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Online Learning &
Non-Parametric Regression



Classical Machine Learning

The learner:

Ê observes a whole training dataset with labels/targets:

(x1, y1), . . . , (xT , yT )
iid∼ (X,Y ) with distribution P over X × Y.
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Classical Machine Learning

The learner: −→ Learning method

Ê observes a whole training dataset with labels/targets:

(x1, y1), . . . , (xT , yT )
iid∼ (X,Y ) with distribution P over X × Y.

Ë builds a function f̂ : X → Y ∈ F with small risk EP[`(f̂(X), Y )] by minimizing:

R(f̂) =
1

T

T∑
t=1

`(f̂(xt), yt),

where ` : Y × Y → R is a prescribed loss function.
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Classical Machine Learning

The learner: −→ Learning method −→ Prediction on test data

Ê observes a whole training dataset with labels/targets:

(x1, y1), . . . , (xT , yT )
iid∼ (X,Y ) with distribution P over X × Y.

Ë builds a function f̂ : X → Y ∈ F with small risk EP[`(f̂(X), Y )] by minimizing:

R(f̂) =
1

T

T∑
t=1

`(f̂(xt), yt),

where ` : Y × Y → R is a prescribed loss function.
Ì controls the error of new data if they are similar to the training data.
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Classical Machine Learning

The learner: −→ Learning method −→ Prediction on test data

Ê observes a whole training dataset with labels/targets:

(x1, y1), . . . , (xT , yT )
iid∼ (X,Y ) with distribution P over X × Y.

Ë builds a function f̂ : X → Y ∈ F with small risk EP[`(f̂(X), Y )] by minimizing:

R(f̂) =
1

T

T∑
t=1

`(f̂(xt), yt),

where ` : Y × Y → R is a prescribed loss function.
Ì controls the error of new data if they are similar to the training data.
m

We won’t deal with it!
m
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A dive into Sequential Learning

Y In sequential learning:
� data are acquired and treated on the fly;

� data are not necessarily iid, possibly adversarial;

� feedbacks are received and algorithms updated step by
step.

? Why online learning? In some applications, the environment may evolve over time
and data may be available sequentially, e.g.:

� ads to display,
� electricity consumption forecast,

� spam detection,
� aggregation of expert knowledge.
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Setting of the talk (1/2)

The scenario is as follows:

At each round t = 1, . . . , T , the learner or algorithm
Ê observes input xt ∈ X
Ë makes prediction f̂t(xt) ∈ R Choose f̂t before observing `t

Ì incurs loss `t(f̂t(xt)) and discover gradients gt No assumptions on how `t is generated!

Í updates prediction function f̂t → f̂t+1

· · · → xt = → → ’zebra’→ → xt+1 = → · · ·

Assumptions:
� `1, . . . , `T are convex, di�erentiable and G-Lipschitz, with G > 0;
� X ⊂ Rd bounded subset with |X | = supx,x′∈X ‖x− x′‖∞.
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Setting of the talk (2/2)

Ù Goal: find f̂1, . . . , f̂T that...
minimize the cumulative loss

T∑
t=1

`t(f̂t(xt))

⇔ predict almost as well as the best function f

T∑
t=1

`t(f̂t(xt))−
T∑
t=1

`t(f(xt))︸ ︷︷ ︸
:=RegT (f)

+ ’Non-Parametric regression’: (f̂t) is compared to benchmark functions f ∈ F , e.g.
Lipschitz
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Regret analysis

µ We want f̂1, . . . , f̂T such that regret against f ∈ F is as small as possible

RegT (f) =

T∑
t=1

`t(f̂t(xt))︸ ︷︷ ︸
our performance

−
T∑
t=1

`t(f(xt))︸ ︷︷ ︸
reference performance

= o(T )︸ ︷︷ ︸
goal

, Di�culty: no stochastic assumption on data (xt, `t)!
µ f̂1, . . . , f̂T have to perform well with all arbitrary time series i.e. approaching

inf
f̂1

sup
x1,`1

inf
f̂2

sup
x2,`2

· · · inf
f̂T

sup
xT ,`T

sup
f∈F

RegT (f).

? How to sequentially build such predictors?
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Building Predictions with Online
Gradient Boosting



Boosting uses ”wisdom of the crowd”

� Boosting: ensemble method com-
bining multiple weak learners to
create a strong learner

� Each model corrects/learns from
errors of its peers

� Results in a highly accurate pre-
dictive model [1]

[1] e.g. AdaBoost and XGBoost



How to deal with weak learners?

µ W ⊂ RX a set of real valued functions X → R (e.g. trees, piecewise constant functions)

µ spanN (W) := {
∑N
n=1 βnhn, hn ∈ W, βn ∈ R} linear function space associated toW

x For each t = 1, . . . , T , we use and train N > 1 sequential predictors fromW

h1,t

+

h2,t

+ · · · +

hN−1,t

+

hN,t

and we form a strong predictor in spanN (W), at any time t > 1, as

f̂t =

N∑
n=1

βn,thn,t , βn,t ∈ R, n ∈ [N ]
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A new Online Gradient Boosting procedure

Ù Goal: find a sequence of functions

f̂t =
∑
n

βn,thn,t ∈ spanN (W) , 1 6 t 6 T,

β1,th1,t

βn−1,thn−1,t

...

βn,thn,t

...

βn+1,thn+1,t

βN,thN,t

βn,t+1hn,t+1

. .
.

. . .

gn,t

Figure 1: Boosting at time t.

Ò At t > 1, each n ∈ [N ] is boosted with OGB as:

Ê Predict f̂t(xt), define f̂−n,t = f̂t − βn,thn,t
Ë (βn,t, hn,t) receives its gradient

gn,t =
[
∇(βn,hn)`t

(
f̂−n,t(xt) + βnhn(xt)

)]
(βn,hn)=(βn,t,hn,t)

Ì Find (βn,t+1, hn,t+1) ∈ R×W to solve

min
βn,hn

`t(f̂−n,t(xt) + βnhn(xt)) (1)

using gradient gn,t.

11



Online Gradient Boosting in
Chaining-Tree



Tree-based method

� A regular decision-tree (T , X̄ , W̄) over X is
made of:
� a set of nodes N (T ) including leaves L(T );
� a family of subregions

X̄ = {Xn, n ∈ N (T )}

partitionning X by level;
� a family of prediction functions

W̄ = {hn, n ∈ N (T )}.

(h1,X )

(h2,X2)

(h4,X4) (h5,X5)

(h3,X3)

(h6,X6) (h7,X7)

Figure 2: Example of T with depth
d(T ) = 3 over X ⊂ R.

� The idea will be to boost the predictive nodes W̄ .
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Chaining-Tree

+

+ +

θ1

θ4
θ5

θ2
θ3

θ6 θ7

X

Figure 3: Prediction of a CT
T of depth d(T ) = 3 on
X ⊂ R.

Definition (Chaining-Tree)

A Chaining-Tree (CT) prediction function f̂ over X is defined
as

f̂(x) =
∑

n∈N (T )

hn(x) , x ∈ X ,

where:
� hn(x) = θn1x∈Xn are constant functions;
� each interior node n ∈ N (T )\L(T ) has 2d children forming

a regular partition of Xn.

� Remark: contrary to standard methods, we predict with all nodes n ∈ N (T ).
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Approximation process by a Chaining-Tree

µ Assume `t(ŷ) = (ŷ − yt)2 and we launch a CT T with depth d(T ) = 1, 2, 3, over T data.
We have the following illustration:
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Approximation process by a Chaining-Tree

µ Assume `t(ŷ) = (ŷ − yt)2 and we launch a CT T with depth d(T ) = 1, 2, 3, over T data.
We have the following illustration:
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Online Boosting in a Chaining-Tree

Ù Goal: Sequentially training CT T , i.e. tuning over time the family

W̄t := {hn,t = θn,t1Xn , n ∈ N (T )}.

x We use OGB on W̄t, with βn = 1, N = |N (T )|, gn,t = `′t(f̂t(xt))1xt∈Xn and a
parameter-free [2] procedure in minimization step Ì, i.e. for any node n ∈ N (T ),∑

t∈Tn gn,t(θn,t − θn) . G|θn|
√
|Tn| , with θn ∈ R, Tn = {1 6 t 6 T, gn,t 6= 0} ,

ì Target class F : α-Hölder continous functions (0 < α 6 1) over X ⊂ Rd:

LipαL(X ) := {f : X → R : |f(x)− f(x′)| 6 L‖x− x′‖α∞ ,∀x, x′ ∈ X}.

[2] Orabona and Pál, “Coin betting and parameter-free online learning”; Mhammedi and Koolen, “Lipschitz and
comparator-norm adaptivity in online learning”; Cutkosky and Orabona, “Black-box reductions for parameter-free
online learning in banach spaces”.
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Optimal regret against Lipschitz functions

Theorem (Regret of OGB-CT vs Lipschitz functions - Liautaud et al. (2024))
OGB on CT (T , X̄ , W̄) with Xroot = X , θn,1 = 0, n ∈ N (T ) and d(T ) = 1

d log2 T has regret:

sup
f∈LipαL(X )

RegT (f) . GLXα


√
T if d < 2α ,

log2 T
√
T if d = 2α ,

T 1−αd if d > 2α ,

for any L > 0, α ∈ (0, 1].

� Our rates are minimax over LipαL (Rakhlin et al. (2015)) + we do not need prior
knowledge of neither L nor α.

� Computationally tractable: xt falls into only one subregion Xn for each level
1, . . . ,d(T ): we update O( 1

d log2(T )) at each round.

16



Adaptive Boosting in Online
NonParametric Regression



Adaptivity to local profile of the competitor

Ù Goal: learn the best pruned tree i.e. the best partition over X to fit the competitor.
Example 1:
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Ù Goal: learn the best pruned tree i.e. the best partition over X to fit the competitor.
Example 2:
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Adaptivity to local profile of the competitor

Ù Goal: learn the best pruned tree i.e. the best partition over X to fit the competitor.
Example 2:
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Locally Adaptive Boosting - LocAdaBoost

x We base our predictions on a core tree T0 associated to:

f̂t(xt) =
∑

n∈N (T0)

wn,tf̂n,t(xt) , ∀t > 1,

Figure 4: T0

where for any n ∈ N (T0):
� f̂n is a CT rooted at Xn and trained as before;

� wn,t weight associated.

We use OGB on
� βn,t = wn,t, n ∈ N (T0);

� and gradient g̃t = ∇(wn)`t(f̂t(xt))|(wn)=(wn,t).
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Optimal and Locally Adaptive Regret (1/2)

Theorem (Locally Adaptive Regret, case d = 1, α > 1
2 - Liautaud et al. (2024))

Under assumptions, for any f ∈ LipαL(X ), LocAdaBoost achieves

RegT (f) . inf
T ∈P(T0)

√T |L(T )|+ |L(T )|+ |X |α
∑

n∈L(T )

Ln(f)2−αd(n)
√
|Tn|

 ,

with Ln(f) local Hölder constants.

If (`t) are exp-concave [3]

RegT (f) . inf
T ∈P(T0)

|L(T )|+ |X |α
∑

n∈L(T )

Ln(f)2−αd(n)
√
|Tn|
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Optimal and Locally Adaptive Regret (2/2)

Corollary (Minimax Regret, d = 1, α > 1
2 - Liautaud et al. (2024))

For any f ∈ LipαL(X ), L > 0, LocAdaBoost achieves

RegT (f) .

{
(|X |αL̄(f))

2
2α+1T

1
2α+1 if `t are exp-concave ,

(|X |αL̄(f))
1
2α

√
T ,

where L̄(f) =
(

1
|X |
∑
n∈L(T ) |Xn|Ln(f)1/α

)α.
� Remark: it could also adapt to local regularities (αn)

¢ Minimax optimality

¢ Adaptivity to local regularities (Ln) and α

¢ Adaptivity to the loss curvature

[3] e.g. squared, logistic loss
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Conclusion

� New generic Online Gradient Boosting procedure;

� Online Gradient Boosting coupled with Chaining-Tree achieve minimax regret;

� Our unique LocAdaBoost algorithm both adapts optimaly to local regularities of
the competitor and curvature of sequential losses;

� First constructive algorithm to achieve optimal locally adaptive regret;

Å Future work: extend the boosting procedure to other learners to approach other
classes of functions.

Thank you!

Questions?

[3] Link to the paper: https://arxiv.org/abs/2410.03363
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Comparison with the litterature

Ref. Assumptions Upper bound

[4]
(`t) exp-concave, L > 0 unknown min

{√
LT ,L

2
3T

1
3

}
(`t) convex, L > 0 unknown

√
LT

[5] (`t) square loss, L > 0 unknown
√
LT

[6]
(`t) absolute loss, L > 0 known L

1
3T

2
3

(`t) square loss, L > 0 known
√
LT

[7] (`t) square loss, L = 1 known T
1
3

[8] (`t) convex, L = 1 known
√
T

[4] Liautaud, Gaillard, and Wintenberger, “Minimax Adaptive Boosting for Online Nonparametric Regression”.
[5] Kuzborskij and Cesa-Bianchi, “Locally-adaptive nonparametric online learning”.
[6] Hazan, Agarwal, and Kale, “Logarithmic regret algorithms for online convex optimization”.
[7] Gaillard and Gerchinovitz, “A Chaining Algorithm for Online Nonparametric Regression”.
[8] Cesa-Bianchi et al., “Algorithmic chaining and the role of partial feedback in online nonparametric learning”.
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What about the excess-risk in batch learning?

µ Online regret bound againt any f ∈ F :

1

T
RegT (f) =

1

T

T∑
t=1

(f̂t(xt)− yt)2 −
1

T

T∑
t=1

(f(xt)− yt)2 = o(1).

µ If {(xt, yt)}Tt=1
iid∼ (X,Y ), `t(ŷ) = (ŷ − yt)2, excess risk of f̄T = 1

T

∑T
t=1 f̂t is bounded as

E
[
(f̄T (X)− Y )2

]
− E

[
(f(X)− Y )2

] Convexity
6

1

T

T∑
t=1

E
[
(f̂t(X)− Y )2

]
− E

[
(f(X)− Y )2

]
=

1

T
E
[

RegT (f)
]

= o(1).
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Experiments (1/3)

Regression setting: yt = f(xt) + εt, where εt ∼ N (0, σ2) with
σ = 0.5,f(x) = sin(10x) + cos(5x) + 5, for x ∈ X = [0, 1] and supx |f ′(x)| 6 15 =: L.
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Experiments (2/3)

25



Experiments (3/3)
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