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Online Learning &
Non-Parametric Regression



Setting & Problem

Data arrives sequentially as a stream
(X1,91)y -y (@1, 98-1), (21,7) € X X R
and we want to predict each next response y; as as a function of z;
JACHE with f, € R sequentially updated.

The scenario is as follows:

At each round t = 1,...,T, the learner or algorithm
O observes input z; € X
® makes prediction f;(z;) € R
® incurs loss 4, (fi(z))
® updates prediction function f; — ft+1



Setting & Problem

At each round ¢t =1,...,T, the learner or algorithm
@ observes inputz; € X
® makes prediction ft(xt) eR Choose f; before observing ¢
® incurs loss ft(ft(xt)) No assumptions on how ¢; is generated!

® updates prediction function f; — fii1

Setting & Notations
- {q,...,¢p are convey, differentiable and G-Lipschitz, with G > 0;
- X is a bounded subset of R? and we denote for any &’ C X,

|| = sup, prenr |2 = 2o



Setting & Problem

At each round ¢t =1,...,T, the learner or algorithm
@ observes inputz; € X
® makes prediction ft(xt) eR
® incurs loss £, (f;(x4))
® updates prediction function f; — fii1

Goal:
minimize the cumulative loss

th(ft(mt))
t=1



Setting & Problem

At each round ¢t =1,...,T, the learner or algorithm
@ observes inputz; € X
® makes prediction ft(xt) eR
® incurs loss £, (f;(x4))
® updates prediction function f; — fii1

Goal:
minimize the cumulative loss < predict almost as well as the best function [~

Zlét(ft(:cm S t(frl@) = > b(f (@)
:=Regp(f*)

Difficulty: no stochastic assumption on data: arbitrary time-series!



Setting & Problem

Non-Parametric regression means that we are interested in forecasters (f;) whose regret

T T
Regr(f*) =Y b(fil@)) — D b(f (=)

our performance reference performance

against benchmark functions f* € F (e.g. Lipschitz) is as small as possible.



Setting & Problem

Non-Parametric regression means that we are interested in forecasters (f;) whose regret

T T
Regr(f*) =D b(fil@)) — D &(f*(@) =o(T)

our performance reference performance

against benchmark functions f* € F (e.g. Lipschitz) is as small as possible.



Building Predictions with Online
Gradient Boosting




Boosting uses "wisdom of the crowd”

- Boosting: ensemble method com-

bining multiple weak learners to
create a strong learner /_\

hN—2 -\ 4
- Each model corrects/learns from _
errors of its peers & EN
EN-2 D . hw
— Resulting in a highly accurate pre- E5D
dictive model [1] J
hy-1 EN-1

EN-1

[1] eg AdaBoost and XGBoost



How to deal with weak learners?

- W c R¥ a set of real valued functions X — R;

- spany (W) = {Zle Bnhn, hn, € W, 5, € R} linear function space associated to W.



How to deal with weak learners?

- W c R¥ a set of real valued functions X — R;
- spany (W) = {Zle Bnhn, hn, € W, 5, € R} linear function space associated to W.

W Foreacht=1,...,T, we use N > 1 sequential predictors from W

N g, 3
) /] J J
> | ) |
]
I ha hn_1. h

and we form strong predictor at any time ¢ > 1 as

N
ft = Z ﬁ’n,,thn,,ta ﬁn,t € R, n & [N]
n=1



A new Online Gradient Boosting procedure

— Goal: We want to find a sequence of functions

N
-
N
=

fe=> Bnihnys € spany (W), 1

minimizing regret against F = spany (W).



A new Online Gradient Boosting procedure

— Goal: We want to find a sequence of functions
ft = Zﬁn,thn,t € spany (W), 1<t <T,
n
minimizing regret against F = span (W). Brehie ...

N

¥ Att > 1, each n € [N] is boosted with 0GB as:

‘Bn—lﬁthn—l,t """" .

© Predict fi(x,), f 4
. . . ﬂ’ll. h/’ll. /[377,. h/’ll.
O (5,1, hn,) receives its gradient o e

4)
gt = V(B hn 0 bt (fi(20)), Brtt,thngie =" 0
® Update as . .
(ﬁn,t-{-l, hrb,t+1) = grad-step((ﬁnm h”ﬂf)’ gmt), ﬂNd‘rhN?t
(1) Figure 1: Boosting at time t¢.




Online Gradient Boosting in
Chaining-Tree




Tree-based Method

Regular decision-tree (7, X, W) over X is made of:

- a set of nodes N(T) including leaves L(T); (h1,X)
- a family of subregions /\
X ={X,,ne N(T)} (ha, X2) (hs, X3)
partitionning X by level ; A A
- a family of prediction functions (hay Xa) (h5,X5) (he, Xs) (h7,X7)
W = {hn,n € N(T)}. Figure 2: Example of 7 with depth

d(7T) =3 over ¥ C R.



Chaining-Tree

Definition (Chaining-Tree)

A Chaining-Tree (CT) prediction function f over X is
I defined as

ST — f@)= Y halz), zex,
neN (T)

where:
- hp(z) = 0,1 ,cx, are constant functions;
- each interior node n € N(T)\L(T) has 2¢ children
forming a regular partition of X,.

Figure 3: Prediction of a CT T
of depth d(7) =3 0on X C R.

N

¥ Remark: contrary to standard methods, we predict with all nodes n € N(T).



Illustration of approximation by Chaining-Tree

Assume ¢, is the square loss function and we launch a CT 7 with depth d(7) = 1,2, 3,
over T data. We have the following illustration:

10



Illustration of approximation by Chaining-Tree

(5057 Ye)
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Illustration of approximation by Chaining-Tree
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Illustration of approximation by Chaining-Tree
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Illustration of approximation by Chaining-Tree

N/

e

10



Illustration of approximation by Chaining-Tree
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Illustration of approximation by Chaining-Tree

01 + 63 0; + 03 + 03
I ; o1 s N
: \ / 0; + 0
RRIEN Ve
X4 Xg, ' Xﬁ ‘ X?

10



Online Boosting in a Chaining-Tree

— Goal: Sequentially training CT T, i.e. tuning over time the family

Wt = {hn,t - en,tl/’\{,”n S N(T)}

W We use 0GB on W,, with 8,, = 1, N = |[N(T)|. Gradient step becomes, for all n € [N]:

en,tJrl — grad_Step(Gn,hgn?t) 5 where Int = é;(ft(wt))]lxtex”-

"



Online Boosting in a Chaining-Tree

W We use 0GB on W, with 8, = 1, N = |N(T)|. Gradient step becomes, for all n € [N]:

On41 < grad-step(b,,9n¢), Where g, = z;(ft(xt))nm,exn.

?

Which gradient step to consider? Any online optimization algorithm satisfying:
Assumtion 1

Letn € N(T),Ygn1,--.,9n1 € [—G,G],G > 0, parameters (6, ;) satisfy:

> gntOns — 0n) S Glon|\/ T, with T, = {1 <t < T,gn: # 0},
teTy
for every 6,, € R.

— parameter free algorithms (e.g. Cutkosky et al. (2018))

"



Optimal Regret and Adaptivity to Holder functions

Holder functions over X ¢ R

Lipf (X)={f: X > R:|f(z)— f(@")| < L|jz—2'||%, ,Vz,2’ € X and sup |f(x)| < L|X|*}.
reX

Theorem (Regret of 0GB-Chaining-Tree vs Holder functions)
Under Assumption 1, 0GB on CT (T, X, W) With X.oor = X, 0,1 = 0,n € N(T) and
d(T) = % log, T has regret:

VT Iifd < 2a,

sup  Regp(f) SGLX*log, TVT ifd =2a,
FELip? (X) —e :

T ifd>2a,

forany L > 0, € (0,1].



Optimal Regret and Adaptivity to Holder functions

Theorem (Regret of 0GB-Chaining-Tree vs Holder functions)

Under Assumption 1, 0GB on CT (T, X, W) With Xyeot = &, 05,1 = 0,n € N(T) and
d(T) = Llog, T has regret:

VT ifd < 2a,

sup  Regr(f) S GLX*{log, TVT ifd=2a,
FELipg (X) N :

T~ Iifd>2a,

forany L > 0,a € (0,1].

%)‘; Our rates are minimax over Lip¢ (Rakhlin et al. (2015)) + we do not need prior
knowledge of neither L nor «.

o Computationally tractable: z; only falls into one subregion X, for each level
1,...,d(T): we update O(% log,(T)) for T rounds.



Adaptive Boosting in Online
NonParametric Regression




Locally Adaptive Boosting - LocAdaBoost

L,

P we base our predictions on a core tree Tp as:

fe(ze) = Z wn,tfn,t(xt)7 VE>1,

nEN(TO)

where for any n € N(7o):
- f.isa CT rooted at X,,;

- wy,; Weight associated.

We use 0GB on
- Bt = wp, With a specific grad-step;

- fn. as above.

Figure 4: To



Adaptivity to local profile of the competitor

— Goal: Learn the best pruned tree from 7y in P(7p) to fit the competitor.
Example 1
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— Goal: Learn the best pruned tree from 7y in P(7p) to fit the competitor.
Example 2:




Adaptivity to local profile of the competitor

— Goal: Learn the best pruned tree from 7y in P(7p) to fit the competitor.
Example 2:




Optimal and Locally Adaptive Regret (1/2)

Theorem (Locally Adaptive Regret, case d = 1, > 1)
Under assumptions, for any f € Lip} (&), LocAdaBoost achieves

Regr(f) S __inf {VT|E N+IL(T) + X% Y La(f)2724™ |Tn|}7

TEHE) n€L(T)

with L, (f) local Holder constants.

If (¢;) are exp-concave (e.g. square 0ss)

Regr(f) S __inf {£<T)|+X“ > L,,L<f>2“d<">\/Tn|}

TeP(To) neL(T)

"¢ Remark: LocAdaBoost could also adapt to local regularities (o)



Optimal and Locally Adaptive Regret (2/2)

Corollary (Minimax Regret)
For any f € Lip7(X),L > 0, LocAdaBoost achieves

2 1

2a+17'2a+1  [f {, are exp-concave,
1
(&3 \/Tv

where L(f) = (% Xnecn | X | L (£)1/2) .

v Minimax optimality

(XL(f))

RegT(f) = { (Xai(f))T

v Adaptivity to local regularities (L,,) and «

v Adaptivity to the loss curvature



Conclusion

- New generic Online Gradient Boosting procedure;
- Online Gradient Boosting coupled with Chaining-Tree achieve minimax regret;

- Our unique LocAdaBoost algorithm both adapts optimaly to local regularities of
the competitor and curvature of sequential losses;

- First constructive algorithm to achieve optimal locally adaptive regret;

- Future work: extend the boosting procedure to other learners to approach other
classes of functions.

Thank you!

Questions?
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