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From statistical to online learning



Classical Machine Learning

The learner:

Ê observes a whole training dataset with labels/targets:

(x1, y1), . . . , (xT , yT)
iid∼ (X, Y) with distribution P over X × Y.
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`(f̂ (xt), yt),

where ` : Y × Y → R is a prescribed loss function.
Ì controls the error of new data if they are similar to the training data.

m
We won’t deal with it!

m
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A dive into Sequential Learning

Y In sequential learning:
� data are acquired and treated on the fly;

� data are not necessarily iid, possibly adversarial;

� feedbacks are received and algorithms updated step by
step.

? Why online learning? In some applications, the environment may evolve over time
and data may be available sequentially, e.g.:

� ads to display,
� electricity consumption forecast,

� spam detection,
� aggregation of expert knowledge.
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Setting: online regression with individual sequences (1/2)

Y Online prediction scenario: at each round t ∈ N∗, the forecaster
Ê observes an input xt ∈ X ;
Ë chooses a prediction f̂t(xt) ∈ R; Choose f̂t before observing `t

Ì incurs a loss `t(f̂t(xt)) No assumptions on how `t is generated

Í updates his prediction function f̂t → f̂t+1 Based on observed gradients

· · · → xt = → → ’zebra’→ → xt+1 = → · · ·

Ù Goal: given some large (nonparametric) function set F ⊂ RX , we want to minimize
the regret against any competitor f ∈ F

RegT(f ) =
T∑
t=1

`t(f̂t(xt))︸ ︷︷ ︸
our performance

−
T∑
t=1

`t(f (xt))︸ ︷︷ ︸
reference performance

= o(T)︸ ︷︷ ︸
goal

.
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Setting: online regression with individual sequences (2/2)

, Individual sequences: no stochastic assumption on data (xt, `t)!
f̂1, . . . , f̂T have to perform well with all arbitrary and possibly adversarial sequences.

x Assumptions:
� `1, . . . , `T are G-Lipschitz convex losses, with G > 0;
� X ⊂ Rd bounded compact subset;
� F ⊂ [−B,B]X for some B > 0;
� F ⊂ C α(L) the set of α-Hölder continuous functions, with α ∈ (0, 1], L > 0 unknown.
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Parameter-free online approach
with chaining trees



Chaining tree

� Chaining tree
of depth M = 3:

θ1

θ4

θ5

θ2
θ3

θ6 θ7

X
x

pathT (x) = {1, 2, 5}
f̂ (x) = θ1 + θ2 + θ5

Definition - Chaining tree

A Chaining-Tree (CT) prediction function f̂ over X is de-
fined as:

f̂ (x) =
∑

n∈N (T )

θn1x∈Xn , x ∈ X

where each interior node n ∈ N (T )\L(T ) has 2d children
forming a regular partition of Xn.

� Remark: contrary to standard methods, we predict with all nodes n ∈ N (T ).
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Parameter-free online algorithm

Algorithm 1: Training CT T at time t > 1

Input: (θn,t)n∈N (T ) (node predictors of T ), (gn,t)n∈N (T )

(gradients - later specified).
1 for n ∈ N (T ) do
2 Predict f̂t(xt) =

∑
n∈N (T ) θn,t1xt∈Xn ;

3 Find θn,t+1 ∈ R to approximately minimize

θn 7→ `t(f̂−n,t(xt)+θn1xt∈Xn) with f̂−n,t(xt) = f̂t(xt)−θn,t1xt∈Xn
(1)

using gradient gn,t =

[
∂`t

(
f̂−n,t(xt)+θn1xt∈Xn

)
∂θn

]
θn=θn,t

.

Output: (θn,t+1)n∈N (T )

θ1

θ4
θ5

θ2
θ3

θ6 θ7

X
x

pathT (x) = {1, 2, 5}
f̂ (x) = θ1 + θ2 + θ5

� Our algorithm is computationally tractable
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First result: global minimax-optimal regret against C α(L)

Assumption - Parameter free

For any n ∈ N (T ) and θn ∈ R,
∑T

t=1 gt(θn,t − θn) . |θn|
√∑T

t=1 |gn,t|2.

After T > 1 rounds, Alg. 1 achieves a regret bounded as:

sup
f∈Cα(L)

RegT(f ) . GB
√
T + GL(f )


√
T, if d < 2α,

log2 T
√
T, if d = 2α,

T1−αd , if d > 2α.

( Adaptivity to both α and L(f ) := supx 6=y
|f (x)−f (y)|
‖x−y‖α 6 L!

¢ Our rates are minimax over C α(L) for general convex losses (Rakhlin et al., 2015)

� Our algorithm is computationally tractable: we update O( 1d log2(T)) parameters at
each round. 10



Main intuitions behind our algorithm

Decompose regret: RegT(f ) =
∑T

t=1 `t(f̂t(xt))− `t(f̂M(xt))︸ ︷︷ ︸
R1:estimation regret

+
∑T

t=1 `t(f̂M(xt))− `t(f (xt))︸ ︷︷ ︸
R2:approximation regret

Multi-scale approximation process of a chaining tree f̂M:
Ê Control of the coe�cient decay:

|θlevel m| 6 L(f )2−αm

Ë Control of estimation regret (f̂t)→ f̂M:

R1 6 GL(f )
∑M

m=1 2−αm
√
2dmT .

Ì Control of approximation regret:

R2 6 GT · sup
f∈Cα(L)

‖f̂M − f‖∞ . GTL(f )2−αM

Previous works: Gaillard and Gerchinovitz; Cesa-Bianchi et al. (2015; 2017) designed
explicit chaining algorithms for square and absolute loss. 11



Generalisation to C α, α > 1 (1/2)

We use a predictor of the form

f̂J = f̄ +
J∑

j=0

∑
k∈Λj

fj,k with |Λj| = O(2jd) for j > 0,

where f̄ is a coarse approximation of f and (fj,k) approaches f at finer scales.

÷ Orthonormal Wavelet Basis: let {ψj,k : k ∈ Λj, j > −1} an orthonormal s > bαc-regular
wavelet basis of L2(X ) and

f̄ =
∑
k∈Λ−1

c−1,kψ−1,k and fj,k = cj,kψj,k for j > 0.

� Control decay:

f ∈ C α(L) =⇒ |cj,k| . L(f )2−αm for every j > 0
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Generalisation to C α, α > 1 (2/2)

Lauching Algorithm 1 on {(cj,k) : k ∈ Λj, j > −1, } over T > 1 rounds entails a regret, for
every α > 0

sup
f∈Cα(L)

RegT(f ) . GB|Λ−1|‖ψ−1‖1
√
T + GL(f )‖ψ‖2


√
T, if d < 2α,

log2 T
√
T, if d = 2α,

T1−αd , if d > 2α.

( Adaptivity to both L(f ) 6 L and all α > 0!

¢ Our rates are minimax over C α(L) for general convex losses (Rakhlin et al., 2015)
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Another interesting result: Alg. 1 beats global adaptive OCO!

Comparison with global adaptive OCO:
Ò Standard OCO: updates a single global vector θ ∈ R|N (T )| given a global gradient gt
÷ Our method: performs node-wise updates — each node n has its own parameter θn

Localized gradients: gn,t = 0 if xt /∈ Xn
� Result: sparse, e�cient updates with better regret bounds

Regret comparison & key takeaway: when p 6 2, our Algorithm 1 consistently achieves a
lower regret than any global adaptive OMD method (e.g., adaptive OGD or EG).

Alg. 1: O
(∑

n |θn|
√∑

t |gn,t|2
)

6 Global OMD: O
(
‖θ‖p

√∑
t ‖gt‖2q

)

14



Locally adaptive algorithm



Motivation: why local adaptivity?

� Idea: functions contain smooth and rough parts→ we want to exploit local
smoothness.

x

f (x)
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Motivation: why local adaptivity?

� Idea: functions contain smooth and rough parts→ we want to exploit local
smoothness.

x

f (x)

Global bound: O(L
√
T)
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Motivation: why local adaptivity?

� Idea: functions contain smooth and rough parts→ we want to exploit local
smoothness.

x

f (x)

Smooth region: coarse approximation

Regret: O(L1
√
|T1|)

Moderate variation: refine

Regret: O(L2
√
|T2|)

Rough region: refine more

Regret: O(L3
√
|T3|)

£ Result: instead of O(L
√
T), locally adaptive methods achieve O

(∑
n Ln
√
|Tn|
)
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Locally Adaptive Algorithm as expert aggregation (1/2)

We base our predictions on a core tree T0 partitionning X in (Xn) with

f̂t(xt) =
∑

n∈N (T0)

wn,t f̂n,t(xt), for any t > 1,

where:
- each f̂n is a local chaining-tree predictor over Xn ⊂ X ,
- (wn,t) are trainable parameters such that

∑
n wn,t = 1.

Figure 1: Example of T0
Expert aggregation procedure: train weights wt = (wn,t) using gradients
gt = ∇w`t(f̂t(xt))|w=wt with any subroutine that satisfies:

Assumption - Second-order algorithm

For any n ∈ N (T0),
∑T

t=1 g>t wt − gn,t .
√

log(|N (T0)|)
∑T

t=1(g>t wt − gn,t)2.
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Locally Adaptive Algorithm as expert aggregation (2/2)

� Our algorithm tracks the best pruning of T0
i.e. the best partition (Xn) of X to recover f .

Y Learning with respect to a pruning of T0:
- given its associated partition (Xn) of X ,

- we define for f ∈ C α(L):

Ln(f ) := sup
x,y∈Xn

|f (x)− f (y)|
‖x − y‖α

6 L,

- and Tn := {1 6 t 6 T : xt ∈ Xn}, |Tn| 6 T.
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Second result: local & minimax-optimal regret

Our algorithm optimally competes against any pruning and adapts to the local Hölder
regularities of the competitor, achieving for α > d/2:

sup
f∈Cα(L)

RegT(f ) . inf
prun

{√
T|prun|+

∑
n∈prun 2−αlevel(n)Ln(f )

√
|Tn|
}
.

( Adaptivity to local regularities (Ln(f )) w.r.t. any pruning.

� From global O(L
√
T) to local O(

∑
n Ln
√
|Tn|): low regret in low-variation regions!

Moreover if (`t) are exp-concave (e.g. squared or logistic losses)

sup
f∈Cα(L)

RegT(f ) . inf
prun

{
|prun|+

∑
n∈prun 2−level(n)Ln(f )

√
|Tn|
}
.

¢ Adaptivity to the loss curvature.
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Corollary: minimax-optimality

For α > d/2, if we consider a flat pruning one has:

sup
f∈Cα(L)

RegT(f ) .
{(
L(f ) ∧ L(f ) d

2α
)√
T, if (`t) convex,

L(f ) d
2α
√
T ∧ L(f ) 2d

2α+d T d
2α+d , if (`t) exp-concave.

Comparison in case d = 1, α ∈ [ 12 , 1]:

Reference Assumptions Regret bound

Alg. 2
(`t) exp-concave, L > 0 unknown min

{
L 1
2α
√
T, L 2

2α+1 T 1
2α+1
}

(`t) convex, L > 0 unknown L 1
2α
√
T

Kuzborskij et al. (2020) (`t) square loss, L > 0 unknown, α = 1
√
LT

Hazan et al. (2007) (`t) square loss, L > 0 known, α = 1
√
LT
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Experiments in L: local adaptivity yields smaller global regret!
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1
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√
LT ∧ BT

)
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Computational feasability:
Algorithm Time complexity Space complexity

Alg. 1 O(T × 1
d log2(T)) O(T)

Alg. 2 O(T ×
√
T

d2 log22(T)) O(T 3
2 )
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Conclusion

� We propose a parameter-free online strategy on chaining tree achieving minimax
regret;

� A unique algorithm that both adapts to local regularities of the competitor and
curvature of sequential losses;

� First constructive algorithm to achieve optimal locally adaptive regret;

Å What’s next? Adaptivity to (αn) and link with multifractal analysis.

Thank you!

Questions?
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Comparison with the litterature

Ref. Assumptions Upper bound

[1]
(`t) exp-concave, L > 0 unknown min

{√
LT, L 2

3 T 1
3
}

(`t) convex, L > 0 unknown
√
LT

[2] (`t) square loss, L > 0 unknown
√
LT

[3]
(`t) absolute loss, L > 0 known L 1

3 T 2
3

(`t) square loss, L > 0 known
√
LT

[4] (`t) square loss, L = 1 known T 1
3

[5] (`t) convex, L = 1 known
√
T

[1] Liautaud, Gaillard, and Wintenberger, “Minimax-optimal and Locally-adaptive Online Nonparametric Regres-
sion”.
[2] Kuzborskij and Cesa-Bianchi, “Locally-adaptive nonparametric online learning”.
[3] Hazan, Agarwal, and Kale, “Logarithmic regret algorithms for online convex optimization”.
[4] Gaillard and Gerchinovitz, “A Chaining Algorithm for Online Nonparametric Regression”.
[5] Cesa-Bianchi et al., “Algorithmic chaining and the role of partial feedback in online nonparametric learning”.
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Experiments

Regression setting: yt = f (xt) + εt, where εt ∼ N (0, σ2) with
σ = 0.5,f (x) = sin(10x) + cos(5x) + 5, for x ∈ X = [0, 1] and supx |f ′(x)| 6 15 =: L.
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What about the excess-risk in batch learning?

µ Online regret bound againt any f ∈ F :

1
T

RegT(f ) =
1
T

T∑
t=1

(f̂t(xt)− yt)2 −
1
T

T∑
t=1

(f (xt)− yt)2 = o(1).

µ If {(xt, yt)}Tt=1
iid∼ (X, Y), `t(ŷ) = (ŷ − yt)2, excess risk of f̄T = 1

T
∑T

t=1 f̂t is bounded as

E
[
(f̄T(X)− Y)2

]
− E

[
(f (X)− Y)2

] Convexity
6

1
T

T∑
t=1
E
[
(f̂t(X)− Y)2

]
− E

[
(f (X)− Y)2

]
=

1
T
E
[

RegT(f )
]

= o(1).
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