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Exercice 1 The barbell graph
Let n be an integer, n ≥ 3, and the graph G with 3n vertices obtained by linking two copies
of the complete graph with n vertices by a segment of length n+ 1.
More precisely let G1,G2 the two copies of the complete graph with n vertices, and H the
segment with n+ 2 vertices linking the two. The vertex of G1 identified with the first
extremity of H is denoted v, that of G2 identified with the other extremity is denoted w. Let
us further denote a one vertex of G1 distinct from v and z a vertex of G2 distinct from w,
and finally v′ denotes the neighbour of v in H — see the picture below.

G1, complete graph, n vertices. G2, complete graph, n vertices

H, segment, n + 2 vertices.

v w

a

z

The graph G, for n = 9.

v′

We let (Xt, t ≥ 0) the continuous-time simple random walk on G (when at x, it jumps to
any neighbour of x, independently at rate 1), and (Yk, k ≥ 0) the associated jump chain. We
use the notation PX for the law of X, and PY for the law of Y .
We are interested, for both chains, in the hitting time of z starting from a.

1. Is the chain Y irreducible, reversible, aperiodic ? Is it positive recurrent ? Find the set
of its invariant distributions.

2. What can be deduced for the continuous-time chain X ? What about its invariant
distributions ?

3. Compute R(a↔ z), deduce that

EYa [Tz] =
(n2 + n+ 4)(n2 + 1)

n
,

and find an equivalent of this quantity when n→∞.
Compute EXa [Tz] and find an equivalent of this quantity when n→∞.
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4. In this question we work with the discrete-time chain Y .

Let B1 = G1 \ {v}, B2 = G2 \ {w} and recall that v′ is the neighbour of v in H. Show
that PYv′(TB2 < TB1) = n

n2+1
. Deduce that under PYa , TB2 ≤ G, where

G ∼ Geom
(

1
(n−1)(n2+1)

)
. What is, under PY , the limit in law of G/n3 when n→∞ ?

Compare the asymptotic behaviour of E[G],EYa [TB2 ],EYa [Tz].

Deduce the limit in law of TB2/n
3, and then that of Tz/n

3, as n→∞.

1. The discrete chain is irreducible because the graph is connex. The graph is finite so
the chain is positive recurrent. The graph G1 has at least three vertices, so starting
from a, the chain Y comes back to a in 2 (resp. 3) steps with positive probability,
hence the chain Y is aperiodic.

In fact the chain corresponds to a conductance model (where each edge is equipped
with conductance 1) so it is reversible, in particular it possesses a unique invariant
distribution (say π) such that π(x) = dx

dG
, x ∈ V. More precisely

cG = 2(n− 1)2 + 2n+ 2n = 2n2 + 2,

so if x ∈ G1 ∪ G2 \ {v, w}, π(x) = n−1
2n2+2

, if x ∈ {v, w}, π(x) = n
2n2+2

and if

x ∈ H \ {v, w}, π(x) = 2
2n2+2

.

2. Since Y is, the chain X is irreducible, positive recurrent. It has a unique invariant
distribution, and it is (say λ) the uniform distribution on V. Indeed
Q(x, y) = Q(y, x), so X is reversible with respect to λ.

3. Let us compute R(a↔ z) by looking at the potential associated with a current from
a to z. We notice that vertices of G1 distinct from a, v play symmetric roles, so they
must have same potential and we can identify them as a single vertex, say y. Now,
vertex a is connected to y by n− 2 edges of conductance 1, equivalent to a unique
conductance n− 2, and y is also connected to v by n− 2 edges of conductance 1. The
two resistances in series add up to a resistance 2/(n− 2), but let us not forget the
one edge between a and v, so the effective conductance between a and v is
(n− 2)/2 + 1 = n/2. By a similar reasoning the effective resistance between w and z
is also n/2, and of course the effective resistance between v and w is n+ 1. It remains
to sum up resistances in series to obtain

R(a↔ z) =
4

n
+ n+ 1 =

n2 + n+ 4

n
.

By symmetry EYa [Tz] = EYz [Ta], so using the commute time identity for discrete-time
chains we find

EYa [Tz] =
cGR(a↔ z)

2
=

(n2 + 1)(n2 + n+ 4)

n
,

as required, and EYa [Tz] ∼ n3 as n→∞.

On the other hand, again by symmetry EXa [Tz] = EXz [Ta], and so by the commute
time identity for continuous-time chains,

EXa [Tz] = |V|R(a↔ z)

2
=

3n

2

n2 + n+ 4

n
,

so that EXa [Tz] ∼ 3n2

2 as n→∞.
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4. In this part we only deal with the discrete-time chain, and so we drop the superscript
Y from our notation.

Let us first compute, as suggested, Pv′(TB2 < TB1). Identifying vertices of B1 as, say,
y1, and those of B2 as, say, y2, it is easily seen that the effective conductance between
v′ and y1 is (n− 1)/n, and that between v′ and y2 is (n− 1)/(n2 − n+ 1), thus

Pv′(TB2 < TB1) =
n−1
n

n−1
n + n−1

n2−n+1

=
n

n2 + 1

Now, for the chain to go from any a ∈ B1 to B2 before returning to B1, it must go at
time 1 to v and at time 2 to v′ (otherwise it has returned to B1 in the first or second
step), and then it must go from v′ to B2 before it returns to B1. Thus

Pa(TB2 < T+
B1

) =
1

n− 1

1

n

n

n2 + 1
=

1

n− 1

1

n2 + 1
,

thus, thanks to the Markov property the number of visits to B1 before hitting B2,

that is G :=
∑TB2

−1
k=0 1{Yk∈A}, is geometric with parameter 1/((n− 1)(n2 + 1)). Of

course TB2 is larger than G, which establishes the desired result.

Now, by e.g. looking at moment generating functions, it is easily seen that G/n3

converges in distribution as n→∞ towards an exponential variable with parameter
1.

Finally we observe that n3 ∼ E[G] ≤ Ea[TB2 ] ≤ Ea[Tz] ∼ n3, so that the expected
time spent outside of B1 before reaching B2, Ea[TB2 −G] is such that
n−3Ea[TB2 −G]→ 0. Since we are looking at a nonnegative variable this implies
n−3(TB2 −G)→ 0 in probability, and so n−3G and n−3TB2 share the same limit in
distribution, and we conclude that

n−3TB2

(law)−→
n→∞

e1,

with e1 is an exponential variable with parameter 1.

Exercice 2 Let (X(t))t≥0 be the continuous-time simple random walk on the hypercube
{−1, 1}d, which, when at x waits for an exponential random time of parameter 1, and then
jumps to one of the d neighbours of x choosen uniformly at random.
When x ∈ {−1, 1}d and i ∈ {1, ..., d}, we write xi ∈ {−1, 1} for the ith coordinate of x and
xi = (x1, ..., xi−1,−xi, xi+1, ..., xd) for the neighbour of x along the ith coordinate.
Moreover we let Ft = σ(Xs, s ≥ 0) for t ≥ 0.
Finally we write 1 = (1, ..., 1) ∈ {−1, 1}d and P1 for the law of the chain started at 1.

1. Express the generator Q of the chain.

2. For f : {−1, 1}d → R, and x ∈ {−1, 1}d, establish that

Qf(x) =
1

d

d∑
i=1

(f(xi)− f(x)).

3. Does the convergence theorem apply, and if so, what does it state ?
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4. Is (X1(t), t ≥ 0) a Markov chain ?
Let g(t) = P1(X1(t) = 1), t ≥ 0, show that

exp(t/d)g(t) = 1 +
1

d

∫ t

0
exp(u/d)(1− g(u))du,

and deduce that g(t) = 1
2(1 + exp(−2t/d)) for any t ≥ 0.

5. For J ⊂ {1, ..., d}, let fJ(x) =
∏
j∈J xj . Show that QfJ = λJfJ , for a λJ which you

shall compute. Find all eigenvalues of Q with multiplicity.

6. Establish that
(
MJ
t := fJ(X(t)) exp(2t|J |/d)

)
t≥0 is an (Ft)-martingale, where |J |

denotes the cardinal of J . Deduce P1

(∏
j∈J Xj(t) = 1

)
for t ≥ 0. Check in particular

that you recover the result of question 3.

7. Explain why we could also have established directly that

P1

∏
j∈J

Xj(t) = 1

 =
∑

I⊂J, |I|even

∏
i∈I

P1(Xi(t) = −1)
∏
j∈J\I

P1(Xj(t) = 1),

and recover the result of question 5. You may first check that if j = b|J |/2c,(
1 + x

2
+

1− x
2

)|J |
+

(
1 + x

2
− 1− x

2

)|J |
= 2

j∑
k=0

(|J |
2k

)(
1− x

2

)2k (1 + x

2

)|J |−2k
.

8. Let (Y (n), n ∈ N) be the discrete-time, lazy simple random walk on {−1, 1}d, i.e.
with jump kernel P = Q

2 + I. Establish that

P1

∏
j∈J

Yj(n) = 1

 =
1 +

(
1− |J |d

)n
2

.

1. For any x ∈ {−1, 1}d, , we have

Qx,x = −1, Qx,xi =
1

d
, i ∈ {1, ..., d}.

2. It follows directly that for any x ∈ {−1, 1}d,

Qf(x) =
1

d

d∑
i=1

(f(xi)− f(x))

3. The chain is irreducible, the state space is finite, theorem convergence applies. Since
the invariant distribution is the uniform one (which gives mass 2−d to each element
of {−1, 1}d), the theorem states that whatever the initial distribution µ, whatever
x ∈ {−1, 1}d,

Pµ(Xt = x)→ 1

2d
.
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4. Since Q(x, x1) = 1/d whatever x, the process (X1(t), t ≥ 0) is itself a continuous-time
Markov chain on {−1, 1}, which changes sign at rate 1/d. We write P1 for the law of
this chain when started at 1. By Markov at the first jump of X1 (when it happens
before t), we have

g(t) = exp(−t/d) +

∫ t

0

1

d
exp(−s/d)P1(X1(t) = 1 | X1(s) = −1)ds

= exp(−t/d) +

∫ t

0

1

d
exp(−s/d) (1− P1(X1(t− s) = 1)) ds

where we used Markov property at time s and the fact that 1 and −1 play symmetric
roles so that P−1(X1(t− s) = 1) = P1(X1(t− s) = −1) = 1− P1(X1(t− s) = 1). Now,
timing by exp(t/d) and changing variables u = t− s we get

g(t) exp(t/d) = 1 +
1

d

∫ t

0
exp(u/d)(1− g(u))du,

as desired. Differenciating, then timing by exp(−t/d), it comes that

g′(t) =
1

d
− 2

d
g(t), g(0) = 1,

and it is then easy to check that the unique solution to this ODE is

g(t) =
1

2
(1 + exp(−2t/d)) , t ≥ 0.

5. By question 2, we have QfJ(x) = 1
d

∑d
i=1(fJ(xi)− fJ(x)). Now observe that

whatever x ∈ {−1, 1}d, if i ∈ J , fJ(xi) = −fJ(x), while if i /∈ J, fJ(xi) = fJ(x). It
follows that for any x ∈ {−1, 1}d,

QfJ(x) =
1

d

∑
i∈J

(−2fJ(x)) = −2|J |
d
fJ(x),

that is, fJ is an eigenfunction of Q associated with the eigenvalue λ|J | = −2|J |
d .

For k ∈ {0, ..., d}, there are
(
d
k

)
manners of choosing J ⊂ {1, ..., d} such that |J | = k,

and it is easily seen that the corresponding eigenfunctions form a linearly independent
family, so eigenvalue λk has multiplicity at least

(
d
k

)
. Now

∑d
k=0

(
d
k

)
= 2d, hence we

have determined all eigenvalues and corresponding multiplicities.

6. Observe first that fJ is bounded so integrability condition is obvious. Recall further
that fJ is a eigenfunction of Q associated with eigenvalue −2|J |

d , so it is also an
eigenfunction of P (t) = exp(tQ) associated with eigenvalue exp(−2t|J |/d), and it
follows that

E[exp(2(t+ s)|J |/d)fJ(X(t+ s)) | Fs] = exp(2(t+ s)|J |/d)P (t)fJ(X(s))

= exp(2(t+ s)|J |/d) exp(−2t|J |/d)fJ(X(s)) = MJ
s

One could also have directly quoted exercise IV.12.
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Now for any t ≥ 0,

1 = E1[MJ
t ]

= P1(fJ(X(t)) = 1) exp(2t|J |/d)− (1− P1(fJ(X(t)) = 1)) exp(2t|J |/d),

and thus

P1

∏
j∈J

Xj(t) = 1

 = P1(fJ(X(t)) = 1) =
1 + exp(2t|J |/d)

2
.

For J = {1} we recover the result of question 3.

7. Jump times of X are those of a Poisson process with rate 1. For any i ∈ {1, ..., d},
each jump is a jump of Xi with probability 1/d, independently of other jumps. By
properties of Poisson processes, jumps of {Xi, i ∈ {1, ..., d}} are those of d
independent Poisson processes with the same rate 1/d. It follows that
{Xi, i ∈ {1, ..., d}} are d independent copies of X1. Moreover,

P1

∏
j∈J

Xj(t) = 1

 = P1 ( an even number of {Xj(t), j ∈ J} equal − 1)

=
∑

I⊂J,|I|even

P1 (Xi(t) = −1 ∀i ∈ I, Xj(t) = 1 ∀j ∈ J \ I)

=
∑

I⊂J,|I|even

P1(X1(t) = 1)|J |−|I|(1− P1(X1(t) = 1))|I|

By question 3 or 6, P(X1(t) = 1) = 1
2(1 + exp(−2t/d)), and there are

(|J |
2k

)
subsets of

J with cardinality 2k, hence

P1

∏
j∈J

Xj(t) = 1

 =

b|J |/2∑
k=0

(|J |
2k

)(
1 + exp(−2t/d)

2

)|J |−2k (1− exp(−2t/d)

2

)2k

=
1 + exp(−2t|J |/d)

2

where the last line comes from the general formula suggested in the statement of the
exercise, which itself follows directly from binomial expansion.

8. Since the jump kernel of Y is P = Q
2 + I, P has the eigenfunction fJ associated with

eigenvalue 1− |J |d . Thus if |J | < d,
(
RJn := fJ(Y (n))(1− |J |d )−n, n ≥ 0

)
is an

FY -martingale, and it follows easily that

P(fJ(Y (n)) = 1) =
1 + (1− |J |d )n

2
.

When J = {1, ..., d}, we simply have PfJ = 0, in particular for any n ∈ N∗ (no
matter what the starting point) E[fJ(Y (n)) | Fn−1] = PfJ(Y (n− 1)) = 0, so
E[fJ(Y (n))] = 0, and this implies, for this particular choice of J ,
P1(fJ(Y (n)) = 1) = 1

2 , n ∈ N∗, agreeing with the general formula.
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Exercice 3 Let (Xt), t ≥ 0 a Markov process on N with Xt representing the size of a
population at time t ≥ 0. Each individual, independently of others, dies at rate 1, and at its
death is immediately replaced by an independent random number of individuals, more
precisely by 0, 2 or 3 individuals with respective probabilities p0, p2, p3, with
p0 + p2 + p3 = 1. We assume in addition that 0 < p0 < 1.

1. Check that the generator of (Xt)t≥0 is such that for any n ∈ N,

Qn,n = n, Qn,n−1 = np0,

Qn,n+1 = np2, Qn,n+2 = np3

Draw the diagramm of X.

2. Find the communication classes of the chain.

3. In the rest of the exercise we aim at computing h(t) := P1(Xt = 0). Establish first
that Pi(Xt = 0) = h(t)i, i ∈ N. Deduce, using Markov property at the first jump of
the chain, that

h(t) =

∫ t

0
e−s(p0 + p2h(t− s)2 + p3h(t− s)3)ds.

4. Establish that

h′(t) = (1− h(t))
(
p0 − (p2 + p3)h(t)− p3h(t)2

)
, h(0) = 0.

5. Let α, β the roots of p3X
2 + (p2 + p3)X − p0, with α < 0 and β > 0.

We assume in this question that β 6= 1.

Show that if we set a = 1
(1−α)(1−β) , b = 1

(β−α)(1−α) , c = 1
(β−α)(1−β) , one finds that for

t ≥ 0,
(1− h(t))−a(h(t)− α)b(β − h(t))−c = (−α)bβ−c exp(p3t).

6. In this last question we assume that p0 = 1− p and p3 = 0. By a reasoning similar
as in the above, show that

h′(t) = 1− p− h(t) + ph(t)2, h(0) = 0.

Compute h(t) (one shall distinguish the cases p 6= 1/2, p = 1/2, and prove for

example that if p 6= 1/2, h(t) = 1−exp((1−2p)t)
p

1−p
−exp((1−2p)t)). Discuss the asymptotic behaviour

of h(t) when t→∞. What does it mean for the chain X ?

1. This is straightforward (as in IV.3 of the class notes).

2. First observe that Q0,0 = 0 so 0 always is an absorbing state. Now fix n ∈ N∗. Since
p0 > 0, we have n→ n− 1→ ...→ 1. Also since p0 < 1 either p2 or p3 is positive. If
p2 > 0 then 1→ 2→ 2...→ n, and then 1↔ n. Otherwise p3 > 0 and then
1→ 3→ ...→ 2bn/2c+ 1. But even if n is even, n+ 1→ n so in the end 1 and n are
always in the same class.

We conclude that the chain has two classes : {0} which corresponds to an absorbing
state and N∗ which is transient.
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3. Since the descendances of different individuals in the population at a given time are
independent, the process started with i individuals corresponds to the sum of i
independent copies of the process started with a single individual. Thus under Pi,
Xt =

∑i
k=1X

k
t , where X1, ..., Xk are i.i.d with the same law as X under P1. It

follows in particular that

Pi(Xt = 0) = (P1(Xt = 0))i = h(t)i, ∀t ≥ 0.

Let J1 denotes the first jump time of the chain, so J1 is a stopping time. Moreover,
P1(Xt = 0, J1 > t) = 0, finally J1 is exponential with parameter one, and at time J1
the chain jumps to 0 with probability p0, to 2 with probability p2 and to 3 with
probability p3. By using the Markov property at J1, then the beginning of the
question, we find

h(t) =

∫ t

0
exp(−s) [p0 + p2P2[Xt−s = 0] + p3P3[Xt−s = 0]] ds

=

∫ t

0
exp(−s)

[
p0 + p2h(t− s)2 + p3h(t− s)3

]
ds,

as required.

4. Changing variables u = t− s, multiplying by exp(t) and differentiating yields

h(0) = 0, h′(t) exp(t) + h(t) exp(t) = exp(t)
[
p0 + p2h(t)2 + p3h(t)3

]
,

so that

h(0) = 0, h′(t) = p0−h(t)+p2h(t)2+p3h(t)3 = (1−h(t))
(
p0 − (p2 + p3)h(t)− p3h(t)2

)
.

5. We have thus
h(0) = 0, h′(t) = p3(1− h(t))(h(t)− α)(β − h(t))

It is then straightforward to check that

1

(1− x)(x− α)(β − x)
=

a

1− x +
b

x− α +
c

β − x,

so we have

h(0) = 0,
ah′(t)

1− h(t)
+

bh′(t)

h(t)− α +
ch′(t)

β − h(t)
= p3

hence
(1− h(t))−a(h(t)− α)b(β − h(t))−c = (−α)bβ−c exp(p3t).

6. By the same reasoning as above

h(0) = 0, h′(t) = (1− p)− h(t) + ph(t)2 = (1− h(t))((1− p)− ph(t)).

Assume first p 6= 1/2, then

1− 2p

(1− x)(1− p− px)
=

1

1− x −
p

1− p− px,
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thus

h(0) = 0,
h′(t)

1− h(t)
− ph′(t)

1− p− ph(t)
= 1− 2p.

It follows that
1− p− ph(t)

1− h(t)
= (1− p) exp((1− 2p)t),

and finally

h(t) =
1− exp((1− 2p)t)
p

1−p − exp((1− 2p)t)
.

When p > 1/2, p/(1− p) > 1, and the exponentials in the above converge to 0 as
t→∞. Thus h(t)→ 1−p

p , and the convergence is exponentially fast. In particular,
there is a positive probability that the process survives forever, and this probability
equals 1− limt→∞ h(t) = 1− 1−p

p = 2p−1
p .

When p < 1/2, exp((1− 2p)t) diverges, so h(t) is better expressed by multiplying
numerator and denominator by − exp((2p− 1)t) to get

h(t) =
1− exp((2p− 1)t

1− p
1−p exp((2p− 1)t)

which is 1− 1−2p
1−p (exp((2p− 1)t)) + o(exp((2p− 1)t)), yielding that for p < 1/2, the

probability that the population has gone extinct by time t converges to 1 at
exponential speed.

Finally, when p = 1/2, we have

h(0) = 0, h′(t) =
1

2
(1− h(t))2,

so that 1
1−h(t) = 1 + t

2 and h(t) = 1
1+2/t . Again here the probability that the

population has gone extinct by time t converges to 1, only this time the convergence
speed is only polynomial, since h(t) = 1− 2

t + o(1/t).
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