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Setting: online regression with individual sequences (1/2)

Y Online prediction scenario: at each round t ∈ N∗, the forecaster
Ê observes an input xt ∈ X ;
Ë chooses a prediction f̂t(xt) ∈ R; Choose f̂t before observing `t

Ì incurs a loss `t(f̂t(xt)) No assumptions on how `t is generated

Í updates his prediction function f̂t → f̂t+1 Based on observed gradients

· · · → xt = → → ’zebra’→ → xt+1 = → · · ·

Ù Goal: given some large (nonparametric) function set F ⊂ RX , we want to minimize
the regret against any competitor f ∈ F

RegT(f ) =
T∑
t=1

`t(f̂t(xt))︸ ︷︷ ︸
our performance

−
T∑
t=1

`t(f (xt))︸ ︷︷ ︸
reference performance

= o(T)︸ ︷︷ ︸
goal

.
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Setting: online regression with individual sequences (2/2)

, Individual sequences: no stochastic assumption on data (xt, `t)!
f̂1, . . . , f̂T have to perform well with all arbitrary and possibly adversarial sequences.

x Assumptions:
� `1, . . . , `T are G-Lipschitz convex losses, with G > 0;
� X ⊂ Rd bounded compact subset with dimension d ≥ 1;
� F = Bspq the set of Besov functions, with s > d

p , 1 6 p,q 6∞.
→ Multiscale representation: {ϕj0,k, ψj,k} an orthonor-
mal basis of L2(X ), for any f ∈ Lp(X )

f =
∑
k∈Λ̄j0

αj0,kϕj0,k +
∑
j≥j0

∑
k∈Λj

βj,kψj,k. (1)

f ∈ Bspq if ‖f‖Bspq := ‖αj0,·‖`p +
(∑

j≥j0 2
j(s+ d

2−
d
p )q∥∥βj,·∥∥q`p) 1

q
<∞. (2)
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Contribution 1: online wavelet regression

We present an online learning method leveraging a wavelet structure, at t ≥ 1:
Ê Receive input xt, predict f̂t(xt) =

∑
j,k cj,k,t ψj,k(xt), and obtain gradients (gj,k,t)j,k

Ë Update each wavelet coe�cient cj,k,t using associated gradient gj,k,t and a
parameter-free subroutine (Mhammedi et al., 2020).

Our algorithm achieves a regret against any function f ∈ Bspq

RegT(f ) . G‖f‖Bspq

{√
T, if d ≤ 2s or p < 2,

T1− s
d , if d > 2s.

( Adaptivity to s,p,q and ‖f‖Bspq !
( Automatic thresholding: no need of an

explicit threshold!

� Our rates are minimax over Bspq for general
convex losses (Rakhlin et al., 2015).

� Our algorithm is computationally
tractable.
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Contribution 2: (fast) learning in heterogeneous environment

� (Xn) dyadic subsets ofX , forming partitions at di�erent scales
� (f̂n) wavelet regressors with di�erent starting scale adapted

to (Xn)

We present a constructive algorithm based on expert aggrega-
tion, at each time t ≥ 1, given B ≥ ‖f‖∞:

f̂1

f̂4
f̂5

f̂2
f̂3

f̂6 f̂7

X
xt

Et = {1, 2, 5}

Ê Receive input xt, define active expert set Et = {n : xt ∈ Xn}
Ë Predict f̂t(xt) =

∑
n∈Et wn,t [̂fn,t(xt)]B, and obtain gradients with respect to (wn,t) and

wavelet coe�cients
Ì Update active weights (wn,t)n∈Et using a second-order aggregation algorithm

(Gaillard, Stoltz, and Van Erven; Wintenberger, 2014; 2017) and active wavelet
predictors (f̂n,t)n∈Et using associated gradients.
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Contribution 2: (fast) learning in heterogeneous environment

We achieve local and optimal regret against any competitor f ∈ Bspq, B ≥ ‖f‖∞ with
exp-concave losses (i.e., ŷ 7→ exp(−η`t(ŷ)) concave)

RegT(f ) . G
∑

n

(
B1−

2d
2sn+d

(
2−l(n)sn‖f‖sn

) 2d
2sn+d |Tn|

d
2sn+d1sn> d

2
+2−l(n)sn‖f‖sn |Tn|1−

sn
d 1sn< d

2
+B
)

where
∑

n is over any partition (Xn), Tn = {1 6 t 6 T : xt ∈ Xn}, sn regularity over Xn.

( Adaptivity to local regularities (‖f‖sn) with
respect to the partition;

( Adaptivity to the loss curvature;

� Minimax and low regret in highly-regular re-
gions (sn � 1);

� Our algorithm is computationally tractable. s1 = 0.5
X1

s2 = 0.8
X2

s3 = 3
X3

s4 = 5
6

X4
s5 = 0.9
X5

X

f
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Conclusion

Å First constructive algorithm achieving optimal and locally adaptive regret against
Besov-smooth competitors;

Å A single algorithm that adapts simultaneously to the competitor’s local regularity
and to the curvature of the sequential losses;

Å Local adaptivity yields global gains: our method is locally finer, hence globally
superior to global approaches.

Thank you and see you at the poster!

Questions?
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