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Online Learning &
Non-Parametric Regression



Classical Machine Learning

The learner:

Ê observes a whole training dataset with labels/targets:

(x1, y1), . . . , (xT , yT )
iid∼ (X,Y ) with distribution P over X × Y.
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Classical Machine Learning

The learner: −→ Learning method

Ê observes a whole training dataset with labels/targets:

(x1, y1), . . . , (xT , yT )
iid∼ (X,Y ) with distribution P over X × Y.

Ë learn a function f̂ : X → Y ∈ F with small risk EP[`(f̂(X), Y )] by minimizing:

R(f̂) =
1

T

T∑
t=1

`(f̂(xt), yt),

where ` : Y × Y → R is a prescribed loss function.
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Classical Machine Learning

The learner: −→ Learning method −→ Prediction on test data

Ê observes a whole training dataset with labels/targets:

(x1, y1), . . . , (xT , yT )
iid∼ (X,Y ) with distribution P over X × Y.

Ë learn a function f̂ : X → Y ∈ F with small risk EP[`(f̂(X), Y )] by minimizing:

R(f̂) =
1

T

T∑
t=1

`(f̂(xt), yt),

where ` : Y × Y → R is a prescribed loss function.
Ì controls the error of new data if they are similar to the training data.
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Classical Machine Learning

The learner: −→ Learning method −→ Prediction on test data

We won’t deal with it!
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A dive into Sequential Learning

In sequential learning:
- Data are acquired and treated on the fly;

- Data are not necessarily iid, possibly adversarial;

- Feedbacks are received and algorithms updated step by
step.

· · · → xt = → → yt = zebra→ → xt+1 = → · · ·
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A dive into Sequential Learning

Why Online Learning?
In some applications, the environment may evolve over time and data may be available
sequentially.
Examples:

- ads to display,
- electricity consumption forecast,

- spam detection,
- aggregation of expert knowledge.
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Setting of the talk

- Data arrives sequentially as a stream

(x1, y1), . . . , (xt−1, yt−1), (xt, ??) ∈ X ×R

- At time t > 1: we want to predict each next response yt as as a function of xt

f̂t(xt) , with f̂t ∈ RX sequentially updated with (xs, ys)16s6t−1.
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Setting of the talk

The scenario is as follows:

At each round t = 1, . . . , T , the learner or algorithm
Ê observes input xt ∈ X
Ë makes prediction f̂t(xt) ∈ R
Ì incurs loss `t(f̂t(xt)) and discover gradients gt
Í updates prediction function f̂t → f̂t+1

· · · → xt = → → yt = zebra→ → xt+1 = → · · ·
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Setting of the talk

The scenario is as follows:

At each round t = 1, . . . , T , the learner or algorithm
Ê observes input xt ∈ X
Ë makes prediction f̂t(xt) ∈ R Choose f̂t before observing `t

Ì incurs loss `t(f̂t(xt)) and discover gradients gt No assumptions on how `t is generated!

Í updates prediction function f̂t → f̂t+1

· · · → xt = → → yt = zebra→ → xt+1 = → · · ·

- `1, . . . , `T are convex, di�erentiable and G-Lipschitz, with G > 0;

- X ⊂ Rd bounded subset with |X | = supx,x′∈X ‖x− x′‖∞.
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Setting of the talk

Goal: find f̂1, . . . , f̂T that...
minimize the cumulative loss

T∑
t=1

`t(f̂t(xt))
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Setting of the talk

Goal: find f̂1, . . . , f̂T that...
minimize the cumulative loss

T∑
t=1

`t(f̂t(xt))

⇔ predict almost as well as the best function f

T∑
t=1

`t(f̂t(xt))−
T∑
t=1

`t(f(xt))︸ ︷︷ ︸
:=RegT (f)

”Non-Parametric regression”↔ we compare (f̂t) to benchmark functions f ∈ F (e.g.,
Lipschitz)

6



Regret Analysis

→ We want f̂1, . . . , f̂T such that regret

RegT (f) =

T∑
t=1

`t(f̂t(xt))︸ ︷︷ ︸
our performance

−
T∑
t=1

`t(f(xt))︸ ︷︷ ︸
reference performance

against f ∈ F is —————————————- .
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Regret Analysis

→ We want f̂1, . . . , f̂T such that regret

RegT (f) =

T∑
t=1

`t(f̂t(xt))︸ ︷︷ ︸
our performance

−
T∑
t=1

`t(f(xt))︸ ︷︷ ︸
reference performance

= o(T )︸ ︷︷ ︸
goal

against f ∈ F is as small as possible.
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Regret Analysis

→ We want f̂1, . . . , f̂T such that regret

RegT (f) =

T∑
t=1

`t(f̂t(xt))︸ ︷︷ ︸
our performance

−
T∑
t=1

`t(f(xt))︸ ︷︷ ︸
reference performance

= o(T )︸ ︷︷ ︸
goal

against f ∈ F is as small as possible.

Di�culty: no stochastic assumption on data (xt, yt, `t)!
→ (f̂t) have to perform well with all arbitrary time series i.e. approaching

inf
f̂1

sup
x1,`1

inf
f̂2

sup
x2,`2

· · · inf
f̂T

sup
xT ,`T

sup
f∈F

RegT (f).
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Regret Analysis

→ We want f̂1, . . . , f̂T such that regret

RegT (f) =

T∑
t=1

`t(f̂t(xt))︸ ︷︷ ︸
our performance

−
T∑
t=1

`t(f(xt))︸ ︷︷ ︸
reference performance

= o(T )︸ ︷︷ ︸
goal

against f ∈ F is as small as possible.

Di�culty: no stochastic assumption on data (xt, yt, `t)!
→ (f̂t) have to perform well with all arbitrary time series i.e. approaching

inf
f̂1

sup
x1,`1

inf
f̂2

sup
x2,`2

· · · inf
f̂T

sup
xT ,`T

sup
f∈F

RegT (f).

How to sequentially build predictors f̂1, . . . , f̂T ? 7



Building Predictions with Online
Gradient Boosting



Boosting uses ”wisdom of the crowd”

- Boosting: ensemble method com-
bining multiple weak learners to
create a strong learner

- Each model corrects/learns from
errors of its peers

→ Resulting in a highly accurate pre-
dictive model [1]

[1] e.g. AdaBoost and XGBoost



How to deal with weak learners?

- W ⊂ RX a set of real valued functions X → R;

- spanN (W) = {
∑N
n=1 βnhn, hn ∈ W, βn ∈ R} linear function space associated toW .
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How to deal with weak learners?

- W ⊂ RX a set of real valued functions X → R;

- spanN (W) = {
∑N
n=1 βnhn, hn ∈ W, βn ∈ R} linear function space associated toW .

For each t = 1, . . . , T , we use N > 1 sequential weak predictors fromW

h1,t h2,t

· · ·

hN−1,t hN,t

and we form strong predictor at any time t > 1 as

f̂t =

N∑
n=1

βn,thn,t , βn,t ∈ R, n ∈ [N ]

9



A new Online Gradient Boosting procedure

→ Goal: We want to find a sequence of functions

f̂t =
∑
n

βn,thn,t ∈ spanN (W) , 1 6 t 6 T,

minimizing regret against F = spanN (W).
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A new Online Gradient Boosting procedure

→ Goal: We want to find a sequence of functions

f̂t =
∑
n

βn,thn,t ∈ spanN (W) , 1 6 t 6 T,

β1,th1,t

βn−1,thn−1,t

...

βn,thn,t

...

βn+1,thn+1,t

βN,thN,t

βn,t+1hn,t+1

. .
.

. . .

gn,t

Figure 1: Boosting at time t.

minimizing regret against F = spanN (W).

At t > 1, each n ∈ [N ] is boosted with OGB as:

Ê Predict f̂t(xt)
Ë (βn,t, hn,t) receives its gradient

gn,t =
[
∇(βn,hn)`t

(
f̂−n,t(xt) + βnhn(xt)

)]
(βn,hn)=(βn,t,hn,t)

Ì Find (βn,t+1, hn,t+1) ∈ R×W to solve

min
βn,hn

`t(f̂−n,t(xt) + βnhn(xt)) (1)

using gradient gn,t. 10



Online Gradient Boosting in
Chaining-Tree



Tree-based Method

(h1,X )

(h2,X2)

(h4,X4) (h5,X5)

(h3,X3)

(h6,X6) (h7,X7)

Figure 2: Example of T with depth
d(T ) = 3 over X ⊂ R.

Regular decision-tree (T , X̄ , W̄) over X is made of:
- a set of nodes N (T ) including leaves L(T );

- a family of subregions

X̄ = {Xn, n ∈ N (T )}

partitionning X by level ;

- a family of prediction functions

W̄ = {hn, n ∈ N (T )}.
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Chaining-Tree

+

+ +

θ1

θ4
θ5

θ2
θ3

θ6 θ7

X

Figure 3: Prediction of a CT T
of depth d(T ) = 3 on X ⊂ R.

Definition (Chaining-Tree)

A Chaining-Tree (CT) prediction function f̂ over X is
defined as

f̂(x) =
∑

n∈N (T )

hn(x) , x ∈ X ,

where:
- hn(x) = θn1x∈Xn are constant functions;
- each interior node n ∈ N (T )\L(T ) has 2d children

forming a regular partition of Xn.

Remark: contrary to standard methods, we predict with all nodes n ∈ N (T ).
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Illustration of approximation by Chaining-Tree

→ Assume `t(ŷ) = (ŷ − yt)2 square loss function and we launch a CT T with depth
d(T ) = 1, 2, 3, over T data. We have the following illustration:
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Illustration of approximation by Chaining-Tree
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Illustration of approximation by Chaining-Tree
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Illustration of approximation by Chaining-Tree
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Illustration of approximation by Chaining-Tree
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Illustration of approximation by Chaining-Tree
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Illustration of approximation by Chaining-Tree
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Online Boosting in a Chaining-Tree

→ Goal: Sequentially training CT T , i.e. tuning over time the family

W̄t = {hn,t = θn,t1Xn , n ∈ N (T )}.

We use OGB on W̄t, with βn = 1, N = |N (T )|. Gradient step becomes, for all n ∈ [N ]:

θn,t+1 ← grad-step(θn,t, gn,t) , where gn,t = `′t(f̂t(xt))1xt∈Xn .

Assumtion 1 (Parameter Free regret)

Let n ∈ N (T ),∀gn,1, . . . , gn,T ∈ [−G,G], G > 0, grad-step produces (θn,t) such that:∑
t∈Tn gn,t(θn,t − θn) . G|θn|

√
|Tn| , with Tn = {1 6 t 6 T, gn,t 6= 0} ,

for every θn ∈ R.

e.g., parameter free algorithms in Orabona and Pál; Mhammedi and Koolen; Cutkosky and
Orabona (2016; 2020; 2018). 14



Optimal Regret and Adaptivity to Hölder functions

α-Hölder continous functions over X ⊂ Rd:

LipαL(X ) = {f : X → R : |f(x)− f(x′)| 6 L‖x− x′‖α∞ ,∀x, x′ ∈ X}.

Theorem (Regret of OGB-CT vs Hölder functions - Liautaud et al. (2024))
Under Assumption 1, OGB on CT (T , X̄ , W̄) with Xroot = X , θn,1 = 0, n ∈ N (T ) and
d(T ) = 1

d log2 T has regret:

sup
f∈LipαL(X )

RegT (f) . GLXα


√
T if d < 2α ,

log2 T
√
T if d = 2α ,

T 1−αd if d > 2α ,

for any L > 0, α ∈ (0, 1].
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Optimal Regret and Adaptivity to Hölder functions

Theorem (Regret of OGB-CT vs Hölder functions - Liautaud et al. (2024))
Under Assumption 1, OGB on CT (T , X̄ , W̄) with Xroot = X , θn,1 = 0, n ∈ N (T ) and
d(T ) = 1

d log2 T has regret:

sup
f∈LipαL(X )

RegT (f) . GLXα


√
T if d < 2α ,

log2 T
√
T if d = 2α ,

T 1−αd if d > 2α ,

for any L > 0, α ∈ (0, 1].

Our rates are minimax over LipαL (Rakhlin et al. (2015)) + we do not need prior
knowledge of neither L nor α.

Computationally tractable: xt only falls into one subregion Xn for each level
1, . . . ,d(T ): we update O(Td log2(T )) for T rounds.
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Adaptive Boosting in Online
NonParametric Regression



Locally Adaptive Boosting - LocAdaBoost

We base our predictions on a core tree (T0, X̄ , W̄) associated to:

f̂t(xt) =
∑

n∈N (T0)

wn,tf̂n,t(xt) , ∀t > 1,

Figure 4: T0

where for any n ∈ N (T0):
- f̂n is a CT rooted at Xn;

- wn,t weight associated.

We use OGB on
- βn,t = wn,t, n ∈ N (T0);

- and gradient gt = ∇(wn)`t(f̂t(xt))|(wn)=(wn,t).
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Adaptivity to local profile of the competitor

→ Goal: Learn the best pruned tree from T0 in P(T0) to fit the competitor.
Example 1:
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Adaptivity to local profile of the competitor

→ Goal: Learn the best pruned tree from T0 in P(T0) to fit the competitor.
Example 1:
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Adaptivity to local profile of the competitor

→ Goal: Learn the best pruned tree from T0 in P(T0) to fit the competitor.
Example 2:
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Adaptivity to local profile of the competitor

→ Goal: Learn the best pruned tree from T0 in P(T0) to fit the competitor.
Example 2:
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Optimal and Locally Adaptive Regret (1/2)

Theorem (Locally Adaptive Regret, case d = 1, α > 1
2 - Liautaud et al. (2024))

Under assumptions, for any f ∈ LipαL(X ), LocAdaBoost achieves

RegT (f) . inf
T ∈P(T0)

√T |L(T )|+ |L(T )|+Xα
∑

n∈L(T )

Ln(f)2−αd(n)
√
|Tn|

 ,

with Ln(f) local Hölder constants.

If (`t) are exp-concave (e.g. square loss)

RegT (f) . inf
T ∈P(T0)

|L(T )|+Xα
∑

n∈L(T )

Ln(f)2−αd(n)
√
|Tn|


Remark: LocAdaBoost could also adapt to local regularities (αn)
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Optimal and Locally Adaptive Regret (2/2)

Corollary (Minimax Regret - Liautaud et al. (2024))
For any f ∈ LipαL(X ), L > 0, LocAdaBoost achieves

RegT (f) .

{
(XαL̄(f))

2
2α+1T

1
2α+1 if `t are exp-concave ,

(XαL̄(f))
1
2α

√
T ,

where L̄(f) =
(

1
X

∑
n∈L(T ) |Xn|Ln(f)1/α

)α.
X Minimax optimality

X Adaptivity to local regularities (Ln) and α

X Adaptivity to the loss curvature

19



Conclusion

- New generic Online Gradient Boosting procedure;

- Online Gradient Boosting coupled with Chaining-Tree achieve minimax regret;

- Our unique LocAdaBoost algorithm both adapts optimaly to local regularities of
the competitor and curvature of sequential losses;

- First constructive algorithm to achieve optimal locally adaptive regret;

- Future work: extend the boosting procedure to other learners to approach other
classes of functions.

Thank you!

Questions?
[1] Link to the paper: https://arxiv.org/abs/2410.03363
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Comparison with the litterature

Ref. Assumptions Upper bound

[2]
(`t) exp-concave, L > 0 unknown min

{√
LT ,L

2
3T

1
3

}
(`t) convex, L > 0 unknown

√
LT

[3] (`t) square loss, L > 0 unknown
√
LT

[4]
(`t) absolute loss, L > 0 known L

1
3T

2
3

(`t) square loss, L > 0 known
√
LT

[5] (`t) square loss, L = 1 known T
1
3

[6] (`t) convex, L = 1 known
√
T

[2] Liautaud, Gaillard, and Wintenberger, “Minimax Adaptive Boosting for Online Nonparametric Regression”.
[3] Kuzborskij and Cesa-Bianchi, “Locally-adaptive nonparametric online learning”.
[4] Hazan, Agarwal, and Kale, “Logarithmic regret algorithms for online convex optimization”.
[5] Gaillard and Gerchinovitz, “A Chaining Algorithm for Online Nonparametric Regression”.
[6] Cesa-Bianchi et al., “Algorithmic chaining and the role of partial feedback in online nonparametric learning”.
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Experiments (1/3)

Regression setting: yt = f(xt) + εt, where εt ∼ N (0, σ2) with
σ = 0.5,f(x) = sin(10x) + cos(5x) + 5,for x ∈ X = [0, 1] and supx |f ′(x)| 6 15 =: L.
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Experiments (2/3)
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Experiments (3/3)
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