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Online Learning &
Non-Parametric Regression



Classical Machine Learning

‘tiger’ ‘zebra’
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The learner: % A

training data

© observes a whole training dataset with labels/targets:

(x1,v1),---, (7, y7) L (X,Y) with distribution P over X x Y.
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Classical Machine Learning

‘tiger’ ‘zebra’
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The learner: % Aae — Learning method — Prediction on test data

training data

© observes a whole training dataset with labels/targets:
(x1,v1),---, (7, y7) e (X,Y) with distribution P over X x Y.

® learn a function f : X — Y € F with small risk Ep[¢(f(X),Y)] by minimizing:
o1 K
R(f) = T ;é(f(xt),yt),
where £: Y x Y — R is a prescribed loss function.
® controls the error of new data if they are similar to the training data.



Classical Machine Learning
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training data

We won't deal with it!



A dive into Sequential Learning

In sequential learning:
- Data are acquired and treated on the fly;

- Data are not necessarily iid, possibly adversarial;

- Feedbacks are received and algorithms updated step by
step.




A dive into Sequential Learning

2 Why Online Learning?
In some applications, the environment may evolve over time and data may be available

sequentially.

Examples:
- ads to display, - spam detection,
- electricity consumption forecast, - aggregation of expert knowledge.

Sam Dim




Setting of the talk

- Data arrives sequentially as a stream
(mh y1)7 ooog (xtflayt71)7 (xta ‘-‘)")) S X X ]R
- Attime ¢ > 1: we want to predict each next response y; as as a function of z;

fe(x), with f, € RY sequentially updated with (z, ys)1<s<i—1.



Setting of the talk

The scenario is as follows:

At each round ¢t =1,...,T, the learner or algorithm
@ observes inputz; € X
® makes prediction fi(z;) € R
® incurs loss ét(ft(:ct)) and discover gradients g;
® updates prediction function f; — ft+1

— yp = zebra — @ — Ty = @] — ...



Setting of the talk

The scenario is as follows:

At each round ¢t =1,...,T, the learner or algorithm
@ observes inputz; € X
® makes prediction ft(xt) eR Choose f; before observing ¢
® incurs loss ét(ft(:ct)) and discover gradients g; No assumptions on how ¢ is generated!
® updates prediction function f, — ft+1

ey = %yt:zebra%*@) %xtﬂzﬁlﬁm
- {l1,..., 07 are convex, differentiable and G-Lipschitz, with G > 0;

- X c R? bounded subset with |X| = sup, ,cx |2 — 2/[ .



Setting of the talk

Goal: find fi,..., fr that...
minimize the cumulative loss

T ~
> bl fulw)



Setting of the talk

Goal: find fi,..., fr that...
minimize the cumulative loss < predict almost as well as the best function f

T R T . T
2 Lldhiw) > blful@)) = Y (@)
1:R9gT(v/‘)

"Non-Parametric regression” +» we compare (f;) to benchmark functions f € F (e.g,,
Lipschitz)



Regret Analysis

— We want fi, ..., fr such that regret
T . T
Regr(f) =) b(fe(z)) — D bl(f(z0))
t=1 t=1
our performance reference performance

against f € Fis



Regret Analysis

— We want fi, ..., fr such that regret
T T
Regr(f) =D b(filz)) — D b(f(z))  =o(T)
t=1 t=1 v
———— goal
our performance reference performance

against f € F is as small as possible.



Regret Analysis

— We want fi, ..., fr such that regret
T R T
Regr(f) = ) _G(fi(ze)) — G(f(ze) =o(T)
———— goal
our performance reference performance

against f € F is as small as possible.

[N Difficulty: no stochastic assumption on data (zy, vz, £;)!
— (f:) have to perform well with all arbitrary time series i.e. approaching

inf sup inf sup ---inf sup sup Regp(f).
f1 x1,ly f2 w2l fr x7 by fEF



Regret Analysis

— We want fi, ..., fr such that regret
T T
Regr(f) = ) _G(fi(ze)) — G(f(ze) =o(T)
———— goal
our performance reference performance

against f € Fis as small as possible.

& Difficulty: no stochastic assumption on data (z:, ys, 4!

— (ft) have to perform well with all arbitrary time series i.e. approaching
inf sup inf sup ---inf sup sup Regp(f).

f1 1,81 f2 w2l fr z7lr fEF

A

2 How to sequentially build predictors fi, ..., fr?



Building Predictions with Online
Gradient Boosting



Boosting uses "wisdom of the crowd”

- Boosting: ensemble method com-

bining multiple weak learners to
create a strong learner /_\

hN—2 -\ 4
- Each model corrects/learns from _
errors of its peers & EN
EN-2 D . hw
— Resulting in a highly accurate pre- E5D
dictive model [1] J
hy-1 EN-1

EN-1

[1] eg AdaBoost and XGBoost



How to deal with weak learners?

- W c R¥ a set of real valued functions X — R;

- spany (W) = {Zle Bnhn, hn, € W, 5, € R} linear function space associated to W.



How to deal with weak learners?

- W c R¥ a set of real valued functions X — R;

- spany (W) = {Zle Bnhn, hn, € W, 5, € R} linear function space associated to W.

W Foreacht=1,...,T, we use N > 1 sequential weak predictors from W
\ 4
{ { ﬁﬁ qﬁ
I ha hn_1. h

and we form strong predictor at any time ¢ > 1 as

N
ft = Z ﬁ’n,,thn,,ta ﬁn,t € R, n & [N]
n=1



A new Online Gradient Boosting procedure

— Goal: We want to find a sequence of functions

N
-
N
=

fe=> Bnihnys € spany (W), 1

minimizing regret against F = spany (W).

10



A new Online Gradient Boosting procedure

— Goal: We want to find a sequence of functions
ft = Zﬁn,thn,t € spany (W), 1<t <T,
n
minimizing regret against F = spany (W). Brthie

%f Att¢ > 1, each n € [N]is boosted with OGB as:

677,—1.thn—1,f,

- y
o PredICt ft(mt) lgrz,th’n,t @ ‘8n¢t+lh’n,t+l
O (5,1, hn,) receives its gradient {

In,t = |:v(ﬂn,hn)€t (f—n,t(l't) + Bnhn(lt))}

® Find (By.t4+1, hni+1) € R x W to solve

Brgt,thnt1,e -+

(Br,hn)=(Bn,t,hn,t)

ﬂN,thN,t,

min £(fn,e(w0) + Bohin (1)) (1) Figure 1: Boosting at time t.

nyltn

using gradient g, ;. 10



Online Gradient Boosting in
Chaining-Tree




Tree-based Method

Regular decision-tree (7, X, W) over X is made of:

- a set of nodes N(T) including leaves L(T); (h1,X)
- a family of subregions /\
X ={X,,ne N(T)} (ha, X2) (hs, X3)
partitionning X by level ; A A
- a family of prediction functions (hay Xa) (h5,X5) (he, Xs) (h7,X7)
W = {hn,n € N(T)}. Figure 2: Example of 7 with depth

d(7T) =3 over ¥ C R.

"



Chaining-Tree

Definition (Chaining-Tree)

A Chaining-Tree (CT) prediction function f over X is
I defined as

ST — f@)= Y halz), zex,
neN (T)

where:
- hp(z) = 0,1 ,cx, are constant functions;
- each interior node n € N(T)\L(T) has 2¢ children
forming a regular partition of X,.

Figure 3: Prediction of a CT T
of depth d(7) =3 0on X C R.

N

¥ Remark: contrary to standard methods, we predict with all nodes n € N(T).



Illustration of approximation by Chaining-Tree

— Assume /£;(9) = (§ — y¢)? square loss function and we launch a CT T with depth
d(7T) =1,2,3, over T data. We have the following illustration:



Illustration of approximation by Chaining-Tree

(5057 Ye)




Illustration of approximation by Chaining-Tree




Illustration of approximation by Chaining-Tree




Illustration of approximation by Chaining-Tree




Illustration of approximation by Chaining-Tree




Illustration of approximation by Chaining-Tree

01 + 63 0; + 03 + 03
I ; o1 s N
: \ / 0; + 0
RRIEN Ve
X4 Xg, ' Xﬁ ‘ X?



Online Boosting in a Chaining-Tree

— Goal: Sequentially training CT T, i.e. tuning over time the family

Wi = {hnt=0,:1x,,n€N(T)}.
W We use 0GB on W;, with 8, = 1, N = |[N(T)|. Gradient step becomes, for all n € [N]:
On i1 < grad-step(Bns, gni), wWhere gn:=(fi(@)) e, ex,
Assumtion 1 (Parameter Free regret)
Letn € N(T),Vgn1,---,9nr € [-G,G],G > 0, grad-step produces (6,,;) such that:
Yier, 9nt(One = 0n) S GlOlV/Tul,  with T, = {1 <t < T, gne # 0},

for every 6,, € R.

e.g., parameter free algorithms in Orabona and Pal; Mhammedi and Koolen; Cutkosky and
Orabona (2016; 2020; 2018). 14



Optimal Regret and Adaptivity to Holder functions

a-Holder continous functions over X ¢ R%:
Lip7 (X) = {f: X = R: [f(z) - f(2')] < L||z — 2||5, , Yz, 2" € X}.
Theorem (Regret of OGB-CT vs Holder functions - Liautaud et al. (2024))

Under Assumption 1, 0GB on CT (T, X, W) With Xeot = &, 05,1 = 0,n € N(T) and
d(T) = %log, T has regret:

VT ifd < 2a,

sup  Regr(f) S GLX® {log, TVT ifd=2a,
fELipg (X) e .

T ifd>2a,

forany L > 0,a € (0,1].



Optimal Regret and Adaptivity to Holder functions

Theorem (Regret of OGB-CT vs Holder functions - Liautaud et al. (2024))

Under Assumption 1, 0GB on CT (T, X, W) With Xyeot = &, 05,1 = 0,n € N(T) and
d(T) = Llog, T has regret:

VT ifd < 2a,

sup  Regr(f) S GLX*{log, TVT ifd=2a,
FELipg (X) N :

T~ Iifd>2a,

forany L > 0,a € (0,1].

%)‘; Our rates are minimax over Lip¢ (Rakhlin et al. (2015)) + we do not need prior
knowledge of neither L nor «.

o Computationally tractable: z; only falls into one subregion X, for each level
1,...,d(T): we update O(% log,(T)) for T rounds.



Adaptive Boosting in Online
NonParametric Regression




Locally Adaptive Boosting - LocAdaBoost

L,

P we base our predictions on a core tree (7, X, W) associated to:

fe(zy) = Z wn,tfn,t(xt)7 VE>1,

nEN(TO)

where for any n € N(7o):
- f.isa CT rooted at X,,;

- wy,; Weight associated.

We use 0GB on
- ﬂn,t = Wn,t,N S N(%),

- and gradient g; = V() 0t (f1(26)) | (wn)=(uon 1)

Figure 4: To



Adaptivity to local profile of the competitor

— Goal: Learn the best pruned tree from 7y in P(7p) to fit the competitor.
Example 1
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Adaptivity to local profile of the competitor

— Goal: Learn the best pruned tree from 7y in P(7p) to fit the competitor.
Example 2:




Adaptivity to local profile of the competitor

— Goal: Learn the best pruned tree from 7y in P(7p) to fit the competitor.
Example 2:




Optimal and Locally Adaptive Regret (1/2)

Theorem (Locally Adaptive Regret, case d = 1, > ; - Liautaud et al. (2024))
Under assumptions, for any f € Lip}(X), LocAdaBoost achieves

Reg,(f) < inf {\/T|L [+ +X> > Ln(f)2“d<")\/|Tn|},

TEP(To) neZ(T)

with L,,(f) local Holder constants.

If (¢;) are exp-concave (e.g. square loss)

Regz(f) S Tlg(fT){ﬁ(T)IJrX“ > La(p2d® m}

neL(T)

? Remark: LocAdaBoost could also adapt to local regularities (cv,)



Optimal and Locally Adaptive Regret (2/2)

Corollary (Minimax Regret - Liautaud et al. (2024))
For any f € Lip7(X),L > 0, LocAdaBoost achieves

2+1T
VT
where E(f) = (% ZneL(T) ‘Xn|Ln(f)1/a>a‘

V' Minimax optimality

(X*L(f))=
(XL())

1 o
=+1  f {, are exp-concave,,
)

v
o

M‘H

Regr(f) S {

v Adaptivity to local regularities (L,,) and «

v Adaptivity to the loss curvature

19



Conclusion

- New generic Online Gradient Boosting procedure;
- Online Gradient Boosting coupled with Chaining-Tree achieve minimax regret;

- Our unique LocAdaBoost algorithm both adapts optimaly to local regularities of
the competitor and curvature of sequential losses;

- First constructive algorithm to achieve optimal locally adaptive regret;

- Future work: extend the boosting procedure to other learners to approach other
classes of functions.

Thank you!

Questions?

[1] Link to the paper: https://arxiv.org/abs/2410.03363

20


https://arxiv.org/abs/2410.03363

Comparison with the litterature

Ref. Assumptions Upper bound
L] (¢;) exp-concave, L > 0 unknown min {v/LT, L§T%}

(¢;) convex, L > 0 unknown VLT
[3]  (4) square loss, L > 0 unknown VLT
(4] (¢;) absolute loss, L > 0 known L3T3
(4) square loss, L > 0 known VLT
[5] (¢) square loss, L = 1 known T3
[6] (£) convex, L =1 known VT

[2] Liautaud, Gaillard, and Wintenberger, “Minimax Adaptive Boosting for Online Nonparametric Regression”.
[3] Kuzborskij and Cesa-Bianchi, “Locally-adaptive nonparametric online learning”.

[4] Hazan, Agarwal, and Kale, “Logarithmic regret algorithms for online convex optimization”.

[5] Gaillard and Gerchinovitz, “A Chaining Algorithm for Online Nonparametric Regression”.

[6] Cesa-Bianchi et al, “Algorithmic chaining and the role of partial feedback in online nonparametric learning”.

21



Experiments (1/3)

Regression setting: y; = f(x;) + &;, where g, ~ N(0,0?) with
o =0.5,f(z) = sin(10z) + cos(bz) + 5,for x € X = [0,1] and sup,, | f'(z)| < 15 =: L.

s | o LVT) -Th. 1 7 s | ——o(zvT)-ma T
10° | —— Chaining Tree - Alg. 1 - 10 —— Chalning Tree - Alg. 1 T
——o(tdr¥).com1t -~ - ~=o(VIT)-cor1 -~ _ -7

. LochdaBoost - Alg. 2 " 10* LocAdaBoost -Alg. 2 —~
10% - - s .

[y

& 10° 1

g
102 |
10 |

T T T T T T T T
10° 10 102 103 10° 10 102 103
Horizon T’ Horizon T’
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A BT) ~Cor. 1

——— Chaining Tree - Alg. 1
LocAdaBoost - Alg. 2

——'O(L\/T/\BT)»Th.l
- o(\/ﬁ

TTT T T T T T T T T T T T T T T T T T T T T T rrTTT
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$ 3
ot

57) ) .bm.v

VIT A BT) -Cor. 1
T T
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Vv :»’}3

\ WQ\,
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T
+
N
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——o(Liria
——— Chaining Tree - Alg. 1
T
S 8
NN
+ q+
Q-

Experiments (2/3)
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Experiments (3/3)

X 4
3 % % Chaining Tree %
- LocAdaBoost x
» x
9 —
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