Université Paris Diderot

Monday November 13th, 2017

Markov Chains

Exam

Class notes allowed - Books, electronic equipment forbidden

Exercice 1 The barbell graph

Let n be an integer, $n \geq 3$, and the graph \mathcal{G} with $3 n$ vertices obtained by linking two copies of the complete graph with n vertices by a segment of length $n+1$.
More precisely let $\mathcal{G}_{1}, \mathcal{G}_{2}$ the two copies of the complete graph with n vertices, and \mathcal{H} the segment with $n+2$ vertices linking the two. The vertex of \mathcal{G}_{1} identified with the first extremity of \mathcal{H} is denoted v, that of \mathcal{G}_{2} identified with the other extremity is denoted w. Let us further denote a one vertex of \mathcal{G}_{1} distinct from v and z a vertex of \mathcal{G}_{2} distinct from w, and finally v^{\prime} denotes the neighbour of v in \mathcal{H} - see the picture below.

The graph \mathcal{G}, for $n=9$.
We let $\left(X_{t}, t \geq 0\right)$ the continuous-time simple random walk on \mathcal{G} (when at x, it jumps to any neighbour of x, independently at rate 1), and ($Y_{k}, k \geq 0$) the associated jump chain. We use the notation \mathbb{P}^{X} for the law of X, and \mathbb{P}^{Y} for the law of Y.
We are interested, for both chains, in the hitting time of z starting from a.

1. Is the chain Y irreducible, reversible, aperiodic? Is it positive recurrent? Find the set of its invariant distributions.
2. What can be deduced for the continuous-time chain X ? What about its invariant distributions?
3. Compute $\mathcal{R}(a \leftrightarrow z)$, deduce that

$$
\mathbb{E}_{a}^{Y}\left[T_{z}\right]=\frac{\left(n^{2}+n+4\right)\left(n^{2}+1\right)}{n}
$$

and find an equivalent of this quantity when $n \rightarrow \infty$.
Compute $\mathbb{E}_{a}^{X}\left[T_{z}\right]$ and find an equivalent of this quantity when $n \rightarrow \infty$.
4. In this question we work with the discrete-time chain Y.

Let $B_{1}=\mathcal{G}_{1} \backslash\{v\}, B_{2}=\mathcal{G}_{2} \backslash\{w\}$ and recall that v^{\prime} is the neighbour of v in \mathcal{H}. Show that $\mathbb{P}_{v^{\prime}}^{Y}\left(T_{B_{2}}<T_{B_{1}}\right)=\frac{n}{n^{2}+1}$. Deduce that under $\mathbb{P}_{a}^{Y}, T_{B_{2}} \leq G$, where
$G \sim \operatorname{Geom}\left(\frac{1}{(n-1)\left(n^{2}+1\right)}\right)$. What is, under \mathbb{P}^{Y}, the limit in law of G / n^{3} when $n \rightarrow \infty$?
Compare the asymptotic behaviour of $\mathbb{E}[G], \mathbb{E}_{a}^{Y}\left[T_{B_{2}}\right], \mathbb{E}_{a}^{Y}\left[T_{z}\right]$.
Deduce the limit in law of $T_{B_{2}} / n^{3}$, and then that of T_{z} / n^{3}, as $n \rightarrow \infty$.

1. The discrete chain is irreducible because the graph is connex. The graph is finite so the chain is positive recurrent. The graph \mathcal{G}_{1} has at least three vertices, so starting from a, the chain Y comes back to a in 2 (resp. 3) steps with positive probability, hence the chain Y is aperiodic.
In fact the chain corresponds to a conductance model (where each edge is equipped with conductance 1) so it is reversible, in particular it possesses a unique invariant distribution (say π) such that $\pi(x)=\frac{d_{x}}{d_{\mathcal{G}}}, x \in \mathcal{V}$. More precisely

$$
c_{\mathcal{G}}=2(n-1)^{2}+2 n+2 n=2 n^{2}+2
$$

so if $x \in \mathcal{G}_{1} \cup \mathcal{G}_{2} \backslash\{v, w\}, \pi(x)=\frac{n-1}{2 n^{2}+2}$, if $x \in\{v, w\}, \pi(x)=\frac{n}{2 n^{2}+2}$ and if $x \in \mathcal{H} \backslash\{v, w\}, \pi(x)=\frac{2}{2 n^{2}+2}$.
2. Since Y is, the chain X is irreducible, positive recurrent. It has a unique invariant distribution, and it is (say λ) the uniform distribution on \mathcal{V}. Indeed $Q(x, y)=Q(y, x)$, so X is reversible with respect to λ.
3. Let us compute $\mathcal{R}(a \leftrightarrow z)$ by looking at the potential associated with a current from a to z. We notice that vertices of \mathcal{G}_{1} distinct from a, v play symmetric roles, so they must have same potential and we can identify them as a single vertex, say y. Now, vertex a is connected to y by $n-2$ edges of conductance 1 , equivalent to a unique conductance $n-2$, and y is also connected to v by $n-2$ edges of conductance 1 . The two resistances in series add up to a resistance $2 /(n-2)$, but let us not forget the one edge between a and v, so the effective conductance between a and v is $(n-2) / 2+1=n / 2$. By a similar reasoning the effective resistance between w and z is also $n / 2$, and of course the effective resistance between v and w is $n+1$. It remains to sum up resistances in series to obtain

$$
\mathcal{R}(a \leftrightarrow z)=\frac{4}{n}+n+1=\frac{n^{2}+n+4}{n}
$$

By symmetry $\mathbb{E}_{a}^{Y}\left[T_{z}\right]=\mathbb{E}_{z}^{Y}\left[T_{a}\right]$, so using the commute time identity for discrete-time chains we find

$$
\mathbb{E}_{a}^{Y}\left[T_{z}\right]=\frac{c_{\mathcal{G}} \mathcal{R}(a \leftrightarrow z)}{2}=\frac{\left(n^{2}+1\right)\left(n^{2}+n+4\right)}{n}
$$

as required, and $\mathbb{E}_{a}^{Y}\left[T_{z}\right] \sim n^{3}$ as $n \rightarrow \infty$.
On the other hand, again by symmetry $\mathbb{E}_{a}^{X}\left[T_{z}\right]=\mathbb{E}_{z}^{X}\left[T_{a}\right]$, and so by the commute time identity for continuous-time chains,

$$
\mathbb{E}_{a}^{X}\left[T_{z}\right]=|\mathcal{V}| \frac{\mathcal{R}(a \leftrightarrow z)}{2}=\frac{3 n}{2} \frac{n^{2}+n+4}{n}
$$

so that $\mathbb{E}_{a}^{X}\left[T_{z}\right] \sim \frac{3 n^{2}}{2}$ as $n \rightarrow \infty$.
4. In this part we only deal with the discrete-time chain, and so we drop the superscript Y from our notation.
Let us first compute, as suggested, $\mathbb{P}_{v^{\prime}}\left(T_{B_{2}}<T_{B_{1}}\right)$. Identifying vertices of B_{1} as, say, y_{1}, and those of B_{2} as, say, y_{2}, it is easily seen that the effective conductance between v^{\prime} and y_{1} is $(n-1) / n$, and that between v^{\prime} and y_{2} is $(n-1) /\left(n^{2}-n+1\right)$, thus

$$
\mathbb{P}_{v^{\prime}}\left(T_{B_{2}}<T_{B_{1}}\right)=\frac{\frac{n-1}{n}}{\frac{n-1}{n}+\frac{n-1}{n^{2}-n+1}}=\frac{n}{n^{2}+1}
$$

Now, for the chain to go from any $a \in B_{1}$ to B_{2} before returning to B_{1}, it must go at time 1 to v and at time 2 to v^{\prime} (otherwise it has returned to B_{1} in the first or second step), and then it must go from v^{\prime} to B_{2} before it returns to B_{1}. Thus

$$
\mathbb{P}_{a}\left(T_{B_{2}}<T_{B_{1}}^{+}\right)=\frac{1}{n-1} \frac{1}{n} \frac{n}{n^{2}+1}=\frac{1}{n-1} \frac{1}{n^{2}+1}
$$

thus, thanks to the Markov property the number of visits to B_{1} before hitting B_{2}, that is $G:=\sum_{k=0}^{T_{B_{2}}-1} \mathbb{1}_{\left\{Y_{k} \in A\right\}}$, is geometric with parameter $1 /\left((n-1)\left(n^{2}+1\right)\right)$. Of course $T_{B_{2}}$ is larger than G, which establishes the desired result.
Now, by e.g. looking at moment generating functions, it is easily seen that G / n^{3} converges in distribution as $n \rightarrow \infty$ towards an exponential variable with parameter 1.

Finally we observe that $n^{3} \sim \mathbb{E}[G] \leq \mathbb{E}_{a}\left[T_{B_{2}}\right] \leq \mathbb{E}_{a}\left[T_{z}\right] \sim n^{3}$, so that the expected time spent outside of B_{1} before reaching $B_{2}, \mathbb{E}_{a}\left[T_{B_{2}}-G\right]$ is such that $n^{-3} \mathbb{E}_{a}\left[T_{B_{2}}-G\right] \rightarrow 0$. Since we are looking at a nonnegative variable this implies $n^{-3}\left(T_{B_{2}}-G\right) \rightarrow 0$ in probability, and so $n^{-3} G$ and $n^{-3} T_{B_{2}}$ share the same limit in distribution, and we conclude that

$$
n^{-3} T_{B_{2}} \underset{n \rightarrow \infty}{\stackrel{\text { law }}{\rightarrow}} \mathbf{e}_{1},
$$

with \mathbf{e}_{1} is an exponential variable with parameter 1.

Exercice 2 Let $(X(t))_{t \geq 0}$ be the continuous-time simple random walk on the hypercube $\{-1,1\}^{d}$, which, when at x waits for an exponential random time of parameter 1 , and then jumps to one of the d neighbours of x choosen uniformly at random.
When $x \in\{-1,1\}^{d}$ and $i \in\{1, \ldots, d\}$, we write $x_{i} \in\{-1,1\}$ for the i th coordinate of x and $x^{i}=\left(x_{1}, \ldots, x_{i-1},-x_{i}, x_{i+1}, \ldots, x_{d}\right)$ for the neighbour of x along the i th coordinate.
Moreover we let $\mathcal{F}_{t}=\sigma\left(X_{s}, s \geq 0\right)$ for $t \geq 0$.
Finally we write $\mathbf{1}=(1, \ldots, 1) \in\{-1,1\}^{d}$ and $\mathbb{P}_{\mathbf{1}}$ for the law of the chain started at $\mathbf{1}$.

1. Express the generator Q of the chain.
2. For $f:\{-1,1\}^{d} \rightarrow \mathbb{R}$, and $x \in\{-1,1\}^{d}$, establish that

$$
Q f(x)=\frac{1}{d} \sum_{i=1}^{d}\left(f\left(x^{i}\right)-f(x)\right)
$$

3. Does the convergence theorem apply, and if so, what does it state?
4. Is $\left(X_{1}(t), t \geq 0\right)$ a Markov chain?

Let $g(t)=\mathbb{P}_{\mathbf{1}}\left(X_{1}(t)=1\right), t \geq 0$, show that

$$
\exp (t / d) g(t)=1+\frac{1}{d} \int_{0}^{t} \exp (u / d)(1-g(u)) d u
$$

and deduce that $g(t)=\frac{1}{2}(1+\exp (-2 t / d))$ for any $t \geq 0$.
5. For $J \subset\{1, \ldots, d\}$, let $f_{J}(x)=\prod_{j \in J} x_{j}$. Show that $Q f_{J}=\lambda_{J} f_{J}$, for a λ_{J} which you shall compute. Find all eigenvalues of Q with multiplicity.
6. Establish that $\left(M_{t}^{J}:=f_{J}(X(t)) \exp (2 t|J| / d)\right)_{t \geq 0}$ is an $\left(\mathcal{F}_{t}\right)$-martingale, where $|J|$ denotes the cardinal of J. Deduce $\mathbb{P}_{\mathbf{1}}\left(\prod_{j \in J} X_{j}(t)=1\right)$ for $t \geq 0$. Check in particular that you recover the result of question 3.
7. Explain why we could also have established directly that

$$
\mathbb{P}_{\mathbf{1}}\left(\prod_{j \in J} X_{j}(t)=1\right)=\sum_{I \subset J,|I| \mathrm{even}} \prod_{i \in I} \mathbb{P}_{\mathbf{1}}\left(X_{i}(t)=-1\right) \prod_{j \in J \backslash I} \mathbb{P}_{\mathbf{1}}\left(X_{j}(t)=1\right)
$$

and recover the result of question 5. You may first check that if $j=\lfloor|J| / 2\rfloor$,

$$
\left(\frac{1+x}{2}+\frac{1-x}{2}\right)^{|J|}+\left(\frac{1+x}{2}-\frac{1-x}{2}\right)^{|J|}=2 \sum_{k=0}^{j}\binom{|J|}{2 k}\left(\frac{1-x}{2}\right)^{2 k}\left(\frac{1+x}{2}\right)^{|J|-2 k} .
$$

8. Let $(Y(n), n \in \mathbb{N})$ be the discrete-time, lazy simple random walk on $\{-1,1\}^{d}$, i.e. with jump kernel $P=\frac{Q}{2}+I$. Establish that

$$
\mathbb{P}_{\mathbf{1}}\left(\prod_{j \in J} Y_{j}(n)=1\right)=\frac{1+\left(1-\frac{|J|}{d}\right)^{n}}{2}
$$

1. For any $x \in\{-1,1\}^{d}$, we have

$$
Q_{x, x}=-1, \quad Q_{x, x^{i}}=\frac{1}{d}, i \in\{1, \ldots, d\} .
$$

2. It follows directly that for any $x \in\{-1,1\}^{d}$,

$$
Q f(x)=\frac{1}{d} \sum_{i=1}^{d}\left(f\left(x^{i}\right)-f(x)\right)
$$

3. The chain is irreducible, the state space is finite, theorem convergence applies. Since the invariant distribution is the uniform one (which gives mass $2-d$ to each element of $\{-1,1\}^{d}$), the theorem states that whatever the initial distribution μ, whatever $x \in\{-1,1\}^{d}$,

$$
\mathbb{P}_{\mu}\left(X_{t}=x\right) \rightarrow \frac{1}{2^{d}}
$$

4. Since $Q\left(x, x^{1}\right)=1 / d$ whatever x, the process $\left(X_{1}(t), t \geq 0\right)$ is itself a continuous-time Markov chain on $\{-1,1\}$, which changes sign at rate $1 / d$. We write \mathbb{P}_{1} for the law of this chain when started at 1 . By Markov at the first jump of X_{1} (when it happens before t), we have

$$
\begin{aligned}
g(t) & =\exp (-t / d)+\int_{0}^{t} \frac{1}{d} \exp (-s / d) \mathbb{P}_{1}\left(X_{1}(t)=1 \mid X_{1}(s)=-1\right) d s \\
& =\exp (-t / d)+\int_{0}^{t} \frac{1}{d} \exp (-s / d)\left(1-\mathbb{P}_{1}\left(X_{1}(t-s)=1\right)\right) d s
\end{aligned}
$$

where we used Markov property at time s and the fact that 1 and -1 play symmetric roles so that $\mathbb{P}_{-1}\left(X_{1}(t-s)=1\right)=\mathbb{P}_{1}\left(X_{1}(t-s)=-1\right)=1-\mathbb{P}_{1}\left(X_{1}(t-s)=1\right)$. Now, timing by $\exp (t / d)$ and changing variables $u=t-s$ we get

$$
g(t) \exp (t / d)=1+\frac{1}{d} \int_{0}^{t} \exp (u / d)(1-g(u)) d u
$$

as desired. Differenciating, then timing by $\exp (-t / d)$, it comes that

$$
g^{\prime}(t)=\frac{1}{d}-\frac{2}{d} g(t), \quad g(0)=1,
$$

and it is then easy to check that the unique solution to this ODE is

$$
g(t)=\frac{1}{2}(1+\exp (-2 t / d)), \quad t \geq 0
$$

5. By question 2, we have $Q f_{J}(x)=\frac{1}{d} \sum_{i=1}^{d}\left(f_{J}\left(x^{i}\right)-f_{J}(x)\right)$. Now observe that whatever $x \in\{-1,1\}^{d}$, if $i \in J, f_{J}\left(x^{i}\right)=-f_{J}(x)$, while if $i \notin J, f_{J}\left(x^{i}\right)=f_{J}(x)$. It follows that for any $x \in\{-1,1\}^{d}$,

$$
Q f_{J}(x)=\frac{1}{d} \sum_{i \in J}\left(-2 f_{J}(x)\right)=-\frac{2|J|}{d} f_{J}(x),
$$

that is, f_{J} is an eigenfunction of Q associated with the eigenvalue $\lambda_{|J|}=-\frac{2|J|}{d}$.
For $k \in\{0, \ldots, d\}$, there are $\binom{d}{k}$ manners of choosing $J \subset\{1, \ldots, d\}$ such that $|J|=k$, and it is easily seen that the corresponding eigenfunctions form a linearly independent family, so eigenvalue λ_{k} has multiplicity at least $\binom{d}{k}$. Now $\sum_{k=0}^{d}\binom{d}{k}=2^{d}$, hence we have determined all eigenvalues and corresponding multiplicities.
6. Observe first that f_{J} is bounded so integrability condition is obvious. Recall further that f_{J} is a eigenfunction of Q associated with eigenvalue $-\frac{2|J|}{d}$, so it is also an eigenfunction of $P(t)=\exp (t Q)$ associated with eigenvalue $\exp (-2 t|J| / d)$, and it follows that

$$
\begin{aligned}
\mathbb{E}\left[\exp (2(t+s)|J| / d) f_{J}(X(t+s)) \mid \mathcal{F}_{s}\right] & =\exp (2(t+s)|J| / d) P(t) f_{J}(X(s)) \\
& =\exp (2(t+s)|J| / d) \exp (-2 t|J| / d) f_{J}(X(s))=M_{s}^{J}
\end{aligned}
$$

One could also have directly quoted exercise IV.12.

Now for any $t \geq 0$,

$$
\begin{aligned}
1 & =\mathbb{E}_{\mathbf{1}}\left[M_{t}^{J}\right] \\
& =\mathbb{P}_{\mathbf{1}}\left(f_{J}(X(t))=1\right) \exp (2 t|J| / d)-\left(1-\mathbb{P}_{\mathbf{1}}\left(f_{J}(X(t))=1\right)\right) \exp (2 t|J| / d),
\end{aligned}
$$

and thus

$$
\mathbb{P}_{\mathbf{1}}\left(\prod_{j \in J} X_{j}(t)=1\right)=\mathbb{P}_{\mathbf{1}}\left(f_{J}(X(t))=1\right)=\frac{1+\exp (2 t|J| / d)}{2}
$$

For $J=\{1\}$ we recover the result of question 3 .
7. Jump times of X are those of a Poisson process with rate 1 . For any $i \in\{1, \ldots, d\}$, each jump is a jump of X_{i} with probability $1 / d$, independently of other jumps. By properties of Poisson processes, jumps of $\left\{X_{i}, i \in\{1, \ldots, d\}\right\}$ are those of d independent Poisson processes with the same rate $1 / d$. It follows that $\left\{X_{i}, i \in\{1, \ldots, d\}\right\}$ are d independent copies of X_{1}. Moreover,

$$
\begin{aligned}
\mathbb{P}_{\mathbf{1}}\left(\prod_{j \in J} X_{j}(t)=1\right) & =\mathbb{P}_{\mathbf{1}}\left(\text { an even number of }\left\{X_{j}(t), j \in J\right\} \text { equal }-1\right) \\
& =\sum_{I \subset J,|I| \text { even }} \mathbb{P}_{\mathbf{1}}\left(X_{i}(t)=-1 \forall i \in I, X_{j}(t)=1 \forall j \in J \backslash I\right) \\
& =\sum_{I \subset J,|I| \text { even }} \mathbb{P}_{1}\left(X_{1}(t)=1\right)^{|J|-|I|}\left(1-\mathbb{P}_{1}\left(X_{1}(t)=1\right)\right)^{|I|}
\end{aligned}
$$

By question 3 or $6, \mathbb{P}\left(X_{1}(t)=1\right)=\frac{1}{2}(1+\exp (-2 t / d))$, and there are $\binom{|J|}{2 k}$ subsets of J with cardinality $2 k$, hence

$$
\begin{aligned}
\mathbb{P}_{1}\left(\prod_{j \in J} X_{j}(t)=1\right) & =\sum_{k=0}^{\lfloor|J| / 2}\binom{|J|}{2 k}\left(\frac{1+\exp (-2 t / d)}{2}\right)^{|J|-2 k}\left(\frac{1-\exp (-2 t / d)}{2}\right)^{2 k} \\
& =\frac{1+\exp (-2 t|J| / d)}{2}
\end{aligned}
$$

where the last line comes from the general formula suggested in the statement of the exercise, which itself follows directly from binomial expansion.
8. Since the jump kernel of Y is $P=\frac{Q}{2}+I, P$ has the eigenfunction f_{J} associated with eigenvalue $1-\frac{|J|}{d}$. Thus if $|J|<d,\left(R_{n}^{J}:=f_{J}(Y(n))\left(1-\frac{|J|}{d}\right)^{-n}, n \geq 0\right)$ is an \mathcal{F}^{Y}-martingale, and it follows easily that

$$
\mathbb{P}\left(f_{J}(Y(n))=1\right)=\frac{1+\left(1-\frac{|J|}{d}\right)^{n}}{2} .
$$

When $J=\{1, \ldots, d\}$, we simply have $P f_{J}=0$, in particular for any $n \in \mathbb{N}^{*}$ (no matter what the starting point) $\mathbb{E}\left[f_{J}(Y(n)) \mid \mathcal{F}_{n-1}\right]=P f_{J}(Y(n-1))=0$, so $\mathbb{E}\left[f_{J}(Y(n))\right]=0$, and this implies, for this particular choice of J, $\mathbb{P}_{\mathbf{1}}\left(f_{J}(Y(n))=1\right)=\frac{1}{2}, n \in \mathbb{N}^{*}$, agreeing with the general formula.

Exercice 3 Let $\left(X_{t}\right), t \geq 0$ a Markov process on \mathbb{N} with X_{t} representing the size of a population at time $t \geq 0$. Each individual, independently of others, dies at rate 1 , and at its death is immediately replaced by an independent random number of individuals, more precisely by 0,2 or 3 individuals with respective probabilities p_{0}, p_{2}, p_{3}, with $p_{0}+p_{2}+p_{3}=1$. We assume in addition that $0<p_{0}<1$.

1. Check that the generator of $\left(X_{t}\right)_{t \geq 0}$ is such that for any $n \in \mathbb{N}$,

$$
\begin{aligned}
& Q_{n, n}=n, \quad Q_{n, n-1}=n p_{0}, \\
& Q_{n, n+1}=n p_{2}, \quad Q_{n, n+2}=n p_{3}
\end{aligned}
$$

Draw the diagramm of X.
2. Find the communication classes of the chain.
3. In the rest of the exercise we aim at computing $h(t):=\mathbb{P}_{1}\left(X_{t}=0\right)$. Establish first that $\mathbb{P}_{i}\left(X_{t}=0\right)=h(t)^{i}, i \in \mathbb{N}$. Deduce, using Markov property at the first jump of the chain, that

$$
h(t)=\int_{0}^{t} e^{-s}\left(p_{0}+p_{2} h(t-s)^{2}+p_{3} h(t-s)^{3}\right) d s
$$

4. Establish that

$$
h^{\prime}(t)=(1-h(t))\left(p_{0}-\left(p_{2}+p_{3}\right) h(t)-p_{3} h(t)^{2}\right), \quad h(0)=0 .
$$

5. Let α, β the roots of $p_{3} X^{2}+\left(p_{2}+p_{3}\right) X-p_{0}$, with $\alpha<0$ and $\beta>0$.

We assume in this question that $\beta \neq 1$.
 $t \geq 0$,

$$
(1-h(t))^{-a}(h(t)-\alpha)^{b}(\beta-h(t))^{-c}=(-\alpha)^{b} \beta^{-c} \exp \left(p_{3} t\right) .
$$

6. In this last question we assume that $p_{0}=1-p$ and $p_{3}=0$. By a reasoning similar as in the above, show that

$$
h^{\prime}(t)=1-p-h(t)+p h(t)^{2}, \quad h(0)=0
$$

Compute $h(t)$ (one shall distinguish the cases $p \neq 1 / 2, p=1 / 2$, and prove for example that if $\left.p \neq 1 / 2, h(t)=\frac{1-\exp ((1-2 p) t)}{\frac{p}{1-p}-\exp ((1-2 p) t)}\right)$. Discuss the asymptotic behaviour of $h(t)$ when $t \rightarrow \infty$. What does it mean for the chain X ?

1. This is straightforward (as in IV. 3 of the class notes).
2. First observe that $Q_{0,0}=0$ so 0 always is an absorbing state. Now fix $n \in \mathbb{N}^{*}$. Since $p_{0}>0$, we have $n \rightarrow n-1 \rightarrow \ldots \rightarrow 1$. Also since $p_{0}<1$ either p_{2} or p_{3} is positive. If $p_{2}>0$ then $1 \rightarrow 2 \rightarrow 2 \ldots \rightarrow n$, and then $1 \leftrightarrow n$. Otherwise $p_{3}>0$ and then $1 \rightarrow 3 \rightarrow \ldots \rightarrow 2\lfloor n / 2\rfloor+1$. But even if n is even, $n+1 \rightarrow n$ so in the end 1 and n are always in the same class.
We conclude that the chain has two classes : $\{0\}$ which corresponds to an absorbing state and \mathbb{N}^{*} which is transient.
3. Since the descendances of different individuals in the population at a given time are independent, the process started with i individuals corresponds to the sum of i independent copies of the process started with a single individual. Thus under \mathbb{P}_{i}, $X_{t}=\sum_{k=1}^{i} X_{t}^{k}$, where X^{1}, \ldots, X^{k} are i.i.d with the same law as X under \mathbb{P}_{1}. It follows in particular that

$$
\mathbb{P}_{i}\left(X_{t}=0\right)=\left(\mathbb{P}_{1}\left(X_{t}=0\right)\right)^{i}=h(t)^{i}, \forall t \geq 0
$$

Let J_{1} denotes the first jump time of the chain, so J_{1} is a stopping time. Moreover, $\mathbb{P}_{1}\left(X_{t}=0, J_{1}>t\right)=0$, finally J_{1} is exponential with parameter one, and at time J_{1} the chain jumps to 0 with probability p_{0}, to 2 with probability p_{2} and to 3 with probability p_{3}. By using the Markov property at J_{1}, then the beginning of the question, we find

$$
\begin{aligned}
h(t) & =\int_{0}^{t} \exp (-s)\left[p_{0}+p_{2} \mathbb{P}_{2}\left[X_{t-s}=0\right]+p_{3} \mathbb{P}_{3}\left[X_{t-s}=0\right]\right] d s \\
& =\int_{0}^{t} \exp (-s)\left[p_{0}+p_{2} h(t-s)^{2}+p_{3} h(t-s)^{3}\right] d s,
\end{aligned}
$$

as required.
4. Changing variables $u=t-s$, multiplying by $\exp (t)$ and differentiating yields

$$
h(0)=0, \quad h^{\prime}(t) \exp (t)+h(t) \exp (t)=\exp (t)\left[p_{0}+p_{2} h(t)^{2}+p_{3} h(t)^{3}\right],
$$

so that

$$
h(0)=0, \quad h^{\prime}(t)=p_{0}-h(t)+p_{2} h(t)^{2}+p_{3} h(t)^{3}=(1-h(t))\left(p_{0}-\left(p_{2}+p_{3}\right) h(t)-p_{3} h(t)^{2}\right) .
$$

5. We have thus

$$
h(0)=0, h^{\prime}(t)=p_{3}(1-h(t))(h(t)-\alpha)(\beta-h(t))
$$

It is then straightforward to check that

$$
\frac{1}{(1-x)(x-\alpha)(\beta-x)}=\frac{a}{1-x}+\frac{b}{x-\alpha}+\frac{c}{\beta-x},
$$

so we have

$$
h(0)=0, \quad \frac{a h^{\prime}(t)}{1-h(t)}+\frac{b h^{\prime}(t)}{h(t)-\alpha}+\frac{c h^{\prime}(t)}{\beta-h(t)}=p_{3}
$$

hence

$$
(1-h(t))^{-a}(h(t)-\alpha)^{b}(\beta-h(t))^{-c}=(-\alpha)^{b} \beta^{-c} \exp \left(p_{3} t\right) .
$$

6. By the same reasoning as above

$$
h(0)=0, \quad h^{\prime}(t)=(1-p)-h(t)+p h(t)^{2}=(1-h(t))((1-p)-p h(t)) .
$$

Assume first $p \neq 1 / 2$, then

$$
\frac{1-2 p}{(1-x)(1-p-p x)}=\frac{1}{1-x}-\frac{p}{1-p-p x},
$$

thus

$$
h(0)=0, \quad \frac{h^{\prime}(t)}{1-h(t)}-\frac{p h^{\prime}(t)}{1-p-p h(t)}=1-2 p .
$$

It follows that

$$
\frac{1-p-p h(t)}{1-h(t)}=(1-p) \exp ((1-2 p) t)
$$

and finally

$$
h(t)=\frac{1-\exp ((1-2 p) t)}{\frac{p}{1-p}-\exp ((1-2 p) t)}
$$

When $p>1 / 2, p /(1-p)>1$, and the exponentials in the above converge to 0 as $t \rightarrow \infty$. Thus $h(t) \rightarrow \frac{1-p}{p}$, and the convergence is exponentially fast. In particular, there is a positive probability that the process survives forever, and this probability equals $1-\lim _{t \rightarrow \infty} h(t)=1-\frac{1-p}{p}=\frac{2 p-1}{p}$.
When $p<1 / 2, \exp ((1-2 p) t)$ diverges, so $h(t)$ is better expressed by multiplying numerator and denominator by $-\exp ((2 p-1) t)$ to get

$$
h(t)=\frac{1-\exp ((2 p-1) t}{1-\frac{p}{1-p} \exp ((2 p-1) t)}
$$

which is $1-\frac{1-2 p}{1-p}(\exp ((2 p-1) t))+o(\exp ((2 p-1) t))$, yielding that for $p<1 / 2$, the probability that the population has gone extinct by time t converges to 1 at exponential speed.
Finally, when $p=1 / 2$, we have

$$
h(0)=0, \quad h^{\prime}(t)=\frac{1}{2}(1-h(t))^{2}
$$

so that $\frac{1}{1-h(t)}=1+\frac{t}{2}$ and $h(t)=\frac{1}{1+2 / t}$. Again here the probability that the population has gone extinct by time t converges to 1 , only this time the convergence speed is only polynomial, since $h(t)=1-\frac{2}{t}+o(1 / t)$.

