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From statistical to online learning




Classical Machine Learning

The learner:

training data

@ observes a whole training dataset with labels/targets:

(X1, ¥4)s -« s (X7, Y1) K (X,Y) with distribution P over X x ).



Classical Machine Learning

‘tiger’ ‘zebra’

The learner: % % - @

training data

@ observes a whole training dataset with labels/targets:
(X2, V1), -+, (X1, ¥7) e (X,Y) with distribution P over X x ).

® builds a function f : X — Y € F with small risk IEIp[é(]?(X), Y)] by minimizing:

T
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where £: Y x Y — R is a prescribed loss function.



Classical Machine Learning

‘tiger’ ‘zebra’

The learner: E% % . @ —

training data

©® observes a whole training dataset with labels/targets:
(X1,¥1), - o5 (X7, 97) i\ (X,Y) with distribution P over X x Y.

® builds a function f : X — Y € F with small risk Ep[¢(f(X), )] by minimizing:

:
RE) = 73 ¢Fox). vo).

where £:Y x Y — R is a prescribed loss function.
® controls the error of new data if they are similar to the training data.



Classical Machine Learning

tlger ‘zebra’

The learner: % %{ SN @ N

training data

©® observes a whole training dataset with abels/tar
||d

(X0, ¥4)s -y (X7, Y1) éé tr|but|on P over X x ).
® builds a function f X =) e(‘\w
“QN Zf (Xt), o),

where ¢ :t x Y — R is a prescribed loss function.
® controls the error of new data if they are similar to the training data.

L risk ]Elp[Z X),Y)] by minimizing:



A dive into SEQUENTIAL LEARNING

& In sequential learning:
> data are acquired and treated on the fly;

> data are not necessarily iid, possibly adversarial;

> feedbacks are received and algorithms updated step by
step.
? Why online learning? In some applications, the environment may evolve over time
and data may be available sequentially, e.g.:

> ads to display, > spam detection,
> electricity consumption forecast, > aggregation of expert knowledge.




Setting: online regression with individual sequences (1/2)

& Online prediction scenario: at each round t € N*, the forecaster
© observes an input x; € &;

@ chooses a prediction fi(x;) € R; Choose f; before observing ¢

® incurs a loss Et(ft(xt)) No assumptions on how ¢ is generated

® updates his prediction function f; — fti4 Based on observed gradients
~-axr:w:a & a'zebra'e@ axm:ﬁ]am

Q Goal: given some large (nonparametric) function set 7 ¢ R¥, we want to minimize
the regret against any competitor f € F

T T
Regr(f) =Y t(filx)) — Y &(f(x)) =o(T).
\tL,_/ \t:,_/ goal

our performance reference performance



Setting: online regression with individual sequences (2/2)

A Individual sequences: no stochastic assumption on data (X, ¢)!
fr,...,fr have to perform well with all arbitrary and possibly adversarial sequences.

s’ Assumptions:
> (,,..., 07 are G-Lipschitz convex losses, with G > ©;
> X c RY bounded compact subset;
> F C [-B,B]* for some B > 0;
> F C (L) the set of a-Holder continuous functions, with a € (0,1],L > 0 unknown.




Parameter-free online approach
with chaining trees




Chaining tree

F 3 Chaining  tree

o de;:(th 9M - Definition - Chaining tree
1
. X N
0! A Chaining-Tree (CT) prediction function f over X is de-
.
— 05 fined as:
i = Y Onhex, XEX
:‘95 9
94 T 6 07 neN(T)
where each interior node n € N'(T)\£(T) has 29 children
path(x) = {1,2,5} forming a regular partition of ;.

F(X) = 01 + 05 + 0

@ Remark: contrary to standard methods, we predict with all nodes n € (7).



Parameter-free online algorithm

Algorithm 1: Training CT 7 at time t > 1

Input: (6n¢)ner () (node predictors of 7)), (gn,t)nen ()

(gradients - later specified).

1 forn e N(T) do

2

3

PredlCt E(Xt) = ZHGN(T) en’t1xt€){n;
Find 0 t+1 € R to approximately minimize

On > Le(Fnt(X)+OnTnex,) With Fone(Xc)

oLy (}\—n,t(xt)‘i‘en'lxtexn)
06p

using gradient gn ¢ =

output: (0nt41)nen(T)

On=

en,t

= ft(Xt) —On e x,

(1)

E our algorithm is computationally tractable

pathr(x) =

) =

X
04

{1,2,5}
+ 0, + 05



First result: global minimax-optimal regret against (L)

Assumption - Parameter free

Foranyne N(T)and 6, € R, 31, Gt(Ont — 0n) < 10nly/ Sres |Gt

After T > 1 rounds, Alg. 1 achieves a regret bounded as:

VT, if d < 2a,

sup Regr(f) < GBVT + GL(f) log, TVT, ifd = 2q,
fewo(L N _

ceo T4, ifd > 2a.

W Adaptivity to both a and L(f) := sup,, W <L

« Our rates are minimax over ¢’*(L) for general convex losses (Rakhlin et al., 2015)

&l Our algorithm is computationally tractable: we update O(J log,(T)) parameters at
each round. (0



Main intuitions behind our algorithm

Decompose regret: Reg;(f) = Y1, £(fe(xt)) — te(fu(x)) + 31, be(Fu(xt)) — e(F (X))

Ri:estimation regret R,:approximation regret

Multi-scale approximation process of a chaining tree fy:
@ Control of the coefficient decay: A~

Levelm =1

[Blevel m| < L(f)27am ........

® Control of estimation regret (ft) — ]?M:

Ry < GL(F) M _ 2—omy/odmT /

® Control of approximation regret:

R, < GT- sup IIfM —flloo S GTL(f)2~"
fee~(L

Previous works: Gaillard and Gerchinovitz; Cesa-Bianchi et al. (2015; 2017) designed
explicit chaining algorithms for square and absolute loss.

"



Generalisation to €. a > 1(1/2)

We use a predictor of the form
J
H=F+>_3 fir with |A]=0(") for j>o,
j=0 ’?E/\i
where f is a coarse approximation of f and (fj,r) approaches f at finer scales.

&%a Orthonormal Wavelet Basis: let {¢);, : k € Aj,j > —1} an orthonormal s > |«|-regular
wavelet basis of L2(X) and

f: Z C_qr_1k and ka:Cj’kwM for j>o.

ReA_,
@ Control decay:

fe®* (L) = |cel SL(f)2=*" foreveryj>o0



Generalisation to €, a > 1(2/2)

Lauching Algorithm 1 0on {(¢jr) : R € Aj,j > —1,} over T > 1 rounds entails a regret, for

every & > 0
VT, ifd < 2a,
; SUP( )RegT(f) < GBIA_4[|[tr—1 1T + GL(F) ]|z < log, TVT, ifd =2a,
e (L
-7, ifd > 2a.

W Adaptivity to both L(f) < L and all a > 0!

+ Our rates are minimax over ¢’*(L) for general convex losses (Rakhlin et al., 2015)



Another interesting result: Alg. 1 beats global adaptive 0CO!

Comparison with global adaptive OCO:

Q% Standard OCO: updates a single global vector 8 € RV(T)I given a global gradient g;

s5a Our method: performs node-wise updates — each node n has its own parameter 6,
Localized gradients: g, = 0 if x; ¢ X,

@ Result: sparse, efficient updates with better regret bounds

Regret comparison & key takeaway: when p < 2, our Algorithm 1 consistently achieves a
lower regret than any global adaptive OMD method (e.g., adaptive OGD or EG).

Alg. 1 O( X, 10nv/ScIgne?) < Globalomp: 0([01lp /X, el



Locally adaptive algorithm




Motivation: why local adaptivity?

@ Idea: functions contain smooth and rough parts — we want to exploit local
smoothness.

F(x)




Motivation: why local adaptivity?

@ Idea: functions contain smooth and rough parts — we want to exploit local

smoothness.

F(x)

Global bound: O(Lv/T)




Motivation: why local adaptivity?

@ Idea: functions contain smooth and rough parts — we want to exploit local

smoothness.
fx)
Smooth region: coarse approximation  Moderate variation: refine Rough region: refine more
Regret: O(L1+/|T4]) Regret: O(L2+/|T>|) Regret: O(L3+/|T3|)
V. AN v

@ Result: instead of O(L\/T), locally adaptive methods achieve O(Zn Lm/|Tn|>



Locally Adaptive Algorithm as expert aggregation (1/2)

We base our predictions on a core tree T, partitionning X' in (X,) with

fi(xe) = > W fnt(x:), foranyt 1,
neN (7o)
where:

- each f,, is a local chaining-tree predictor over X, C X,
- (wn,) are trainable parameters such that >, wp: = 1.

Figure 1: Example of T
Expert aggregation procedure: train weights w; = (wp ) using gradients
8: = Vwle(fi(Xt))|lw=w, With any subroutine that satisfies:

Assumption - Second-order algorithm

Forany n € N(7o), Yo 8 Wi — gne S \/Iog(IN(To)I) > (87 We — gn)?.

16



Locally Adaptive Algorithm as expert aggregation (2/2)

@ Our algorithm tracks the best pruning of 7o Example 1:
i.e. the best partition (Xj) of X to recover f.

& Learning with respect to a pruning of 7,:
- given its associated partition (&) of X,

- we define for f € €(L):

f
Ln(f) = sup ‘f(x)_f(y)l <L,

xyex, [X=yl®

'andTn:{1<t<TXteXn},|Tn|<T X



Second result: local & minimax-optimal regret

Our algorithm optimally competes against any pruning and adapts to the local Holder
regularities of the competitor, achieving for a > d/2:

sup RegT(f) 5 r!njfn { V T|prun| + Eneprun 2—alevel(n)l_n(f)\/ |Tn|},

fee~(L)

W Adaptivity to local regularities (L,(f)) w.rt. any pruning.

¥ From global O(Lv/T) to local (>, Ln+/|Tnl): low regret in low-variation regions!



Second result: local & minimax-optimal regret

Our algorithm optimally competes against any pruning and adapts to the local Holder
regularities of the competitor, achieving for a > d/2:

sup RegT(f) S r!njfn { V T|prun| + Zneprun 2—alevel(n)’_n(f)\/ |Tn|},

fee~(L)

W Adaptivity to local regularities (L,(f)) w.rt. any pruning.

¥ From global O(Lv/T) to local (>, Ln+/|Tnl): low regret in low-variation regions!

Moreover if (4;) are exp-concave (e.g. squared or logistic losses)

sup RegT(f) S inf {|prun| + Eneprun 2—level(n)Ln(f) V |Tﬂ|}'
few(L) prun

v Adaptivity to the loss curvature. 18



Corollary: minimax-optimality

For a > d/2, if we consider a flat pruning one has:

sup Regr(f) <
fe€~(L)

(L(F) A L(F)= ) VT, if (¢¢) convex,
L(f)5& VT AL(f)mmaT=ra, i (¢;) exp-concave.

Comparison in case d = 1,a € [3,1]:

Reference Assumptions Regret bound
Al (¢) exp-concave, L > 0 unknown min {Lz= /T, L=7 T7w }
& (¢¢) convex, L > 0 unknown Lza/T

Kuzborskij et al. (2020)  (#) square loss, L > o unknown, o =1 /LT

Hazan et al. (2007) (4;) square loss, L > 0 known, o =1 VLT

19



Experiments in L: local adaptivity yields smaller global regret!

¢ absolute loss, T = 2000 £t squared loss, T = 2000

e~ N~
— 10° —
ht h=Y
T T
a0 o
-2 | 2
/
i ——-O(LVT ABT) ——-0(LVT A BT)
, ——-0(VIT A BT) ——-0(L3T3 AVIT A BT)
107 7 —— Chaining Tree - Alg. 1 —— Chaining Tree - Alg. 1
—— Locally Adaptive Online Reg. - Alg. 2 , —— Locally Adaptive Online Reg. - Alg. 2
10°
TTT T T T T T T T T T T T T I T T T T T I T T T ITTTT L s B B B O B
§8 88838 833883388 g6 86883 888
S T oTatatat ottt ot t 4o+ R T U S
+, +
wf_x,,,’?:b@wq,\fa,\.\'L,L'.’:W?J’a,,;‘:,,?v“?‘:“b o LA N N RN L - I R
L L

Algorithm Time complexity Space complexity

Computational feasability: (g - O(T x 3 log,(T)) o(T)
Alg. 2 O(T x YT log2(T)) o(T?)

20



Conclusion

> We propose a parameter-free online strategy on chaining tree achieving minimax
regret;

> A unique algorithm that both adapts to local regularities of the competitor and
curvature of sequential losses;

> First constructive algorithm to achieve optimal locally adaptive regret;

o What's next? Adaptivity to (ap) and link with multifractal analysis.

Thank you!

Questions?

21



Comparison with the litterature

Ref. Assumptions Upper bound
0] (¢) exp-concave, L > o unknown  min {V/LT,L5T3}

(¢) convex, L > o unknown VLT
[2] (%) square loss, L > 0 unknown VLT
(3] (¢;) absolute loss, L > 0 known L3T3
() square loss, L > o known VIT
[4] (&) square loss, L =1 known T3
[5] (¢) convex, L =1 known VT

(1]

(2]
(3]
(4]
(5]

Liautaud, Gaillard, and Wintenberger, “Minimax-optimal and Locally-adaptive Online Nonparametric Regres-
sion”.

Kuzborskij and Cesa-Bianchi, “Locally-adaptive nonparametric online learning”.

Hazan, Agarwal, and Kale, “Logarithmic regret algorithms for online convex optimization”.

Gaillard and Gerchinovitz, “A Chaining Algorithm for Online Nonparametric Regression”.

Cesa-Bianchi et al., “Algorithmic chaining and the role of partial feedback in online nonparametric learning”.

22



Experiments

Regression setting: y; = f(xt) + &, where e ~ N(0,52) with

o = 0.5f(x) = sin(10x) + cos(5x) + 5, for x € X = [0,1] and sup, |f’(x)| < 15 =: L.

Predictions at time T = 2000

' Data

—»= Chaining Tree - Alg. 1
—— Local. Adapt. Online Reg. - Alg 2

—f
T T T

0.2 0.4 0.6 0.8
X

Regr(f)

£ absolute loss

£¢ squared loss

.| —own —— oV
10° 7| — Chaining Tree - Alg. 1 10° | —— Chaining Tree - Alg. 1 -

——-o(vIn) e ——-0(L3T3) - -
104 4 — Locally Adap&ufe Online’ ﬁeg -Alg. 2 —— Locally Adapuve Qrﬂme Reg Alg?2
10°
10%
10"

T T T T T T T T

10° 10' 10° 10° 10° 10’ 10? 10°
Time T Time T

23



What about the excess-risk in batch learning?

> Online regret bound againt any f € F:
T 1 T
f Regr(f) = Z (fe(xt) -7 Z(f(xt) —yt)* = o(1).
t= t=1

> I {(xe Y)Yy % (X, Y), 6(V) = (¥ — y1)?, excess risk of fr = %ZLE is bounded as

_ Convexity

B[00 - Y] —E[F00-vP] < = B[R0 - VP - B[00 - v)]

= 2E[Reg(f)] = o).

24
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