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Online Learning &
Non-Parametric Regression



Classical Machine Learning

The learner

1. observes a whole training dataset with labels/targets,
2. builds a program to minimize the training error,
3. controls the error of new data if they are similar to the training data

−→ Learning method −→ Prediction on test data
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Classical Machine Learning

The learner

1. observes a whole training dataset with labels/targets,
2. builds a program to minimize the training error,
3. controls the error of new data if they are similar to the training data

−→ Learning method −→ Prediction on test data

We won’t deal with it!
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A dive into Sequential Learning

Why Online Learning?
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A dive into Sequential Learning

Why Online Learning? In some applications, the environment may evolve over time and
the data may be available sequentially.
Examples:

- ads to display,
- electricity consumption forecast,

- spam detection,
- aggregation of experts/algorithms.
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A dive into Sequential Learning

Why Online Learning? In some applications, the environment may evolve over time and
the data may be available sequentially.
Examples:

- ads to display,
- electricity consumption forecast,

- spam detection,
- aggregation of experts/algorithms.

We need Online/Sequential Learning!
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A dive into Sequential Learning

In sequential learning:
- Data are acquired and treated on the fly,
- Feedbacks are received and algorithms updated step by

step.

→ → zebra → Change parameters → → . . .
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Setting

Data arrives sequentially as a stream

(x1, y1), . . . , (xt−1, yt−1), (xt, ?) ∈ X × Y ⊆ [0, 1]×R

and we want to predict each next response yt as follows:
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and we want to predict each next response yt as follows:

At each round t = 1, . . . , T , the learner or algorithm
- observes input xt ∈ X
- makes prediction ŷt ∈ Y
- incurs loss `t(yt, ŷt) with true target yt ∈ Y
- updates predictions ŷt → ŷt+1
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Setting

Data arrives sequentially as a stream

(x1, y1), . . . , (xt−1, yt−1), (xt, ?) ∈ X × Y ⊆ [0, 1]×R

and we want to predict each next response yt as follows:

At each round t = 1, . . . , T , the learner or algorithm
- observes input xt ∈ X
- makes prediction ŷt ∈ Y Choose ŷt before observing `t

- incurs loss `t(yt, ŷt) with true target yt ∈ Y No assumptions on how `t is generated!

- updates predictions ŷt → ŷt+1

Classical regression setting:
- yt = g(xt) +Wt for some g : R→ R and Wt ∼ N (0, σ2)

- square loss `t(yt, ŷt) = (yt − ŷt)2.
6



Setting

At each round t = 1, . . . , T , the learner or algorithm
- observes input xt ∈ X
- makes prediction ŷt ∈ Y
- incurs loss `t(yt, ŷt) with true target yt ∈ Y
- updates predictions ŷt → ŷt+1

Goal:
minimize the cumulative loss

min
ŷ1,...,ŷT

T∑

t=1

`t(yt, ŷt)
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Setting

At each round t = 1, . . . , T , the learner or algorithm
- observes input xt ∈ X
- makes prediction ŷt ∈ Y
- incurs loss `t(yt, ŷt) with true target yt ∈ Y
- updates predictions ŷt → ŷt+1

Goal:
minimize the cumulative loss

min
ŷ1,...,ŷT

T∑

t=1

`t(yt, ŷt)

⇔ predict almost as well as the best strategy y?

min
ŷ1,...,ŷT

T∑

t=1

`t (yt, ŷt)− inf
y?

T∑

t=1

`t (yt, y
?)

︸ ︷︷ ︸
:=RegretT (y?)
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Regret in Non Parametric Regression

Non-Parametric regression means that we are interested in forecasters (ŷt) whose regret

RegretT (F) =

T∑

t=1

`t (yt, ŷt)

︸ ︷︷ ︸
our performance

− inf
f∈F

T∑

t=1

`t (yt, f(xt) )

︸ ︷︷ ︸
reference performance

over some benchmark function class F ∈ YX is as small as possible.
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Regret in Non Parametric Regression

Non-Parametric regression means that we are interested in forecasters (ŷt) whose regret

RegretT (F) =

T∑

t=1

`t (yt, ŷt)

︸ ︷︷ ︸
our performance

− inf
f∈F

T∑

t=1

`t (yt, f(xt) )

︸ ︷︷ ︸
reference performance

= o(T )︸ ︷︷ ︸
goal

over some benchmark function class F ∈ YX is as small as possible.
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Regret in Non Parametric Regression

Non-Parametric regression means that we are interested in forecasters (ŷt) whose regret

RegretT (F) =

T∑

t=1

`t (yt, ŷt)

︸ ︷︷ ︸
our performance

− inf
f∈F

T∑

t=1

`t (yt, f(xt) )

︸ ︷︷ ︸
reference performance

= o(T )︸ ︷︷ ︸
goal

over some benchmark function class F ∈ YX is as small as possible.

Solution: producing prediction as a function of xt

ŷt = Ft(xt), Ft ∈ YX sequentially updated.
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Building predictions with
Boosting



Boosting uses ”wisdom of the crowd”

- Boosting: ensemble method com-
bining multiple weak learners to
create a strong learner

- Each weak model corrects/learns
from errors of its peers

→ Resulting in a highly accurate pre-
dictive model [1]

[1] e.g. AdaBoost and XGBoost



How to deal with weak learners?

For each t = 1, . . . , T , we use K > 1 sequential and weak predictors

f1,t f2,t

· · ·

fK−1,t fK,t

from a class of weak learners

W := {x 7→ f(x; θ, I) : θ parameter of f with support I} ⊂ YX .
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How to deal with weak learners?

For each t = 1, . . . , T , we use K > 1 sequential and weak predictors

f1,t f2,t

· · ·

fK−1,t fK,t

from a class of weak learners

W := {x 7→ f(x; θ, I) : θ parameter of f with support I} ⊂ YX .
Example: W1 set of regression trees with (low) depth 1,

W1 =
{

· · ·
}

= {f(·; θ, I) : θ ∈ R2 and I = (I(1), I(2)), I(1) t I(2) = X}.
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How to deal with weak learners?

For each t = 1, . . . , T , we use K > 1 sequential and weak predictors

f1,t f2,t

· · ·

fK−1,t fK,t

We make our predictions at any time t > 1 as

ŷt = FK,t(xt) =

K∑

k=1

fk,t(xt),

using the strong estimator FK,t ∈
{
FK =

∑K
k=1 fk : fk ∈ W

}
=: spanK(W)
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How to deal with weak learners?

We make our predictions at any time t > 1 as

ŷt = FK,t(xt) =

K∑

k=1

fk,t(xt),

using the strong estimator FK,t ∈
{
FK =

∑K
k=1 fk : fk ∈ W

}
=: spanK(W)

Example of strong learner using weak learners inW1:

+

+ to spanK(W)

θ
(1)
K

θ
(2)
K

θ
(1)
1

θ
(2)
1

... · · ·
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Boosting process

At any time t > 1, for each k ∈ [K]:

f1,t

fk−1,t

...

fk,t

...

fk+1,t

fK,t

fk,t+1

ε1,t

εk−1,t

εk+1,t

εK,t

. . .

. . .

Ê every fk,t dicovers xt and residuals εk,t,

Ë fk,t receives residuals ε1,t, . . . , εK,t from others
{f1,t, . . . , fK,t}\{fk,t} and observes its gradient
gk,t = ∇fk`t

(
yt,
∑K
k=1 fk,t

)
,

Ì fk,t is updated in fk,t+1 using gk,t.

e.g. if `t(yt, ŷt) = (yt − ŷt)
2, residuals are

εk,t = yt −
∑
l 6=k fl,t(xt) and gradients are gk,t =

∂
∂fk

`t(yt,
∑
k fk,t) = 2f ′k,t(xt)(ŷt − yt)
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Architecture of our Online Boosting Algorithm

Algorithm 1: Online Boosting

1 Init: K sequential weak-learners
2 for t = 1 to T do
3 Receive data xt;
4 Predict ŷt = FK,t(xt) =

∑K
k=1 fk,t(xt);

5 Incur `t(ŷt, yt), reveal residuals εk,t and gradients gk,t = ∇fk,t
`t(yt,

∑
k fk,t) for all

k = 1, . . . ,K ;
6 for k = 1 to K do
7

fk,t+1 ← update(fk,t, gk,t) (1)

8 Return: FK,T+1 =
∑K
k=1 fK,T+1
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Regret Analysis of an Online
Boosting Algorithm



Back on Regret Analysis

Assumption: losses (`t) are convex and di�erentiable in ŷt

→ Goal is to optimize in each predictor fk , so we can rewrite the problem with
`t :WK → R and

RegretT (F) =

T∑

t=1

`t(f1,t, . . . , fK,t)−min
f∈F

T∑

t=1

`t(f)

How to bound above regret?
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Back on Regret Analysis

RegretT (F) =

T∑

t=1

`t(f1,t, . . . , fK,t)−min
f∈F

T∑

t=1

`t(f)

Decompose as a sum of 2 stage regrets:

RegretT (F) =

T∑

t=1

`t(f1,t, . . . , fK,t)− min
f?
1 ,...,f

?
K∈W

T∑

t=1

`t(f
?
1 , . . . , f

?
K)

︸ ︷︷ ︸
Regret

(1)
T =regret of the algo against the best combination inW

+ min
f?
1 ,...,f

?
K∈W

T∑

t=1

`t(f
?
1 , . . . , f

?
K)−min

f∈F

T∑

t=1

`t(f)

︸ ︷︷ ︸
Regret

(2)
T =regret of best combination inW against F
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A first analysis: Regret with OGD

Assume {f1, . . . , fK} = {{θ1, I1}, . . . , {θK , IK}} are constants on restricted domains
(Ik) ⊂ X .

- Online Gradient Descent: online version of Gradient Descent

- Can be applied to any convex and di�erentiable loss function

- update(θk,t, gk,t) is
θk,t+1 ← ΠΘk

(θk,t − ηk,tgk,t)

for some sets (Θk) ⊂ R

13



A first analysis: Regret with OGD

Assume {f1, . . . , fK} = {{θ1, I1}, . . . , {θK , IK}} are constants on restricted domains
(Ik) ⊂ X .

- update(θk,t, gk,t) is
θk,t+1 ← ΠΘk

(θk,t − ηk,tgk,t)

Theorem (Estimation regret with OGD)
Assume (`t) are di�erentiable for any k ∈ [K] and for any t > 1,∇k`t(θ1,t, . . . , θK,t) 6 G.
Algorithm 1 with OGD has regret

Regret
(1)
T (θ?1 , . . . , θ

?
K) . G

K∑

k=1

Dk

√
Tk

with Dk = supθ1,θ2∈Θk
|θ1 − θ2| and Tk = |{t : xt ∈ Ik}|.

13



A first analysis: Regret with OGD

- update(θk,t, gk,t) is
θk,t+1 ← ΠΘk

(θk,t − ηk,tgk,t)

Theorem (Estimation regret with OGD)
Assume (`t) are di�erentiable for any k ∈ [K] and for any t > 1,∇k`t(θ1,t, . . . , θK,t) 6 G.
Algorithm 1 with OGD has regret

Regret
(1)
T (θ?1 , . . . , θ

?
K) . G

K∑

k=1

Dk

√
Tk

with Dk = supθ1,θ2∈Θk
|θ1 − θ2| and Tk = |{t : xt ∈ Ik}|.

Θk sets? Their size Dk? Tuning ηk,t?
Does not depend optimally to competitors inW
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ParameterFree Regret

Consider a Parameter Free subroutine [2] in update(θk,t, gk,t)

Theorem (Estimation regret with ParamFree)
Assume (`t) are di�erentiable for any k ∈ [K] and for any t > 1,∇k`t(θ1, . . . , θK) 6 G.
Algorithm 1 with ParameterFree achieves

Regret
(1)
T (θ?1 , . . . , θ

?
K) . G

K∑

k=1

|θ?k|
√
Tk

with Tk = |{t : xt ∈ Ik}|.

[2] Orabona and Pál, “Coin betting and parameter-free online learning”.
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ParameterFree Regret

Consider a Parameter Free subroutine in update(θk,t, gk,t)

Theorem (Estimation regret with ParamFree)
Assume (`t) are di�erentiable for any k ∈ [K] and for any t > 1,∇k`t(θ1, . . . , θK) 6 G.
Algorithm 1 with ParameterFree achieves

Regret
(1)
T (θ?1 , . . . , θ

?
K) . G

K∑

k=1

|θ?k|
√
Tk

with Tk = |{t : xt ∈ Ik}|.

No sets Θk! No more learning rate ηk,t to tune!
Adaptive to optimal size |θ?k| and works for any weak

learners! 14



Where do we stand?

- We managed to bound estimation regret using a ParameterFree subroutine

- We obtained regret O
(
G
∑K
k=1 |θ?k|

√
Tk

)
that does not depend on the type of weak

models

- This ensures a diameter adaptive procedure

We may benefit from empirical decreasing |θ?1 | > |θ?2 | > . . . > |θ?K |
→ Fk is becoming more accurate as k grows

- We have

RegretT (F) . G

K∑

k=1

|θ?k|
√
Tk + Regret

(2)
T︸ ︷︷ ︸

approximation regret

15



The case of Lipschitz functions

Let us take F the set of L−lipschitz function on X = [0, 1] i.e. for f ∈ F ,

∀x1, x2 ∈ X , |f(x1)− f(x2)| 6 L|x1 − x2|.

→ We want to best approximate any competitor f ∈ F with FK ∈ spanK(W).

Approximation regret depends on the type of weak learners, e.g. if spanK(W) ≈ F
hence small approx. regret

16



Boosting with Dyadic Trees inW1

- Assume the following process: launch a dyadic regression tree fromW1 in each node
until depth is M > 1

- Dyadic scheme⇒ we have |θ?k| 6 L
2mk

with mk = m if k ∈ J2m−1, 2m − 1K

- For `t square loss, we have the following illustration:

17



Boosting with Dyadic Trees inW1
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Boosting with Dyadic Trees inW1
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Final Regret

Theorem
Let F be the set of L-Lipschitz function,M ≈ log2(T ) and `t be the square or absolute
loss. Our Algorithm 1 with Dyadic Trees inW1 has regret

RegretT (F) . GL
√
T

Computationally tractable: xt only falls into one subinterval Ik for each level m ∈ [M ]:
we update O(T log2(T )) for T rounds.
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Final Regret

Theorem
Let F be the set of L-Lipschitz function,M ≈ log2(T ) and `t be the square or absolute
loss. Our Algorithm 1 with Dyadic Trees inW1 has regret

RegretT (F) . GL
√
T

Computationally tractable: xt only falls into one subinterval Ik for each level m ∈ [M ]:
we update O(T log2(T )) for T rounds.

Can we do better?
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Perspectives

- Although sublinear: we want RegretT (F) = O(T 1/2) −→ O(T 1/3) for square loss
(minimax)

- Designing Locally-Lipschitz adaptive algorithm with Boosting

19



Thank you!

Questions?
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Experiments



Simulations

Consider the following model:

yt = cos(3πx)− sin(3x) +Wt, Wt ∼ N (0, 0.5)

0.0 0.2 0.4 0.6 0.8 1.0

−3

−2

−1

0

1

f

Data (T = 20000)

x 7→ F̂K =
∑
k fk(x)

x 7→ F̂ ∗K =
∑
k f
∗
k (x)

100 101 102 103 104

10−2

10−1

100

101 R
(1)
T /T

T 7→ C/T 1/2
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