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Stabilization Problem ViTGAN XP & Comparison

GANSs are a SOTA technique for generation tasks, which are based on CNN and studied for the
past years (stability, performances). Recently, attention mechanisms and (visual) transformers MNIST
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Fig. 1: ViT overview. | IXW, ka“€2 Amax (W(O)> heads ~ 30 x 10° parameters trained over 100 epochs, 1r= 2 x 107°.
@ Split an image into patches 2D image x of size H x W, on C channels flattened into a Attentionp(X) = Softmax NG XWy W = SR W CelebA
sequence x; of image patches: max (W)

N :
x € RIVIWXC 5 e (RPPXC)T P2 ¢ dim. of the N = (H x W)/ P* patches. x Overlap In Image Patches g | |
Including overlap o € N* slightly prevents D from memorizing local cues and provides meaningful loss for -
@ Flatten patches — lower-dimensional linear embeddings of constant size d + positional info G. Extension of each border edge of a patch will lead to a patch size (P + 20) and the following sequence : - M‘
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nb1/2 = MSA(LN(h,,_1)) + h,,_1; l<n<lL 'r:'i?ssefc_)rmer encoder architecture is mainly based on Fig. 1 (right) with a few changes. For z Gaussian . 11: VITGAN fake samples.
hy, 11 = MLP(LN(hy, 1 j5) +hy, o 1 ?(Dn <L hy = Epos: Epos € R *¢ positional emb.
d
y = LN(Xclass, L): Xclass,, = hj € R h,,. 1 /9 = MSA(SLN(hy,, w)) + hy: 1 <n<L,w=MLP(z) € R
Self-Attention hy, 11 = SLN(hy, 19, W) + ]y, o; 1<n<L — FID measures difference between 2 data distribution featured by (1, 31), (12, 29) as
A Given 3 learnable matrices W, (query), W, (key), y = |y oy = SLN(hy, w): yl) € RY FID = |pq — po| + Tr (21 + 29 — 2(2122)1/2)
. W, (value), standard dot-product self-attention is: i 7 i . . . . . .
Linear v ) P X = x](}); e ;y<N> {fg ( sir, ¥ (1)) e fo (Esir, y<N>)} X](9Z> S RPQXC, x € RHXWxC — Position embeddings added to patch embeddings are 1D standard variable since no sig-
A 1 - ) nificant performance gains are observed from using 2D position embeddings [2] ;
MatMul concat Attentiony,(X) = Softmax QX v * Self-modulated LayerNorm SLLN
: L it h Vy, o _ T o | — ReLU vs GELU non-linearity : a gradient vanishing tradeoff ;
( Denoted as A in Fig. 3, it uses noise input z to modulate the normalization LN in ®, for each step n: , , S ,
L SoftMax Scaled Dot-Product — Number of patches dealing with the Discriminator’s transformer can be increased to get
viosk 1) ) , , , . ] h, — 1 better performances (do not need to do so with Generator’s transformer) [4] ;
ask (opt. 1 | | ¥ dot=torch.einsum("bid, bjd -> bij",q,k) w = MLP(z) € R% h;, — SLN(h, w) = y,(w) ® + Bn(w) | | | | )
s:ale rm ! cmwmtl cimwm | | a — Setting overlap o = P/2 could be seen as a convolution operation with kernel (P + 20)
T Al g Gl o Gl Multi-headed self-attentllon. (M5A) aggregates where 4 (w). B, (w) are learnable parameters and stride P x P. Increasing sequence length of feature dimension on D is sufficient
[ Matvu ‘ | | H = 1 single selt-attention: TRV, Pn ' when scaling on high resolution images.
CT) f( vV " q MSA(X) = concat{f:l[Attentionh(X)]W +b * From Implicit Neural Representation to patch pixel |
Implicit Neural Representation allows to learn continuous mapping : y<Z> e RY — XZ@. A key was to References
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