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Setting: online regression with individual sequences (1/2)

& Online prediction scenario: at each round t € N*, the forecaster
@ observes an input x; € X;

@ chooses a prediction fi(x;) € R; Choose f; before observing ¢

® incurs a loss Et(ft(xt)) No assumptions on how £ is generated

® updates his prediction function f; — fti4 Based on observed gradients
~-axr:%:a &) a'zebra'e@ axm:ﬁ]am

Q Goal: given some large (nonparametric) function set 7 ¢ R, we want to minimize
the regret against any competitor f € F

T T
Regr(f) = t(filx)) — Y a(f(x))  =o(T).
\tL,_/ \t:,_/ goal
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Setting: online regression with individual sequences (2/2)

A Individual sequences: no stochastic assumption on data (X, ¢)!
fr,...,fr have to perform well with all arbitrary and possibly adversarial sequences.

s’ Assumptions:
> (,,..., 07 are G-Lipschitz convex losses, with G > ©;
> X c RY bounded compact subset with dimension d > 1;
> F = B}, the set of Besov functions, with s > g, 1< p,g < oo
— Multiscale representation: {yj, k. ¥jr} an orthonor-
mal basis of L2(X), for any f € LP(X)
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Contribution 1: online wavelet regression

We present an online learning method leveraging a wavelet structure, att > 1
@ Receive input x¢, predict ]?t(xt) = >k Gkt Vjk(Xe), and obtain gradients (gj k.t); k
@® Update each wavelet coefficient ¢;, ; using associated gradient g; . and a
parameter-free subroutine (Mhammedi et al.,, 2020).
Our algorithm achieves a regret against any function f € By,

VT, ifd<2sorp<a2,
T'-a, ifd> 2s.

Regr(f) < G||f||5,§,q {

W Adaptivity to s, p, g and ||f||ss,! W Our rates are minimax over B, for general
% Automatic thresholding: no need of an convex losses (Rakhlin et al., 2015).
explicit threshold! Our algorithm is computationally
tractable.



Contribution 2: (fast) learning in heterogeneous environment

Xt }‘\1

> (AX,) dyadicsubsets of X, forming partitions at different scales 7
> (fa) wavelet regressors with different starting scale adapted — f

to (Xn) . ;
- A
We present a constructive algorithm based on expert aggrega- % i —
tion, at each time t > 1, given B > ||f ||oo: & =1{1,2,5}

@ Receive input x;, define active expertset & = {n: x; € X}

® Predict ﬁ(xt) = Zne& Wnyt[fn_’t(xt)]g, and obtain gradients with respect to (wp¢) and
wavelet coefficients

® Update active weights (Wn t)neg, USINg a second-order aggregation algorithm
(Gaillard, Stoltz, and Van Erven; Wintenberger, 2014; 2017) and active wavelet
predictors (f,,i),,egt using associated gradients.



Contribution 2: (fast) learning in heterogeneous environment

We achieve local and optimal regret against any competitor f € Byg, B > ||f]|oo With
exp-concave losses (i.e., ¥ — exp(—nt:(y)) concave)

2d d

_2d_ 5
Regr(f) < 6, (B (270 s, #070 | Ta 0520 o g 27 )5 ||f||sn|rn|1-dﬂsn<z+3)

where Y~ is over any partition (Xp), To = {1 <t < T:x € Ay}, sp regularity over &j,.
W Adaptivity to local regularities (||f]s,) with
respect to the partition;

% Adaptivity to the loss curvature;

¥ Minimax and low regret in highly-regular re-
gions (sp > 1);

5, =0.5's,=0.8

L our algorithm is computationally tractable. —




Conclusion

+ First constructive algorithm achieving optimal and locally adaptive regret against
Besov-smooth competitors;

« A single algorithm that adapts simultaneously to the competitor's local regularity
and to the curvature of the sequential losses;

# Local adaptivity yields global gains: our method is locally finer, hence globally
superior to global approaches.

Thank you and see you at the poster!

Questions?



References

Cesa-Bianchi, Nicolo and Gabor Lugosi (2006). Prediction, Learning, and Games. Cambridge University Press.

Cesa-Bianchi, Nicolo et al. (2017). “Algorithmic chaining and the role of partial feedback in online
nonparametric learning”. In: Conference on Learning Theory. PMLR, pp. 465-481.

Cutkosky, Ashok and Francesco Orabona (2018). “Black-box reductions for parameter-free online learning in
banach spaces”. In: Conference On Learning Theory. PMLR, pp. 1493-1529.

Gaillard, Pierre and Sebastien Gerchinovitz (2015). “A Chaining Algorithm for Online Nonparametric
Regression”. In: COLT.

Gaillard, Pierre, Gilles Stoltz, and Tim Van Erven (2014). “A second-order bound with excess losses”. In:
Conference on Learning Theory. PMLR, pp. 176-196.

Hazan, Elad, Amit Agarwal, and Satyen Kale (2007). “Logarithmic regret algorithms for online convex
optimization”. In: Machine Learning 69.2, pp. 169-192.

Kuzborskij, Ilja and Nicolo Cesa-Bianchi (2020). “Locally-adaptive nonparametric online learning”. In:
Advances in Neural Information Processing Systems 33, pp. 1679-1689.



Liautaud, Paul, Pierre Gaillard, and Olivier Wintenberger (2024). “Minimax-optimal and Locally-adaptive
Online Nonparametric Regression”. In: arXiv preprint arXiv:2410.03363.

Mhammedi, Zakaria and Wouter M Koolen (2020). “Lipschitz and comparator-norm adaptivity in online
learning”. In: Conference on Learning Theory. PMLR, pp. 2858-2887.

Orabona, Francesco and David Pal (2016). “Coin betting and parameter-free online learning”. In: Advances in
Neural Information Processing Systems 29.

Rakhlin, Alexander and Karthik Sridharan (2014). “Online non-parametric regression”. In: Conference on
Learning Theory. PMLR, pp. 1232-1264.

— (2015). “Online nonparametric regression with general loss functions”. In: arXiv preprint
arXiv:1501.06598.

Wintenberger, Olivier (2017). “Optimal learning with Bernstein online aggregation”. In: Machine Learning
106.1, pp. 119-141.

Zinkevich, Martin (2003). “Online convex programming and generalized infinitesimal gradient ascent”. In:
Proceedings of the 20th international conference on machine learning (icml-03), pp. 928-936.



	References

