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Introduction

In the context of genetic disease with low allele frequency in
the general population and high penetrance (i.e. Mendelian dis-
ease), family-based approach is convenient as patients are often
refered to geneticists due to their strongly affected pedigree. In
this context, the estimation of penetrance in age-dependent ge-
netic disease has direct applications in the medical protocol of
patient care.

The main issue in these estimations is that genotypes are mostly
unknown and must be treated as a latent variable. In the spe-
cific case where the disease does not present sporadic cases, the
problem is easier as an affected individual is therefore a mu-
tation carrier, the genotype incertainty leans on the unaffected
population. In that simple case, methods already exist (Alarcon
et al., 2018) based on Expectation-Maximisation (Dempster et al.,
1977) and Elston-Stewart algorithms (Elston and Stewart, 1971;
Elston et al., 1992).

However, most diseases affect both people with and without
known deleterious mutations at different rates. Typical exam-
ple is breast cancer, as everyone is at risk but especially carri-
ers of mutations (BRCA1/BRCA2 and others) which are affected
at a much higher rate (Easton et al., 1993; Stoppa-Lyonnet et al.,
1997). The proposed method aims to take into account sporadic
cases to generalize previous estimation methods of genetic dis-
ease survival.

Objective and Notations

Ï Survival mixture of a genetic disease

Let consider:
Ï a autosomal dominant disorder of one gene and two alleles ("wild-type" 0 and

"deleterious" 1), the genotype component X ∈ {00,01,10,11} (X = 00 for
non-carrier, X ̸= 00 for carrier);

Ï the proportions of carriers in the population π1 and non-carriers π0 (with
π0 = 1−π1);

Ï the specific conditional hazard rates λ1(t) for carriers and λ0(t) for non-carrier;

Ï the relative hazard between carriers and non-carriers RH(t) such as
λ1(t) = RH(t)×λ0(t);

Ï S(t) (resp. S0(t) and S1(t)) is the survival function (resp. conditional survival
functions) associated with hazard λ(t) (resp. λ0(t) and λ1(t)) such as

S(t) = exp

(
−

∫ t

0
λ(u)du

)
; S0(t) = exp

(
−

∫ t

0
λ0(u)du

)
; S1(t) = exp

(
−

∫ t

0
λ1(u)du

)
.

Ï a censorship event (which will not be needed) with a distribution function g(t)
and a repartition function G(t) such as

G(t) =
∫ t

0
g(u)du .

Ï Objective

To estimate this model from pedigree data with a constrained general
population incidence λ(t).

Ï Assumptions

Ï the general population incidence λ(t) is known and piecewise constant;
Ï the hazard ratio between carriers and non-carriers RH(t) is unknown but

piecewise constant.

Model

The model can be written as followed:

P(T ,δ,X) = P(X)︸ ︷︷ ︸
Genetic Part

× P(T ,δ|X)︸ ︷︷ ︸
Survival Part

,

where T are ages at diagnostic (or censored ages), δ status (af-
fected or unaffected) and X genotypes (carrier or non-carrier).

Ï Genetic Part: data are pedigrees, so P(X) can be written as Bayesian
network, for each individual i (F set of Founders):

P(X) =∏
i∈F

P(Xi)
∏
i∉F

P(Xi|Xparentsi
) .

Ï Survival Part: δi ∈ {0,1} represents the status (affected or not) of
individual i
Ï if unaffected then

P(Ti = t,δi = 0|Xi) =
{

g(t)S1(t) ifXi ̸= 00;

g(t)S0(t) ifXi = 00;
∝

{
S1(t) ifXi ̸= 00;

S0(t) ifXi = 00;

Ï if affected then

P(Ti = t,δi = 1|Xi) =
{

(1−G(t))S1(t)λ1(t) ifXi ̸= 00;

(1−G(t))S0(t)λ0(t) ifXi = 00;
∝

{
S1(t)RH(t) ifXi ̸= 00;

S0(t) ifXi = 00.

Typical pedigree data

Ï Generally 10-40 families in a dataset
Ï Pedigree data include families’ structures, ages or ages at diagnostic

and few genotypes
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Figure 1: Example of one pedigree.

Developed Method

Idea
Considering that the general population incidence λ(t) (and
by extension S(t)) is known, the model is parameterized by
π1 and RH(t). The idea is that with this parametrization,
λ0(t) and λ1(t) (as well as S0(t) and S1(t)) can be computed
under the constrained general population incidence λ(t)
through a fixed point method.
From there, the log-likelihood of the model can be com-
puted with the pedigree data via Elston-Stewart algorithm
(Elston and Stewart, 1971; Elston et al., 1992).
Therefore the log-likelihood is a function of π1 and RH(t)
and computable from pedigree data. The maximum likeli-
hood parameters are estimated using a gradient descent.

Ï Fixed point method:

Idea:
λ(t) is assumed to be piecewise constant with known cuts (typically
for cancer registry with 5-years bins), and RH(t) also is piecewise
constant with known cuts (depend on the model and sometimes on
X , e.g. bins [0,50] and ]50,+∞[).
For a given proportion π1 and RH, we would like to compute λ0(t)
such that:

S(t)λ(t) =π0S0(t)λ0(t)+π1S1(t)λ1(t) .

To solve this problem, λ0(t) is assumed to be piecewise constant with
a thin cutset (e.g. one cut every tenth of a year from 0 to 80) and these
following fixed-point iterations are performed:

Ï initialize with λ0(t) =λ(t);
Ï repeat: compute S0(t) and S1(t) with current λ0(t) and update

λ0(t) = λ(t)S(t)

π0S0(t)+π1S1(t)RH(t)
.

Simple Example:
Let consider a general population incidence with cuts 20,40,60,80
and bin-specific yearly incidence 0.000,0.003,0.005,0.010,0.015.

Ï π1 = 0.0975;
Ï RH with cuts 50 an bin-specific values 20,10.

Finally, λ0 cuts are assumed to be every tenth of a year from 0 to 80.

Figure 2: Hazard rates and Survivals after fixed-point convergence in simple example.

Ï Log-likelihood computation:

For specific parameters θ = (π1,RH(t)), λ0(t) and λ1(t) (as well as S0(t)
and S1(t)) are computed through the fixed point method. Now the
log-likelihood of the model can be written as follows :

loglik(θ) = log[
∑
X

∏
i

P(Ti,δi|Xi;θ)︸ ︷︷ ︸
survival component

P(Xi|Xparentsi
;θ)︸ ︷︷ ︸

genetic component

] .

This is computable by method using Elston-Stewart algorithm
(Elston and Stewart, 1971; Elston et al., 1992).

Ï Maximum Log-likelihood estimation:

As previously explained, the log-likelihood of the model can be
computed as a function of the parameters π1 and RH(t).
In the simple example,

RH(t) =
{

RH1 if t ∈ [0,50] ;

RH2 if t ∈]50,+∞[ .

So here, the model comes down to only 3 parameters
θ = (π1,RH1,RH2) which are estimated by maximizing the
log-likelihood with Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm (Nocedal and Wright, 2006).

θ̂ML = arg m
θ

ax loglik(θ)

Results on simulations

Ï Simulations
2000 datasets are generated:
Ï 744 inviduals over 28 families;
Ï π1 = 0.0975, RH1 = 20, RH2 = 10;
Ï families’ structures based on real families (data APHP);
Ï autosomal dominant transmission model with 1 gene and 2 alleles ("wild-type"

and "deleterious").

In order to mimic real data where missing values are often
encountered, each similated dataset is replicated 4 times, each time
with less available information. The first replica has 100% of the
available data (it is the oracle), the second has 70% of the available
data (30% is missing), the third has 50% and the last has 30%.

Ï Results

Figure 3: Violin plots of estimated π1, log(RH1) and log(RH2) with 100%, 70%, 50%
and 30% of available data. The green line on each figure is the real value of each
parameter.

Perspectives

Ï Use bootstrap (by resampling the families) to estimate the
parameters from a dataset;

Ï Take into account the ascertainment bias using statistical adjustment
(like raking).
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