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Setting: online nonparametric regression

Y Context & data: data arrives sequentially as a stream x1, . . . , xt and we want to
predict each response as follows:

Learning scenario
For each round t = 1, . . . , T , the learner or algorithm

� observes an input xt ∈ X ⊂ Rd

�makes a prediction f̂t(xt) ∈ R Choose f̂t before observing `t

� suffers a loss `t(f̂t(xt)) and observes gradients No assumptions on how `t is generated

� updates his rule prediction f̂t→ f̂t+1 Based on observed gradients

Ù Goal: given some large (nonparametric) function set F ⊂ RX we want to minimize
the regret against any competitor f ∈ F

RegT (f ) =

T∑
t=1

`t(f̂t(xt))︸ ︷︷ ︸
our performance

−
T∑
t=1

`t(f (xt))︸ ︷︷ ︸
reference performance

= o(T )︸ ︷︷ ︸
goal

, No stochastic assumption on data (xt, `t): (f̂t) have to perform well on abitrary
and possibly adversarial data.
x Assumptions:

� (`t) are general G-Lipschitz convex losses, G > 0 known;
�X ⊂ Rd bounded compact subset;
�F ⊂ Bs

pq(X ) the set of Besov continuous functions over X , with unknown p, q ∈
[1,∞], s > d

p:

_ Multiscale representation: starting scale j0 ≥ 0, {φj0,k, ψj,k} wavelet L2-basis

∀f ∈ Lp(X ), f =
∑
k∈Λ̄j0

αj0,kφj0,k +
∑
j≥j0

βj,kψj,k, with |Λj| = O(2dj).

Ñ Wavelet characterization: f ∈ Bs
pq(X ) if

‖f‖Bs
pq

= ‖αj0,·‖`p +
(∑

j≥j0 2j(s+
d
2−

d
p)q
∥∥βj,·∥∥q`p)1

q

<∞.

Main contributions

Ê An online learning algorithm that leverages a wavelet structure and achieves optimal
regret for convex losses over Besov-smooth functions Bs

pq while adapting to s, p, q:

∀f ∈ Bs
pq(X ), RegT (f ) . G‖f‖Bs

pq

{√
T , if d ≤ 2s or p < 2,

T 1−s
d, if d > 2s.

Ë An algorithm that handles both convex and exp-concave losses and achieves op-
timal (and local) regret against any f ∈ Bs

pq(X ) (with (`t) exp-concave)

RegT (f ) . G

B1− 2d
2s+d ‖f‖

2d
2s+d

Bs
pq
T 1− 2s

2s+d, if s ≥ d
2,

‖f‖Bs
pq
T 1−s

d, if s < d
2.

� Our algorithms are constructive and polynomial-time.

6 Comparison with previous constructive methods:
Paper Setting Input Parameters Regret Rate Complexity

[7] f ∈ Bs
pq, p, q ≥ 1 s, p, B ≥ ‖f‖∞ T 1− s

s+d exp(T ) + Td

[6]
f ∈ Bs

pq, p ≥ 2, q ∈ [ p
p−1, p]

s, p, B ≥ ‖f‖∞
T 1−1

p

Not feasible
f ∈ C s, p =∞, s ≥ d

2 T 1−s
d+ε

[2]
f ∈ W s

p , p ≥ 2, s ≥ d
2

s, p, B ≥ ‖f‖∞
T 1− 2s

2s+d exp(dT )

f ∈ W s
p , p > 2, s < d

2 T 1−s
d exp(dT )

f ∈ C s, p =∞, d = 1, s > 1
2 T 1− 2s

2s+1 poly(T )

[3] f ∈ C s, p =∞, s ∈ (1
2, 1], d = 1 B ≥ ‖f‖∞ T 1− 2s

2s+1 poly(T )

[8]
f ∈ W s

p , p ≥ 2, s ≥ d
2 s, p

T 1− 2s
2s+d+ε

poly(T )d
f ∈ W s

p , p > 2, s < d
2 T 1−s

d

p−ds
p−2+ε

This work
Alg. 1

f ∈ Bs
pq, p, q ≥ 1, s ≥ d

2 or p ≤ 2
S ≥ s, ε < s− d

p

√
T

poly(T )Sd
f ∈ Bs

pq, p > 2, q ≥ 1, s < d
2 T 1−s

d

Alg. 2
f ∈ Bs

pq, p, q ≥ 1, s ≥ d
2 or p ≤ 2

S ≥ s, ε < s− d
p, B ≥ ‖f‖∞

T 1− 2s
2s+d

poly(T )Sd
f ∈ Bs

pq, p > 2, q ≥ 1, s < d
2 T 1−s

d
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Contribution 1: Online Wavelet Regression

Ñ Wavelet regressor: {ϕj,k} an S-regular
wavelet basis with S > s,

f̂t(xt) =
∑J

j=j0

∑
k∈Λj

cj,k,tϕj,k(xt) =
∑

(j,k)∈Γt
cj,k,tϕj,k(xt) ,

where the active wavelet coefficients at time t

Γt(xt) := {(j, k) : ϕj,k(xt) 6= 0} with |Γt| = O(Sd).

c1,tϕ1

c4,tϕ4

c5,tϕ5

c2,tϕ2

c3,tϕ3

c6,tϕ6 c7,tϕ7

Xj0

j0 + 1

j0 + 2

xt

Γt(xt) = {1, 2, 5}
Ò Algorithm:

Algorithm 1: Online wavelet regression at time t, f̂t→ f̂t+1

Input : f̂t and bound G > 0, 0 < ε < s− d
p

for (j, k) ∈ Γt do
Predict f̂t(xt) =

∑
(j,k)∈Γt

cj,kϕj,k(xt);
Find cj,k,t+1 ∈ R to minimize cj,k 7→ `t(f̂t(xt)) using gradient
gj,k,t =

[
∂cj,k`t

(
f̂t(xt)

)]
cj,k=cj,k,t

= `′t(f̂t(xt))ϕj,k(xt), G provided to subroutine [4, 1].

Output: f̂t+1

  Analysis: Linear–Nonlinear Decomposition and Coefficient Decay
We design an oracle (truncated) wavelet expansion of f :

f̂J(x) =
∑
j≤J∗

∑
k∈Λj

cj,k ϕj,k(x)︸ ︷︷ ︸
linear, fully kept: O(2J

∗d) coeff

+
∑

J∗<j≤J

∑
k∈Λj

cj,k ϕj,k(x)︸ ︷︷ ︸
nonlinear, sparsified: O(2J

∗d) biggest coeff

with

{
J∗ = 1

d log2 T,

J = S
dε log2 T .

Besov regularity f ∈ Bs
p,q implies an L∞ control of the error and a geometric decay

of the coeff.: ‖f̂J − f‖∞ . 2−J
∗s and |cj,k| . 2−j (s+d

2−
d
p)

� Parameter-free [1, 4] subroutine has regret scaling with the norm of the (cj,k)∑
j,k |cj,k|

√∑T
t=1 |gj,k,t|2 . G‖f‖Bs

pq

√
T
∑

j 2−j(s−
d
p−(d2−

d
p)+)

Contribution 2: Fast and Local Wavelet Regression

s1 = 0.5

X1

s2 = 0.8

X2

s3 = 3

X3

s4 = 5
6

X4

s5 = 0.9

X5
X

f

� (Xn) dyadic subsets of X , forming partitions
at different scales

� (f̂n) wavelet regressors with different starting
scale adapted to (Xn)

� sn := sup
{
α : f|Xn ∈ Bα

pq(Xn)
}
≥ s local

smoothness.

� Results: for any f ∈ Bs
pq(X ) and any dyadic partition P = (Xn) of X ,

RegT (f ) .

{∑
n∈P B

√
Tn + 2−snl(n)‖f‖sn

√
Tn, if (`t) convex,

B|P| +
∑

n∈P 2−snl(n)‖f‖sn
√
Tn, if (`t) exp-concave.

where ‖f‖sn local Besov norm over Xn and Tn = |{t : xt ∈ Xn}|.

¢ Curvature adaptivity: fast local rates when (`t) exp-concave:

RegT (f ).
∑
n

(
B1− 2d

2sn+d

(
2−l(n)sn‖f‖sn

) 2d
2sn+d|Tn|

d
2sn+d1sn≥d

2
+2−l(n)sn‖f‖sn|Tn|1−

sn
d 1sn<d

2
+B

)
( Local-adaptivity: our bound decomposes as a sum of local and fast regret rates.
Ò Algorithm: given B ≥ ‖f‖∞, we predict at each
time using experts awake at time t

Et = {n : xt ∈ Xn} and f̂t(xt) =
∑

n∈Etwn,t[f̂n,t(xt)]B .

O Sleeping expert reduction: no global expert cost,
we pay local complexity only!

f̂1

f̂4

f̂5

f̂2
f̂3

f̂6 f̂7

X
xt

Et = {1, 2, 5}

Algorithm 2: Online Local Wavelet Regression at time t

Input : Bounds G > 0, 0 < ε < s− d
p, B ≥ ‖f‖∞, wavelet regressors (f̂n,t),

weights (wn,t)
Receive xt, define active experts Et = {n : xt ∈ Xn};
Reduce weights wn,t← wn,t/

∑
n∈Etwn,t if n ∈ Et and wn,t = 0 else;

Predict with Et, f̂t(xt) =
∑

n∈Etwn,k,t[f̂n,k,t(xt)]B ;
Reveal gradient (∂wn,t`t(

∑
nwn,t[f̂n,t(xt)]B)) and update weights (wn,t) with expert

aggregation procedure;
for e ∈ Et do

Reveal gradient gn,t = `′t(f̂n,t(xt));
Update wavelet regressor f̂n,t using Algorithm 1 with gn,t.

Output: Weights (wn,t+1) and predictors (f̂n,t+1)

� Efficient and computationally feasible, per round complexity: O(Sd
√
T log(T )).


