (for low T1’s)
�̂0 of �0 is low too. In other words, in case � is small, we recover mainly noise through �̂0. This however
does not weaken our statements below regarding the ability or not to hedge the tranche by the index, since the

variance reduction factor RedVar =
V̂ar(Πt1−Π0)

V̂ar(et1 )
is equal to 1

1−�2 , which for � small is close to one, whatever

the noisy value of �̂0 may be.

�̂0 � R2 Dev RedVar
Eq -0.00275974 -0.03099014 0.0009603885 0.006612626 1.000961

Eq1 0.2269367 0.9980242 0.9960522 0.007576104 253.306
Eq2 0.3391563 0.997375 0.994757 0.006134385 190.7276
Sen 1.002760 0.9960836 0.9921825 0.07475331 127.9176

Sen1 0.7730633 0.9998293 0.9996586 0.02576152 2928.847
Sen2 0.6608437 0.9993066 0.9986137 0.01192970 721.3244

Table 2: Hedging Tranches by the Index in the Semi-Homogeneous Model.

Recall that qualitatively the senior tranche’s dynamics is rather close to that of the index (at least for t1
close to 0, see Section 4.2.1, right side of Figure 4). Accordingly, we find that hedging the senior tranche with
the index is possible (variance reduction factor of about 128 in bold blue in the last column). This case thus
seems to be supportive of the claim according to which one could use the index for hedging a loss derivative,
even in a non Markovian model of portfolio loss process L.
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But in the case of the equity tranche we get the opposite message: the index is useless for hedging
the equity tranche (variance reduction factor essentially equal to 1 in bold red in the table, so no variance
reduction in this case).
Moreover, the equity tranche variance reduction factors conditional on defaults in the first and in the second
group of obligors (in purple in the table) amount to 253 and 190, respectively. This supports the interpretation
that the unhedgeability of the equity tranche by the index really comes from the fact that the full model
dynamics is not represented in the loss process L.

Incidentally this also means that hedging the senior tranche by the equity tranche, or vice versa, is not
possible either.

We conclude that in general, at least for certain ranges of the model parameters and tranche characteristics
(strongly non-Markovian loss process L and/or far-from-the-index tranche), hedging tranches with the index
may not be possible.

Since the equity and the senior tranche sum-up to the index, therefore a perfect static replication of the
equity tranche is provided by a long position in the index and a short position in the senior tranche. As
a reality-check of this statement, we performed a bilinear regression of the equity price increments versus
the index and the senior tranche price increments, in order to minimize over (�̂ind0 , �̂sen0 ) the (risk-neutral)
variance of

ẽt1 = (Πeq
t1 −Πeq

0 )− �̂ind0 (Pt1 − P0)− �̂sen0 (Πsen
t1 −Πsen

0 ) . (19)

The results are displayed in Tables 3. We recover numerically the perfect two-instruments replication strategy
which was expected theoretically, whereas a single-instrument hedge using only the index was essentially
useless in this case (cf. bold red entry in Table 2).

�̂ind0 �̂sen0 RedVar
1 -1 2.56e+29

Table 3: Replicating the equity tranche by the index and the senior tranche in the Semi-Homogeneous Model.

4.2.3 Fully Homogeneous Case

For confirmation of the previous analysis and interpretation of the results, we redid the computations using
the same values as before for all the model, products and simulation parameters, except for the fact that the
following pre-default individual intensities were used, for l = 1, 2 :

�̃l({) =
1

n
+

∑
1≤ℓ≤d iℓ

nd
=: �̂(

∑
1≤ℓ≤d

iℓ) . (20)

For instance, at time 0 with N0 = 0, the individual intensities of the obligors are all equal to 1/8 = 0.125 =
1/n.

We are thus in a case of homogeneous obligors, reducible to a local intensity model (with d = 1 and
pre-default individual intensity �̂(i) therein, see Remark 4.1). So in this case we expect that hedging tranches
by the index should work, including in the case of the far-from-the-index equity tranche.

This is what happens numerically, as it is evident from the following Figures and Tables (which are the
analogs of those in previous sections, using the same notation everywhere). Note that all red and blue curves
are now superimposed, which is consistent with the fact that the group of a defaulted name has no bearing in
this case, given the present specification of the identities.

Out of new 104 draws using the intensities given in (20), we got 9922 draws with t1 < 5, among which
6267 ones with t1 < 1, subdividing themselves into 3186 defaults in the first group of obligors and 3081
defaults in the second one.



16 UP AND DOWN CREDIT RISK

Figure 5: (Left) Portfolio loss distribution at maturity T = 5y (Right) Tranche Prices at t1 (for t1 < T ).

Figure 6: Equity tranche vs Index Price Decrements between 0 and t1 (Left: t1 < T = 5; Right: zoom on
t1 < T1 = 1).
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Figure 7: Senior tranche vs Index Price Decrements between 0 and t1 (Left: t1 < T = 5; Right: zoom on
t1 < T1 = 1).

Looking at Table 5, we find as in the semi-homogeneous case that hedging the senior tranche with the
index works very well, and even better than before: variance reduction factor of 11645 in bold blue in the last
column. Yet these even better results may be partly due to an effect of distance to the index and not only to
the fact that we are now in a fully homogeneous case: for the senior tranche is now closer to the index than
before, with a senior tranche �0 of about 0.7 in Table 1 versus 0.8 in Table 4.
But as opposed to the situation in the semi-homogeneous case, hedging the equity tranche with the index now
also works very well (variance reduction factor of about 123 in bold purple in the last column), and this holds
even though the equity tranche is further from the index now than it was before, with an equity tranche �0 of
about 0.3 in Table 1 versus 0.2 in Table 4 (cf. Remark 4.2). So the degradation of the hedge when we pass
from the homogeneous model to the semi-homogeneous model is really due to the non-Markovianity of L,
and not to an effect of distance to the index (cf. end of section 4.1.2).
Moreover the unconditional variance reduction factor and variance reduction factor conditional on defaults
in the first and in the second group of obligors are now essentially the same (for the equity tranche as for the
senior tranche).

This also means that hedging the equity tranche by the senior tranche, or vice versa, is quite effective in
this case.

These results support our previous analysis that the impossibility of hedging the equity tranche by the
index in the semi-hompogeneous model was due to the non-Markovianity of the loss process L.

Note incidentally that �̂0 and �0 are closer now (in Tables 4–5) than they were previously (in Tables 1–2).
This is consistent with the fact that R2 is now larger than before (�̂0 and �0 would be even closer if the cutoff
T1 was less than 1yr, provided of course the number of simulations m is large enough; see Remark 4.3).

Π0 or P0 Σ0 or S0 �1
0 �2

0 �0
Eq 0.2850154 1900.103 0.2011043 0.2011043 0.2011043
Sen 0.1587075 1058.050 0.7988957 0.7988957 0.7988957

Table 4: Time t = 0 – Prices, Spreads and Instantaneous Deltas in the Fully-Homogeneous Model.
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�̂0 � R2 Dev RedVar
Eq 0.0929529 0.9959361 0.9918887 0.004754811 123.2852

Eq1 0.09307564 0.995929 0.9918745 0.004794916 123.0695
Eq2 0.09282067 0.995946 0.9919084 0.004713333 123.5853
Sen 0.9070471 0.999957 0.9999141 0.04621152 11645.15
Sen1 0.9069244 0.9999569 0.9999137 0.04653322 11590.83
Sen2 0.9071793 0.9999573 0.9999146 0.0458808 11710.42

Table 5: Hedging Tranches by the Index in the Fully-Homogeneous Model.

5 Conclusions and Perspectives

In case of a non-Markovian portfolio process L, factor hedging of a loss derivative by another one may not
work, and hedging by single name credit derivatives, such as CDS contracts, may then be necessary. Models
with filtration that is at least as large as the filtration ℍ, that is the filtration of the indicator processes of all
the default times in the pool, are the only ones which are able to deal with this issue in a theoretically sound
way. Such models can, arguably, be constructed in a top-down way by thinning, starting from a top model
with ‘nice’ dynamics for the portfolio process L. But focusing on having a model with a ‘nice’ dynamics for
the top process L is misguided for dealing with a situation in which the index does not do the job in terms of
hedging, for such a situation precisely means that the market dynamics of the top process L is not nice, and,
as illustrated in section 4, insisting on using a simplistic model for L in a complex world may lead to a highly
ineffective hedge.

It is thus our opinion that bottom-up models are the only ones, which are really suited to deal in a self-
consistent way with the issue of hedging credit loss derivatives by single-name derivatives.

5.1 A Tractable Bottom Up Model of Portfolio Credit Risk

A common objection to the use of a bottom-up model is made with regard the issue of the so called curse
of dimensionality. In this regard we wish to stress that suitable developments in the bottom up modeling
enable one to efficiently cope with this curse of dimensionality: See, for instance, Elouerkhaoui [14], or
Bielecki, Vidozzi and Vidozzi [4]. It is thus possible to specify bottom-up Markovian models of portfolio
credit risk with automatically calibrated model marginals (to the individual CDS curves, say). Much like in
the standard static copula models, but in a dynamized set-up, this effectively reduces the main computational
effort, i.e. the effort related to model calibration, to calibration of only a few dependence parameters in the
model at hand. Thus, model calibration can be achieved in a very reasonable time, also by pure simulation
procedures if need be (without using any closed pricing formulae, if there aren’t any available for the model
under consideration).

To illustrate the previous statements let us briefly present a simple model (see [4] for more general theory
and models). We postulate that for i ∈ ℕ∗n the individual default indicator process Hi is a Markov process
admitting the following generator, for u = ue(t) with e ∈ {0, 1},

Aitue(t) = �i(t)
(
u1(t)− ue(t)

)
,

for a pre-default intensity function �i of name i given by �i(t) = ai + bit. For constant and given interest
rate r ≥ 0 and recovery rate Ri ∈ [0, 1], the individual time-t = 0 spread �i0(T ) is then given by a standard
explicit formula in terms of r,Ri, ai and bi (see [4] for the detail). The (non-negative) parameters ai’s and
bi’s are then fitted so as to match the 5 and 10 year (say) spreads of the related credit index constituents.

Next, in order to couple together the model marginals Hi’s, we define a certain number of groups of
obligors susceptible to default simultaneously. Setting n = 125, for l ∈ L = {10, 20, 40, 125}, we thus define
Il as the set containing the indices of the l riskiest obligors, as measured by the spread of the corresponding
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five year CDS. In particular, we have

I10 ⊆ I20 ⊆ I40 ⊆ I125 = ℕ∗n = {1, 2, . . . , 125} .

Let ℐ = {Il}l∈L. We then construct the generator of process H = (H1, ⋅ ⋅ ⋅ , Hn) as, for u = u�(t) with
� = (e1, ⋅ ⋅ ⋅ , en) ∈ {0, 1}n:

Atu�(t) =

125∑
i=1

(
�i(t)−

∑
I∈ℐ; I∋i

�l(t)
)(
u�i(t)− u�(t)

)
+

∑
I∈ℐ

�I(t)
(
u�I (t)− u�(t)

)
,

where, for i ∈ ℕ∗n and I ∈ ℐ:
∙ �i, resp. �I , denotes the vectors obtained from � by replacing the component ei, resp. the components ej
for j ∈ I , by number one,
∙ �I(t) = āI + b̄It, with āI = �I min

{i∈I}
ai , b̄I = �I min

{i∈I}
bi, for some [0, 1]-valued model dependence

parameters �i.

In words, the form of the above generator implies that, at every time instant, either each alive obligor
can default individually, or all the surviving names whose indices are in one of the sets I ∈ ℐ can default
simultaneously.

Observe that the martingale dimension (or multiplicity, cf. section 4.1.2) of the model is 125 + 4 = 129.
This makes the simulation of process H very fast, as we essentially need to draw 125 + 4 IID exponential
random variables in order to recover a set of default times (�i)i∈ℕ∗

n
. Pricing CDO tranches in this model can

thus be effectively done by simulation.

Moreover, we only need to calibrate four parameters, namely �I with I ∈ ℐ (since the marginal model
parameters aI ’s and bI ’s were calibrated in a previous stage).

Finally, since this is a bottom-up Markov model, dynamic delta hedging by multi- and single-name deriva-
tives can be considered in a model-consistent way, in the sense of replication if there are enough hedging
instruments at hand, or in a min-variance sense in any case.

Of course the grouping of the names in the above model is rather arbitrary. Also, it would be better to
use exact or approximate analytics for the CDO tranches, rather than relying only on simulation as proposed
above. There is thus much room for improvement. However we refer the reader to [4] for numerical results
on real market data demonstrating that this simple approach already does a very good job in practice in terms
of calibration to CDS and CDO data.

A A glimpse at the General Theory

For the convenience of the reader, in this Appendix we recall definitions and results from the theory of
processes, that we used in this paper. We refer to, e.g., Dellacherie and Meyer [11] for a comprehensive
exposition.

Let us be given a standard stochastic basis (Ω,ℱ ,F,ℙ). The probability measure ℙ will be fixed through-
out. By default all the filtration-dependent notions like adapted, stopping time, compensator, intensity, (local)
martingale, etc., implicitly refer to the filtration F (as opposed to, for instance, the larger filtration G which
appears in section A.3).

A.1 Optional Projections

Let X be an integrable process, not necessarily (F-)adapted. Then there exists a unique adapted process
(oXt)t≥0, called the optional projection of X on F, such that, for any stopping time �,

E
(
X�1{�<+∞} ∣ ℱ�

)
= oX�1{�<+∞} .
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In case X is non-decreasing, then oX a submartingale.

A.2 Dual Predictable Projections and Compensators

Let K be a non-decreasing and bounded process, not necessarily adapted (typically in the context of this
paper, K corresponds to marginal or portfolio loss processesHi or L). Then there exists a unique predictable
non-decreasing process (Kp

t )t≥0, called the dual predictable projection ofK on F, such that, for any positive
predictable process H:

E
(∫ ∞

0

HsdKs

)
= E

(∫ ∞
0

HsdK
p
s

)
.

In case K is adapted, it is a sub-martingale, and it admits as such a unique Doob-Meyer decomposition

Kt = Mt + Λt (21)

where M is a uniformly integrable martingale (since K is bounded) and the compensator Λ of K is a pre-
dictable finite variation process. So Kp = Λ , by identification in the Doob-Meyer decomposition.
If, moreover, K is stopped at some stopping time �, and if Kp = Λ is continuous, then Kp = Λ is also
stopped at � , by uniqueness of the Doob-Meyer decomposition ofK = K⋅∧� . In case Λ is time-differentiable,
so Λ =

∫ ⋅
0
�tdt for some intensity process � of K (also called intensity of �, when K = 1�≥t for some stop-

ping time � ), the intensity process � vanishes after �.

Remark A.1 If K is a point-process (like a marginal or cumulative default process Hi or L in this paper),
the continuity of Λ is equivalent to the ordered jump times of K being totally inaccessible stopping times
(see, e.g., Dellacherie and Meyer [11]).

A.3 Proof of Proposition 2.1

We recall that, in the context of Proposition 2.1,K denotes an F-adapted non-decreasing process with F ⊆ G,
while Λ and Γ denote the F-compensator and the G-compensator of K, respectively.

Let Γ̄ denote the F-predictable non-decreasing component of the F-submartingale oΓ, the optional pro-
jection of Γ on F (see section A.1). The tower property of iterated conditional expectations yields,

E
(∫ T

t

dKu − dΓ̄u ∣ ℱt
)

= E
(∫ T

t

dKu − d(oΓ)u ∣ ℱt
)

= E
(∫ T

t

dKu − dΓu ∣ ℱt
)

= E
(
E
(∫ T

t

dKu − dΓu ∣ Gt
)
∣ ℱt
)

= 0 ,

since K − Γ is an G-martingale. This proves that

Γ̄ = Λ . (22)

Moreover, one has Γ̄ = Γp, the dual predictable projection of Γ on F (see, e.g., Proposition 3 of Brémaud
and Yor [5]), hence

Λ = Γp ,

as stated in words in Proposition 2.1(i).

Now, in case Λ and Γ are time-differentiable with related intensity processes � and 
, (22) means that∫ t

0

�sds− E(

∫ t

0


sds ∣ ℱt) (23)
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is an F-martingale. Moreover it is immediate to check, using the tower property of iterated conditional
expectations, that

E(

∫ t

0


sds ∣ ℱt)−
∫ t

0

E
(

s ∣ ℱs

)
ds (24)

is an F-martingale as well. By addition between (23) and (24),∫ t

0

�sds−
∫ t

0

E(
s ∣ ℱs)ds

is in turn an F-martingale. Since it is also a predictable (as continuous) finite variation process, it is thus in
fact identically equal to 0, so for t ≥ 0,

�t = E(
t ∣ ℱt) ,

and therefore
� = o
 ,

which is the statement of Proposition 2.1(ii).
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[3] BIELECKI, T.R., CRÉPEY, S., JEANBLANC, M. AND RUTKOWSKI, M.: Valuation of basket credit
derivatives in the credit migrations environment. Handbook of Financial Engineering, J. Birge and V.
Linetsky eds., Elsevier, 2007.

[4] BIELECKI, T.R., VIDOZZI, A. AND VIDOZZI, L.: A Markov Copulae Approach to Pricing and
Hedging of Credit Index Derivatives and Ratings Triggered Step–Up Bonds, J. of Credit Risk, 2008.
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