

Boosting in Online Non-Parametric Regression

Paul Liautaud

April 2, 2024

Sorbonne University, Paris

Pierre Gaillard CR Inria/UGA

Olivier Wintenberger PR Sorbonne University 1. [Online Learning & Non-Parametric Regression](#page-3-0)

2. [Building predictions with Boosting](#page-18-0)

3. [Regret Analysis of an Online Boosting Algorithm](#page-26-0)

4. [Perspectives](#page-45-0)

5. [Experiments](#page-48-0)

[Online Learning &](#page-3-0) [Non-Parametric Regression](#page-3-0)

The learner

- 1. observes a **whole training dataset** with labels/targets,
- 2. builds a program to minimize the training error,
- 3. controls the error of new data if they are similar to the training data

→ Learning method → Prediction on test data

The learner

- 1. observes a **whole training dataset** with labels/targets,
- 2. builds a program to minimize the training error,
- 3. controls the error of new data if they are similar to the training data

→ Learning method → Prediction on test data

We won't deal with it!

Why **Online** Learning?

Why **Online** Learning? In some applications, the environment may evolve over time and the data may be available sequentially. Examples:

- ads to display,
- electricity consumption forecast,
- spam detection,
- aggregation of experts/algorithms.

Why **Online** Learning? In some applications, the environment may evolve over time and the data may be available sequentially. Examples:

- ads to display,
- electricity consumption forecast,
- spam detection,
- aggregation of experts/algorithms.

∛ We need Online/Sequential Learning!

In **sequential learning**:

- Data are acquired and treated on the fly,
- Feedbacks are received and algorithms updated step by step.

Data arrives **sequentially** as a stream

 $(x_1, y_1), \ldots, (x_{t-1}, y_{t-1}), (x_t, ?) \in \mathcal{X} \times \mathcal{Y} \subseteq [0, 1] \times \mathbb{R}$

and we want to predict each next response y_t as follows:

Data arrives **sequentially** as a stream

 $(x_1, y_1), \ldots, (x_{t-1}, y_{t-1}), (x_t, ?) \in \mathcal{X} \times \mathcal{Y} \subseteq [0, 1] \times \mathbb{R}$

and we want to predict each next response y_t as follows:

At each round $t = 1, \ldots, T$, the learner or algorithm

- observes input $x_t \in \mathcal{X}$
- makes prediction $\hat{y}_t \in \mathcal{Y}$
- incurs loss $\ell_t(y_t, \hat{y}_t)$ with true target $y_t \in \mathcal{Y}$
- updates predictions $\hat{y}_t \rightarrow \hat{y}_{t+1}$

Data arrives **sequentially** as a stream

 $(x_1, y_1), \ldots, (x_{t-1}, y_{t-1}), (x_t, ?) \in \mathcal{X} \times \mathcal{Y} \subseteq [0, 1] \times \mathbb{R}$

and we want to predict each next response y_t as follows:

At each round $t = 1, \ldots, T$, the learner or algorithm

- observes input $x_t \in \mathcal{X}$
- makes prediction $\hat{y}_t \in \mathcal{Y}$ Choose \hat{y}_t before observing ℓ_t
- incurs loss $\ell_t(y_t, \hat{y}_t)$ with true target $y_t \in \mathcal{Y}$ No assumptions on how ℓ_t is generated!
- updates predictions $\hat{y}_t \rightarrow \hat{y}_{t+1}$

```
Classical regression setting:
```
- $y_t = g(x_t) + W_t$ for some $g : \mathbb{R} \to \mathbb{R}$ and $W_t \sim \mathcal{N}(0, \sigma^2)$
- square loss $\ell_t(y_t, \hat{y}_t) = (y_t \hat{y}_t)^2$.

At each round $t = 1, \ldots, T$, the learner or algorithm

- observes input $x_t \in \mathcal{X}$
- makes prediction $\hat{y}_t \in \mathcal{Y}$
- incurs loss $\ell_t(y_t, \hat{y}_t)$ with true target $y_t \in \mathcal{Y}$
- updates predictions $\hat{y}_t \rightarrow \hat{y}_{t+1}$

Goal:

minimize the cumulative loss

$$
\min_{\hat{y}_1,\ldots,\hat{y}_T} \sum_{t=1}^T \ell_t(y_t, \hat{y}_t)
$$

At each round $t = 1, \ldots, T$, the learner or algorithm

- observes input $x_t \in \mathcal{X}$
- makes prediction $\hat{y}_t \in \mathcal{Y}$
- incurs loss $\ell_t(y_t, \hat{y}_t)$ with true target $y_t \in \mathcal{Y}$
- updates predictions $\hat{y}_t \rightarrow \hat{y}_{t+1}$

Goal:

minimize the cumulative loss \iff predict almost as well as the best strategy y^\star

$$
\min_{\hat{y}_1, ..., \hat{y}_T} \sum_{t=1}^T \ell_t(y_t, \hat{y}_t) \qquad \qquad \min_{\hat{y}_1, ..., \hat{y}_T} \sum_{t=1}^T \ell_t(y_t, \hat{y}_t) - \inf_{y^*} \sum_{t=1}^T \ell_t(y_t, y^*)
$$
\n
$$
\qquad \qquad = \text{Regret}_T(y^*)
$$

Regret in *Non Parametric* **Regression**

Non-Parametric regression means that we are interested in forecasters (\hat{v}_t) whose regret

$$
\text{Regret}_{T}(\mathcal{F}) = \underbrace{\sum_{t=1}^{T} \ell_{t} (y_{t}, \hat{y}_{t})}_{\text{our performance}} - \underbrace{\inf_{f \in \mathcal{F}} \sum_{t=1}^{T} \ell_{t} (y_{t}, f(x_{t}))}_{\text{reference performance}}
$$

over some benchmark function class $\mathcal{F} \in \mathcal{Y}^{\mathcal{X}}$ is as **small** as possible.

Regret in *Non Parametric* **Regression**

Non-Parametric regression means that we are interested in forecasters (\hat{v}_t) whose regret

$$
\text{Regret}_{T}(\mathcal{F}) = \underbrace{\sum_{t=1}^{T} \ell_{t} (y_{t}, \hat{y}_{t})}_{\text{our performance}} - \underbrace{\inf_{f \in \mathcal{F}} \sum_{t=1}^{T} \ell_{t} (y_{t}, f(x_{t}))}_{\text{reference performance}} = o(T) \underbrace{\underbrace{= o(T)}_{\text{goal}}}
$$

over some benchmark function class $\mathcal{F} \in \mathcal{Y}^{\mathcal{X}}$ is as **small** as possible.

Regret in *Non Parametric* **Regression**

Non-Parametric regression means that we are interested in forecasters (\hat{u}_t) whose regret

$$
\text{Regret}_{T}(\mathcal{F}) = \underbrace{\sum_{t=1}^{T} \ell_{t} (y_{t}, \hat{y}_{t})}_{\text{our performance}} - \underbrace{\inf_{f \in \mathcal{F}} \sum_{t=1}^{T} \ell_{t} (y_{t}, f(x_{t}))}_{\text{reference performance}} = o(T) \underbrace{\underbrace{= o(T)}_{\text{goal}}}
$$

over some benchmark function class $\mathcal{F} \in \mathcal{Y}^{\mathcal{X}}$ is as **small** as possible.

Solution: producing prediction as a function of x_t

 $\hat{y}_t = F_t(x_t), \quad F_t \in \mathcal{Y}^{\mathcal{X}}$ sequentially updated.

[Building predictions with](#page-18-0) [Boosting](#page-18-0)

Boosting uses "wisdom of the crowd"

- **Boosting:** ensemble method combining multiple weak learners to create a strong learner
- Each weak model corrects/learns from errors of its peers
- → Resulting in a **highly accurate** predictive model [1]

^[1] e.g. AdaBoost and XGBoost

For each $t = 1, ..., T$, we use $K \geq 1$ *sequential* and *weak* predictors

from a class of *weak learners*

 $W := \{x \mapsto f(x; \theta, I) : \theta \text{ parameter of } f \text{ with support } I\} \subset \mathcal{Y}^{\mathcal{X}}.$

For each $t = 1, \ldots, T$, we use $K \geq 1$ *sequential* and *weak* predictors

from a class of *weak learners*

 $W := \{x \mapsto f(x; \theta, I) : \theta \text{ parameter of } f \text{ with support } I\} \subset \mathcal{Y}^{\mathcal{X}}.$

Example: W_1 set of regression trees with (low) depth 1,

$$
\mathcal{W}_1 = \left\{ \begin{array}{ccc} \tilde{\mathbb{I}} & \tilde{\mathbb{I}} & \ldots & \tilde{\mathbb{I}} \end{array} \right\} = \{f(\cdot; \theta, I) : \theta \in \mathbb{R}^2 \text{ and } I = (I^{(1)}, I^{(2)}), I^{(1)} \sqcup I^{(2)} = \mathcal{X}\}.
$$

For each $t = 1, \ldots, T$, we use $K \geq 1$ *sequential* and *weak* predictors

Ø We make our predictions at any time $t \geq 1$ as

$$
\hat{y}_t = F_{K,t}(x_t) = \sum_{k=1}^K f_{k,t}(x_t),
$$

using the *strong estimator* $F_{K,t} \in \left\{ F_K = \sum_{k=1}^K f_k : f_k \in \mathcal{W} \right\} =: \mathrm{span}_K(\mathcal{W})$

Ø We make our predictions at any time $t \geqslant 1$ as

$$
\hat{y}_t = F_{K,t}(x_t) = \sum_{k=1}^K f_{k,t}(x_t),
$$

using the *strong estimator* $F_{K,t} \in \left\{ F_K = \sum_{k=1}^K f_k : f_k \in \mathcal{W} \right\} =: \mathrm{span}_K(\mathcal{W})$

Example of *strong learner* using weak learners in W_1 :

At any time $t \geq 1$, for each $k \in [K]$:

- **O** every $f_{k,t}$ dicovers x_t and residuals $\varepsilon_{k,t}$,
- \bullet $f_{k,t}$ receives residuals $\varepsilon_{1,t}, \ldots, \varepsilon_{K,t}$ from others ${f_{1,t}, \ldots, f_{K,t}}\{\{f_{k,t}\}\}\$ and observes its gradient $g_{k,t} = \nabla_{f_k} \ell_t \left(y_t, \sum_{k=1}^K f_{k,t} \right)$
- \bullet $f_{k,t}$ is updated in $f_{k,t+1}$ using $g_{k,t}$.

e.g. if $\ell_t(y_t, \hat{y}_t)$ = $(y_t - \hat{y}_t)^2$, residuals are $\varepsilon_{k,t} = y_t - \sum_{l \neq k} f_{l,t}(x_t)$ and gradients are $g_{k,t}$ $\frac{\partial}{\partial f_k} \ell_t(y_t, \sum_k f_{k,t}) = 2f'_{k,t}(x_t)(\hat{y}_t - y_t)$

Architecture of our Online Boosting Algorithm

Algorithm 1: Online Boosting

- **¹ Init:** K sequential weak-learners
- **2 for** $t = 1$ **to** T **do**

7

- **3** Receive data x_t ;
- **4** Predict $\hat{y}_t = F_{K,t}(x_t) = \sum_{k=1}^K f_{k,t}(x_t);$
- **5** Incur $\ell_t(\hat{y}_t, y_t)$, reveal residuals $\varepsilon_{k,t}$ and gradients $g_{k,t} = \nabla_{f_{k,t}} \ell_t(y_t, \sum_k f_{k,t})$ for all $k = 1, \ldots, K$; **6 for** $k = 1$ **to** K **do**
	- $f_{k,t+1} \leftarrow \textsf{update}(f_{k,t}, g_{k,t})$ (1)

8 Return: $F_{K,T+1} = \sum_{k=1}^{K} f_{K,T+1}$

[Regret Analysis of an Online](#page-26-0) [Boosting Algorithm](#page-26-0)

Assumption: losses (ℓ_t) are convex and differentiable in \hat{y}_t

 \rightarrow Goal is to optimize in each predictor f_k , so we can rewrite the problem with $\ell_t : \mathcal{W}^K \to \mathbb{R}$ and

Regret_T(
$$
\mathcal{F}
$$
) = $\sum_{t=1}^{T} \ell_t(f_{1,t}, \dots, f_{K,t}) - \min_{f \in \mathcal{F}} \sum_{t=1}^{T} \ell_t(f)$

? How to bound above regret?

Back on Regret Analysis

Regret_T(
$$
\mathcal{F}
$$
) = $\sum_{t=1}^{T} \ell_t(f_{1,t}, \dots, f_{K,t}) - \min_{f \in \mathcal{F}} \sum_{t=1}^{T} \ell_t(f)$

 $\overleftrightarrow{\mathbf{P}}$ Decompose as a sum of 2 stage regrets:

$$
\text{Regret}_{T}(\mathcal{F}) = \underbrace{\sum_{t=1}^{T} \ell_{t}(f_{1,t}, \dots, f_{K,t})}_{\text{Regret}_{T}^{(1)} = \text{regret of the algo against the best combination in } \mathcal{W}} + \underbrace{\min_{f_{1}^{*}, \dots, f_{K}^{*} \in \mathcal{W}} \sum_{t=1}^{T} \ell_{t}(f_{1}^{*}, \dots, f_{K}^{*})}_{\text{Regret}_{T}^{(2)} = \text{regret of best combination in } \mathcal{W}} + \underbrace{\min_{f_{1}^{*}, \dots, f_{K}^{*} \in \mathcal{W}} \sum_{t=1}^{T} \ell_{t}(f_{1}^{*}, \dots, f_{K}^{*})}_{\text{Regret}_{T}^{(2)} = \text{regret of best combination in } \mathcal{W} \text{ against } \mathcal{F}}
$$

A first analysis: Regret with OGD

Assume $\{f_1,\ldots,f_K\}=\{\{\theta_1,I_1\},\ldots,\{\theta_K,I_K\}\}\;$ are constants on restricted domains $(I_k) \subset \mathcal{X}$.

- *Online Gradient Descent*: online version of Gradient Descent
- Can be applied to any *convex* and *differentiable* loss function
- update $(\theta_{k,t}, q_{k,t})$ is

$$
\theta_{k,t+1} \leftarrow \Pi_{\Theta_k}(\theta_{k,t} - \eta_{k,t}g_{k,t})
$$

for some sets $(\Theta_k) \subset \mathbb{R}$

A first analysis: Regret with OGD

Assume $\{f_1, \ldots, f_K\} = \{\{\theta_1, I_1\}, \ldots, \{\theta_K, I_K\}\}\$ are constants on restricted domains $(I_k) \subset \mathcal{X}$.

- update $(\theta_{k,t}, q_{k,t})$ is

$$
\theta_{k,t+1} \leftarrow \Pi_{\Theta_k}(\theta_{k,t} - \eta_{k,t}g_{k,t})
$$

Theorem (Estimation regret with OGD)

Assume (ℓ_t) *are differentiable for any* $k \in [K]$ *and for any* $t \geq 1$, $\nabla_k \ell_t(\theta_{1,t}, \ldots, \theta_{K,t}) \leq G$. *Algorithm [1](#page-25-0) with* OGD *has regret*

Regret_T⁽¹⁾(
$$
\theta_1^*, \ldots, \theta_K^*
$$
) $\lesssim G \sum_{k=1}^K D_k \sqrt{T_k}$

with $D_k = \sup_{\theta_1, \theta_2 \in \Theta_k} |\theta_1 - \theta_2|$ and $T_k = |\{t : x_t \in I_k\}|$ *.*

A first analysis: Regret with OGD

- update $(\theta_{k,t}, q_{k,t})$ is

$$
\theta_{k,t+1} \leftarrow \Pi_{\Theta_k}(\theta_{k,t} - \eta_{k,t}g_{k,t})
$$

Theorem (Estimation regret with OGD)

Assume (ℓ_t) *are differentiable for any* $k \in [K]$ *and for any* $t \geq 1$, $\nabla_k \ell_t(\theta_{1,t}, \ldots, \theta_{K,t}) \leq G$. *Algorithm [1](#page-25-0) with* OGD *has regret*

$$
\text{Regret}_T^{(1)}(\theta_1^*, \dots, \theta_K^*) \lesssim G \sum_{k=1}^K D_k \sqrt{T_k}
$$

with $D_k = \sup_{\theta_1, \theta_2 \in \Theta_k} |\theta_1 - \theta_2|$ and $T_k = |\{t : x_t \in I_k\}|$.

Θ_k sets? Their size D_k ? Tuning $\eta_{k,t}$? Does not depend optimally to competitors in W

 $\overleftrightarrow{\mathbf{Y}}$ Consider a *Parameter Free subroutine* [2] in update $(\theta_{k,t}, g_{k,t})$

Theorem (Estimation regret with ParamFree)

Assume (ℓ_t) *are differentiable for any* $k \in [K]$ *and for any* $t \geq 1, \nabla_k \ell_t(\theta_1, \ldots, \theta_K) \leq G$. *Algorithm [1](#page-25-0) with* ParameterFree *achieves*

Regret_T⁽¹⁾(
$$
\theta_1^*, \ldots, \theta_K^*
$$
) $\lesssim G \sum_{k=1}^K |\theta_k^*| \sqrt{T_k}$

with $T_k = |\{t : x_t \in I_k\}|$ *.*

^[2] Orabona and Pál, ["Coin betting and parameter-free online learning".](#page-47-0)

 $\widetilde{\mathbf{Y}}$ Consider a *Parameter Free subroutine* in update $(\theta_{k,t}, g_{k,t})$

Theorem (Estimation regret with ParamFree)

Assume (ℓ_t) *are differentiable for any* $k \in [K]$ *and for any* $t \geq 1, \nabla_k \ell_t(\theta_1, \ldots, \theta_K) \leq G$. *Algorithm [1](#page-25-0) with* ParameterFree *achieves*

$$
\text{Regret}_T^{(1)}(\theta_1^*, \dots, \theta_K^*) \lesssim G \sum_{k=1}^K |\theta_k^*| \sqrt{T_k}
$$

with $T_k = |\{t : x_t \in I_k\}|$ *.*

 \odot No sets Θ_k ! No more learning rate $\eta_{k,t}$ to tune! Adaptive to optimal size $|\theta_k^{\star}\rangle$ $\frac{\star}{k}$ and works for any weak learners!

Where do we stand?

- We managed to bound *estimation* regret using a ParameterFree subroutine
- We obtained regret $\mathcal{O}\left(G\sum_{k=1}^K|\theta^{\star}_k|\sqrt{T_k}\right)$ that *does not depend* on the type of weak models
- This ensures a **diameter adaptive** procedure
- We may benefit from empirical decreasing $|\theta_1^{\star}| \geqslant |\theta_2^{\star}| \geqslant \ldots \geqslant |\theta_K^{\star}|$ \rightarrow F_k is becoming more accurate as k grows
- We have

$$
\text{Regret}_{T}(\mathcal{F}) \quad \lesssim \quad G \sum_{k=1}^{K} |\theta^{\star}_{k}| \sqrt{T_{k}} \quad + \quad \underbrace{\text{Regret}_{T}^{(2)}}_{\text{approximation regret}}
$$

Let us take F the set of L–lipschitz function on $\mathcal{X} = [0, 1]$ i.e. for $f \in \mathcal{F}$,

$$
\forall x_1, x_2 \in \mathcal{X}, \quad |f(x_1) - f(x_2)| \leq L|x_1 - x_2|.
$$

 \rightarrow We want to best approximate any competitor $f \in \mathcal{F}$ with $F_K \in \text{span}_K(\mathcal{W})$.

A Approximation regret *depends* on the type of weak learners, e.g. if $\text{span}_K(\mathcal{W}) \approx \mathcal{F}$ hence small approx. regret

- Assume the following process: launch a dyadic regression tree from \mathcal{W}_1 in each node until depth is $M \geq 1$
- Dyadic scheme ⇒ we have $|\theta_k^*| \leq \frac{L}{2^{m_k}}$ with $m_k = m$ if $k \in [\![2^{m-1}, 2^m 1]\!]$
- For ℓ_t square loss, we have the following illustration:

Theorem

Let ${\mathcal F}$ be the set of L-Lipschitz function, $M \approx \log_2(T)$ and ℓ_t be the square or absolute *loss. Our Algorithm [1](#page-25-0) with Dyadic Trees in* W_1 *has regret*

 $\mathrm{Regret}_T(\mathcal{F}) \lesssim GL\sqrt{T}$

Computationally tractable: x_t only falls into one subinterval I_k for each level $m \in [M]$: we update $\mathcal{O}(T\log_2(T))$ for T rounds.

Theorem

Let ${\mathcal F}$ be the set of L-Lipschitz function, $M \approx \log_2(T)$ and ℓ_t be the square or absolute *loss. Our Algorithm [1](#page-25-0) with Dyadic Trees in* W_1 *has regret*

 $\mathrm{Regret}_T(\mathcal{F}) \lesssim GL\sqrt{T}$

Computationally tractable: x_t only falls into one subinterval I_k for each level $m \in [M]$: we update $\mathcal{O}(T\log_2(T))$ for T rounds.

? Can we do better?

[Perspectives](#page-45-0)

- Although sublinear: we want $\mathrm{Regret}_T(\mathcal{F}) = \mathcal{O}(T^{1/2}) \longrightarrow \mathcal{O}(T^{1/3})$ for square loss (minimax)

- Designing Locally-Lipschitz adaptive algorithm with Boosting

Thank you!

Questions?

[References](#page-47-1)

- Cesa-Bianchi, Nicolò and Gábor Lugosi (2006). *Prediction, Learning, and Games*. Cambridge University Press.
- Cutkosky, Ashok and Francesco Orabona (2018). "Black-box reductions for parameter-free online learning in banach spaces". In: *Conference On Learning Theory*. PMLR, pp. 1493–1529.
- Ħ Gaillard, Pierre and Sebastien Gerchinovitz (2015). "A Chaining Algorithm for Online Nonparametric Regression". In: *COLT*.
	- Hazan, Elad, Amit Agarwal, and Satyen Kale (2007). "Logarithmic regret algorithms for online convex optimization". In: *Machine Learning* 69.2, pp. 169–192.
- F
	- Orabona, Francesco and Dávid Pál (2016). "Coin betting and parameter-free online learning". In: *Advances in Neural Information Processing Systems* 29.
	- Rakhlin, Alexander and Karthik Sridharan (2014). "Online non-parametric regression". In: *Conference on Learning Theory*. PMLR, pp. 1232–1264.
- R — (2015). "Online nonparametric regression with general loss functions". In: *arXiv preprint arXiv:1501.06598*.

Zinkevich, Martin (2003). "Online convex programming and generalized infinitesimal gradient ascent". In: *Proceedings of the 20th international conference on machine learning (icml-03)*, pp. 928–936.

[Experiments](#page-48-0)

Simulations

Consider the following model:

 $y_t = \cos(3\pi x) - \sin(3x) + W_t$, $W_t \sim \mathcal{N}(0, 0.5)$

