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Online Learning &
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Classical Machine Learning

‘tiger’ ‘zebra’
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The learner: % A

training data

© observes a whole training dataset with labels/targets:

(x1,v1),---, (7, y7) L (X,Y) with distribution P over X x Y.
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The learner: % A — Learning method

training data

© observes a whole training dataset with labels/targets:
(x1,v1),---, (7, y7) e (X,Y) with distribution P over X x Y.

® builds a function f : X — Y € F with small risk Ep[¢(f(X),Y)] by minimizing:
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where £: Y x Y — R is a prescribed loss function.



Classical Machine Learning

‘tiger’ ‘zebra’
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training data

© observes a whole training dataset with labels/targets:
(x1,v1),---, (7, y7) e (X,Y) with distribution P over X x Y.

® builds a function f : X — Y € F with small risk Ep[¢(f(X),Y)] by minimizing:
o1 K
R(f) = T ;é(f(xt),yt),
where £: Y x Y — R is a prescribed loss function.
® controls the error of new data if they are similar to the training data.
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® controls the error of new data if they are similar to the training data.



A dive into SEQUENTIAL LEARNING

& In sequential learning:
> data are acquired and treated on the fly;

> data are not necessarily iid, possibly adversarial;

> feedbacks are received and algorithms updated step by
step.
? Why online learning? In some applications, the environment may evolve over time
and data may be available sequentially, e.g.:

> ads to display, > spam detection,
> electricity consumption forecast, > aggregation of expert knowledge.




Setting of the talk (1/2)

The scenario is as follows:

At each round ¢t =1,...,T, the learner or algorithm
@ observes inputz; € X
® makes prediction fi(z;) € R Choose f, before observing £,
® incurs loss ét(ft(xt)) and discover gradients gt No assumptions on how £, is generated!

O updates prediction function f; — fii1

o, = |
Assumptions:

> {q,..., L are convex, differentiable and G-Lipschitz, with G > 0;
> X C R* bounded subset with |X| = sup, ,cx |2 — 2/ .

}@ — 'zebra’ — @ = Tpp1 = @] — e




Setting of the talk (2/2)

Q Goal: find fi,..., fr that..
minimize the cumulative loss < predict almost as well as the best function f

T . T A T

>t filxr)) D b(filme) =Y alf ()
t=1 t=1 t=1
::RegT(f)

© ’'Non-Parametric regression’: (f,) is compared to benchmark functions f € F, eg.
Lipschitz




Regret analysis

> We want fi,..., fr such that regret against f € F is as small as possible
T R T
Regr(f) =Y G(fule)) — D b(f(@))  =o(T)
t=1 t=1
———— goal
our performance reference performance

A Difficulty: no stochastic assumption on data (z;,¢;)!
> fi,..., fr have to perform well with all arbitrary time series i.e. approaching

inf sup inf sup ---inf sup sup Regp(f).
f1 1,01 f2 wa,lo Jr zT .l fEF

? How to sequentially build such predictors?



Building Predictions with Online
Gradient Boosting



Boosting uses "wisdom of the crowd”

» Boosting: ensemble method com-
bining multiple weak learners to
create a strong learner /_\
» Each model corrects/learns from

errors of its peers

> Results in a highly accurate pre-
dictive model [1]

EN-1

[1] eg AdaBoost and XGBoost



How to deal with weak learners?

> W c R¥ aset of real valued functions X — R (e.g. trees, piecewise constant functions)

> spany (W) = {ijzl Brnhn, hn € W, B, € R} linear function space associated to W

o’ Foreacht=1,...,T, we use and train N > 1 sequential predictors from W
) 3 J 3 J 4 J
| > > >
+ + + +
Iy ha hn_1. h

and we form a strong predictor in span, (W), atany time ¢ > 1, as
N
ft - Z ﬂn,,thn,ta ﬁn,t S R,TL S [N]
n=1

10



A new Online Gradient Boosting procedure

Q Goal: find a sequence of functions

fo= Zﬁn,thn,t € spany (W), 1<t<T,
n

&3 Att > 1, each n € [N] is boosted with OGB as: o
Buthig e,

© Predict fy(z,), define f_ny = fi — Bu.ihns

O (5,1, hn) receives its gradient Br-1,thn-1.
. Yy

e = {v(ﬁ"*h")gt(f’”’t(xt) * ﬂ”h"(xt))} Broshn) =Bt sm,g) Pttt Pt
S

® Find (Bn.t+1,hnt+1) € R x W to solve

ﬁI:ll}?n gt(f—n,f,(l’t) + Bnhn(zt)) (,])

using gradient g, ;. Buihng

Brt1,thntie =

Figure 1: Boosting at time t¢. i



Online Gradient Boosting in
Chaining-Tree




Tree-based method

% A regular decision-tree (7,X,W) over X is (h1,X)
made of:
> a set of nodes N(T) including leaves £(T); /\
> afamily of subregions (ha, Xs) (hs, X3)

X = {Xo,n e N(T)} A A

partitionning X by level; (ha; Xa)  (hs, X5) (he, X6) (h7, A7)

> a family of prediction functions . ,
Figure 2: Example of 7 with depth

W = {hn,n € N(T)}. d(7) =3 over X C R.

@ The idea will be to boost the predictive nodes W.



Chaining-Tree

! x Definition (Chaining-Tree)
6, + .
93 A Chaining-Tree (CT) prediction function f over X is defined
T o, T as
0, —___ 0, A
— — f@ = Y ha@), zeX,
neN (T)

) o where:
Figure 3: Prediction of a CT > hy,(x) = 0,1,cx, are constant functions;
Z‘;?f;pth d(T)=3on > each interior node n € N'(T)\L(T) has 2¢ children forming

a regular partition of A,.

@ Remark: contrary to standard methods, we predict with all nodes n € N'(T).



Approximation process by a Chaining-Tree

> Assume 44(4) = (§ — y¢)? and we launch a CT T with depth d(7) = 1, 2,3, over T data.
We have the following illustration:

(Ihyt)
. © *
. . e . LX) ¢
ee o e O %, * . ‘..o.oo
L]
*ce o.::... ..o.o..° . ° ..0.0.0
L] L[] [ ] [ ] L]
o o - ° L[] ° o o o
* . e o * o o ° .
®oe o
. o o o o
.
* ® e o ©
. . °
L4 .
14



Approximation process by a Chaining-Tree

> Assume 44(4) = (§ — y¢)? and we launch a CT T with depth d(7) = 1, 2,3, over T data.
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Approximation process by a Chaining-Tree

> Assume 44(4) = (§ — y¢)? and we launch a CT T with depth d(7) = 1, 2,3, over T data.
We have the following illustration:

N/

X 1,




Approximation process by a Chaining-Tree

> Assume 4(9) = (§ — y¢)? and we launch a CT T with depth d(7) = 1,2, 3, over T data.
We have the following illustration:
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Approximation process by a Chaining-Tree

> Assume 4(9) = (§ — y¢)? and we launch a CT T with depth d(7) = 1,2, 3, over T data.
We have the following illustration:
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Online Boosting in a Chaining-Tree

Q Goal: Sequentially training CT 7, i.e. tuning over time the family

Wt = {hn,t - 971,,1‘,12(”7“ S N(T)}

s’ We use 0GB on W, with 8, =1, N = [N (T)|, ' (fe(z))1g,ex, and a
parameter-free [2] procedure in minimization step ®, i.e. for any node n € N(T),

ZteT dn f( n,t — 71 < G|9 ‘\/ ‘T’n Wlth on S R, Tn - {1 < t < T7 gn,t 7é 0}7

€ Target class F: a-Holder continous functions (0 < o < 1) over X ¢ R%:

Lip§ (X)) :={f: X > R: |f(z) — f(z")] < L||z — 2'||&, ,Vz,2' € X}.

[2] Orabona and Pal, “Coin betting and parameter-free online learning”; Mhammedi and Koolen, “Lipschitz and
comparator-norm adaptivity in online learning”; Cutkosky and Orabona, “Black-box reductions for parameter-free
online learning in banach spaces”.




Optimal regret against Lipschitz functions

Theorem (Regret of OGB-CT vs Lipschitz functions - Liautaud et al. (2024))

0GB on CT (T, X, W) With Xioor = X, 0,1 = 0,n € N(T) and d(T) = 3 log, T has regret:

VT ifd<2a,

sup  Regp(f) S GLX® { log, TVT ifd=2a,
FELipg (X) e .

T Iifd>2a,

forany L > 0,a € (0,1].

W Our rates are minimax over Lip$ (Rakhlin et al. (2015)) + we do not need prior
knowledge of neither L nor «.

Ll Computationally tractable: z; falls into only one subregion X,, for each level
1,...,d(T): we update O(% log,(T)) at each round.



Adaptive Boosting in Online
NonParametric Regression




Adaptivity to local profile of the competitor

Q Goal: learn the best pruned tree i.e. the best partition over X to fit the competitor.
Example 1
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Adaptivity to local profile of the competitor

Q Goal: learn the best pruned tree i.e. the best partition over X to fit the competitor.
Example 2:




Locally Adaptive Boosting - LocAdaBoost

»? We base our predictions on a core tree T associated to:

fe(ze) = Z wn,tfn,t(xt)v vt > 1,

neN (7o)

where for any n € N (7o):
> fn is a CT rooted at X,, and trained as before;

> w, weight associated.

We use 0GB on
> Bn,t = Wn,t, N S N(%)r

> and gradient & = V()2 (f1(6))] (wn)=(wn.0)-

Figure 4: 7o



Optimal and Locally Adaptive Regret (1/2)

Theorem (Locally Adaptive Regret, case d = 1, > 1 - Liautaud et al. (2024))
Under assumptions, for any f € Lip} (&X), LocAdaBoost achieves

Reg,(f) < inf {\/Tﬁ [+ LD +]X]* > La(f)2od™ Tn|}7

TEeP(To) neL(T)

with L, (f) local Holder constants.

If (¢;) are exp-concave [3]

Regr(f) S inf {IE(T)JrI/YIa Y La(f2i® IT}

TeP(To) neL(T)

19



Optimal and Locally Adaptive Regret (2/2)

Corollary (Minimax Regret, d = 1, > 1 - Liautaud et al. (2024))
For any f € Lip§ (X), L > 0, LocAdaBoost achieves

(|X‘al_/(f)>42a2+1 Tz—al+1 ’fgt are exp-concave,
R < LAT))™
egr(f) S { (X[ L(f)) %= T

where L(f) = (31 Znecn) | X | L (£)Y/ ).

@ Remark: it could also adapt to local regularities (o)
v Minimax optimality

v Adaptivity to local regularities (L) and «

v Adaptivity to the loss curvature

[3] e.g squared, logistic loss

20



Conclusion

> New generic Online Gradient Boosting procedure;
» Online Gradient Boosting coupled with Chaining-Tree achieve minimax regret;

» Our unique LocAdaBoost algorithm both adapts optimaly to local regularities of
the competitor and curvature of sequential losses;

> First constructive algorithm to achieve optimal locally adaptive regret;

o Future work: extend the boosting procedure to other learners to approach other
classes of functions.

Thank you!

Questions?

[3] Link to the paper: https://arxiv.org/abs/2416.03363

21


https://arxiv.org/abs/2410.03363

Comparison with the litterature

Ref. Assumptions Upper bound
] (¢;) exp-concave, L > 0 unknown min {v/LT, L§T%}

(¢;) convex, L > 0 unknown VLT
[5]  (4)square loss, L > 0 unknown VLT
(6] (¢;) absolute loss, L > 0 known L3T3
(4) square loss, L > 0 known VLT
[71  (¢) square loss, L = 1 known T3
[8] (4) convex, L =1 known VT

[4] Liautaud, Gaillard, and Wintenberger, “Minimax Adaptive Boosting for Online Nonparametric Regression”.
[5] Kuzborskij and Cesa-Bianchi, “Locally-adaptive nonparametric online learning”.

[6] Hazan, Agarwal, and Kale, “Logarithmic regret algorithms for online convex optimization”.

[7]1 Gaillard and Gerchinovitz, “A Chaining Algorithm for Online Nonparametric Regression”.

[8] Cesa-Bianchi et al,, “Algorithmic chaining and the role of partial feedback in online nonparametric learning”.
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What about the excess-risk in batch learning?

> Online regret bound againt any f ¢ F:
1 1<, 1 &
7 Rerr(f) = 7 2w —90)* = 1 3_(F () = )” = o(0).

> I {(m,5) Yoy S (X, Y), £(§) = (§ — ye)?, excess risk of fr = L 37 f, is bounded as

~ 5 % Convexity 1 £ R 5 %
E[(fr(X) - Y)?] - E[(f(X) - Y)?] < D E[(fu(X) - Y)*] - E[(f(X) - Y)?]

23



Experiments (1/3)

Regression setting: y; = f(x;) + &;, where g, ~ N(0,0?) with
o =0.5,f(x) = sin(10z) + cos(5x) + 5, for x € X = [0,1] and sup,, | f'(z)| < 15 =: L.
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Experiments (2/3)
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Experiments (3/3)

X 4
3 % % Chaining Tree %
- LocAdaBoost x
» x
9 —
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