
Boosting in Online Non-Parametric Regression

Paul Liautaud

April 2, 2024

Sorbonne University, Paris

1

Joint work with

Pierre Gaillard
CR Inria/UGA

Olivier Wintenberger
PR Sorbonne University

2

Table of Contents

1. Online Learning & Non-Parametric Regression

2. Building predictions with Boosting

3. Regret Analysis of an Online Boosting Algorithm

4. Perspectives

5. Experiments

Online Learning &
Non-Parametric Regression

Classical Machine Learning

The learner

1. observes a whole training dataset with labels/targets,
2. builds a program to minimize the training error,
3. controls the error of new data if they are similar to the training data

−→ Learning method −→ Prediction on test data

4

Classical Machine Learning

The learner

1. observes a whole training dataset with labels/targets,
2. builds a program to minimize the training error,
3. controls the error of new data if they are similar to the training data

−→ Learning method −→ Prediction on test data

We won’t deal with it!

4

A dive into Sequential Learning

Why Online Learning?

5

A dive into Sequential Learning

Why Online Learning? In some applications, the environment may evolve over time and
the data may be available sequentially.
Examples:

- ads to display,
- electricity consumption forecast,

- spam detection,
- aggregation of experts/algorithms.

5

A dive into Sequential Learning

Why Online Learning? In some applications, the environment may evolve over time and
the data may be available sequentially.
Examples:

- ads to display,
- electricity consumption forecast,

- spam detection,
- aggregation of experts/algorithms.

We need Online/Sequential Learning!

5

A dive into Sequential Learning

In sequential learning:
- Data are acquired and treated on the fly,
- Feedbacks are received and algorithms updated step by

step.

→ → zebra → Change parameters → → . . .

5

Setting

Data arrives sequentially as a stream

(x1, y1), . . . , (xt−1, yt−1), (xt, ?) ∈ X × Y ⊆ [0, 1]×R

and we want to predict each next response yt as follows:

6

Setting

Data arrives sequentially as a stream

(x1, y1), . . . , (xt−1, yt−1), (xt, ?) ∈ X × Y ⊆ [0, 1]×R

and we want to predict each next response yt as follows:

At each round t = 1, . . . , T , the learner or algorithm
- observes input xt ∈ X
- makes prediction ŷt ∈ Y
- incurs loss `t(yt, ŷt) with true target yt ∈ Y
- updates predictions ŷt → ŷt+1

6

Setting

Data arrives sequentially as a stream

(x1, y1), . . . , (xt−1, yt−1), (xt, ?) ∈ X × Y ⊆ [0, 1]×R

and we want to predict each next response yt as follows:

At each round t = 1, . . . , T , the learner or algorithm
- observes input xt ∈ X
- makes prediction ŷt ∈ Y Choose ŷt before observing `t

- incurs loss `t(yt, ŷt) with true target yt ∈ Y No assumptions on how `t is generated!

- updates predictions ŷt → ŷt+1

Classical regression setting:
- yt = g(xt) +Wt for some g : R→ R and Wt ∼ N (0, σ2)

- square loss `t(yt, ŷt) = (yt − ŷt)2.
6

Setting

At each round t = 1, . . . , T , the learner or algorithm
- observes input xt ∈ X
- makes prediction ŷt ∈ Y
- incurs loss `t(yt, ŷt) with true target yt ∈ Y
- updates predictions ŷt → ŷt+1

Goal:
minimize the cumulative loss

min
ŷ1,...,ŷT

T∑

t=1

`t(yt, ŷt)

6

Setting

At each round t = 1, . . . , T , the learner or algorithm
- observes input xt ∈ X
- makes prediction ŷt ∈ Y
- incurs loss `t(yt, ŷt) with true target yt ∈ Y
- updates predictions ŷt → ŷt+1

Goal:
minimize the cumulative loss

min
ŷ1,...,ŷT

T∑

t=1

`t(yt, ŷt)

⇔ predict almost as well as the best strategy y?

min
ŷ1,...,ŷT

T∑

t=1

`t (yt, ŷt)− inf
y?

T∑

t=1

`t (yt, y
?)

︸ ︷︷ ︸
:=RegretT (y?)

6

Regret in Non Parametric Regression

Non-Parametric regression means that we are interested in forecasters (ŷt) whose regret

RegretT (F) =

T∑

t=1

`t (yt, ŷt)

︸ ︷︷ ︸
our performance

− inf
f∈F

T∑

t=1

`t (yt, f(xt))

︸ ︷︷ ︸
reference performance

over some benchmark function class F ∈ YX is as small as possible.

7

Regret in Non Parametric Regression

Non-Parametric regression means that we are interested in forecasters (ŷt) whose regret

RegretT (F) =

T∑

t=1

`t (yt, ŷt)

︸ ︷︷ ︸
our performance

− inf
f∈F

T∑

t=1

`t (yt, f(xt))

︸ ︷︷ ︸
reference performance

= o(T)︸ ︷︷ ︸
goal

over some benchmark function class F ∈ YX is as small as possible.

7

Regret in Non Parametric Regression

Non-Parametric regression means that we are interested in forecasters (ŷt) whose regret

RegretT (F) =

T∑

t=1

`t (yt, ŷt)

︸ ︷︷ ︸
our performance

− inf
f∈F

T∑

t=1

`t (yt, f(xt))

︸ ︷︷ ︸
reference performance

= o(T)︸ ︷︷ ︸
goal

over some benchmark function class F ∈ YX is as small as possible.

Solution: producing prediction as a function of xt

ŷt = Ft(xt), Ft ∈ YX sequentially updated.

7

Building predictions with
Boosting

Boosting uses ”wisdom of the crowd”

- Boosting: ensemble method com-
bining multiple weak learners to
create a strong learner

- Each weak model corrects/learns
from errors of its peers

→ Resulting in a highly accurate pre-
dictive model [1]

[1] e.g. AdaBoost and XGBoost

How to deal with weak learners?

For each t = 1, . . . , T , we use K > 1 sequential and weak predictors

f1,t f2,t

· · ·

fK−1,t fK,t

from a class of weak learners

W := {x 7→ f(x; θ, I) : θ parameter of f with support I} ⊂ YX .

9

How to deal with weak learners?

For each t = 1, . . . , T , we use K > 1 sequential and weak predictors

f1,t f2,t

· · ·

fK−1,t fK,t

from a class of weak learners

W := {x 7→ f(x; θ, I) : θ parameter of f with support I} ⊂ YX .
Example: W1 set of regression trees with (low) depth 1,

W1 =
{

· · ·
}

= {f(·; θ, I) : θ ∈ R2 and I = (I(1), I(2)), I(1) t I(2) = X}.

9

How to deal with weak learners?

For each t = 1, . . . , T , we use K > 1 sequential and weak predictors

f1,t f2,t

· · ·

fK−1,t fK,t

We make our predictions at any time t > 1 as

ŷt = FK,t(xt) =

K∑

k=1

fk,t(xt),

using the strong estimator FK,t ∈
{
FK =

∑K
k=1 fk : fk ∈ W

}
=: spanK(W)

9

How to deal with weak learners?

We make our predictions at any time t > 1 as

ŷt = FK,t(xt) =

K∑

k=1

fk,t(xt),

using the strong estimator FK,t ∈
{
FK =

∑K
k=1 fk : fk ∈ W

}
=: spanK(W)

Example of strong learner using weak learners inW1:

+

+ to spanK(W)

θ
(1)
K

θ
(2)
K

θ
(1)
1

θ
(2)
1

... · · ·

9

Boosting process

At any time t > 1, for each k ∈ [K]:

f1,t

fk−1,t

...

fk,t

...

fk+1,t

fK,t

fk,t+1

ε1,t

εk−1,t

εk+1,t

εK,t

. . .

. . .

Ê every fk,t dicovers xt and residuals εk,t,

Ë fk,t receives residuals ε1,t, . . . , εK,t from others
{f1,t, . . . , fK,t}\{fk,t} and observes its gradient
gk,t = ∇fk`t

(
yt,
∑K
k=1 fk,t

)
,

Ì fk,t is updated in fk,t+1 using gk,t.

e.g. if `t(yt, ŷt) = (yt − ŷt)
2, residuals are

εk,t = yt −
∑
l 6=k fl,t(xt) and gradients are gk,t =

∂
∂fk

`t(yt,
∑
k fk,t) = 2f ′k,t(xt)(ŷt − yt)

10

Architecture of our Online Boosting Algorithm

Algorithm 1: Online Boosting

1 Init: K sequential weak-learners
2 for t = 1 to T do
3 Receive data xt;
4 Predict ŷt = FK,t(xt) =

∑K
k=1 fk,t(xt);

5 Incur `t(ŷt, yt), reveal residuals εk,t and gradients gk,t = ∇fk,t
`t(yt,

∑
k fk,t) for all

k = 1, . . . ,K ;
6 for k = 1 to K do
7

fk,t+1 ← update(fk,t, gk,t) (1)

8 Return: FK,T+1 =
∑K
k=1 fK,T+1

11

Regret Analysis of an Online
Boosting Algorithm

Back on Regret Analysis

Assumption: losses (`t) are convex and di�erentiable in ŷt

→ Goal is to optimize in each predictor fk , so we can rewrite the problem with
`t :WK → R and

RegretT (F) =

T∑

t=1

`t(f1,t, . . . , fK,t)−min
f∈F

T∑

t=1

`t(f)

How to bound above regret?

12

Back on Regret Analysis

RegretT (F) =

T∑

t=1

`t(f1,t, . . . , fK,t)−min
f∈F

T∑

t=1

`t(f)

Decompose as a sum of 2 stage regrets:

RegretT (F) =

T∑

t=1

`t(f1,t, . . . , fK,t)− min
f?
1 ,...,f

?
K∈W

T∑

t=1

`t(f
?
1 , . . . , f

?
K)

︸ ︷︷ ︸
Regret

(1)
T =regret of the algo against the best combination inW

+ min
f?
1 ,...,f

?
K∈W

T∑

t=1

`t(f
?
1 , . . . , f

?
K)−min

f∈F

T∑

t=1

`t(f)

︸ ︷︷ ︸
Regret

(2)
T =regret of best combination inW against F

12

A first analysis: Regret with OGD

Assume {f1, . . . , fK} = {{θ1, I1}, . . . , {θK , IK}} are constants on restricted domains
(Ik) ⊂ X .

- Online Gradient Descent: online version of Gradient Descent

- Can be applied to any convex and di�erentiable loss function

- update(θk,t, gk,t) is
θk,t+1 ← ΠΘk

(θk,t − ηk,tgk,t)

for some sets (Θk) ⊂ R

13

A first analysis: Regret with OGD

Assume {f1, . . . , fK} = {{θ1, I1}, . . . , {θK , IK}} are constants on restricted domains
(Ik) ⊂ X .

- update(θk,t, gk,t) is
θk,t+1 ← ΠΘk

(θk,t − ηk,tgk,t)

Theorem (Estimation regret with OGD)
Assume (`t) are di�erentiable for any k ∈ [K] and for any t > 1,∇k`t(θ1,t, . . . , θK,t) 6 G.
Algorithm 1 with OGD has regret

Regret
(1)
T (θ?1 , . . . , θ

?
K) . G

K∑

k=1

Dk

√
Tk

with Dk = supθ1,θ2∈Θk
|θ1 − θ2| and Tk = |{t : xt ∈ Ik}|.

13

A first analysis: Regret with OGD

- update(θk,t, gk,t) is
θk,t+1 ← ΠΘk

(θk,t − ηk,tgk,t)

Theorem (Estimation regret with OGD)
Assume (`t) are di�erentiable for any k ∈ [K] and for any t > 1,∇k`t(θ1,t, . . . , θK,t) 6 G.
Algorithm 1 with OGD has regret

Regret
(1)
T (θ?1 , . . . , θ

?
K) . G

K∑

k=1

Dk

√
Tk

with Dk = supθ1,θ2∈Θk
|θ1 − θ2| and Tk = |{t : xt ∈ Ik}|.

Θk sets? Their size Dk? Tuning ηk,t?
Does not depend optimally to competitors inW

13

ParameterFree Regret

Consider a Parameter Free subroutine [2] in update(θk,t, gk,t)

Theorem (Estimation regret with ParamFree)
Assume (`t) are di�erentiable for any k ∈ [K] and for any t > 1,∇k`t(θ1, . . . , θK) 6 G.
Algorithm 1 with ParameterFree achieves

Regret
(1)
T (θ?1 , . . . , θ

?
K) . G

K∑

k=1

|θ?k|
√
Tk

with Tk = |{t : xt ∈ Ik}|.

[2] Orabona and Pál, “Coin betting and parameter-free online learning”.

14

ParameterFree Regret

Consider a Parameter Free subroutine in update(θk,t, gk,t)

Theorem (Estimation regret with ParamFree)
Assume (`t) are di�erentiable for any k ∈ [K] and for any t > 1,∇k`t(θ1, . . . , θK) 6 G.
Algorithm 1 with ParameterFree achieves

Regret
(1)
T (θ?1 , . . . , θ

?
K) . G

K∑

k=1

|θ?k|
√
Tk

with Tk = |{t : xt ∈ Ik}|.

No sets Θk! No more learning rate ηk,t to tune!
Adaptive to optimal size |θ?k| and works for any weak

learners! 14

Where do we stand?

- We managed to bound estimation regret using a ParameterFree subroutine

- We obtained regret O
(
G
∑K
k=1 |θ?k|

√
Tk

)
that does not depend on the type of weak

models

- This ensures a diameter adaptive procedure

We may benefit from empirical decreasing |θ?1 | > |θ?2 | > . . . > |θ?K |
→ Fk is becoming more accurate as k grows

- We have

RegretT (F) . G

K∑

k=1

|θ?k|
√
Tk + Regret

(2)
T︸ ︷︷ ︸

approximation regret

15

The case of Lipschitz functions

Let us take F the set of L−lipschitz function on X = [0, 1] i.e. for f ∈ F ,

∀x1, x2 ∈ X , |f(x1)− f(x2)| 6 L|x1 − x2|.

→ We want to best approximate any competitor f ∈ F with FK ∈ spanK(W).

Approximation regret depends on the type of weak learners, e.g. if spanK(W) ≈ F
hence small approx. regret

16

Boosting with Dyadic Trees inW1

- Assume the following process: launch a dyadic regression tree fromW1 in each node
until depth is M > 1

- Dyadic scheme⇒ we have |θ?k| 6 L
2mk

with mk = m if k ∈ J2m−1, 2m − 1K

- For `t square loss, we have the following illustration:

17

Boosting with Dyadic Trees inW1

17

Boosting with Dyadic Trees inW1

17

Boosting with Dyadic Trees inW1

17

Boosting with Dyadic Trees inW1

17

Boosting with Dyadic Trees inW1

17

Boosting with Dyadic Trees inW1

17

Final Regret

Theorem
Let F be the set of L-Lipschitz function,M ≈ log2(T) and `t be the square or absolute
loss. Our Algorithm 1 with Dyadic Trees inW1 has regret

RegretT (F) . GL
√
T

Computationally tractable: xt only falls into one subinterval Ik for each level m ∈ [M]:
we update O(T log2(T)) for T rounds.

18

Final Regret

Theorem
Let F be the set of L-Lipschitz function,M ≈ log2(T) and `t be the square or absolute
loss. Our Algorithm 1 with Dyadic Trees inW1 has regret

RegretT (F) . GL
√
T

Computationally tractable: xt only falls into one subinterval Ik for each level m ∈ [M]:
we update O(T log2(T)) for T rounds.

Can we do better?

18

Perspectives

- Although sublinear: we want RegretT (F) = O(T 1/2) −→ O(T 1/3) for square loss
(minimax)

- Designing Locally-Lipschitz adaptive algorithm with Boosting

19

Thank you!

Questions?

References

Cesa-Bianchi, Nicolò and Gábor Lugosi (2006). Prediction, Learning, and Games. Cambridge University Press.

Cutkosky, Ashok and Francesco Orabona (2018). “Black-box reductions for parameter-free online learning in
banach spaces”. In: Conference On Learning Theory. PMLR, pp. 1493–1529.
Gaillard, Pierre and Sebastien Gerchinovitz (2015). “A Chaining Algorithm for Online Nonparametric

Regression”. In: COLT.
Hazan, Elad, Amit Agarwal, and Satyen Kale (2007). “Logarithmic regret algorithms for online convex

optimization”. In: Machine Learning 69.2, pp. 169–192.
Orabona, Francesco and Dávid Pál (2016). “Coin betting and parameter-free online learning”. In: Advances in
Neural Information Processing Systems 29.
Rakhlin, Alexander and Karthik Sridharan (2014). “Online non-parametric regression”. In: Conference on
Learning Theory. PMLR, pp. 1232–1264.
— (2015). “Online nonparametric regression with general loss functions”. In: arXiv preprint
arXiv:1501.06598.
Zinkevich, Martin (2003). “Online convex programming and generalized infinitesimal gradient ascent”. In:
Proceedings of the 20th international conference on machine learning (icml-03), pp. 928–936.

Experiments

Simulations

Consider the following model:

yt = cos(3πx)− sin(3x) +Wt, Wt ∼ N (0, 0.5)

0.0 0.2 0.4 0.6 0.8 1.0

−3

−2

−1

0

1

f

Data (T = 20000)

x 7→ F̂K =
∑
k fk(x)

x 7→ F̂ ∗K =
∑
k f
∗
k (x)

100 101 102 103 104

10−2

10−1

100

101 R
(1)
T /T

T 7→ C/T 1/2

22

	Online Learning & Non-Parametric Regression
	Building predictions with Boosting
	Regret Analysis of an Online Boosting Algorithm
	Perspectives
	References
	Experiments

