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Online Learning &
Non-Parametric Regression



Classical Machine Learning

The learner

1. observes a whole training dataset with labels/targets,
2. builds a program to minimize the training error,
3. controls the error of new data if they are similar to the training data

training data



Classical Machine Learning

The learner

1. observes a whole training dataset with labels/targets,
2. builds a program to minimize the training error,
3. controls the error of new data if they are similar to the training data

% fAae. — Learning method — Prediction on test data

training data

We won't deal with it!



A dive into Sequential Learning

Why Online Learning?
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the data may be available sequentially.
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- ads to display, - spam detection,
- electricity consumption forecast, - aggregation of experts/algorithms.



A dive into Sequential Learning

Why Online Learning? In some applications, the environment may evolve over time and
the data may be available sequentially.

Examples:
- ads to display, - spam detection,
- electricity consumption forecast, - aggregation of experts/algorithms.

¥We need Online/Sequential Learning!



A dive into Sequential Learning

In sequential learning:
- Data are acquired and treated on the fly,
- Feedbacks are received and algorithms updated step by
step.
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Setting

Data arrives sequentially as a stream
(:L‘la ?/1)7 ) (xt—la yt—l)a (xta ?) e X x y g [07 1] x R

and we want to predict each next response y; as follows:
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Setting

Data arrives sequentially as a stream
(xla yl)v coog (xtfla ytfl)a (‘/L‘tv ?) € X x y g [Oa 1] xR

and we want to predict each next response y; as follows:

At each round t =1,...,T, the learner or algorithm
- observes input z; € X
- makes prediction ; € Y Choose g; before observing ¢;
- incurs loss 4 (y:, §¢) with true target y, € Y No assumptions on how ¢; is generated!
- updates predictions 9; — Js11

Classical regression setting:
- yp = g(wy) + W, for some g : R — R and W; ~ N(0,02)
- square L0ss £ (ys, G¢) = (y¢ — §¢)%




Setting

At each round ¢t =1,...,T, the learner or algorithm
- observes input z; € X
- makes prediction ¢, € Y
- incurs loss ¢¢(ys, g:) with true target y, € Y
- updates predictions §; — 911

Goal:
minimize the cumulative loss

T
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Setting

At each round ¢t =1,...,T, the learner or algorithm
- observes input z; € X
- makes prediction ¢, € Y
- incurs loss ¢¢(ys, g:) with true target y, € Y
- updates predictions §; — 911

Goal:
minimize the cumulative loss < predict almost as well as the best strategy *

min th Yt, ) mln Zﬁt Ye, Ut) —1an€t Y, )

1oy G1,..

:=Regret (y*)



Regret in Non Parametric Regression

Non-Parametric regression means that we are interested in forecasters (¢;) whose regret

T T
Regret(F) = th (Y 9e)  — ing__z& (Y, f () )
t=1 fe t=1
N————’
our performance reference performance

over some benchmark function class F € Y% is as small as possible.
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Regret in Non Parametric Regression

Non-Parametric regression means that we are interested in forecasters (¢;) whose regret

T T
Regret,(F) = Z Oy (ye,9¢) —  inf Z b (Yr, f(z) ) = o(T)
t=1 I —
goal
our performance reference performance

over some benchmark function class F € Y% is as small as possible.

e

¥ solution: producing prediction as a function of z;

J: = Fy(z;), F; €YY sequentially updated.



Building predictions with
Boosting



Boosting uses "wisdom of the crowd”

- Boosting: ensemble method com-
bining multiple weak learners to
create a strong learner

/
62 - \PA

- Each weak model corrects/learns
from errors of its peers

— Resulting in a highly accurate pre- B
- )
dictive model [1] fK X

[1] eg AdaBoost and XGBoost



How to deal with weak learners?

Foreacht=1,...,T, we use K > 1 sequential and weak predictors
; | { \¥ %
fl,t f2,t fK 1,t K,t

from a class of weak learners

W = {x > f(z;0,1) : 6 parameter of f with support I} c Y*.



How to deal with weak learners?

Foreacht=1,...,T, we use K > 1 sequential and weak predictors
Y, Y, iif Y,
VA VA > VA
fl,t f2,t fol,t fK,t

from a class of weak learners
W = {z — f(z;6,1) : § parameter of f with support I} c Y.

Example: W set of regression trees with (low) depth 1,

Wl:{ S S }Z{f(-;ﬁf):96R2andI:([<1>71(2>)7I(1)|_|I(2):X}.



How to deal with weak learners?

Foreacht=1,...,T, we use K > 1 sequential and weak predictors
\ 4
f17t f2,t fr— 1, K,t

W We make our predictions at any time ¢t > 1 as
Ut = Fre o () katl"t

using the strong estimator Fg; € {FK = Zszl fe: frx € W} =: spang (W)



How to deal with weak learners?

?Z[ We make our predictions at any time ¢t > 1 as
K
U = FK,t(QUt) = kat(lt)
k=1

using the strong estimator Fg; € {FK = Zszl fe: frx € W} =: span g (W)
Example of strong learner using weak learners in Wi:

9(1)
! @)

R
+ to span . (W
+
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Boosting process

At any time ¢t > 1, for each k € [K]:

fie ..

“.‘Elyt
fk.uafﬂfl’t :
vy
fk,t T fk,t+1

fk+1’t5k+1,t

,~'5K,t

fK,t

@ every fi . dicovers x; and residuals e ¢,

@ f, receives residuals e14,...,ex, from others
{fit, - [ }\{fxt} and observes its gradient
Ikt = Vf,ft (yt, Ef;l fk,t),

® [, isupdatedin fi 41 USING gk ¢

eg. if C(ye,9:) = (y¢ — )3 residuals are
€t = Yt — Dz Sre(xe) and gradients are gp, =

Y9

o le(Yes X Fiot) = 24 o (26) (G — 2)

10



Architecture of our Online Boosting Algorithm

Algorithm 1: Online Boosting

1 Init: K sequential weak-learners

2 fort =1to 7T do

3 Receive data zy;

o | Predict g = Fri(z:) = Yory fur(ao);

5 Incur £¢(g¢, vt ), reveal residuals e ; and gradients gx.; = Vi, Le(ys, >y, fr,e) forall
k=1,...,K,

6 for k. =1to K do

7
L Jrtr1 < update(fr,e, gr,e) (1)

K
8 Return: FK,T—}-I = Zk:l fK,T—i—l

M



Regret Analysis of an Online
Boosting Algorithm




Back on Regret Analysis

Assumption: losses (¢;) are convex and differentiable in g,

— Goal is to optimize in each predictor fx, so we can rewrite the problem with
¢ WK = R and

T T
Regret(F) = th(fu» 20 ) = i}ggzét(f)
t=1 t=1

?

How to bound above regret?



Back on Regret Analysis

T T
Regret,(F) = th(fu’ v Ird) — Ifng}_l_th(f)
t=1 it

N

? Decompose as a sum of 2 stage regrets:

T

T
Regrety(F) :th(fl-,tv"'af](,t) — , in ert(fl*v"'afl*()
t=1

* *
..... €
i fk —1

Regret(Tl):regret of the algo against the best combination in W

T
o mn th fl,...,fﬁ)—gg;;&m

Regretg):regret of best combination in W against F



A first analysis: Regret with OGD

# Assume {fi,-- fx}={{61, 1 },...,{0k,Ix}} are constants on restricted domains
- Online Gradient Descent: online version of Gradient Descent

- Can be applied to any convex and differentiable loss function

- update(Ox.¢, gre) IS
Ok.1+1 < o, Okt — Mk tGk.t)

for some sets (©,) C R



A first analysis: Regret with OGD

# Assume {fi,-- -, fx} ={{01,. hi},..., {0k, Ix}} are constants on restricted domains
- update(Oy, gi,t) IS
Ok.1+1 < o, Okt — Mk 1Gk.t)

Theorem (Estimation regret with 0GD)
Assume (¢;) are differentiable for any k € [K] and for any t > 1,V 4y (014,...,0k) < G.
Algorithm 1 with OGD has regret

K

Regrety (0F,...,0%) S G Di/Ti
k=1

With Dy = supy, g,co, |01 — 02| and Ty, = [{t : x4 € I1.}|.



A first analysis: Regret with OGD

- update(Oi, grt) IS
Ok.1+1 < o, Okt — MktGk.t)

Theorem (Estimation regret with OGD)
Assume (¢,) are differentiable for any k € [K] and for any t > 1, Vil (614, ...,0k) < G.
Algorithm 1 with OGD has regret

K
Regretgpl)(Gf, o 0%) S GX:D;C\/T;C
k=1

with Dy, = supy, g,co, |01 — 02| and Ty, = [{t : x; € I} }|.

® O, sets? Their size Dy? Tuning ny.;?
Does not depend optimally to competitors in W



ParameterFree Regret

"¥ consider a Parameter Free subroutine [2] in update(s.s, gi..)

Theorem (Estimation regret with ParamFree)

Assume (¢;) are differentiable for any k € [K] and for any t > 1,V £y(61,...,0k) < G.
Algorithm 1 with ParameterFree achieves

Regret( (6%, ..., 0%) <GZ\9k|\/ﬁ

with Ty = |{t : @ € Ix}].

[2] Orabona and Pal, “Coin betting and parameter-free online learning”.



ParameterFree Regret

“? consider a Parameter Free subroutine in update(O.¢, git)

Theorem (Estimation regret with ParamFree)

Assume (¢;) are differentiable for any k € [K] and for any t > 1,V £4(01,...,0k) < G.
Algorithm 1 with ParameterFree achieves

K
Regret(Tl)(ﬁf, oo 05) < GZ 1071/ Tk
k=1

with Iy, = ‘{t 2 apy € Ik}|

© No sets ©;! No more learning rate 7 to tune!

¥ Adaptive to optimal size 10;| and works for any weak
learners!



Where do we stand?

- We managed to bound estimation regret using a ParameterFree subroutine

- We obtained regret O (G Zszl |€);Nﬁ) that does not depend on the type of weak
models

- This ensures a diameter adaptive procedure

N

¥ we may benefit from empirical decreasing |6%] > [65] > ... > |0%|
— F}, is becoming more accurate as k grows

- We have

K
Regretp(F) < GZ\@N T + Regretg)

k=1 . .
approximation regret



The case of Lipschitz functions

Let us take F the set of L—lipschitz function on X = [0,1] i.e. for f € F,
Vo, 0 € X, |f(l‘1) = f($2)| < L|l‘1 = $2|.

— We want to best approximate any competitor f € F with Fx € spang, (W).

& Approximation regret depends on the type of weak learners, e.g. if span,; (W) = F
hence small approx. regret



Boosting with Dyadic Trees in 1V,

- Assume the following process: launch a dyadic regression tree from W in each node
until depthis M > 1

- Dyadic scheme = we have |0}| < 54 with m =m if k € [2m~1,2m — 1]

- For ¢, square loss, we have the following illustration:



Boosting with Dyadic Trees in 1V,

(5057 Ye)
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Boosting with Dyadic Trees in 1V,

N/

I




Boosting with Dyadic Trees in 1V,

07 + 03




Boosting with Dyadic Trees in 1V,

0% + 03 01 + 65 + 65
R e z o1 NG 6
\ / o* + 0
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Final Regret

Theorem

Let F be the set of L-Lipschitz function, M = log,(T) and ¢; be the square or absolute
loss. Our Algorithm 1 with Dyadic Trees in W has regret

Regrety (F) S GLVT

o Computationally tractable: ; only falls into one subinterval I for each level m € [M]:
we update O(T log,(T")) for T rounds.



Final Regret

Theorem

Let F be the set of L-Lipschitz function, M = log,(T) and ¢; be the square or absolute
loss. Our Algorithm 1 with Dyadic Trees in W has regret

Regrety (F) S GLVT

o Computationally tractable: ; only falls into one subinterval I for each level m € [M]:
we update O(T log,(T")) for T rounds.

? Can we do better?



Perspectives

- Although sublinear: we want Regret,(F) = O(T"/?) — O(T'/3) for square loss
(minimax)

- Designing Locally-Lipschitz adaptive algorithm with Boosting

19



Thank you!

Questions?
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Experiments




-

e Consider the following model:
Y = cos(3mx) — sin(3x) + Wy, Wy ~ N(0,0.5)

22
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