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Setting: online honparametric regression

EH Context & data: data arrives sequentially as a stream z1, ..., z; and we want to
predict each response as follows:

Learning scenario

Foreachroundt =1,....,T, the learner or algorithm
> observes an input z; € X C R
Choose f’t before observing ¢,

> makes a prediction f’t(xt) c R

> suffers a loss gt(ft(ilft)) and observes gradients No assumptions on how ¢, is generated

> updates his rule prediction ft — ft+1 Based on observed gradients

Q. Goal: given some large (nonparametric) function set F ¢ R* we want to minimize
the regret against any competitor | € F

T T
Regr(/) =D _G(filw)) — > 4(f(x)) =o(T)
t=1 t=1 goal
our performance

A No stochastic assumption on data (x4, 01): ( ft) have to perform well on abitrary
and possibly adversarial data.

»? Assumptions:
> (¢;) are general G-Lipschitz convex losses, G > 0 known;
> X C R? bounded compact subset;

> F C B;Q(X) the set of Besov continuous functions over X, with unknown p, g €
1,00], s > ;—j:

222 Multiscale representation: starting scale jo > 0, {¢;,x, ¥} Wavelet L*-basis

Vfe LP(X), f= Z o kDo kT Zﬁj,k%‘,k, with |A;] = O(29).
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flr Wavelet characterization: f € B: (X) if
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Main contributions

O An online learning algorithm that leverages a wavelet structure and achieves optimal
regret for convex losses over Besov-smooth functions B, while adapting to s, p, ¢:

(\/T, ifd <2sorp<?2,

Vf € By(X), Regr(f) S G/

B;, $

\Tl_g, if d > 2s.

® An algorithm that handles both convex and exp-concave losses and achieves op-
timal (and local) regret against any f € B (X') (with (/;) exp-concave)
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L Our algorithms are constructive and polynomial-time.

8ld Comparison with previous constructive methods:

Paper Setting Input Parameters Regret Rate Complexity
[7] feB, pg=>1 s, 0, B> || flls T' 5 exp(T) + Td
B, p>2 2 T .
[6] € By p22,46 [gl’p] 5,0, B> £l L Not feasible
JE€E, p=o00, s>3 Tt
feEW;, p>2 5> T' -0 exp(dT)
[2] few;, p>2 s<§ 5,0, B > || fllx T exp(dT)
fee, p=oco,d=1, s> 1 T!-zh poly(T)
3 feg, p=oo,sct1,d=1 B> |fllw Tl poly(T)
'O W2 > 2 > 4 Tl—f—s—ks
8] JEWp, p22 525 $,p j;_dd poly(T')d
feWw;, np>2, S<g Tl—a5te
B >1, s>%0rp<? T
A|g1 feBgcp paq5 ’iIQO ]Zi— SZS,€<S—% ;{;5 pOly(T>Sd
This work S €5 p>2 921 5<5 :
feB, pg>1,s>%0rp<?2 ; T =5
Alg. 2 Py = ’ e S>5e<5=5 B2 |flloo s poly(T)S¢
fE€B,, P>2,q>1,58<5 p T
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Contribution 1: Online Wavelet Regression

Il Wavelet regressor: {y,;} an S-regular i Ty N
wavelet basis with S > s,
A C2t 2
ft($t> — Z}]:jo Zke/\j Cj,k,t@j,k(il?t) — Z(j)k)ept Cj,k,tgpj,/g(wt) y 70+ 1 ° C3,tP3
where the active wavelet coefficients at time ¢ Gotps
D) = F)  pinle) #0} with [T =O(S7). e AN SIS ergpr

Jo

£ Algorithm:

Algorithm 1: Online wavelet regression at time ¢, f; — f11]
Input :ftandboundG>0,0<s<s—%

for (5,k) € ['; do

Predict fi(x:) = Y per, Cik)n(T1); A

Find ¢; 11 € R to minimize ¢, — 4( fi(x;)) using gradient

Gjkt = [5’%&( ft(xt))} — 0 fu(zy));1(x:), G provided to subroutine [4, 1].

L Ck=Cj kst
Output: /.

|2 Analysis: Linear—-Nonlinear Decomposition and Coefficient Decay
We design an oracle (truncated) wavelet expansion of f:
)
J* — % 10g2 T,

fj(x) = > h > h cirpir@) + Z Z Ci ki () with < E

]SJ* ]CEAJ' J*<]§J ]{G/\j \
N —
linear, fully kept: O(27°%) coeff nonlinear, sparsified: O(2”7"?) biggest coeff

Besov regularity f € B  implies an > control of the error and a geometric decay

of the coeff.: A * —
1fr—flle < 277% and o] < 2770127

@ Parameter-free [1, 4] subroutine has regret scaling with the norm of the (¢, x)
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> (X,) dyadic subsets of X', forming partitions
f at different scales

> (f,,) wavelet regressors with different starting
scale adapted to (X))

>s, = sup{a: flx, € B3(X,)} > s local

si=g =09, smoothness.

Xl XQ Xg X4 X5
W Results: for any f € B: (X) and any dyadic partition P = (X,) of X,

> nep BV, + 27| £l VT,
\B‘P‘ ™ EneP 2_Sn|<n>HfHSn\/ 1y,

if (¢;) convex,
Regr(f) < « (&)

if (¢;) exp-concave.

where || f||s, local Besov norm over X,, and T, = |{t : x; € &,,}|.

v/ Curvature adaptivity: fast local rates when (¢;) exp-concave:
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W Local-adaptivity: our bound decomposes as a sum of local and fast regret rates.

B2 Algorithm: given B > | f||.., we predict at each i y
time using experts awake at time ¢ £ )
e f3
&t = {n L Tt € ‘Xn} and ft(ajt) — Zneé’t wn,t[fn,t(xt)]B' . fo f .
f4 N | f7

€ Sleeping expert reduction: no global expert cost,
we pay local complexity only!

Algorithm 2: Online Local Wavelet Regression at time ¢

Input :Bounds G > 0,0 < & < s — 4, B > ||f||~, wavelet regressors (f,),

weights (w0, ’
Receive z;, define active experts & = {n : x; € X, };
Reduce weights w;, ; < wy,+/ Zne& Wy ifn € & and w,; = 0 else;
Predict with &, fi(xz;) = Znéé’t Wy gt frkt(T)]B
Reveal gradient (0y,, (), Wn fn,t(xt)] p)) and update weights (w, ;) with expert
aggregation procedure;
fore € & do

Reveal gradient g, ; = 04 o 1(2));
~ Update wavelet regressor f,,; using Algorithm 1 with g, ;.

gt — {17 27 5}

Output: Weights (w,, ++1) and predictors ( fn,m)

L2l Efficient and computationally feasible, per round complexity: O(S/T log(T)).



