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Stabilization Problem

GANs are a SOTA technique for generation tasks, which are based on CNN and studied for the
past years (stability, performances). Recently, attention mechanisms and (visual) transformers
have shown great performances on several classical tasks, but they are showing some difficul-
ties to be adapted on classical GANs architectures. The goal of the paper is to design a new
appropriate regularization swiping out unstable training with visual transformers GANs.

Model & Basics
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Fig. 1: ViT overview.

➊ Split an image into patches 2D image x of size H × W , on C channels flattened into a
sequence xp of image patches:

x ∈ RH×W×C −→ xp ∈
(
RP×P×C

)N
, P 2 × C dim. of the N = (H ×W )/P 2 patches.

➋ Flatten patches → lower-dimensional linear embeddings of constant size d + positional info

h0 =
[
xclass;x

(1)
p E;x

(2)
p E; · · · ;x(N)

p E
]
+ Epos; E ∈ R(P 2·C)×d,Epos ∈ R(N+1)×d

xclass = ∗ in Fig. 1

➌ Transformer encoder : Layernorm, Attention & MLP block

hn+1/2 = MSA(LN(hn−1)) + hn−1; 1 ≤ n ≤ L

hn+1 = MLP(LN(hn+1/2) + hn+1/2; 1 ≤ n ≤ L

y = LN(xclass,L); xclass,L = h
(0)
L ∈ Rd

Self-Attention

Fig. 2: Attention : Scaled Dot-Product (left) & Multi-Head

(right).

Given 3 learnable matrices Wq (query), Wk (key),
Wv (value), standard dot-product self-attention is:

Attentionh(X) = Softmax

(
QK⊤√

dh

)
V

where Q = XWq,K = XWk and V = XWv.
dot=torch.einsum("bid, bjd -> bij",q,k)

Multi-headed self-attention (MSA) aggregates
H ≥ 1 single self-attention:

MSA(X) = concatHh=1[Attentionh(X)]W + b

with W, b learnable parameters in the last linear
projection.

GAN paradigm

Generative Adversarial Network includes a Generator G and a Discriminator D whose goals
are:

maxDminGEx∼pdata(x)
[log(D(x)] + Ez∼p(z)[log(1−D(G(z)))]
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Fig. 3: ViTGan framework.

Regularization on ViT Discriminator (Fig. 3, right)

It was proved that a LIPSCHITZ Discriminator guarantees optimality in discriminative function and unicity in
Nash equilibrium. 2 methods have been introduced in [4] to strengthen "Lipschitzianity":

⋆New Attention: from ⟨·, ·⟩ to ∥·∥ℓ2

Attentionh(X) = Softmax

(
∥XWq−XWk∥ℓ2√

dh

)
XWv

⋆ Improved Spectral Normalization (ISN)

W̃ =
λmax

(
W(0)

)
λmax (W)

W

⋆Overlap in Image Patches
Including overlap o ∈ N∗ slightly prevents D from memorizing local cues and provides meaningful loss for
G. Extension of each border edge of a patch will lead to a patch size (P +2o) and the following sequence :

xp ∈
(
R(P+2o)2×C

)N
New Generator Architecture (Fig. 3, left)

⋆Principle
Tansformer encoder architecture is mainly based on Fig. 1 (right) with a few changes. For z Gaussian
noise:

h0 = Epos; Epos ∈ RN×d positional emb.

hn+1/2 = MSA(SLN(hn,w)) + hn; 1 ≤ n ≤ L,w = MLP(z) ∈ Rd

hn+1 = SLN(hn+1/2,w) + hn+1/2; 1 ≤ n ≤ L

y =
[
y(1); · · · ;y(N)

]
= SLN(hL, w); y(i) ∈ Rd

x =
[
x
(1)
p ; · · · ;y(N)

]
=
[
fθ

(
Esir,y

(1)
)
; · · · ; fθ

(
Esir,y

(N)
)]

x
(i)
p ∈ RP 2×C,x ∈ RH×W×C

⋆Self-modulated LayerNorm SLN

Denoted as A in Fig. 3 , it uses noise input z to modulate the normalization LN in ➌, for each step n:

w = MLP(z) ∈ Rd;hn 7→ SLN(h,w) = γn(w)⊙ hn − µ

σ
+ βn(w)

where γn(w), βn(w) are learnable parameters.

⋆ From Implicit Neural Representation to patch pixel

Implicit Neural Representation allows to learn continuous mapping : y(i) ∈ Rd 7→ x
(i)
p . A key was to

use SIREN sinunoidal activation functions Esir (or Fourier features Efou in Fig. 3) coupled with implicit
representations y(i). Concretely, patch pixel i is computed as:

x
(i)
p = fθ

(
Esir,y

(i)
)

with fθ(Esir, ·) a 2-SIREN-layer MLP: SIREN(input) = torch.sin(constante * Linear(input))

XP & Comparison

MNIST

Fig. 4: Generator loss. Fig. 5: Discrimator loss. Fig. 6: Frechet Inception Distance (FID).

Fig. 7: Vanilla ViT fake samples. Fig. 8: ViTGAN fake samples. Fig. 9: Convolutional GAN fake samples.

Graphs’ legend [Fig. 4 to 6] - Red: fully regulated ViTGAN model ; Blue: Vanilla ViT without SLN, neither
L2-Att. nor Spectral Norm ; Orange: ReLU in place of GELU for MLP final activation. 4 blocks of 4 attention
heads ≈ 30× 106 parameters trained over 100 epochs, lr= 2× 10−5.

CelebA

Fig. 10: Frechet Inception Distance (FID).

Fig. 11: ViTGAN fake samples.

Remarks

↪→ FID measures difference between 2 data distribution featured by (µ1,Σ1), (µ2,Σ2) as:

FID = |µ1 − µ2| + Tr
(
Σ1 + Σ2 − 2(Σ1Σ2)

1/2
)

↪→ Position embeddings added to patch embeddings are 1D standard variable since no sig-
nificant performance gains are observed from using 2D position embeddings [2] ;

↪→ ReLU vs GELU non-linearity : a gradient vanishing tradeoff ;

↪→ Number of patches dealing with the Discriminator’s transformer can be increased to get
better performances (do not need to do so with Generator’s transformer) [4] ;

↪→ Setting overlap o = P/2 could be seen as a convolution operation with kernel (P + 2o)2

and stride P × P . Increasing sequence length of feature dimension on D is sufficient
when scaling on high resolution images.
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