

MINIMAX-OPTIMAL AND LOCALLY-ADAPTIVE ONLINE NONPARAMETRIC REGRESSION

Séminaire du SAMM, Paris, France

Paul Liautaud April 25, 2025

Sorbonne Université, LPSM, Paris

Pierre Gaillard CR Inria/UGA

Olivier Wintenberger PR LPSM/SU 1. From statistical to online learning

2. Parameter-free online approach with chaining trees

3. Locally adaptive algorithm

From statistical to online learning

The learner:

• observes a whole training dataset with labels/targets:

 $(x_1, y_1), \ldots, (x_T, y_T) \stackrel{\text{iid}}{\sim} (X, Y)$ with distribution $\mathbb P$ over $\mathcal{X} \times \mathcal{Y}$.

The learner:

• observes a **whole training dataset** with labels/targets:

 $(x_1, y_1), \ldots, (x_T, y_T) \stackrel{\text{iid}}{\sim} (X, Y)$ with distribution \mathbb{P} over $\mathcal{X} \times \mathcal{Y}$.

 \boldsymbol{O} builds a function $\widehat{f}: \mathcal{X} \to \mathcal{Y} \in \mathcal{F}$ with small risk $\mathbb{E}_{\mathbb{P}}[\ell(\widehat{f}(X), Y)]$ by minimizing:

$$R(\widehat{f}) = \frac{1}{T} \sum_{t=1}^{T} \ell(\widehat{f}(x_t), y_t)$$

where $\ell:\mathcal{Y}\times\mathcal{Y}\rightarrow\mathbb{R}$ is a prescribed loss function.

The learner: $\begin{cases} {}^{\mathsf{'tiger'}} & {}^{\mathsf{'zebra'}} \\ {}^{\mathsf{training data}} & \longrightarrow & \textcircled{} & \swarrow & \swarrow \\ {}^{\mathsf{training data}} & \longrightarrow & \swarrow & \swarrow & \swarrow \\ \end{cases}$

• observes a **whole training dataset** with labels/targets:

 $(x_1, y_1), \ldots, (x_T, y_T) \stackrel{\text{iid}}{\sim} (X, Y)$ with distribution \mathbb{P} over $\mathcal{X} \times \mathcal{Y}$.

 \boldsymbol{O} builds a function $\widehat{f}: \mathcal{X} \to \mathcal{Y} \in \mathcal{F}$ with small risk $\mathbb{E}_{\mathbb{P}}[\ell(\widehat{f}(X), Y)]$ by minimizing:

$$R(\widehat{f}) = \frac{1}{T} \sum_{t=1}^{T} \ell(\widehat{f}(x_t), y_t)$$

where $\ell:\mathcal{Y}\times\mathcal{Y}\rightarrow\mathbb{R}$ is a prescribed loss function.

• controls the error of new data if they are similar to the training data.

• controls the error of new data if they are similar to the training data.

In sequential learning:

- > data are acquired and treated on the fly;
- > data are not necessarily iid, possibly adversarial;
- > feedbacks are received and algorithms updated step by step.

- **?** Why **online** learning? In some applications, the environment may **evolve over time** and data may be available **sequentially**, e.g.:
 - > ads to display,
 - > electricity consumption forecast,

- > spam detection,
- > aggregation of expert knowledge.

Setting: online regression with individual sequences (1/2)

Online prediction scenario: at each round $t \in \mathbb{N}^*$, the forecaster

- **1** observes an input $x_t \in \mathcal{X}$;
- 2 chooses a prediction $\widehat{f}_t(x_t) \in \mathbb{R}$;

④ updates his prediction function $\widehat{f}_t \rightarrow \widehat{f}_{t+1}$

Choose \widehat{f}_t before observing ℓ_t

No assumptions on how ℓ_t is generated

Based on observed gradients

Q Goal: given some large (nonparametric) function set $\mathcal{F} \subset \mathbb{R}^{\mathcal{X}}$, we want to minimize the regret against any competitor $f \in \mathcal{F}$

$$\operatorname{Reg}_{T}(f) = \underbrace{\sum_{t=1}^{T} \ell_{t}(\widehat{f_{t}}(x_{t}))}_{\text{our performance}} - \underbrace{\sum_{t=1}^{T} \ell_{t}(f(x_{t}))}_{\text{reference performance}} \underbrace{= o(T)}_{\text{goal}}$$

Setting: online regression with individual sequences (2/2)

A Individual sequences: no stochastic assumption on data (x_t, ℓ_t) ! $\hat{f}_1, \ldots, \hat{f}_T$ have to perform well with all arbitrary and possibly adversarial sequences.

Assumptions:

- > ℓ_1, \ldots, ℓ_T are **G**-Lipschitz convex losses, with G > 0;
- > $\mathcal{X} \subset \mathbb{R}^d$ bounded compact subset;
- ▶ $\mathcal{F} \subset [-B, B]^{\mathcal{X}}$ for some B > 0;

▶ $\mathcal{F} \subset \mathscr{C}^{\alpha}(L)$ the set of α -Hölder continuous functions, with $\alpha \in (0, 1], L > 0$ unknown.

Parameter-free online approach with chaining trees

Chaining tree

Definition - Chaining tree

A Chaining-Tree (CT) prediction function \widehat{f} over \mathcal{X} is defined as:

$$\widehat{f}(\mathbf{x}) = \sum_{n \in \mathcal{N}(\mathcal{T})} \theta_n \mathbf{1}_{\mathbf{x} \in \mathcal{X}_n}, \quad \mathbf{x} \in \mathcal{X}$$

where each interior node $n \in \mathcal{N}(\mathcal{T}) \setminus \mathcal{L}(\mathcal{T})$ has 2^d children forming a regular partition of \mathcal{X}_n .

P Remark: contrary to standard methods, we predict with **all** nodes $n \in \mathcal{N}(\mathcal{T})$.

Algorithm 1: Training CT \mathcal{T} at time $t \geqslant 1$

- **Input:** $(\theta_{n,t})_{n \in \mathcal{N}(\mathcal{T})}$ (node predictors of \mathcal{T}), $(g_{n,t})_{n \in \mathcal{N}(\mathcal{T})}$ (gradients later specified).
- 1 for $n \in \mathcal{N}(\mathcal{T})$ do

Predict
$$\widehat{f}_t(x_t) = \sum_{n \in \mathcal{N}(\mathcal{T})} \theta_{n,t} \mathbf{1}_{x_t \in \mathcal{X}_n};$$

3 Find $\theta_{n,t+1} \in \mathbb{R}$ to approximately minimize

$$\begin{array}{c} x \quad \theta_{1} \\ & \mathcal{H}_{2} \\ \hline \theta_{2} \\ \hline \theta_{3} \\ \hline \theta_{4} \\ \hline \theta_{5} \\ \hline \theta_{6} \\ \theta_{7} \\ \hline \theta_{6} \\ \theta_{7} \\ \hline \theta_{7} \\ \hline \theta_{1} \\ \theta_{7} \\ \theta_{1} \\ \theta_{2} \\ \theta_{3} \\ \hline \theta_{1} \\ \theta_{2} \\ \theta_{3} \\ \hline \theta_{1} \\ \theta_{2} \\ \theta_{3} \\ \hline \theta_{1} \\ \theta_{2} \\ \theta_{3} \\ \theta_{3} \\ \theta_{1} \\ \theta_{2} \\ \theta_{1} \\ \theta_{2} \\ \theta_{3} \\ \theta_{1} \\ \theta_{2} \\ \theta_{1} \\ \theta_{2} \\ \theta_{1} \\ \theta_{2} \\ \theta_{1} \\ \theta_{2} \\ \theta_{3} \\ \theta_{1} \\ \theta_{2} \\ \theta_{1} \\ \theta_{2} \\ \theta_{1} \\ \theta_{2} \\ \theta_{3} \\ \theta_{1} \\ \theta_{2} \\ \theta_{1} \\ \theta_{2} \\ \theta_{1} \\ \theta_{2} \\ \theta_{1} \\ \theta_{2} \\ \theta_{2} \\ \theta_{1} \\ \theta_{2} \\ \theta_{2} \\ \theta_{2} \\ \theta_{2} \\ \theta_{1} \\ \theta_{2} \\ \theta_{2}$$

$$\begin{aligned} \theta_n &\mapsto \ell_t(\widehat{f}_{-n,t}(\mathbf{x}_t) + \theta_n \mathbf{1}_{\mathbf{x}_t \in \mathcal{X}_n}) & \text{with} \quad \widehat{f}_{-n,t}(\mathbf{x}_t) = \widehat{f}_t(\mathbf{x}_t) - \theta_{n,t} \mathbf{1}_{\mathbf{x}_t \in \mathcal{X}_n} \\ & (1) \\ \text{using gradient } \mathbf{g}_{n,t} = \left[\frac{\partial \ell_t(\widehat{f}_{-n,t}(\mathbf{x}_t) + \theta_n \mathbf{1}_{\mathbf{x}_t \in \mathcal{X}_n})}{\partial \theta_n} \right]_{\theta_n = \theta_{n,t}}. \end{aligned}$$

Output: $(\theta_{n,t+1})_{n \in \mathcal{N}(\mathcal{T})}$

Our algorithm is computationally tractable

First result: global minimax-optimal regret against $\mathscr{C}^{\alpha}(L)$

Assumption - Parameter free

For any
$$n \in \mathcal{N}(\mathcal{T})$$
 and $heta_n \in \mathbb{R}, \quad \sum_{t=1}^T g_t(heta_{n,t} - heta_n) \lesssim | heta_n| \sqrt{\sum_{t=1}^T |g_{n,t}|^2}.$

After $T \ge 1$ rounds, Alg. 1 achieves a regret bounded as:

$$\sup_{f \in \mathscr{C}^{\alpha}(L)} \operatorname{Reg}_{T}(f) \lesssim GB\sqrt{T} + GL(f) \begin{cases} \sqrt{T}, & \text{if } d < 2\alpha, \\ \log_{2} T\sqrt{T}, & \text{if } d = 2\alpha, \\ T^{1-\frac{\alpha}{d}}, & \text{if } d > 2\alpha. \end{cases}$$

Adaptivity to both α and $L(f) := \sup_{x \neq y} \frac{|f(x) - f(y)|}{||x - y||^{\alpha}} \leq L!$

✓ Our rates are **minimax** over $\mathscr{C}^{\alpha}(L)$ for general convex losses (Rakhlin et al., 2015)

Our algorithm is **computationally tractable**: we update $O(\frac{1}{d} \log_2(T))$ parameters at each round.

Main intuitions behind our algorithm

Decompose regret: $\operatorname{Reg}_{T}(f) = \underbrace{\sum_{t=1}^{T} \ell_{t}(\widehat{f}_{t}(x_{t})) - \ell_{t}(\widehat{f}_{M}(x_{t}))}_{R_{1}: \text{estimation regret}} + \underbrace{\sum_{t=1}^{T} \ell_{t}(\widehat{f}_{M}(x_{t})) - \ell_{t}(f(x_{t}))}_{R_{2}: \text{approximation regret}}$

Multi-scale approximation process of a chaining tree \widehat{f}_M :

• Control of the coefficient decay:

 $|\theta_{\text{level }m}| \leqslant L(f)2^{-lpha m}$

- Control of estimation regret (\hat{f}_t) → \hat{f}_M :
 $R_1 \leq GL(f) \sum_{m=1}^M 2^{-\alpha m} \sqrt{2^{dm}T}$.
- **3** Control of approximation regret:

$$R_2 \leqslant \mathsf{GT} \cdot \sup_{f \in \mathscr{C}^{\alpha}(L)} \|\widehat{f}_{\mathsf{M}} - f\|_{\infty} \lesssim \mathsf{GTL}(f) 2^{-\alpha \mathsf{N}}$$

Previous works: Gaillard and Gerchinovitz; Cesa-Bianchi et al. (2015; 2017) designed explicit chaining algorithms for square and absolute loss.

Generalisation to $\mathscr{C}^{\alpha}, \alpha \ge 1 (1/2)$

We use a predictor of the form

$$\widehat{f}_{J} = \overline{f} + \sum_{j=0}^{J} \sum_{k \in \Lambda_{j}} f_{j,k}$$
 with $|\Lambda_{j}| = O(2^{jd})$ for $j \ge 0$,

where \overline{f} is a coarse approximation of f and $(f_{j,k})$ approaches f at finer scales.

... Orthonormal Wavelet Basis: let $\{\psi_{j,k} : k \in \Lambda_j, j \ge -1\}$ an orthonormal $s > \lfloor \alpha \rfloor$ -regular wavelet basis of $L^2(\mathcal{X})$ and

$$ar{f} = \sum_{k \in \Lambda_{-1}} c_{-1,k} \psi_{-1,k}$$
 and $f_{j,k} = c_{j,k} \psi_{j,k}$ for $j \ge 0$.

? Control decay:

$$f\in \mathscr{C}^lpha(\mathsf{L})\implies |\mathsf{c}_{j,k}|\lesssim \mathsf{L}(f)\mathsf{2}^{-lpha m}$$
 for every $j\geqslant \mathsf{C}$

Generalisation to $\mathscr{C}^{\alpha}, \alpha \ge 1 (2/2)$

Lauching Algorithm 1 on $\{(c_{j,k}) : k \in \Lambda_j, j \ge -1, \}$ over $T \ge 1$ rounds entails a regret, for every $\alpha > 0$

$$\sup_{f \in \mathscr{C}^{\alpha}(L)} \operatorname{Reg}_{T}(f) \lesssim GB|\Lambda_{-1}| \|\psi_{-1}\|_{1}\sqrt{T} + GL(f)\|\psi\|_{2} \begin{cases} \sqrt{T}, & \text{if } d < 2\alpha, \\ \log_{2} T\sqrt{T}, & \text{if } d = 2\alpha, \\ T^{1-\frac{\alpha}{d}}, & \text{if } d > 2\alpha. \end{cases}$$

Adaptivity to both $L(f) \leq L$ and all $\alpha > 0$!

✓ Our rates are **minimax** over $\mathscr{C}^{\alpha}(L)$ for general convex losses (Rakhlin et al., 2015)

Comparison with global adaptive OCO:

‡ Standard OCO: updates a single global vector $\theta \in \mathbb{R}^{|\mathcal{N}(\mathcal{T})|}$ given a global gradient \mathbf{g}_t

- **Gur method:** performs **node-wise updates** each node *n* has its own parameter θ_n **Localized gradients:** $g_{n,t} = 0$ if $x_t \notin \mathcal{X}_n$
- **Result:** sparse, efficient updates with better regret bounds

Regret comparison & key takeaway: when $p \leq 2$, our Algorithm 1 consistently achieves a lower regret than *any* global adaptive OMD method (e.g., adaptive OGD or EG).

Alg. 1:
$$O\left(\sum_{n} |\theta_{n}| \sqrt{\sum_{t} |g_{n,t}|^{2}}\right) \leq \text{Global OMD: } O\left(\|\theta\|_{p} \sqrt{\sum_{t} \|g_{t}\|_{q}^{2}}\right)$$

Locally adaptive algorithm

Motivation: why local adaptivity?

 $\ref{eq:ldea:}$ functions contain smooth and rough parts \rightarrow we want to exploit **local smoothness**.

Motivation: why local adaptivity?

? Idea: functions contain smooth and rough parts \rightarrow we want to exploit **local smoothness**.

Motivation: why local adaptivity?

 $\ref{eq:ldea:}$ functions contain smooth and rough parts \rightarrow we want to exploit **local smoothness**.

Result: instead of $O(L\sqrt{T})$, locally adaptive methods achieve $O\left(\sum_{n} L_n \sqrt{|T_n|}\right)$

Locally Adaptive Algorithm as expert aggregation (1/2)

We base our predictions on a core tree \mathcal{T}_0 partitionning \mathcal{X} in (\mathcal{X}_n) with \bigcirc

$$\widehat{f}_t(x_t) = \sum_{n \in \mathcal{N}(\mathcal{T}_0)} w_{n,t} \widehat{f}_{n,t}(x_t), \quad ext{for any } t \geqslant \mathbf{1},$$

where:

- each \widehat{f}_n is a local chaining-tree predictor over $\mathcal{X}_n \subset \mathcal{X}$,
- $(\mathbf{w}_{n,t})$ are trainable parameters such that $\sum_{n} \mathbf{w}_{n,t} = 1$.

Figure 1: Example of \mathcal{T}_{o}

Expert aggregation procedure: train weights $\mathbf{w}_t = (w_{n,t})$ using gradients $\mathbf{g}_t = \nabla_{\mathbf{w}} \ell_t(\widehat{f}_t(\mathbf{x}_t))|_{\mathbf{w}=\mathbf{w}_t}$ with any subroutine that satisfies:

Assumption - Second-order algorithm

For any
$$n \in \mathcal{N}(\mathcal{T}_{o})$$
, $\sum_{t=1}^{T} \mathbf{g}_{t}^{\top} \mathbf{w}_{t} - g_{n,t} \lesssim \sqrt{\log(|\mathcal{N}(\mathcal{T}_{o})|) \sum_{t=1}^{T} (\mathbf{g}_{t}^{\top} \mathbf{w}_{t} - g_{n,t})^{2}}$

Locally Adaptive Algorithm as expert aggregation (2/2)

? Our algorithm tracks the best pruning of \mathcal{T}_0 i.e. the best partition (\mathcal{X}_n) of \mathcal{X} to recover f.

E Learning with respect to a pruning of \mathcal{T}_{o} :

- given its associated partition (\mathcal{X}_n) of \mathcal{X} ,
- we define for $f \in \mathscr{C}^{lpha}(L)$:

$$L_n(f) := \sup_{x,y \in \mathcal{X}_n} \frac{|f(x) - f(y)|}{\|x - y\|^{\alpha}} \leqslant L,$$

- and $T_n := \{1 \leqslant t \leqslant T : x_t \in \mathcal{X}_n\}, |T_n| \leqslant T.$

Second result: local & minimax-optimal regret

Our algorithm **optimally** competes against any **pruning** and adapts to the **local Hölder** regularities of the competitor, achieving for $\alpha \ge d/2$:

$$\sup_{f \in \mathscr{C}^{\alpha}(L)} \operatorname{Reg}_{T}(f) \lesssim \inf_{\operatorname{prun}} \big\{ \sqrt{T|\operatorname{prun}|} + \sum_{n \in \operatorname{prun}} 2^{-\alpha \operatorname{level}(n)} \underline{L}_{n}(f) \sqrt{|T_{n}|} \big\}.$$

Adaptivity to local regularities $(L_n(f))$ w.r.t. any pruning.

T From global $O(L\sqrt{T})$ to **local** $O(\sum_n L_n \sqrt{|T_n|})$: low regret in low-variation regions!

Our algorithm **optimally** competes against any **pruning** and adapts to the **local Hölder** regularities of the competitor, achieving for $\alpha \ge d/2$:

$$\sup_{f \in \mathscr{C}^{\alpha}(L)} \operatorname{Reg}_{T}(f) \lesssim \inf_{\operatorname{prun}} \big\{ \sqrt{T|\operatorname{prun}|} + \sum_{n \in \operatorname{prun}} 2^{-\alpha \operatorname{level}(n)} \underline{L}_{n}(f) \sqrt{|T_{n}|} \big\}.$$

Adaptivity to local regularities $(L_n(f))$ w.r.t. any pruning.

Trom global $O(L\sqrt{T})$ to **local** $O(\sum_n L_n \sqrt{|T_n|})$: low regret in low-variation regions! Moreover if (ℓ_t) are *exp-concave* (e.g. squared or logistic losses)

$$\sup_{f \in \mathscr{C}^{\infty}(L)} \operatorname{Reg}_{T}(f) \lesssim \inf_{\operatorname{prun}} \left\{ |\operatorname{prun}| + \sum_{n \in \operatorname{prun}} 2^{-\operatorname{level}(n)} L_{n}(f) \sqrt{|T_{n}|} \right\}.$$

✓ Adaptivity to the loss curvature.

Corollary: minimax-optimality

For $\alpha \ge d/2$, if we consider a *flat* pruning one has:

$$\sup_{f \in \mathscr{C}^{\alpha}(L)} \operatorname{Reg}_{T}(f) \lesssim \begin{cases} \left(L(f) \wedge L(f)^{\frac{d}{2\alpha}} \right) \sqrt{T}, & \text{if } (\ell_{t}) \text{ convex}, \\ L(f)^{\frac{d}{2\alpha}} \sqrt{T} \wedge L(f)^{\frac{2d}{2\alpha+d}} T^{\frac{d}{2\alpha+d}}, & \text{if } (\ell_{t}) \text{ exp-concave}. \end{cases}$$

Comparison in case $d = 1, \alpha \in [\frac{1}{2}, 1]$:

Reference	Assumptions	Regret bound
Alg. 2	(ℓ_t) exp-concave, $L > 0$ unknown (ℓ_t) convex, $L > 0$ unknown	$ \min\left\{L^{\frac{1}{2\alpha}}\sqrt{T}, L^{\frac{2}{2\alpha+1}}T^{\frac{1}{2\alpha+1}}\right\} \\ L^{\frac{1}{2\alpha}}\sqrt{T} $
Kuzborskij et al. (2020)	(ℓ_t) square loss, ${\sf L} > {\sf O}$ unknown, $lpha = {\sf 1}$	\sqrt{LT}
Hazan et al. (2007)	(ℓ_t) square loss, $L > {\sf O}$ known, $lpha = {\sf 1}$	\sqrt{LT}

Experiments in L: local adaptivity yields smaller global regret!

Conclusion

- We propose a parameter-free online strategy on chaining tree achieving minimax regret;
- A unique algorithm that both adapts to local regularities of the competitor and curvature of sequential losses;
- > First constructive algorithm to achieve optimal locally adaptive regret;
- \mathbf{P} What's next? Adaptivity to (α_n) and link with multifractal analysis.

Thank you! Questions?

Ref.	Assumptions	Upper bound
[1]	(ℓ_t) exp-concave, $L > o$ unknown (ℓ_t) convex, $L > o$ unknown	$\min\left\{\frac{\sqrt{LT}}{\sqrt{LT}}, L^{\frac{2}{3}}T^{\frac{1}{3}}\right\}$ \sqrt{LT}
[2]	(ℓ_t) square loss, $L > 0$ unknown	\sqrt{LT}
[3]	(ℓ_t) absolute loss, $L > 0$ known (ℓ_t) square loss, $L > 0$ known	$\frac{L^{\frac{1}{3}}T^{\frac{2}{3}}}{\sqrt{LT}}$
[4]	(ℓ_t) square loss, $L=$ 1 known	T ¹ / ₃
[5]	(ℓ_t) convex, $\textit{L}=\textit{1}$ known	\sqrt{T}

[1] Liautaud, Gaillard, and Wintenberger, "Minimax-optimal and Locally-adaptive Online Nonparametric Regression".

[2] Kuzborskij and Cesa-Bianchi, "Locally-adaptive nonparametric online learning".

[3] Hazan, Agarwal, and Kale, "Logarithmic regret algorithms for online convex optimization".

[4] Gaillard and Gerchinovitz, "A Chaining Algorithm for Online Nonparametric Regression".

[5] Cesa-Bianchi et al., "Algorithmic chaining and the role of partial feedback in online nonparametric learning".

Experiments

<u>Regression setting</u>: $y_t = f(x_t) + \varepsilon_t$, where $\varepsilon_t \sim \mathcal{N}(\mathbf{0}, \sigma^2)$ with $\sigma = \mathbf{0.5}, f(x) = \sin(1\mathbf{0}x) + \cos(5x) + \mathbf{5}$, for $x \in \mathcal{X} = [\mathbf{0}, \mathbf{1}]$ and $\sup_x |f'(x)| \leq \mathbf{15} =: L$.

> Online regret bound againt any $f \in \mathcal{F}$:

$$\frac{1}{T}\operatorname{Reg}_{T}(f) = \frac{1}{T}\sum_{t=1}^{T}(\widehat{f}_{t}(x_{t}) - y_{t})^{2} - \frac{1}{T}\sum_{t=1}^{T}(f(x_{t}) - y_{t})^{2} = o(1).$$

If $\{(x_t, y_t)\}_{t=1}^T \stackrel{\text{iid}}{\sim} (X, Y), \ell_t(\widehat{y}) = (\widehat{y} - y_t)^2$, excess risk of $\overline{f}_T = \frac{1}{T} \sum_{t=1}^T \widehat{f}_t$ is bounded as

$$\mathbb{E}\left[(\overline{f}_{T}(X) - Y)^{2}\right] - \mathbb{E}\left[(f(X) - Y)^{2}\right] \stackrel{\text{Convexity}}{\leqslant} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}\left[(\widehat{f}_{t}(X) - Y)^{2}\right] - \mathbb{E}\left[(f(X) - Y)^{2}\right]$$
$$= \frac{1}{T} \mathbb{E}\left[\operatorname{Reg}_{T}(f)\right] = O(1).$$

References

- Cesa-Bianchi, Nicolò and Gábor Lugosi (2006). Prediction, Learning, and Games. Cambridge University Press.
- Cesa-Bianchi, Nicolò et al. (2017). "Algorithmic chaining and the role of partial feedback in online nonparametric learning". In: *Conference on Learning Theory*. PMLR, pp. 465–481.
- Cutkosky, Ashok and Francesco Orabona (2018). "Black-box reductions for parameter-free online learning in banach spaces". In: *Conference On Learning Theory*. PMLR, pp. 1493–1529.
- Gaillard, Pierre and Sebastien Gerchinovitz (2015). "A Chaining Algorithm for Online Nonparametric Regression". In: *COLT*.
- Hazan, Elad, Amit Agarwal, and Satyen Kale (2007). "Logarithmic regret algorithms for online convex optimization". In: Machine Learning 69.2, pp. 169–192.
- Kuzborskij, Ilja and Nicolo Cesa-Bianchi (2020). "Locally-adaptive nonparametric online learning". In: Advances in Neural Information Processing Systems 33, pp. 1679–1689.
- Liautaud, Paul, Pierre Gaillard, and Olivier Wintenberger (2024). "Minimax-optimal and Locally-adaptive Online Nonparametric Regression". In: *arXiv preprint arXiv:2410.03363*.

Mhammedi, Zakaria and Wouter M Koolen (2020). "Lipschitz and comparator-norm adaptivity in online learning". In: Conference on Learning Theory. PMLR, pp. 2858–2887.

- Rakhlin, Alexander and Karthik Sridharan (2014). "Online non-parametric regression". In: Conference on Learning Theory. PMLR, pp. 1232–1264.
- (2015). "Online nonparametric regression with general loss functions". In: *arXiv preprint arXiv:*1501.06598.

Zinkevich, Martin (2003). "Online convex programming and generalized infinitesimal gradient ascent". In: Proceedings of the 20th international conference on machine learning (icml-03), pp. 928–936.