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Markov chains

Exercises

1 Linear algebra for Markov chains

Exercise 1 Assume P is a N ×N stochastic matrix. Depending on context, we may use
pij , Pij or P (i, j) to designate the entry of P at the ith row and jth column. Recall P is
stochastic whenever

— all entries of P are nonnegative : for any 1 ≤ i, j ≤ N , pij ≥ 0,

— for any 1 ≤ i ≤ N ,
∑N

j=1 pij = 1.
In other words, every row of P can be thought of as a probability distribution on
E = {1, ..., N}, and P as a transition kernel on E.
Similarly, we may and will confuse a 1×N matrix (µ(1) . . . µ(N))), with nonnegative entries
such that

∑N
i=1 µ(i) = 1 with the probability measure µ on E. Finally, we may and will

confuse a N × 1 C-valued matrix

 f(1)
...

f(N)

 with the function f : E → C.

1. Show that if P is stochastic, so is Pn for any n ∈ N.

2. Show that if µ is a probability measure on E (described by a 1×N matrix as above),
so is µPn for any n ∈ N.

3. Let X be a (discrete-time) Markov chain with kernel P , µ a probability measure on
{1, ..., N} and f : {1, ..., N} → C, Express as synthetically as possible , for n ∈ N,
i, j, x0, . . . xn elements of {1, ..., N}, µ and f as above

(a) Pµ(X0 = x0, ..., Xn = xn),

(b) Pi(Xn = j),

(c) Pµ(Xn = j),

(d) Ei[f(Xn)],

(e) Eµ[f(Xn)] .

1. We use an induction. The claim is obvious when n = 0 since P 0 = Id. Now assume
the claim for some n ∈ N. Obviously Pn+1 possesses nonnegative entries. Moreover,
for any i ∈ {1, ..., N},

N∑
j=1

Pn+1(i, j) =

N∑
j=1

N∑
`=1

Pn(i, `)P (`, j) =

N∑
`=1

Pn(i, `)

N∑
j=1

P (`, j),

now for any `,
∑N

j=1 P (`, j) = 1 since P is stochastic, and
∑N

`=1 P
n(i, `) = 1 by

induction hyspothesis, so we are done.
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2. The reasoning is similar as that of the previous question, using∑N
j=1 µP

n+1(j) =
∑N

`=1 µP
n(`)P (`, j).

3. (a) µ(x0)
∏n−1
i=0 P (xi, xi+1).

(b) Pn(i, j)

(c) µPn(j)

(d) (Pnf)i

(e) µPnf .

Exercise 2 Let P be a N ×N stochastic matrix (if you prefer, a transition kernel on
E = {1, ..., N}). Let λ1, ..., λN the (possibly complex, possibly multiple) eigenvalues of P .

1. What are the eigenvalues of P T ?

2. Show that 1 ∈ {λ1, ..., λN}
3. Show that r(P ) := max1≤i≤N |λi| = 1. What is r(P T ) ?

4. Let P be stochastic and such that P (N, 1) = 1, P (i, i+ 1) = 1 for any
i ∈ {1, ..., N − 1}. Compute the successive powers of P , then show that
{λ1, ..., λN} = {exp(2iπk/N, 0 ≤ k ≤ N − 1}. Note that in this example all
eigenvalues have modulus one.

1. P and P T have the same eigenvalues.

2. Since P is stochastic, we have P

1
...
1

 =

1
...
1

, thus

1
...
1

 is an eigenvector of P ,

associated with eigenvalue 1.

3. Let λ ∈ C an eigenvalue of P , and x ∈ CN \ {0} an associated eigenvector. For i such
that |xi| = ||x||∞ we have

|λ|||x||∞ = |λxi| = |(Px)i| =
n∑
j=1

pijxj ≤ ||x||∞,

where we used that P is stochastic to get the last inequality. We conclude that
|λ| ≤ 1. Since 1 is an eigenvalue (cf previous question), it follows that r(P ) = 1, so is
r(P T ) since P and P T have the same eigenvalues.

4. Define ω = exp(2iπ/N), and let x(k) ∈ CN , k ∈ {0, ..., N − 1} be such that x
(k)
i = ωik.

We easily check that
Px(k) = ωkx(k),

hence the spectrum of P is indeed {1, ω, ω2, ..., ωN−1}.

Exercise 3 [Perron’s theorem] Let A be a N ×N matrix with real positive entries. For
x, y in RN write x ≥ y iff xi ≥ yi for any 1 ≤ i ≤ N . We let λ1, ..., λN the (possibly complex,
possibly multiple) eigenvalues of A, and r(A) := max1≤i≤N |λi|.

1. Assume that all entries of P are nonzero, introduce X = {x ∈ Rn : x ≥ 0, ||x||1 = 1}
and for x ∈ X, θ(x) = max{t ∈ R+ : tx ≤ Ax}.
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(a) Show that r0 = supx∈X θ(x) ∈ R∗+.

(b) Assume x ∈ X is such that θ(x) = r0. Show that Ax = r0x. Hint : You may
assume by contradiction that Ax 6= r0x, then show that for small enough ε we
must have A(Ax− (r0 + ε)x) > 0. Deduce that if y = Ax/||Ax||1 ∈ X, then
θ(y) ≥ r0 + ε, a contradiction with (a).

(c) Using compacity of X, show that there exists x0 ∈ X such that Ax0 = r0x0.
Deduce that r0 = r(A). By looking at Ax0, check that x0 > 0.

(d) Show that if Av = λv with λ = r(A), it must be that v = αx0 for some α ∈ C.

em Conclusion : r(A) is an eigenvalue of A, The corresponding eigenspace has
dimension 1 and is generated by x0 > 0. Any other eigenvalue λ 6= |||A||| of A is
such that |λ| < r(A).

2. Assume now that for some k ∈ N∗, all entries of Ak are nonzero. Check that the same
conclusion as in the previous question still holds for A.

Remarks : Note that the assumption of 2. is that A is strongly irreducible.
The slightly more difficult Frobenius theorem states that if A is irreducible (i.e. for any
i, j ∈ {1, ..., N}, there exists k ∈ N∗ such that Akij > 0), then r(A) is an eigenvalue of A, and
moreover the corresponding eigenspace has dimension 1 and is generated by some x0 > 0.
Note that this part of the conclusion holds under the weaker assumption of irreducibility.
However, when A is only assumed irreducible, there may exist several eigenvalues whose
modulus equals r(A) (see last question of exercise 2). In fact, this situation where r(A) is
not a dominant eigenvalue only occurs when A is irreducible but periodic, that is when
gcd{n ∈ N∗ : An(i, i) > 0} ≥ 2.

1. (a) The first element of the canonical basis e1 is in X, and (Ae1)1 = a11 > 0 so that
θ(e1) = a11 > 0. Thus r0 > 0. Moreover, if x ∈ X, ||Ax||∞ ≤ max1≤i,j≤N aij , and
therefore, r0 ≤ max1≤i,j≤N aij <∞. We conclude that r0 ∈ R∗+.

(b) Assume x ∈ X is such that θ(x) = r0, by definition of θ it must be that for some
i ∈ {1, ..., N}, xi > 0 and (Ax)i = r0xi. As suggested, assume by contradiction
that Ax 6= r0x, that is there exists j 6= i such that (Ax)j < r0xj . Under this
assumtion Ax− r0x ≥ 0 is nonzero, and since all entries of A are positive, it
follows that A(Ax− r0x) > 0, hence (A is continuous) for some ε small enough,
A(Ax− (r0 + ε)x) > 0. Since A is linear, it follows that Ay ≥ (r0 + ε)y, that is
θ(y) ≥ r0 + ε, a contradiction with the definition of r0.

(c) By definition of r0 there exists a sequence (xn)n∈N∗ ∈ XN such that the sequence
(θ(xn))n∈N is non-decreasing and has limit r0. By compacity of X there must be a
subsequence (xφ(n))n∈N∗ which converges in X towards some x0 ∈ X, and by
continuity of θ it must be that θ(x0) = r0, as required. By the previous question,
we must have Ax0 = r0x0. It follows that r0 is an eigenvalue of A so r0 ≥ r(A).
Now, if λ is an eigenvalue of A, and x an associated eigenvector with ||x||1 = 1,
setting |x| = (|x1|, . . . , |xN |), observe that for any i ∈ {1, ..., N}

|(Ax)i| = |λ||xi| ≤ (A|x|)i ≤ r0|xi|,

thus |λ| ≤ r0 and r(A) ≤ r0.

Finally, since A only has positive entries, we have r0(x0)i = (Ax0)i > 0 for any
i ∈ {1, ..., N}, so that x0 > 0.
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(d) Assume λ is an eigenvalue such that |λ| = r(A) = r0 and v is an associated
eigenvector. Letting w = v/||v||1, note that |w| ∈ X so A|w| ≤ r0|w| thus by
linearity of A, A|v| ≤ r0|v|. As in the previous question

r0|vi| = |(Av)i| =

∣∣∣∣∣∣
N∑
j=1

aijvj

∣∣∣∣∣∣ ≤
N∑
j=1

aij |vj | ≤ r0|vj |,

so we must have the equality ∣∣∣∣∣∣
N∑
j=1

aijvj

∣∣∣∣∣∣ =

N∑
j=1

aij |vj |,

which, since all aij are positive, can only happen if all vj have the same argument.
It follows that v = exp(iγ)|v|, and that |v| is an eigenvector of eigenvalue |λ| = r0.

Now since (A|v|)i = r0|vi| and A only has positive entries it must be that |vi| > 0
for any i ∈ {1, ..., N}. In fact, all nonnegative real-valued eigenvectors associated
with eigenvalue r0 must have all positive entries.

Now if, by contradiction, we assume that x0 and |v| are non-colinear, it must be
that for some t > 0, x0 − t|v| ≥ 0, is nonzero, but has at least one null coordinate
(simply take t = inf{s > 0 : ∃i ∈ {1, ..., N}(x0)i − svi = 0}). We have found an
eigenvector associated with eigenvalue r0 with a null coordinate, a contradiction.

2. Observe that Ak satisfies the assumptions of the previous question. Thus
r(Ak) = r(A)k is an eigenvalue of Ak, the corresponding eigenspace has dimension 1
and is generated by some x > 0, and all other eigenvalues of Ak have modulus less
than r(A)k. Now Ax > 0, and if, by contradiction, x isn’t an eigenvector for A, it
must be that for some i ∈ {1, ..., N}, 0 < (Ax)i < r(A)xi. But then we would deduce
that (A2x)i < r(A)2xi, etc... until (Akx)i < r(A)kxi, a contradiction. It follows that
x is also an eigenvector of A, associated with eigenvalue r(A). If there is y such that
Ay = r0y, then Aky = r(A)ky, so it must be that x and y are colinear. Thus the
eigenspace for A associated with eigenvalue r(A) is Vect{x}. Finally if y is an
eigenvector of A associated with eigenvalue λ 6= r(A), it is also an eigenvector of Ak

associated with eigenvalue λk, thus |λk| = |λ|k < r(A)k and therefore |λ| < r(A), as
required.

Exercise 4 [A few properties of matrix exponentials] For A an N ×N matrix (with,

say, complex entries) we define exp(A) :=
∑

k≥0
Ak

k! . Note this is always well-posed since the
series is normally convergent.

1. Show that exp(AT ) = exp(A)T , exp(A∗) = exp(A)∗.

2. Assume P is invertible. Express exp(P−1AP ) in terms of P, P−1, exp(A). Remark
This gives a practical method to explicitally compute exp(A) when A is
diagonalizable. Explain why.

3. Show that if A and B commute, then exp(A) exp(B) = exp(B) exp(A) = exp(A+B).

4. Show that for any s > 0 sufficiently large, we have∫∞
0 exp(−st) exp(tA)dt = (sI −A)−1.
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5. Show that the unique solution to the differential system Y ′(t) = AY (t), Y (0) = Y0 is
given by Y0 exp(At).

1. Since for any k ∈ N, (Ak)T = (AT )k, (Ak)∗ = (A∗)k, this follows from the definition.

2. Since (P−1AP )k = P−1AkP for any k ∈ N, we have

exp(P−1AP ) = P−1 exp(A)P.

Of course, when A is diagonalizable, that is A = P−1DP for some invertible P , we
find

exp(A) = exp(PDP−1) = P exp(D)P−1.

Now it is easy to check that exp(D) simply is the diagonal matrix whose diagonal
entries are the exponentials of those of D.

3. If A and B commute, so do Ak and Bk for any k, thus exp(A) and exp(B). Now
(A+B)k =

∑k
i=0

(
k
i

)
AiBk−i, so

exp(A+B) =
∑
k≥0

k∑
i=0

(
k
i

)
AiBk−i

k!

=
∑
i≥0

∑
k≥i

AiBk−i

i!(k − i)!

=
∑
i≥0

Ai

i!

∑
k′≥0

Bk′

k′!
= exp(A) exp(B).

4. First observe that for any k ∈ N, by an easy induction, we find∫ ∞
0

tk exp(−st)dt =
k!

sk+1
.

Thus ∫ ∞
0

tk exp(−st)A
k

k!
dt =

Ak

sk+1
.

It follows that for s > |||A||| so that the infinite sum below is guaranteed to converge,
we find ∫ ∞

0
exp(−st) exp(tA)dt =

∑
k≥0

Ak

sk+1
,

and thus

(sI −A)
∑
k≥0

Ak

sk+1
=
∑
k≥0

Ak

sk
−
∑
k≥0

Ak+1

sk+1
= I,

as wished.

5. Since max1≤i,j≤N |aij | = C <∞, a direct application of Cauchy-Lipschitz theorem
ensures existence and unicity of the solution. It is then straightforward to check that
t→ Y0 exp(At) is indeed a solution.
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2 Properties of exponential and Poisson distributions

Exercise 5 Let X1, X2, ... be independent exponential variables with respective parameters
λ1, λ2, .... Show that

∑
n≥1

1

λn
<∞⇒ P

∑
n≥1

Xn <∞

 = 1

∑
n≥1

1

λn
=∞⇒ P

∑
n≥1

Xn =∞

 = 1

One has E[
∑

n≥1Xn] =
∑

n≥1
1
λn

, and it is obvious that

∑
n≥1

1

λn
<∞⇒ P

∑
n≥1

Xn <∞

 = 1.

On the other hand assume that
∑

n≥1
1
λn

= +∞. Then

E

exp

−∑
n≥1

Xn

 =
∏
n≥1

1

1/λn + 1
= 0,

so that P
(∑

n≥1Xn =∞
)

= 1.

Exercise 6 Let X1, X2, ... be independent exponential variables with respective parameters
λ1, λ2, ....

1. What is the law of min(X1, X2) ? What about that of min(X1, ..., Xk), for k ≥ 2 ?

2. Show that if Λ :=
∑

k λk <∞, then X = infk∈N∗ Xk defines a positive random
variable. Find its law.

Further fhow that the infimum is reached at a random index K, independent of X.
What is the law of K ?

3. What happens when Λ =
∑

k λk = +∞ ?

1. By independence

P( min
1≤i≤k

Xi > t) = P(Xi > t, i = 1, ..., k) =

k∏
i=1

P(Xi > t) =

k∏
i=1

e−λit = exp

(
−

k∑
i=1

λit

)
,

so that min1≤i≤kXi ∼ exp
(∑k

i=1 λi

)
.

2. By the same proof as in the previous question X ∼ exp(Λ). Denote

K =

{
i if X = Xi

0 if infimum is not reached or reached by multiple indices
,
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For i ≥ 1

P(X > t,K = i) = P(Xj > Xi∀j 6= i) =

∫ +∞

t
dxλi exp(−λix)P(Xj > x,∀j 6= i)

=

∫ +∞

t
dxλi exp(−λix)

∏
j 6=i

P(Xj > x)

=

∫ +∞

t
dxλi exp(−λix) exp

−∑
j 6=i

λjx


=

∫ +∞

t
dxλi exp(−Λx) =

λi
Λ

exp(−Λt).

We deduce that K is independent of X, and that the law of K is given by
P(K = i) = λi/Λ, i ≥ 1 (in particular

∑
i≥1 P(K = i) = 1 so that P(K = 0) = 0, i.e.

the infimum is a.s. reached by a single Xi).

3. When
∑

i≥1 λi = +∞, we have for any t > 0,

P(X > t) =
∏
i≥1

P(Xi > t) = 0,

and in this case X = 0 a.s.

Exercise 7 Let X1, X2, ... be i.i.d exponentials with parameter λ > 0, S0 = 0 and for
n ≥ 1, Sn =

∑n
k=1Xk.

1. For n ≥ 1, compute the density of Sn.

2. Fix t ≥ 0 and denote
Nt := #{n ∈ N∗ : Sn ≤ t}.

What is the distribution of Nt ?

3. Fix k ∈ N∗ and t1 ≤ t2 ≤ . . . tk. Find the joint distribution of(
Nt1 , Nt2 −Nt1 , . . . , Ntk −Ntk−1

)
1. Since S1 = X1, S1 has the exp(λ) density, that is λ exp(−λt)1{t≥0}. Now Since
{Sn > t} = {Sn−1 > t} ∪ {Sn−1 ≤ t} ∩ {Xn > t− Sn−1}, we have for any n ≥ 2

P(Sn > t) = P(Sn−1 > t) + P(Sn−1 ≤ t,Xn > t− Sn−1).

For example

P(S2 > t) = exp(−λt) +

∫ t

0
λ exp(−λu) exp(−λ(t− u))du = (1 + λt) exp(−λt),

so that S2 has density λ2t exp(−λt)1{t≥0} (that is, the Γ(2, λ) density). Let us prove
by induction that Sn has the Γ(n, λ) density. It is indeed the case for n = 1, 2 as we
just showed. Assume the induction assumption holds for Sn. Of course Sn+1 is also
supported on R+. We find that for any t ≥ 0,

P(Sn+1 > t) =

∫ ∞
t

λnun−1

(n− 1)!
exp(−λu)du+

∫ t

0

λnun−1

(n− 1)!
exp(−λu) exp(−λ(t− u))du

=

∫ ∞
t

λnun−1

(n− 1)!
exp(−λu)du+

λntn

n!
exp(−λt)
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so that Sn+1 has density(
λntn−1

(n− 1)!
exp(−λt)− λntn−1

n!
exp(−λt) +

λn+1tn

n!
exp(−λt)

)
1{t≥0} =

λn+1tn

n!
exp(−λt)1{t≥0},

as required.

2. We have, by definition of Nt.

P(Nt = n) = P(Sn ≤ t < Sn+1) = P(Sn ≤ t,Xn+1 > t− Sn)

=

∫ t

0

λnun−1

(n− 1)!
exp(−λt)du =

(λu)n

n!
exp(−λu),

so that Nt ∼ Poisson(λt).

3. We are going to prove by induction on k that these are independent Poisson with
respective parameters λ(ti − ti−1), 1 ≤ i ≤ k, where we have set t0 = 0. This is true
for k = 1 by the previous question. Now assume it is true for some k ∈ N∗, we have

P(Nt1 = n1, ..., Ntk −Ntk−1
= nk, , Ntk+1

−Ntk = nk+1)

= P(Nt1 = n1, ..., Ntk −Ntk−1
= nk, , Ntk −Ntk−1

= nk)

×P(Ntk+1
−Ntk = nk+1 | Nt1 = n1, ..., Ntk −Ntk−1

= nk, , Ntk −Ntk−1
= nk)

Now if we set for ` ≥ 1, N` =
∑`

i=1 ni, we can rewrite the event
{Nt1 = n1, ..., Ntk −Ntk−1

= nk, , Ntk −Ntk−1
= nk} as

{SN1 < t1, SN1+1 > t1, SN2 ≤ t2, SN2+1 > t2, ..., SNk ≤ tk, SNk+1 > tk}, and therefore,
by independence of the Xi, i ≥ 1, we are interested in

P
(
SNk+1

≤ tk+1, SNk+1+1 > tk+1 |

SN1 < t1, SN1+1 > t1, SN2 ≤ t2, SN2+1 > t2, ..., SNk ≤ tk, SNk+1 > tk

)
= P

(
SNk+1+1 > tk+1 | SNk ≤ tk, SNk+1 > tk

)
= P

(
XNk+1 − (tk − SNk) +

Nk+1∑
i=Nk+2

Xi ≤ tk+1 − tk,

XNk+1 − (tk − SNk) +

Nk+1+1∑
i=Nk+2

Xi > tk+1 − tk | XNk+1 > tk − SNk
)

Using again the independence of the Xi (which implies the independence of XNk+1

and SNk), and the lack of memory property of XNk+1, we may rewrite this as

P

X̃Nk+1 +

Nk+1∑
i=Nk+2

Xi ≤ tk+1 − tk, X̃Nk+1 +

Nk+1+1∑
i=Nk+2

Xi > tk+1 − tk

 ,

with X̃Nk+1 ∼ exp(λ) independent of Xi, i ≥ Nk + 2. By the previous question, this is
(λ(tk+1−tk))Nk+1

(Nk+1)! exp(−λ(tk+1 − tk)), as we wished to complete our proof.
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Exercise 7

1. Consider (Xi)i≥1 a sequence of i.i.d random variables taking values in {1, ..., d}, with
pk := P(X1 = k), k = 1, ..., d. Let also N ∼ Poisson(λ) be independent of (Xi)i≥1.
What is the distribution of (N1, ..., Nd), where, for k = 1, ..., d,

Nk :=

N∑
i=1

1{Xi=k}?

2. What if the (Xi)i≥1 are still i.i.d but now take values in N∗ with
pk = P(X1 = k), k ∈ N∗ ?

3. Let I a finite or countable set of indices, (Ni, i ∈ I) be independent Poisson variables
with respective parameters λi, i ∈ I, such that Λ =

∑
i∈I λi = Λ. What is the

distribution of N =
∑

i∈I Ni ?

Sachant {N = n}, l’expérience correspond exactement au schéma multinômial de
paramètres n, p1, ..., pd. On a donc, , quitte à poser n = k1 + ...+ kd,

P(N1 = k1, ..., Nd = kd) = P(N1 = k1, ..., Nd = kd, N = n)

=
λn exp(−λ)

n!

(
n

k1 . . . kd

)
pk11 ...p

kd
d

=

d∏
i=1

(λpi)
ki exp(−λpi)
i!

,

de sorte que (N1, ..., Nd) est un d-uplet de variables de Poisson indépendantes de paramètres
respectifs λp1, ..., λpd.

Remarque 1 : Il n’est pas difficile de généraliser ce résultat pour X1 ayant une loi sur N∗
plutôt qu’une partie finie de N∗ comme plus haut. On aura alors que les (Ni, i ≥ 1) forment
une suite de variables indépendantes avec Nk ∼ Poisson(λpk). En effet, pour tout d ∈ N∗,
(k1, ..., kd) ∈ (N∗)d, K := k1 + · · ·+ kd, on a

P(N1 = k1, ..., Nk = kd)

=
∑
n≥K

P(N1 = k1, ..., Nk = kd, N = n)

=
λn exp(−λ)

n!

(
n

k1 . . . kd n−K

)
pk11 ...p

kd
d

(
1−

d∑
i=1

pi

)n−K

=
∑
n≥K

d∏
i=1

(λpi)
ki exp(−λpi)
i!

exp

(
−λ
(

1−
d∑
i=1

pi

)) (
λ
(

1−∑d
i=1 pi

))n−K
(n−K)!

=

d∏
i=1

(λpi)
ki exp(−λpi)
i!

,

,et, ce résultat étant valable pour d ≥ 1 quelconque on obtient la conclusion souhaitée.
Bien évidemment, on peut alors facilement généraliser à X1 ayant une loi sur un ensemble
dénombrable quelconque.
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Remarque 2 : A l’inverse, si I est une ensemble d’indices fini ou dénombrable, et (Ni, i ∈ I)
sont des variables de Poisson indépendantes de paramètres respectifs λ1, λ2, ... avec∑

i∈I λi =: Λ <∞, alors N =
∑

i∈I Ni ∼ Poisson(Λ). La preuve la plus directe utilise les
fonctions génératrices des moments (et le fait que la fonction génératrice caractérise la loi
d’une v.a. à valeurs dans N) : pour tout t ∈ [0, 1],

E[tN ] =
∏
i∈I

E[tNi ] =
∏
i∈I

exp(λi(t− 1)) = exp(Λ(t− 1).

On peut également faire une preuve élémentaire en décomposant P(N = n) selon toutes les
valeurs possibles des (Ni, i ∈ I). Lorsque I = {1, ..., d}, on retrouve, bien entendu, des étape
du calcul effectué plus haut.

Exercise 8 Let X1, X2, ... be i.i.d exponentials with parameter λ > 0, and N independent
of (Xi, i ≥ 1), having a geometric(β) distribution. Find the distribution of X :=

∑N
k=1Xk.

On a pour t ≥ 0

E[exp(−tX)] = E

[
N∏
i=1

exp(−tXi)

]

= E

[
E

[
N∏
i=1

exp(−tXi) | N
]]

= E

[(
λ

λ+ t

)N]

=

βλ
λ+t

1− (1− β) λ
λ+t

=
βλ

t+ βλ
,

de sorte que X ∼ exp(βλ).
Si vous n’êtes pas familiers avec l’espérance conditionnelle, la deuxième ligne du calcul
ci-dessus peut se comprendre de manière plus élémentaire en décomposant suivant les valeurs
possibles de N puis en appliquant Fubini, et l’indépendance des variables (N,Xi, i ≥ 1)

E

∏
i≤N

exp(−tXi)

 = E

∑
n≥1

n∏
i=1

exp(−tXi)1{N=n}


=

∑
n≥1

E

[
n∏
i=1

exp(−tXi)1{N=n}

]

=
∑
n≥1

n∏
i=1

E[exp(−tXi)]P(N = n)

=
∑
n≥1

(
λ

λ+ t

)n
P(N = n)
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Remarque – option A : On peut également déduire ce résultat des propriétés des processus
de Poisson : soit (Nt, t ≥ 0) un processus de Poisson d’intensité λ, i.e. un processus
croissant, à valeurs dans N, issu de 0 et qui saute de 1 en chacun de ses sauts et dont les
temps de saut sont espacés par des variables i.i.d, exponentielles de paramètre λ. Une autre
caractérisation de ce processus est que N est à accroissements indépendants et stationnaires
avec Nt ∼ Poisson(λ) (voir l’exercice ci-dessus).
Considérons alors le processus Ñ , également croissant, à valeurs dans N, et qui, comme N ,
saute de 1 en chacun de ses sauts. Les temps de saut de Ñ sont un sous-ensemble de ceux de
N et ils sont déterminés de la fao̧n suivante : on introduit (ξi, i ≥ 1) des variables i.i.d
Bernoulli de paramètre β. Au i-ème temps de saut de N , Ñ saute également ssi ξi = 1.
Autrement dit, on colorie de manière i.i.d, en vert (resp. rouge) les temps de saut de N
suivant que ξi = 1 (resp. 0). Les temps de saut du processus Ñ sont les sauts ”verts” de N .
En utilisant en particulier un des exercices précédents (bôıte de peinture), on peut montrer
que Ñ reste à accroissements indépendants, et que Ñt ∼ Poisson(βλ). Autrement dit, Ñ
reste un processus de Poisson, d’intensité λβ. Les temps de saut de Ñ sont donc espacés par
des variables i.i.d, exponentielles de paramètre βλ. Et le premier saut est justement donné
par la variable X de l’exercice.

1. Par une récurrence on montre que la densité fn de Sn est

fn(t) =
(λt)n−1

(n− 1)!
λ exp(−λt)1{t≥0}.

2. On a donc par indépendance de Xn+1 et Sn, et la question précédente

P(Nt = n) = P(Xn+1 > t− Sn, Sn ≤ t) =

∫ t

0
λ exp(−λu)

(λu)n−1

(n− 1)!
exp(−λ(t− u))du

=
(λt)n

n!
exp(−λt),

de sorte que Nt ∼ Poisson(λt).

3 Classical examples of discrete-time Markov chains,
classification

Exercise 10
Let P be a transition kernel on state space E (finite or countable).

1. We say state x leads to y and write x→ y iff there exists n ∈ N such that
Pn(x, y) > 0. Is → an equivalence relation ?

2. We say states x and y communicate and write x↔ y iff x→ y and y → x. Show that
↔ is an equivalence relation. We call communication classes the corresponding
equivalence classes.

3. Assume there exists k ∈ N∗ such that P k(x, y) > 0 for any x, y ∈ E. Describe the
partition of E into communication classes.

11



4. Consider the transition kernel P given in the last question of exercise 2. Describe the
partition of E = {1, ..., N} into communication classes. What about those associated
with the transition kernel PN ?

5. Consider the chain on E = Z such that P (n, n+ 1) = 1 for any n ∈ Z. Describe the
partition of E into communication classes.

1. The relation → is reflexive (P 0 = Id), transitive (if ∃n, n′ such that
Pn(x, y) > 0, Pn

′
(y, z) > 0, then Pn+n′(x, z) ≥ Pn(x, y)Pn

′
(y, z) > 0. But it isn’t

symmetric : e.g. for P =

(
1 0

1/2 1/2

)
we have 2→ 1 but 1 9 2.

2. ↔ is clearly reflexive and symmetric because → is, and it is symmetric by design. It
is indeed an equivalence relation.

3. If for some k ∈ N∗, all entries of P k are positive, then obviously for any {x, y} ∈ E2,
x↔ y, that is, there is only one communication class. We’ll say in that case that the
chain is irreducible. In fact, when this stronger assumption (∃k ∈ N∗ such that for
any (x, y) ∈ E2, P k(x, y) > 0) holds, we’ll say that the chain is strongly irreducible.

4. We have 1→ 2→ · · · → N → 1, so the chain is irreducible. Now PN = Id, so for the
chain with transition kernel PN , there are N communication classes (every state is
by itself in its communication class).

More generally, one can easily show that any communication class of P k is always
included in one communication class of P , but as the above example shows, the
inclusion may be strict.

5. For any n ∈ Z, k ∈ N, n→ n+ k, however, for any k ∈ N∗, n+ k 9 n since for any
j ∈ N, P j(n+ k, n) = 0. Thus for any (n,m) ∈ Z2, n 6= m, n= m, and therefore the
communication class of any given n ∈ Z is reduced to {n}.

Exercise 11 For p, q ∈ [0, 1], let X be the two-state (1, 2) chain, with transition matrix

P =

(
1− p p
q 1− q

)
.

1. For which values of p, q is the chain irreducible ? aperiodic ?

2. For each p, q, find the set D of all invariant distributions of X.

3. Compute Pn, n ∈ N.

4. When X is irreducible, compute

d1(n) :=
1

2
(|P1(Xn = 1)− π(1)|+ |P1(Xn = 2)− π(2)|) .

and

d2(n) :=
1

2
(|P2(Xn = 1)− π(1)|+ |P2(Xn = 2)− π(2)|) .

5. Draw the shape of the graphs of n→ di(n), i = 1, 2 for p = q = 0.5, for
p = 0.4, q = 0.1, for p = 0.9, q = 0.95 and finally for p = q = 1.

1. irreducible iff p > 0, q > 0, aperiodic if (p, q) 6= (1, 1).

2. If p = q = 0, D = {αδ1 + (1− α)δ2, α ∈ [0, 1]}.
Otherwise D = { q

p+q δ1 + p
p+q δ2}
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3. If p = q = 0, Pn = I2 for any n ∈ N.

Otherwise P = A−1DA with

A =

(
1 −p
1 q

)
, D =

(
1 0
0 1− p− q

)
A−1 =

1

p+ q

(
q p
−1 1

)
,

so one obtains

P t = ADnA−1 =

(
q
p+q

p
p+q

q
p+q

p
p+q

)
+ (1− p− q)n

(
p
p+q

−p
p+q

−q
p+q

q
p+q

)
.

4. For n ∈ N,

d1(n) =
1

2
(|Pn(1, 1)− π(1)|+ |Pn(1, 2)− π(2)|) =

p

p+ q
|1− p− q|n.

Using a symmetry argument

d2(t) =
q

p+ q
|1− p− q|n.

Exercise 12 Let X be the chain on {0, 1, ..., n} with transition matrix P such that

P (0, k) =
1

2k+1
, k ∈ {0, ..., n− 1}, P (0, n) =

1

2n

P (k, k − 1) = 1, 1 ≤ k ≤ n− 1, P (n, n) = P (n, n− 1) = 1/2.

1. Compute the unique invariant distribution π of the chain.

2. Show that, for any x0 ∈ {0, 1, ..., n− 1}, P (x0+1)(x0, ·) = π.

3. For any x0 ∈ {0, 1, ..., n}, establish that P (n)(x0, ·) = π.

4. For t ∈ N compute

d(t) :=
1

2

n∑
x=0

∣∣∣P (t)(n, x)− π(x)
∣∣∣ ,

and draw the shape of t→ d(t).

1. The chain is clearly irreducible (n→ n− 1→ ....→ 0→ n) and aperiodic (0→ 0). It
therefore possesses a unique invariant distribution π such that
π(k)− π(k + 1) = π(0)

2k+1 , k = 0, ..., n− 1, π(n) = π(0)
2n . It follows that

π(k) =
π(0)

2k
, k = 0, ..., n− 1, π(n) =

π(0)

2n
,

hence π(0) = 1/2, and

π(k) =
1

2k+1
, k = 0, ..., n− 1, π(n) =

1

2n
.

2. By the above P (0, ·) = π, which is the assertion for x0 = 0.

For x0 ∈ {1, ..., n− 1}, the x0 first steps are deterministic and one unit to the left, so
P x0(x0, 0) = 1, and P x0+1(x0, ·) = P (0, ·) = π, as required.
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3. According to the above if x0 = 0, ..., n− 1,

Pn(x0, ·) = Pn−x0−1π = π.

Under Pn, the variable G = inf{n ≥ 1 : Xn = n− 1} is Geom(1/2). It follows, under
Pn, that

Xn = (G− 1)1{G≤n} + n1{G>n}.

Thus

P t(n, k) = Pn(Xn = k) = Pn(G = k + 1) =
1

2k+1
, k = 0, ..., n− 1,

P t(n, n) = Pn(Xn = n) = Pn(G > n) =
1

2n
,

and finally Pn(n, ·) = π.

4. If t ≥ n, P t(n, ·) = π so that d(t) = 0.

Assume now t ≤ n− 1. Under Pn, using the previous question

Xt = (n− t+G− 1)1{G≤t} + n1{G>t},

thus

P t(n, k) = Pn(G = k−n+t+1) =
1

2k−n+t+1
, k = n−t, ..., n−1, P t(n, n) = Pn(G > t) =

1

2t
.

We obtain, for t ≤ n− 1,

d(t) =

n−t−1∑
x=0

π(x) = 1− 1

2n−t
.

Exercise 13

1. Fix p ∈ [0, 1], and introduce i.i.d variables (Xi, i ≥ 1) such that P(X1 = 1),
P(X1 = −1) = 1− p. Let Sn = S0 +

∑n
k=1Xi, and Pk the law of (Sn)n≥0 under which

S0 = k.

Let N ∈ N be fixed and denote τN = inf{n ≥ 0 : Sn ∈ {0, N}}. For k ∈ {0, ..., N},
compute Pk(SτN = N) (one should distinguish between the cases p = 1/2, p 6= 1/2).

2. How does the previous question imply that S is recurrent iff p = 1/2 ? When p = 1/2,
is S positive recurrent or null recurrent ?

3. Fix p ∈ [0, 1], q ∈ [0, 1− p), and assume now that P(X1 = 1) = p, P(X1 = 0) = q,
P(X1 = −1) = 1− p− q. Answer the previous question for this lazy version of the
walk.

4. Let T1 = inf{n ∈ N : ST = 1}. For p > 1/2, s > 0, compute E0[exp(−sT1)] (it may be
useful to introduce an exponential martingale).
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1. In both cases it is easy that τN is bounded by NG with G some geometric variable.
It follows that E[τN ] <∞.

If p = 1/2, then (Sn∧τN , n ≥ 0) is a martingale, Doob’s optional stopping theorem
then implies, for k ∈ {0, ..., n}, that

Pk(SτN = N) =
k

N
.

For p 6= 1/2, then

(
Yn :=

(
1−p
p

)S
n∧τN

, n ≥ 0

)
is a martingale. Now Doob’s theorem

allows to conclude et le théorème de Doob that for any k ∈ {1, ..., n},

Pk(SτN = N) =
1−

(
1−p
p

)k
1−

(
1−p
p

)N .
2. When p > 1/2, we have (1− p)/p < 1 hence

P1(T0 = +∞) = P1(
⋂
N

SτN = N) = lim
N→∞

P1(SτN = N) =
2p− 1

p
> 0,

so the walk is transient. By a symmetry argument it is also transient when p < 1/2.

However if p = 1/2,

P1(T0 = +∞) = lim
N→∞

P1(SτN = N) = 0,

hence the walk is then recurrent.

Since steps are all of unit size, a walk started at 2 must necessarily go through 1
before reaching the origin. Moreover by translation invariance E2[T1] = E1[T0] so
E2[T0] = 2E1[T0], and finally Markov property at time 1 for the walk started at 1
implies

E1[T0] = 1 +
1

2
2E1[T0].

It follows that E1[T0] = +∞, and that simple symmetric random walk on Z is null
recurrent.

3. If one simply forgets the time steps when the lazy walk does not move, one recovers
the preceding model with p′ = p

1−q , 1− p′ =
1−p−q

1−q .

4. Let g(λ) = ln (p exp(λ) + (1− p) exp(−λ)). One can easily check that(
Mλ
n = exp (λSn − ng(λ)) , n ≥ 0

)
is a martingale, and that Mλ

n∧T0 is uniformly integrable provided λ > 0. By Doob’s
theorem,

E0[exp(−T1g(λ))] = exp(−λ).

It only remains to compute λ(s) such that g(λ(s)) = s in order to conclude.
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Exercise 14 A commercial promotion game consists in collecting n coupons to win a prize.
We are interested in the time τ necessary for a given customer to collect all n coupons,
assuming he receives each day exactly one coupon, choosen independently, and uniformly
amongst all.

1. Show that τ = τ1 + ...+ τn with τi ∼ Geom(n−i+1
n ).

2. Letting c > 0, show that

P ( not draw coupon 1 in bn log(n) + cnc days ) =

(
1− 1

n

)bn log(n)+cnc

and deduce that
P(τ > bn log(n) + cnc) ≤ exp(−c)

3. Compute E[τ ],Var[τ ]. Find equivalents for these quantities when n→∞. Deduce a
bound on

P(|τ − E[τ ]| > A
√

Var[τ ]).

Conclude.

1. For convenience let us label the coupons {1, ..., n}. Let ck the label of the coupon
which is received day k ∈ N∗. Let Ck = {i : ∃l ≤ k cl = i} the set of coupons collected
until day k ∈ N∗. Finally let

σ0 = 0, σi = inf {k : |Ck| = i} , i = 1, ..., n

so that τi := σi − σi−1 is the number of days between the collection times of i− 1 and
i distinct coupons distincts. Since draws are independent and uniform, variables
τi, i = 1, ..., n are indeed independent and geometric with respective parameters
n−i+1
n , i = 1, ..., n.

2. First equality follows directly from the fact that draws are independent and uniform.
Then

P(τ > bn log(n) + cnc) = P

(
n⋃
i=1

not draw i in bn log(n) + cnc days

)

≤ n

(
1− 1

n

)bn log(n)+cnc

= n exp

(
bn log(n) + cnc log

(
(1− 1

n
)

))
≤ exp(−c).

3. One has

E[τ ] =

n∑
i=1

E[τi] =

n∑
i=1

n

n− i+ 1
∼n→∞ n log(n),

Var[τ ] =
n∑
i=1

Var[τi] =
n∑
i=1

(
1− n− i+ 1

n

)(
n

n− i+ 1

)2

= n
n∑
i=1

i− 1

(n− i+ 1)2
∼n→∞

n2π2

6
.
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By Chebychev, one finds

P(|τ − E[τ ]| > A
√

Var[τ ]) ≤ 1

A2
.

Chernoff would allow for an even more precise inequality.

Anyhow the first order of τ remains close to its expectation, which itself remains
close to n log(n) ; more precisely with probability close to 1 when A→∞,
fluctuations of τ around n log(n) do not exceed An.

Exercise 15 Let (Xn)n≥0 the Markov chain on E = N with transition kernel P such that

P (0, 0) = r0, P (0, 1) = p0, and ∀i ≥ 1, P (i, i− 1) = qi, P (i, i) = ri, P (i, i+ 1) = pi,

with p0, r0 > 0, p0 + r0 = 1 and for any i ≥ 1, pi > 0, qi > 0, pi + ri + qi = 1. Such a chain is
usually refered to as a birth-and-death chain.

1. Show that X is irreducible, aperiodic.

2. Show that X is reversible and that it has a unique stationary distribution iff∑
i≥1

p0···pi−1

q1···qi <∞. In that case, express this stationary distribution as a function of
{pi, i ≥ 0}, {qi, i ≥ 1}.

3. Consider the case when pi = p > 0, qi = q > 0 for any i ≥ 1. Compute Ei[T+
i ], for

any i ∈ E.

1. Irreducibility follows immediatly from the assumption pi > 0, i ∈ N, qi > 0, i ∈ N∗.
Aperiodicity follows from r0 > 0.

2. For reversibility one must check the detailed balance equations, which imply

πi+1

πi
=

pi
qi+1

, ∀i ∈ N.

For i ≥ 1, we can always set

πi = π0

i−1∏
k=0

pk
qk+1

,

so the chain is reversible.

For such π to be a distribution it is necessary and sufficient that

S =
∑
i≥1

i−1∏
k=0

pk
qk+1

<∞.

In this case π0 = 1
1+S ,

πi =
1

1 + S

i−1∏
k=0

pk
qk+1

, i ≥ 1,

and π is the unique (by irreducibility) invariant distribution. By theorem, this also
corresponds to the case when X is positive recurrent.
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3. When pi = p, qi = q we have

S =
∑
i≥1

(
p

q

)i
which is finite if p < q (unsurprising : we are looking at an asymmetric simple
random walk reflected at the origin, and the condition p < q corresponds indeed to
the positive recurrent case).

When p < q we have 1 + S = 1
1−p/q = q

q−p , and

πi =
q

q − p

(
p

q

)i
, i ≥ 0,

hence Ei[T+
i ] = 1

πi
= q−p

q

(
q
p

)i
.

When p = q the chain is null recurrent, and when p > q it is transient, in both cases
Ei[T+

i ] =∞.

Exercise 16

1. Let G = (V, E) be a locally finite connected graph (locally finite means V is at most
countable and each node has finitely many neighbours). Write x ∼ y iff (x, y) ∈ E . To
each edge e ∈ E a conductance ce > 0 is assigned.

Let X be the chain on V with transition kernel P satisfying

P (x, y) =
c(x, y)∑
z∼x c(x, z)

, ∀y ∼ x.

Show that X is irreducible and reversible, and find its unique invariant distribution.

2. Let X be a reversible irreducible chain on the countable space E. Assume for any
x ∈ E there are only finitely many y ∈ E such that P (x, y) > 0. Show one can find G
locally finite and connected, and conductances (ce, e ∈ E) such that P can be
expressed as in the previous question.

1. Irreducibility of X follows from connectivity of G. Setting c(x) :=
∑

y∼x c(x, y), x ∈ V,

and cG =
∑

x∈V c(x), then X is reversible with π(x) = c(x)
cG
, x ∈ V

2. The graph is the one usually associated with the chain through its diagramm, it is
connected because X is irreducible. Choose (no matter how) x0 ∈ V, y0 ∼ x0, and fix
c(x0, y0) = 1 (in fact the model does is invariant when multiplying conductances by a
positive constant, so this choice is arbitrary).

For P to be expressed as in the previous question, we must have, for any
y ∼ x, y 6= y0, c(x0, y) = P (x0, y)/P (x0, y0). This fixes
c(x0) =

∑
y∼x0 P (x0, y)/P (x0, y0) (finite thanks to our assumptions), and

reversibility of X allows to uniquely determine c(y) for any y ∼ x0, y 6= x0, i.e. for
any y : dG(x0, y) = 1. Finally for any y : dG(x0, y) = 1, and z ∼ y, dG(x0, z) = 2, one
sets c(y, z) = P (y, z)c(y).

By the same reasoning, if {c(z), c(z, z′) : z ∼ z′, dG(x0, z) = k, dG(x0, z
′) = k + 1} are

determined, reversibility allows to determine {c(z′) : dG(x0, z
′) = k + 1}, then the

knowledge of P (z, z′) allows to fix c(z′, z′′) for any z′ ∼ z′′ such that
dG(x0, z

′) = k + 1, dG(x0, z
′′) = k + 2.
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Exercise 17 Assume (G, ·) is a group with at most countably many elements, µ a
distribution on G, and X the chain on G such that P (g, h · g) = µ(h). We refer to X as the
random walk on G with jump kernel µ.

1. Explain why SRW on Zd is an example of such chain.

2. Explain why symmetric simple random walk on
( Z
nZ
)d

is another.

3. Consider the following shuffling of a deck of n ≥ 2 cards : at each time step, pick two
uniform independent positions in the deck, independently of the past, and exchange
the cards at these respective positions. Show that this constitutes a third example of
a random walk on a group.

4. Let H = {h1 · h2 · · · · hn, µ(hi) > 0, i = 1, ..., n, n ∈ N}. What can be said of X
according to wether H ( G or H = G ? Find examples of chains corresponding to
each of these two cases.

5. Show that any uniform measure on G is stationary.

6. Assume X is irreducible. Find the set of invariant distributions (one may distinguish
between the cases when G is finite or infinite).

7. Assume X is irreducible. Show X is reversible iff µ satisfies

µ(h−1) = µ(h) ∀h ∈ G.

8. Give an example of a shuffling of a deck of n cards corresponding to a chain that is
irreducible, but non reversible.

1. Random walk on G = (Z,+) is obtained with µ(1) = 1− µ(−1) = p.

2. Symmetric SRW on G = (Z/nZ)d is obtained with µ(ei) = µ(−ei) = 1
2d , i = 1, ..., d.

3. Here G = Sn and µ(ij) = 1
n(n−1) , i 6= j ∈ {1, ..., n}2, with (ij) the transposition of i

and j.

4. A walk on G with jump kernel µ started at its neutral element idG can only reach
elements of H, so if H ( G the walk can not be irreducible.

On the other hand assume H = G, and fix g ∈ G. Since g ∈ H there exists h1, ..., hn
s.t. g = h1...hn so idG → g. Also since g−1 ∈ H and idG = g−1g we also find g → idG.
In the end every state communicates with idG and the walk is irreducible.

Walk on Z (cf first question) is irreducible when p ∈ (0, 1), it is not when p ∈ {0, 1}.
5. Assume π(g) = c for any g ∈ G, so π is a uniform measure on G. Since
g = hg′ ⇔ h = g(g′)−1, we have

πP (g) =
∑
g′∈G

π(g′)P (g′, g) = c
∑
g′∈G

P (g′, gg′−1g′) = c
∑
g′∈G

µ(gg′−1) = c,

since µ is a distribution on G.

6. When X is irreducible there is a unique invariant measure which attributes a given
mass c to idG. Thus, if G is finite there exists a unique invariant distribution hich
gives mass 1/|G| to each element of G.

If G is infinite, there exists no invariant distribution. In particular this implies that
an irreducible walk on an infinite group can not be positive recurrent.
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7. When X is irreducible, there is a unique invariant measure which attributes a given
mass c to idG, by the above it has to be the corresponding uniform measure. Detailed
balance now reads

cP (g, g′) = cP (g′, g)∀g, g′ ∈ G,
hence for any h ∈ G,

µ(h) = P (g, hg) = P (hg, h−1hg) = µ(h−1).

Conversely if µ(h) = µ(h−1) detailed balance equations are satisfied with respect to a
uniform measure.

8. Let n ≥ 3, G = Sn and assume that a jump of the chain consists in placing the top
card at one of the n positions choosen uniformly at random (i.e.
µ((1k(k − 1)...2)) = 1

n , k = 1, ..., n). Such walk is clearly irreducible, however for
k ≥ 3, µ((1k(k − 1)...2)−1) = µ(12...k)) = 0, so it is not reversible.

Exercise 18 An admissible q-coloring of the graph G = (V, E) is an application
χ : V → {1, ..., q} such that for any (x, y) ∈ E one has χ(x) 6= χ(y).

1. If G is a tree show it admits a q-coloring, for any q ≥ 2. Does the converse hold ?

2. Let T be a finite tree. Consider Gq(T ) the graph whose nodes are the admissible
q-colorings of T and edges are between pairs of admissible colorings which only differ
at one node. How many nodes does G2(T ) possess ? Is it connected ? Is G3(T )
connected ?

1. Obviously, having an admissible q-coloring implies having admissible q′-colorings for
any q′ ≥ q. For a tree, there are exactly two admissible 2-colorings of a tree : the first
is obtained by coloring each node at even (resp. odd) distance from the root with
color 1 (resp. 2), the second is obtained by doing the exact opposite.

Converse does not hold : an even-length cycle is not a tree, but it also admits two
2-colorings.

2. By the above G2 has 2 noeuds. It is not connected as soon as T counts at least two
nodes.

By induction on the depth of T , we are going to show that G3 is connected.

More precisely if T has depth n and if c1, c2 are two admissible 3-colorings we should
establish show that
— when c1 and c2 coincide at the root of T , one can go from c1 to c2 in G3(T )

without changing the color of the root.
— when c1 and c2 differ at the root of T , one can go from c1 to c2 in G3(T ) without

ever using the third color for the root.
If n = 0, T only has its root and the assertion is obvious.

Let us now assume the above assertion holds for a tree of depth at most n, and fix T
of depth n+ 1 and to admissible colorings of T , say c1, c2 : T → {1, 2, 3}.
Denote by T1, ..., Td the subtrees of T below its root ∅.
If c1(∅) = c2(∅), apply induction assumption to Ti, i = 1, ..., d to go from c1 to c2

inside each subtree without using the color of the root of T for nodes at depth 1 : it
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is obviously possible for a subtree whose roots colors match in c1 and c2, and it is
still possible when the do not, since by assumption one can match colors in Ti
without using the third color which has to be that of the root of T .

If c1(∅) 6= c2(∅) (to fix ideas and w.l.o.g., let us say that c1(∅) = 1, c2(∅) = 2). By the
above, from c1, we can reach the 2-coloring using only colors 1 (at even depths) and 3
(at odd depths) without ever changing the color of the root

Now change the root color to 2.

By induction, we can now reach c2 from this coloring without having to change the
root’s color.

So we have gone from c1 to c2 without using the third color, and we are done.

4 Complements on discrete-time chains

Exercise 19 Let E be countable, (Zn, n ≥ 1) i.i.d taking values in Λ and φ : E × Λ→ E.
Let X be such that

Xn+1 = φ(Xn, Zn+1), n ≥ 0,

and denote by Px0 the law of X when X0 = x0.

1. Show that X is Markov, and find its transition kernel P .

2. Here Zn = (jn, Bn) with jn ∼ Unif{1, ..., N} independent of Bn ∼ Ber(1/2). How
should one choose φ so as to recover the lazy SRW on the hypercube ?

3. What difference is there between filtrations (Fn), (Gn) where
Fn = σ(X0, ..., Xn), n ≥ 0 and Gn = σ(X0, Z1, ..., Zn), n ≥ 0 ?

4. For the example of question 2, show that

T = inf{n ≥ 0 : {j1, ..., jn} = {1, ..., N}}

is a (Gn)-stopping time. Is it a (Fn)-stopping time ?

5. What is the asymptotic behaviour of T as n→∞ (one may use a previous exercise) ?

6. In general if X is Markov and f : E → F , is the process (Yn := f(Xn), n ≥ 0) an
F -valued Markov chain ?

1. Fix x, y ∈ E, and let Ax,y = {z ∈ E : φ(x, z) = y}. Then P (x, y) =
∫
Ax,y

dPZ1(z).

2. The hypercube is E = {0, 1}n. To recover lazy SRW on E it suffices to choose

φ :

{
E × {1, ..., n} × {0, 1} → E

(x, j, b)→ (x1, ..., xj−1, b, xj+1, ..., xn)
,

so that φ replaces the jth coordinate of x with b.

3. Since Xn = φ(...φ(φ(X0, Z1), Z2)..., Zn) is a function of X0, Z1, ..., Zn, filtration (Gn)
is finer than (Fn).

4. T clearly is a (Gn)-stopping time. However it is not a (Fn)-stopping time. Indeed for
x ∈ E, the event (in Fn), {X0 = X1 = ... = Xn = x} intersects both {τ = n} and
{τ > n}.
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5. The law of T is exactly that of the collection time of n coupons. We had seen that
T = n log(n) + o(n log(n)) with probability tending to 1 as n→∞.

6. In general this is not a Markov chain. For instance take X SRW on Z
3Z absorbed at 0

and f ≡ mod2. Then (Yn = f(Xn), n ≥ 0) is not a 2-state chain :
P1(Y4 = 1 | Y1 = 0, Y2 = 1, Y3 = 0) > 0 but P1(Y4 = 1 | Y1 = Y2 = Y3 = 0) = 0.

Exercise 20 Assume (Xn)n≥0 is Markov (λ, P ), (Fn)n≥0 is the natural filtration of X, and
T is an (Fn)n≥0-stopping time.

1. Define the trace field FT := {A ∈ F : ∀n ∈ N, A ∩ {T = n} ∈ Fn}. Show that
FT = σ(X0, ..., XT ).

2. Establish that if B ∈ FT , m ∈ N, x ∈ E we have

Pλ(XT = j0, XT+1 = j1, ..., XT+n=jn ∩B ∩ {T = m} ∩ {XT = x})
= 1{j0=i}Pi(X1 = j1, ..., , Xn = jn)Pλ(B ∩ {T = m} ∩ {XT = x})

3. Deduce that

Pλ(XT = j0, XT+1 = j1, ..., XT+n=jn ∩B | T <∞, XT = x)

= Pλ(B | T <∞, XT = x)1{j0=i}

n−1∏
k=0

P (jk, jk+1).

4. What is the conditional law of (XT+n, n ≥ 0) given {T <∞, XT = x} ?

1. For A to be in σ(X0, ..., XT ) it is necessary and sufficient that for any n ∈ N,
A ∩ {T = n} ∈ σ(X0, ..., Xn) = Fn. In other words FT contains exactly the events
which can be decided before T .

2. This is a direct application of Markov property since B ∩ {T = m} ∈ Fm.

3. Summing over m ∈ N both sides of the equation obtained in the previous question
(there are no problems with the infinite sums since all terms are positive) we find

Pλ(XT = j0, XT+1 = j1, ..., XT+n=jn ∩B ∩ {T <∞} ∩ {XT = x})
= 1{j0=i}Pi(X1 = j1, ..., , Xn = jn)Pλ(B ∩ {T <∞} ∩ {XT = x})

Dividing by P({T <∞} ∩ {XT = i}) we obtain the desired equality.

4. The previous question implies that conditionally given {T <∞, XT = x},
(XT+n, n ≥ 0) is Markov (δx, P )

Exercise 21 Let X be an E-valued Markov chain, with kernel P . For x ∈ E, let
T (x) := {n ∈ N∗ : Pn(x, x) > 0}, and d(x) = pgcd(T (x))

1. Show that, if x and y both belong to the same communication class, then
d(x) = d(y). One may start by noticing that if n,m are such that
P (n)(x, y) > 0, P (m)(y, x) > 0 then d(x) and d(y) divide n+m.

2. Show that if E is finite and X is irreducible and aperiodic, one can find r > 0 such
that P (r)(x, y) > 0 for any x, y ∈ E.
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1. Consider, as suggested n,m such that P (n)(x, y) > 0, P (m)(y, x) > 0. Tnen
P (n+m)(x, x) ≥ P (n)(x, y)P (m)(y, x) > 0, hence d(x) divides s+ t. Similarly
P (n+m)(y, y) ≥ P (n)(y, x)P (m)(x, y) > 0 and d(y) also divides n+m.

Now if P (r)(x, x) > 0 we also have P (n+m+t)(y, y) ≥ P (m)(y, x)P (r)(x, x)P (n)(x,y) > 0,
so that when r ∈ T (x), n+m+ r ∈ T (y), hence d(y) divides n+m+ r. But d(y)
divides n+m so d(y) also divides r. Since the reasoning holds for any r ∈ T (x), we
conclude that d(y) divides d(x).

By a symmetric argument d(x) divides d(y) et we finally conclude that d(x) = d(y).

2. Let x ∈ E. Since pgcd(T (x)) = 1, we are going to show the existence of nx ∈ N such
that T (x) ⊃ {nx, nx + 1, nx + 2, ...}.
The sequence (pgcd(T (x)∩ {1, ...,m}))m is integer valued and non increasing, it must
be constant above some rank, so it must be 1 above some rank. Hence there exists
m0 such that pgcd(T (x) ∩ {1, ...,m0}) = 1. Write T (x) ∩ {1, ...,m0} = {k1, ..., kr}. By
Bezout one can find a1, ..., ar such that

∑r
i=1 aiki = r. Even if it means taking

K ≥ k1 max |ai|, a K ′ ≥ 0 and k < k1 any n ≥ nxK
∑r

i=1 ki can be written as

n = K

r∑
i=1

ki +K ′k1 + k(

r∑
i=1

aiki),

so that

n = (K +K ′ + ka1)k1 +
r∑
i=2

(K + kai)ki,

where the integers K +K ′ + ka1,K + ka2, ...,K + kar are all nonnegative. In the end
Pn(x, x) > 0 for any n ≥ nx, as required.

Now under the assumption that E is finite, N := maxx nx also is, and Pn(x, x) > 0
for any n ≥ N , and any x ∈ E. Write nx,y := min{k : P k(x, y) > 0}, and
N ′ = maxx,y∈E nx,y, to conclude finally that if n ≥ N +N ′, whatever x, y ∈ E,
n− nx,y ≥ N then

∀x, y ∈ E Pn(x, y) ≥ Pn−nx,y(x, x)Pnx,y(x, y) > 0.

Exercise 22 Let X be an irreducible E-valued chain with kernel P , and period d ≥ 2.

1. Show that E can be partitioned into d classes C0, ..., Cd−1 which satisfy the
following : for any distribution λ on E s.t. λ(C0) = 1, and for any r ∈ {0, ..., r − 1},
the chain (Y

(r)
n := Xdn+r)n≥0 is Cr-valued. Is the chain Y (r) irreducible ? aperiodic ?

2. Let λ be a distribution on E s.t. λ(C0) = 1. Establish that

Pλ(Xdn+r = j) −→
n→∞

d

Ej [T+
j ]
.

1. Fix an x0 ∈ E and write

Ci = {x ∈ E : ∃n ≥ 0Pnd+i(x0, x) > 0}, i = 0, 1, ..., d− 1.

Since the chain is irreducible the union of these non empty sets cover E. If
i, j ∈ {0, ..., d− 1} and x ∈ Ci ∩ Cj one may find n, n′ such that
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Pnd+i(x0, x) > 0, Pn
′d+j(x0, x) > 0. By irreducibility there exists r s.t. P r(x, x0) > 0,

so both integers nd+ i+ r, n′d+ j + r are in T (x), hence they, their difference and
i− j must be divisible by d. Since |i− j| < d− 1, we conclude that i = j.

Hence the Ci, i = 0, ..., n− 1 are disjoint, and we have checked they form a partition
of E.

Let x0 as in the previous question and x ∈ C0. Consider λ = δx0 . Suppose y is
reached by Y (r), i.e. P dn+r(x, y) > 0 for some n ≥ 0. Since x ∈ C0, there exists m
such that Pmd(x0, x) > 0, but then P (m+n)d+r(x0, y) > 0 so that y ∈ Cr. Hence in
this case Y (r) is indeed Cr-valued.

A λ such that λ(C0) = 1 can be decomposed as
∑

x∈C0
α(x)δx. By the above if X

starts from λ the chain Y (r) is still Cr-valued.

Note that, by the same reasoning, if λ(Ci) = 1, for X started from λ, the chain Y (r)

is Ci+rmodd-valued.

Now fix x ∈ C0, we have d(x) = pgcd(T (x)) = d (cf first question of previous
exercise). By the reasoning of the second question of that exercise, there exists nx
sufficiently large so that for any n ≥ nx, Pnd(x, x) > 0 (observe that this part of the
reasoning remains valid even if E is only assumed countable).

Now fix y1, y2 ∈ Cr, and x ∈ C0. Since the chain X is irreducible, and using the
above we may find k1 = n1d+ r, k2 = n2d+ r such that
P (k1)(y1, x) > 0, P (k2)(x, y2) > 0. Then for any n ≥ nx, denoting n′ = n+ n1 + n2 we
have Pn

′d(y1, y2) = Pnd+k1+k2(y1, y2) > P k1(y1, x)Pnd(x, x)P k2(x, y2) > 0. Hence for
any n′ ≥ n1 + n2 + nx, Pn

′d(y1, y2) > 0, and one concludes that Y (r) is irreducible
and aperiodic.

2. Denote Qy the law of Y (r) started at y ∈ Cr. Since one step of Y (r) corresponds to d
steps of X, we find that dEQy [T

+
y ] = EPy [T

+
y ]. In particular positive recurrence (resp.

null recurrence, resp. transience) of X is equivalent to that of Y (r), r ∈ {0, ..., d− 1}.
1st case : Both chains are recurrent positive, then the stationary distribution of Y (r),
denoted π(r), must satisfy

π(r)(y) =
1

EQy [T
+
y ]

=
d

EPy [T
+
y ]
.

Apply convergence theorem to Y (r) to deduce that whatever µ(r) distribution on Cr,
we have

Qλ(r)(Y
(r)(n) = y) −→

n→∞
π(r)(y) =

d

EPy [T
+
y ]
,

which is the desired conclusion.

2nd case : If both chains are transient Pλ(Xnd+r = y) goes to 0 whatever λ, y and the
desired conclusion easily follows.

3rd case If both chains are null recurrent let us focus on Y = Y (r) : an irreducible,
aperiodic, null recurrent chain. Fix A > 0.
SinceEQy [T

+
y ] =

∑
n∈NQy(T

+
y > n) = +∞, one can find N such that

N−1∑
n=0

Qy(T
+
y > n) ≥ A.
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Now let n ≥ N , decompose according to the different possible values of the last
passage time at y before n, and use Markov at time k :

1 ≥
n∑

k=n−N+1

Qy (Yk = y, y /∈ {Yk+1, ...Yn})

≥
n∑

k=n−N+1

Qy(Yk = y)Qy

(
T+
y > n− k

)
=

N−1∑
k=0

Qy(Yn−k = y)Qy

(
T+
y > k

)
.

One concludes that for any n ≥ N , there exists k ∈ {0, ..., N − 1} such that
Qy(Yn−k = y) ≤ 1/A.

It remains, as in the proof of the convergence theorem to use that for µ, ν
distributions on E, when n→∞ dTV (µPn, νPn)→ 0 and deduce that for any fixed
k, µ = λ, ν = λP k

dTV (λPn−k, λPn)→ 0,

as n→∞. In particular

Qy(Yn−k = y)−Qy(Yn = y)→ 0,

so that Qy(Yn = y) ≤ 2/A for sufficiently large n. Since A is arbitrary large, we
conclude, as required, that Qy(Yn = y)→ 0.

Exercise 23 Let X be an E-valued Markov chain with initial distribution µ, (Fn)n the
natural filtration of X and T an (Fn)-stopping time. We assume T to be Pµ-a.s. finite. We
further assume that the law of XT under Pµ is µ.

1. What can be said of the measure

ν(x) := Eµ

[
T−1∑
k=0

1{Xk=x}

]
, x ∈ E?

2. Let θk the shift operator by k time steps, that is, if (xn)n≥0 ∈ EN,

θk((xn)n≥0) = (xn+k, n ≥ 0).

We then define T = T1 and Tk+1 = Tk + T ◦ θTk .

3. How can the trajectory of X be decomposed into identically distributed pieces ?

4. In general, are these pieces independent ?

5. Consider x, y ∈ E, and assume throughout the remainder of the exercise that the
chain is irreductible, positive recurrent positive, and denote by π its unique invariant
probability.

Let T = inf{n ≥ Ty : Xn = x}. Show that ν = (Ex[Ty] + Ey[Tx])π, and then that
ν(x) = 1

Px(Ty<T
+
x )
. Deduce that

Ex[Ty] + Ey[Tx] =
Ex[T+

x ]

Px(Ty < T+
x )
.
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6. For x, y, z ∈ E, by introducing σ = inf{n ≥ Ty : Xn = z} and
τ := inf{n ≥ σ : Xn = x}, use a similar method to establish that

Ex [#{visites en z avant Ty}] =
Ex[Ty] + Ey[Tz]− Ex[Tz]

Ez[T+
z ]

,

and

Ex[Ty] + Ey[Tz] + Ez[Tx] = Ex[T+
x ]

(
1

Px(Ty < T+
x )

+
Py(Tx < Tz)

Px(Tz < T+
x )

)
.

1. We are going to show that the measure ν is invariant : by Markov property at time k,

νP (x) =
∑
y∈E

Eµ

[
T−1∑
k=0

1{Xk=y}

]
P (y, x)

=
∑
y∈E

Eµ

[ ∞∑
k=0

1{Xk=y,Xk+1=x}1{T>k}

]

= Eµ

 ∞∑
k=0

∑
y∈E

1{Xk=y,Xk+1=x,T>k}


= Eµ

[
T∑

k′=1

1{X′k=x}

]
= ν(x).

Interversions of Eµ and
∑

are justified by the fact that integrated quantities are all
nonnegative ; and the last equality above comes from the fact that the law of XT is
µ, so that µ(x) = Eµ(1{X0=x}) = Eµ(1{XT=x}).

2. Thanks to the strong Markov property, (Xi, i = Tk, ..., Tk+1)k are identically
distributed.

Remark : Beware that in invoking Markov, we make use of the property that T , thus
Tk, k ≥ 1 are Pµ-a.s. finite. In the case when Pµ(T =∞) > 0, there is only a
geometric number of pieces, and there are no longer identically distributed (all
except the last are conditioned on having finite length, while the last is conditioned
on having infinite length).

3. However, these pieces are a priori not independent (as soon as the support of µ
counts at least two states, the law of (Xi, i = Tk, ..., Tk+1) obviously depends on the
last value of the previous piece of the trajectory).

Note however that when µ = δx, then for any k, XTk = x and strong Markov
property ensures in this particular case that the pieces are i.i.d. This is very useful in
establishing the ergodic theorem for Markov chains.

4. Le temps d’arrêt T vérifie les hypothèses de l’énoncé. La mesure ν associée est donc
invariante de poids total E[T ] = Ex[Ty] + Ey[Tx], et par unicité de la distribution
stationnaire, on déduit que ν = (Ex[Ty] + Ey[Tx])π. Par ailleurs, au point x,
π(x) = 1

Ex[T+
x ]

, tandis que

ν(x) = Ex [#{ visites en x avant Ty}] .
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Or, par la propriété de Markov forte aux temps successifs de retour en x, on a que
#{ visites en x avant Ty} est une variable géométrique de paramètre Px(Ty < T+

x ),
d’espérance 1

Px(Ty<T
+
x )

, et on obtient donc

1

Px(Ty < T+
x )

= ν(x) = (Ex[Ty] + Ey[Tx])π(x) =
Ex[Ty] + Ey[Tx]

Ex[T+
x ]

,

l’égalité souhaitée.

5. Le temps d’arrêt τ vérifie également les hypothèses de l’énoncé et donc la mesure ν
associée est invariante de poids total

E[τ ] = Ex[Ty] + Ey[Tz] + Ez[Ty],

on déduit que ν = (Ex[Ty] + Ey[Tz] + Ez[Tx])π. Au point z, π(z) = 1
Ez [T+

z ]
, tandis que

ν(z) = Ex [#{ visites en z avant Ty}] + Ez [#{ visites en z avant Tx}]

= Ex [#{ visites en z avant Ty}] +
Ex[Tz] + Ez[Tx]

Ez[T+
z ]

où on a utilisé la question précédente à la dernière ligne. On déduit donc

Ex[Ty] + Ey[Tz] + Ez[Tx]

Ez[T+
z ]

= ν(z) = Ex [#{ visites en z avant Ty}] +
Ex[Tz] + Ez[Tx]

Ez[T+
z ]

,

ce qui conduit à la première égalité souhaitée.

Par ailleurs, au point x, on a d’une part ν(x) =
Ex[Ty ]+Ey [Tz ]+Ez [Tx]

Ex[T+
x ]

, et d’autre part

ν(x) = Ex [#{ visites en x avant Ty}] + Ey [#{ visites en x avant Tz}]

=
1

Px(Ty < T+
x )

+ Ey [#{ visites en x avant Tz}]

Reste à voir (par Markov fort en Tx, que sous Py, le nombre de visites en x avant Tz
est 0 sur l’événement {Tz < Tx}, et prend la valeur d’une géométrique de paramètre
Px(Tz < T+

x ) sur l’événement {Tx < Tz}. On déduit que

Ey [#{ visites en x avant Tz}] =
Py(Tx < Tz)

Px(Tz < T+
x )
,

ce qui conduit à la deuxième égalité souhaitée.

Exercise 24 Assume π is the invariant distribution for an E-valued irreducible chain X.
Show that π(x) > 0 for any x ∈ E.
Since E is at most countable there exists at least one y ∈ E such that π(y) > 0.
Now fix x ∈ E. Since the chain is irredcible, we may find a k such that P k(y, x) > 0. But
then π(x) = πP k(x) ≥ π(y)P k(y, x) > 0.

Exercise 25 Let X be an E-valued Markov chain whose transition kernel P is assumed to
be symmetric.
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1. Assume that E is finite. Show that uniform distribution on E is invariant.

2. Assume again that E is finite. Upon what condition can it be said that the uniform
distribution is the unique invariant distribution ? What happens if this condition is
not fullfilled ?

3. Can you find an example with E infinite (countably), P irreducible and symmetric,
in which the chain X does not possess any invariant distribution.

4. Can you find an example with E infinite (countably), P irreducible and symmetric,
in which the chain X possesses a unique invariant distribution ?

1. Let π the uniform distribution on E. As P is symmetric,∑
x∈E

π(x)P (x, y) =
1

n

∑
x∈E

P (y, x) =
1

n
= π(y).

2. If X is irreducible, its stationary distribution is unique and it must therefore be π.

Also since P is symmetric the chain can only have closed finite hence recurrent
classes.

Thus if the chain is not irreducible, then there must be at least two positive recurrent
classes, so there must be infinitely many invariant distributions, that are the convex
linear combinations of uniform distributions on each class. In that case, π is only one
example of such combination.

3. SRW on Zd.
4. We prove by contradiction that there can not be such an example.

By irreducibility, if there is an invariant distribution π for the chain, any invariant
measure has to be a multiple of π (note that the next exercise provides another proof
of this fact). Now the uniform (infinite) measure µ attributing mass one to each
element in E must be invariant, by the same reasoning as in question 1, but since E
is infinite, µ can not be a multiple of π and we have reached a contradiction.

Exercise 26 Assume X is an irreducible E-valued Markov chain admitting an invariant
distribution π. For µ a nonnegative measure on E, and f : R+ → R strictly convex and
bounded, we define

Ent(µ | π) =
∑
x∈E

f

(
µ(x)

π(x)

)
π(x).

1. Show that Ent(µP | π) ≤ Ent(µ | π).

2. When is the above inequality an equality ? Deduce that any invariant measure of X
is a multiple of π.

1. Since π is invariant, for any x, νx(y) = π(y)P (y,x)
π(x) defines a distribution. Thus by the
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convexity of f and Jensen’s inequality

Ent(µP | π) =
∑
x∈E

f

(∑
y∈E µ(y)P (y, x)

π(x)

)
π(x)

=
∑
x∈E

f

∑
y∈E

νx(y)
µ(y)

π(y)

π(x)

≤
∑
x∈E

∑
y∈E

νx(y)f

(
µ(y)

π(y)

)
π(x)

=
∑
y∈E

π(y)

(∑
x∈E

P (y, x)

)
f

(
µ(y)

π(y)

)
= Ent(µ | π)

2. Since f is strictly convex, and Ent(µ | π) is finite because f is bounded and π is a

distribution, equality in the inequality above can only occur if y → µ(y)
π(y) is constant,

that is if µ = Cπ. If µ is invariant one must have µ = µP , by the above reasoning one
must have µ = Cπ.

Exercise 27 Let X be an E-valued Markov chain with kernel P . We assume ∼ to be an
equivalence relation on E. For x ∈ E, let x̃ denote its equivalence classe in E/ ∼.

1. Assume that for any ã, b̃ ∈ E/ ∼, the application

{
ã→ R+

x→∑
y∈b̃ P (x, y)

remains

constant. Establish that under this assumption X̃ is an Ẽ-valued Markov chain,
whose transition kernel P̃ shall be precised. Such chain is usually refered to as the
projected chain.

2. Let n ∈ N, n ≥ 2 and E = Z/(2nZ), let X the SRW (not necessarily symmetric) on
E, and finally denote by ∼ the equivalence relation

x ∼ y ⇔ x+ y = 0 [2n].

Upon what condition can the projected chain be defined ?

3. Let X be SRW on the hypercube E = {0, 1}d, with d ≥ 1, and ∼ be the equivalence
relation

x ∼ y ⇔
d∑
i=1

xi =
d∑
i=1

yi.

Describe the corresponding projected chain.

1. Let n ∈ N. We have

P(X0 ∈ ã0, ..., Xn ∈ ã, Xn+1 ∈ b̃) =
∑

x0∈ã0,...,xn∈ãn,y∈b̃

P(X0 = x0, ..., Xn = an)P (x, y).

From the assumption of the statement, f(ãn, b̃) :=
∑

y∈b̃ P (x, y) does not depend on
the choice of an ∈ ãn so that

P(X0 ∈ ã0, ..., Xn ∈ ã, Xn+1 ∈ b̃) = f(ã, b̃)P(X0 ∈ ã0, ..., Xn ∈ ãn).

29



We may therefore define P̃ (ã, b̃) = f(ã, b̃), and it is therefore straightforward that X̃
is indeed Markov, takes values in Ẽ and has kernel P̃ .

2. We have Ẽ = {0, ..., n} (class i, 1 ≤ i ≤ n corresponding to points i and 2n− i in E).
For

∑
y∈b̃ P (x, y) not to depend on x it must be that the initial walk is symmetric. In

that case the projected chain is SRW on {0, ..., n}, reflected at the boundaries 0 and n

3. Here Ẽ = {0, ..., d} and one recovers Ehrenfest’s model, more precisely

P̃ (i, i+ 1) =
d− i
d

, i = 0, ..., d− 1, P̃ (i, i− 1) =
i

d
, i = 1, ..., d.

Exercise 28 For j = 1, ..., d it is assumed that X(j) is a Markov chain taking values in the
countable Ej , with transition kernel Pj .
Assume further that ν is a distribution on {1, ..., d}, and define the product chain associated
with ν X = (X(1), ..., X(d)) with kernel P s.t.

P (x, y) =
d∑
j=1

ν(j)Pj(xj , yj)
∏
i 6=j

1{xi=yi}.

1. Find a NSC for irreductibility of X. We will assume that this condition is satisfied in
the remainder of the exercise.

2. Find a NSC for aperiodicity of X.

3. Show that the existence of a unique invariant distribution π for X is equivalent to
the existence of a unique invariant distribution πj for each coordinate chain
Xj , j = 1, ..., d. Then, express such π in terms of πj , j = 1, ..., d and ν.

4. What is X when ν is uniform on {1, 2} and Xj , j = 1, 2 are both SRW on Z/nZ ?

5. Can one choose X1, ..., Xd and ν such that X is SRW on the hypercube {0, 1}d ?
What about lazy SRW on the hypercube ?

1. X is irreducible iff for each i ∈ {1, ..., d}, either ν(i) > 0 and Xi is irreducible, or Ei
is a singleton.

Indeed, assume this condition holds. Fix x and y in the product space. Let kj be an

integer such that P
kj
j (x(j), y(j)) > 0. Then for k = k1 + ...+ kd we have P (k)(x, y) > 0.

On the other hand if for some i, the coordinate chain is not irreducible then clearly
X can not be : a9 b in Ei then x9 y in E as soon as x(i) = a, y(i) = b. Moreover if
for some i, ν(i) = 0, the ith coordinate of the chain remains unchanged, and unless
Ei is a singleton, this forbids irreducibility of X.

2. Fix x ∈ E.

Let ki = pgcd{n ≥ 1Pni (x(i), x(i)) > 0}, i = 1..., d the respective periods of coordinate
chains. For X to be aperiodic it is necessary and sufficient that pgcd(k1, ..., kd) = 1.

Indeed one can reach the starting point in ki steps, for any i ∈ {1, ..., d}, even if it
means only moving along one coordinate. Thus the period of X divides
pgcd(k1, ..., kd).
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On the other hand if for k > 0, P k(x, x) > 0, and if the trajectory involves
coordinates i1, ..., i`, then we must have

k =
∑̀
j=1

nijkij ,

so pgcd(k1, ..., kd) must divide the period of X.

3. This product chain is simply SRW on the 2-dimensional discrete torus.

4. In the case ν uniform, Ei = {0, 1}, and Pi(0, 1) = Pi(1, 0) = 1 the product chain is
indeed SRW on the hypercube. For the lazy version simply take
Pi(0, 1) = Pi(1, 0) = 1/4.

Exercise 29 Consider an E-valued irreducible Markov chain. For x, y ∈ E set

G(x, y) := Ex

[ ∞∑
t=0

1{Xt=y}

]
∈ R+.

The function G is called Green function of the chain X.

1. Show the following are equivalent
• X is recurrent.
• ∃x ∈ E : G(x, x) =∞.
• ∀x, y ∈ E,G(x, y) =∞.

2. Compute G(0, 0) when X is SRW on N : P(Xn+1 = 1 | Xn = 0) = 1 and for k ≥ 1
P(Xn+1 = k + 1 | Xn = k) = p ∈ [0, 1]) as a function of p.

3. Assume T is an infinite d-regular tree (where each node is of degree d, except the root
∅ of degree d), and consider the λ-biaised walk on this tree (with λ ∈ [0, 1]). More
precisely, if at the root, such walk chooses uniformly one of its d descendants, and
from any other node the walk goes to its parent with probability λ/(λ+ d), otherwise
it chooses one of the d offsprings uniformly. Compute G(∅, ∅) as a function of d, λ.

1. Fix x and y and assume X is recurrent, i.e for some x0 ∈ E, Tx0 is a.s. finite under
Px0 . Since the chain is irreducible P k(x0, x) > 0 for some k > 0, and by the strong
Markov property at the successive returns at x0, the chain a.s. visits x infinitely often.
Thus Px(Tx0 =∞) = 0 otherwise the chain would not be recurrent. Therefore the
chain started at x must visit x0 (hence infinitely often), and by the same reasoning as
above it must visit y infinitely often. In the end it must be that G(x, y) =∞.

On the other hand if G(x, y) =∞ for any x, y, even if it means taking y = x we get
the second assertion.

Finally if X is transient then Px(T+
x =∞) = p > 0, but then by the strong Markov

property at return times at x, the total number of visits at x is geometric with
parameter p, and then G(x, x) = 1/p <∞.

2. In this case

P(X2n = 0) =

(
2n

n

)
1

22n
∼n→∞

1√
πn

,

so G(0, 0) =∞ and the chain is recurrent.
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3. When X is reflected SRW, for p ≤ 1/2 it is recurrent by comparing to the case
p = 1/2 of the previous question, so G(0, 0) =∞. Assume now p > 1/2. By a
preceding exercise, P0(T+

0 =∞) = 2p−1
p . Using strong Markov, the total number

visits at the origin is geometric with parameter 2p−1
p , hence if p > 1/2,

G(0, 0) =
p

2p− 1
.

4. Letting |v| denote the height (distance from the root) of a vertex v, it is easily seen
that (|Xn|, n ≥ 0) remains Markov, in fact it is rreflected SRW with p = d/(d+ λ).
Thus

G(∅, ∅) =

{
d

d−λ if d > λ

+∞ otherwise.
.

Exercise 30

1. Soit X châıne de Markov à valeurs dans E, de noyau P , (Fn)n la filtration naturelle
de X, et f : E → R bornée Montrer que le processus(

Mf
n :=

n∑
k=1

(f(Xi)− Pf(Xi−1)) , n ≥ 0

)

est une (Fn)-martingale.

2. Etablir la réciproque : si pour toute f bornée, (Mf
n , n ≥ 0) est une (Fn)-martingale,

alors X est Markov de noyau P .

1. Les propriétés de mesurabilité et d’intégrabilité de Mf
n sont évidentes. Notons d’autre

part que Mf
n − Pf(Xn) est Fn-mesurable. De plus par Markov au temps n la loi de

Xn+1 sachant Fn est exactement celle de Xn+1 sachant Xn, i.e. P (Xn, ·). On a donc

E[Mf
n+1 | Fn] = Mf

n − Pf(Xn) + E[f(Xn+1) | Fn]

= Mf
n − Pf(Xn) +

∑
x∈E

f(x)P (Xn, x) = Mf
n ,

et on conclut que (Mf
n )n est bien une (Fn)-martingale.

2. Supposons que pour toute f bornée, (Mf
n , n ≥ 0) est une martingale. Fixons x ∈ E,

pour f = 1x, on obtient que

E[1Xn+1=x | Fn] = P1x(Xn) = P (Xn, x).

Autrement dit, pour tout (x, x0, ..., xn) ∈ En+2,

P(Xn+1 = x | X0 = x0, ..., Xn = xn) = P(Xn+1 = x | Xn = xn) = P (xn, x),

et (Xn) est donc bien une châıne de Markov homogène de noyau P .

Exercise 31 Soit X une châıne de Markov sur E fini de matrice de transition P . On dit
que h : E → R est harmonique au point x ∈ E ssi

∑
y∈E P (x, y)h(y) = h(x).

Dans tout l’exercice on suppose que la châıne X est irréductible.
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1. Montrer qu’une fonction h harmonique sur E est constante.

2. Montrer qu’une fonction h harmonique sur A ( E vérifie

max
x∈E

h(x) = max
x∈E\A

h(x).

3. Soit B ⊂6= E, et hB : B → R. Montrer que h(x) = Ex[h(XτB )], x ∈ E est l’unique
extension de hB à E qui est harmonique sur A = E \B

1. L’espace étant fini, h atteint son maximum M , disons en x ∈ E. Puisqu’elle est
harmonique en x, M = h(x) =

∑
y1
P (x, y1)h(y1) et donc h(y1) = M pour tout y1 tel

que P (x, y1) > 0. En répétant ce raisonnement, on voit par récurrence que pour tout
n ∈ N, et pour tout yn tel que P (n)(x, yn) > 0 on a h(yn) = M . On conclut que h est
constante égale à M puisque la châıne est irréductible.

2. La fonction h atteint son maximum. Si c’est sur E \A il n’y a rien à démontrer.
Sinon elle l’atteint sur A et on peut répeter la preuve de la question précédente pour
voir que les points de ∂A = {y ∈ E \A : ∃x ∈ A P (x, y) > 0} ⊂ E \A réalisent
également ce maximum.

3. Pour vérifier qu’une telle fonction est bien définie on va d’abord montrer que τB <∞
p.s. Comme la châıne est irréductible, on peut trouver k tel que P (k)(x1, x2) > 0
quelque soient x1, x2 ∈ E.

Fixons alors y ∈ B, comme E est fini p = min{P (k)(x, y), x ∈ E} > 0, la propriété de
Markov aux temps k, 2k, 3k, ... entrâıne alors que τB ≤ kG où G ∼ Geom(p).

Si x ∈ B il est évident que τB = 0 sous Px et donc h(x) = hB(x).

Vérifions maintenant que hB est harmonique sur A = E \B. Soit x ∈ A. Par Markov
au temps 1,

h(x) = Ex[hB(XτB )] =
∑

P (x, y)Ey[hB(XτB )],

comme souhaité.

Enfin, il reste à vérifier l’unicité de h. Supposons qu’il existe deux fonctions h1, h2

harmoniques sur A et cöıncidant avec hB sur B. La différence h1 − h2 reste bien
entendu harmonique sur A, et elle vaut 0 sur B. D’après la question précédente elle
atteint son maximum sur B et donc elle est négative ou nulle sur A. Par le même
raisonnement h2 − h1 reste également négative ou nulle sur A et on conclut
finalement que h1 = h2.

5 Continuous-time chains, finite state space

Exercise 32 Consider a continuous-time taking values in {1, 2, 3}, with generator−2 1 1
1 −2 1
1 1 −2

 .
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1. Draw the diagramm of the chain. Check that if A =

−2 0 1
1 −1 1
1 1 1

 one has

A−1QA =

−3 0 0
0 −3 0
0 0 0

. Deduce that P (t) = etQ for t ≥ 0.

2. For t ≥ 0, compute P1(Xt = 1),P1(Xt = 2),P1(Xt = 3). What happens as t→∞ ?

1. With A−1 = 1
6

−2 1 1
0 −3 3
2 2 2

 checking the matrix product is straightforward, it

follows that

P (t) = A

e−3t 0 0
0 e−3t 0
0 0 1

A−1

=
1

6

2 + 4e−3t 2− 2e−3t 2− 2e−3t

2− 2e−3t 2 + 4e−3t 2− 2e−3t

2− 2e−3t 2− 2e−3t 2 + 4e−3t


2. P1(Xt = 1),P1(Xt = 2),P1(Xt = 3) are given, respectively by first, second and third

entries of the first row of P (t). As t→∞, these three quantities converge towards
1/3, i.e. towards the weights given to states 1, 2, 3 by the stationary distribution of
the chain (it is indeed an invariant distribution by immediate considerations of
symmetry). Hence we have checked the convergence theorem in this particular case
for the chain started at 1. However, the computation of the previous question gives
more information : since this convergence holds for all the rows of P (t), there is
convergence towards the stationary distribution whatever the initial distribution ;
moreover, the exact computation of P (t) also yields that the speed of this
convergence towards the invariant distribution is exponentially fast.

Exercise 33 Let X be the continuous-time chain on {1, 2, 3}, with generator−2 1 1
4 −4 0
2 1 −3

 .

1. Check that

1
1
1

 ,

 0
−1
1

 ,

 1
−4
1

 are eigenvectors of Q.

2. For t ≥ 0, compute P1(Xt = 1),P1(Xt = 2),P1(Xt = 3), what happens as t→∞ ?

1. This is straightforward, corresponding eigenvalues are 0,−5,−4.

2. As in the previous exercise, one can diagonalize Q and compute

P (t) =
1

5

 3 + 2e−4t 1− e−4t 1− e−4t

3− 8e−4t + 5e−5t 1 + 4e−4t 1 + 4e−4t − 5e−5t

3 + 2e−4t − 5e−5t 1− e−4t 1− e−4t + 5e−5t

 .
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The values we look for then correspond to the entries in the first row of P (t). As
t→∞, regardless of the initial distribution, the law of Xt converges to the
stationary distribution of the chain λ = (3/5 1/5 1/5).

Exercise 34 Let X the continuous-time chain on {1, 2, 3, 4}, with generator
−2 1 1 0
0 −1 1 0
0 0 −1 1
1 0 0 −1

 .

Is the chain irreducible ? Find the set of its invariant distributions. Compute
limt→∞ P1(Xt = x), x ∈ E.
The corresponding transition matrix is

Π =


0 1/2 1/2 0
0 0 1 0
0 0 0 1
1 0 0 0

 ,

which is clearly irreducible as 1→ 2→ 3→ 4→ 1. An invariant measure of X must satisfy
λQ = 0, i.e. QTλT = 0, so we can start by looking at ker(QT ). We find (by using pivot
algorithm)

ker(QT ) = ker


1 −1 0 0
0 1 −1/2 0
0 0 1 −1
0 0 0 0

 = Vect


1/2
1/2
1
1

 .

It remains to check that λi ≥ 0, i = 1, 2, 3, 4,
∑

1≤i≤4 λi = 1,and we finally conclude that
the unique invariant distribution is

λ =

(
1

6

1

6

1

3

1

3

)
.

Our chain is irreducible and positive recurrent, convergence theorem applies to ensure that
for i = 1, 2, 3, 4,

lim
t→∞

Pi(Xt = j) = λj , j = 1, 2, 3, 4.

Exercise 35 Let X1, X2, ... i.i.d exponential variables with parameter λ and N
independent of {Xi, i ≥ 1}, following a geometric law with parameter β. What is the
distribution of X :=

∑N
k=1Xk ?
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For t ≥ 0

E[exp(−tX)] = E

∏
i≤N

exp(−tXi)


= E

E
∏
i≤N

exp(−tXi) | N


= E

[(
λ

λ+ t

)N]

=

βλ
λ+t

1− (1− β) λ
λ+t

=
βλ

t+ βλ
,

so that X ∼ exp(βλ).

6 Poisson process

We will use the Theorem seen in class which gives three equivalent
definitions/characterizations of a Poisson process.

Exercise 36

1. Let (Xt, t ≥ 0), (Yt, t ≥ 0) be two independent Poisson processes with respective
parameters λ, µ. What is the law of (Zt := Xt + Yt, t ≥ 0) ?

2. How can we generalize the previous question to a (at most countable) family of
independent Poisson processes ?

3. Assume (Jn)n≥1 are the jump times of a Poisson process with parameter λ, and
introduce (ξn)n≥1 i.i.d, Bernoulli(p), independent of (Jn). For n ≥ 1, set

un = inf{k ∈ N :

k∑
i=1

ξi = n}, Kn = Jun ,

vn = inf{k ∈ N :

k∑
i=1

(1− ξi) = n}, Ln = Jvn .

Show that (Jun , Jvn , n ≥ 1) are the jump times of two independent Poisson processes
whose respective parameters shall be computed.

4. How can one generalize the previous question to form, from one Poisson process, a
(at most countable) family of independent Poisson processes.

1. We are going (e.g.) to use the second characterization of a Poisson process. First we
see that increments of Z must be independent, since those of X and Y are. Moreover,
uniformly in t,

P(Zt+h−Zt = 0) = P(Xt+h−Xt = 0, Yt+h−Yt = 0) = (1−λh+o(h))(1−µh+o(h)) = 1−(λ+µ)h+o(h),
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P(Zt+h−Zt = 1) = P(Xt+h−Xt = 0, Yt+h−Yt = 1)+P(Xt+h−Xt = 1, Yt+h−Yt = 0) = (λ+µ)h+o(h),

so that P(Zt+h − Zt ≥ 2) = o(h). Hence Z satisfies second characterization of a
Poisson process with parameter λ+ µ.

Note that we could as well have used the third characterization (see next question).

In fact, a proof using the first characterization, the memoryless property of
exponential distributions, and the fact that the minimum of independent exponential
variables remains exponential could also be performed.

2. By a similar proof, we obtain a similar result for an at most countable family of
independent Poisson processes, as long as their respective parameters sum up to a
finite quantity (see also the corresponding Proposition stated in class). In the case
when the family is finite, an immediate induction allows to conclude. For the proof in
the general countable case, use the third characterization. Increments of X must be
independent and stationary since those of each of the processes (Xi, i ≥ 1). Moreover
one can easily check (use moment generating functions) that a sum of independent
Poisson variables with respective parameters λi, i ≥ 1 remains Poisson with
parameter Λ =

∑
i λi. It follows that X satisfies the third characterization of a

Poisson process with paramater Λ.

3. See the following question.

4. General case (paintbox process), given a Poisson process X with parameter λ and a
distribution (pi, i ∈ I) amounts to setting

Xi(t) =

Xt∑
n=1

ξn,i,

where (ξn,i, n ∈ N) are i.i.d Ber(pi) conditioned on
∑

i∈I ξn,i = 1, and for any n ∈ N,
(ξn,i, i ∈ I) is independent of {ξn′,i, n′ 6= n, i ∈ I}.
Increments of X are independent and stationary ; those of Xi for i ∈ I must be as
well. For the joint law of (Xi(t), i ∈ I) one could e.g. wprk with moment generating
functions : for ui ∈ [0, 1], i ∈ I, one has

E

[∏
i∈I

u
Xi(t)
i

]
= E

[∏
i∈I

u
∑Xt
n=1 ξn,i

i

]

=
∑
p∈N

(λt)p

p!
exp(−λt)E

 ∏
i∈I,1≤n≤p

u
ξn,i
i


=

∑
p≥1

(λt)p

p!
exp(−λt)

(∑
i∈I

piui

)p

= exp

(
λt
∑
i∈I

piui − λt
)

=
∏
i∈I

exp (λpit(ui − 1))

so that (Xi(t), i ∈ I) are independent Poisson with respective parameters λpit, i ∈ I.
One concludes (Xi, i ∈ I) are independent and by the third characterization, Poisson
processes with repective parameters λpi, i ∈ I.
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Exercise 37 Let (Xt, t ≥ 0) be a Poisson process with parameter λ. Show that knowing
{Xt = n}, the first n jump times of Xt are distributed as the order statistics of n i.i.d
Unif[0, t] variables.
The Si, i ≥ 1 are i.i.d exp(λ), so joint density of (S1, ..., Sn+1) is
λn+1 exp(−λ(s1 + ...+ sn+1))1{s1≥0,...,sn+1≥0},. Hence, by changing variables the joint
density of (J1, ..., Jn+1) = (S1, S1 + S2, ..., S1 + ...+ Sn+1) is

λn+1 exp(−λtn+1)1{0≤t1≤...≤tn+1}.

It follows that for A ∈ B([0, t]n), we have

P((J1, ..., Jn) ∈ A,Xt = n) = P((J1, ..., Jn) ∈ A, Jn+1 > t)

=

∫
A
dt1...dtn1{0≤t1≤...≤tn}

∫ ∞
t

dtn+1λ
n+1 exp(−λtn+1)

=

∫
A
dt1...dtn1{0≤t1≤...≤tn}λ

n exp(−λt).

Moreover P(Xt = n) = exp(−λt) (λt)n

n! , and we deduce that

P((J1, ..., Jn) ∈ A | Xt = n) =

∫
A
dt1...dtn1{0≤t1≤...≤tn}

n!

tn
,

as required.

Exercise 38 Assume the passage times of bus 27 at the stop ”Place d’Italie” are the jump
times of a Poisson process X with parameter α, those of bus 21 at the same stop are the
jump times of a Poisson process Y with parameter β, independent of X. We use the hour as
a the unit time.

1. One starts waiting for a bus at 7am. What is the probability to wait for the next bus
(from either line) more than 30 minutes ?

2. What is the probability that a total of exactly (resp. at least) 50 buses arrive at the
stop between 7am and 9am ?

3. What is the probability that at least k buses of line 21 arrive at the stop before the
first bus of line 27 ?

4. What is the probability that exactly k buses of line 21 arrive during first hour
knowing that a total of n bus arrive during that period of time ?

5. Introduce A := {100 buses arrive at the stop between 7am and 9am}. Conditionally
given A, what is the probability :

(a) that 30 of these buses have arrived between 7am and 8am ?

(b) that one waits for more than 30 minutes to see the first bus arrive after 7am ?

Conditionally given A, what is the expectation of the waiting time after 7am of the
first arrival ?

6. Assume in this question that due to a strike, each bus is independently canceled with
probability 1/2. There is a big line-up, so one decides to let the first one pass and to
take the second. What is the distribution of the waiting time ? What is the
distribution of the waiting time of the first (resp. the nth) bus of line 27 ?
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W.l.o.g we fix the origin of times at 7am in what follows. Memoryless property of
exponential distribution ensures that passage times of buses of lines 27, 21 are still the jump
times of (say X1, X2) independent Poisson processes of respective parameters α, β. By
exercise 7, passage times of buses are the jump times of a Poisson process (say X) with
parameter α+ β. Note that, again by exercise 7, if from X, we perform the paintbox
procedure with p1 = α

α+β , p2 = 1− p1, then the pair of resulting processes, say (X̃1, X̃2), has
same distribution as (X1, X2).

1. The probability we look for is that of a Poisson variable with parameter (α+ β)/2 to
take value 0, that is exp(−(α+ β)/2).

2. We are looking at events {X(2) = 50}, {X(2) ≥ 50}, having respective probabilities

exp(−2(α+ β))
(2(α+ β))50

50!
,

∑
k≥50

exp(−2(α+ β))
(2(α+ β))k

k!
.

3. Consider the paintbox version (X̃1, X̃2) (which does not affect the joint distribution,
as we explained) i.e. consider all arrival times, and ”colour” them independently as a
”bus 27” with probability α/(α+ β), otherwise as a ”bus 21”. The event
{k bus of line 21 arrive before the first bus of line 27} corresponds exactly to the
event {the first k arrival times are ”coloured” as ”bus 21”}, and the probability of
the latter is clearly (β/(α+ β))k.

4. Again working with the paintbox version, we search here for the conditional
probability {k points in [0, 1] are ”coloured” as ”bus 21”} knowing [0, 1] has a total n
points. Since colourings are independent, this is the probability that a
Binomial(n, β/(α+ β)) takes value k, i.e.(

n

k

)(
β

α+ β

)k ( α

α+ β

)n−k
5. As above

P(A) = exp(−2(α+ β))
(2(α+ β))100

100!
.

By exercise ..., conditionally given A, the distribution of passage times of these 100
bus is that of the order statistics of 100 i.i.d Unif[0, 2]. The probability that one of
these takes its value in [a, b] ⊂ [0, 2] is (b− a)/2, thus the probability that k passage
times fall between a and b is the probability that a Binomial(100, (b− a)/2) takes
value k. Hence

(a)
(

100
30

)
1

2100

(b) 3100

4100

Conditionally given A, the passage time (say T ) of the first of the 100 buses is the
minimum of 100 i.i.d Unif[0, 2]. Thus

P(T > t) =

(
(2− t)+

2

)100

,

E[T ] =

∫ 2

0

(
2− t

2

)100

dt =
2

101
.
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6. Again we can use the paintbox representation : colour points of X (parameter α+ β)
as ”striker”, ”bus 27, non striker”, and ”bus 21, non striker”, with respective
probabilities 1/2, α/2(α+ β), β/2(α+ β). Buses now arrive according to the jump
times of a Poisson process with parameter (α+ β)/2, while buses of line 27 arrive
according to the jump times of a Poisson process with parameter α/2.

Passage time of second bus is therefore the sum of two independent exponential
variables with parameter (α+ β)/2, that is, a Gamma(2, (α+ β)/2), its expectation
is 4/(α+ β).

The passage time of the first (resp. the nth) bus of line 27 has an exponential
distribution with parameter α/2 (resp. Gamma(n, α/2)), its expectation is 2/α (resp.
2n/α).

7 Explosion ?

For a continuous-time chain X, with jump times (Jn, n ≥ 1) (by convention we let J0 = 0),
recall that its explosion time is defined as ζ := supn≥1 Jn taking values in R∗+ ∪ {+∞}. The
chain is said non-explosive if ζ = +∞ a.s. whatever the initial distribution.

Exercise 39 Fix θ > 0 and for x ∈ E let zx := Ei[exp(−θζ)].

1. Show that (zx, x ∈ E) satisfies
— |zx| ≤ 1 for any x ∈ E, i.e. ||z||∞ ≤ 1.
— Qz = θz.

2. Show that if z̃ satisfies the two above properties then z̃x ≤ zx for any x ∈ E
3. Deduce that a chain is non-explosive iff [Qz̃ = θz̃, ||z̃||∞ ≤ 1 implies z̃x = 0 for any
x ∈ E].

1. The first property is obvious. For the second, use the fact that J1 ∼ exp(qx) and the
strong Markov property at time J1 for the chain started at x to get

zx =
∑

y∈E,y 6=x
Π(x, y)Ex [exp(−θζ) | XJ1 = y]

=
∑

y∈E,y 6=x
Π(y, x)

qx
qx + θ

zy =
∑

y∈E,y 6=x

qx,y
qx + θ

zy

so that, indeed (Qz)x = θzx.

2. Assume z̃ is such that ||z̃||∞ ≤ 1 and Qz̃ = θz̃. An immediate induction shows that
for any n, z̃x ≤ E[exp(−θJn)]. Indeed if this holds, then

z̃x =
∑

y∈E,y 6=x

qx,y
qx + θ

z̃y

≤
∑

y∈E,y 6=x

qx,y
qx + θ

E[exp(−θJn)]

= E[exp(−θJn+1)]

Now the righthand side above converges to E[exp(−θζ)] by dominated convergence,
which yields the desired result.
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3. Assume [Qz = θz, ||z||∞ ≤ 1 implies zx = 0 for any x ∈ E]. By the first question z
such that zx = exp(−θζ) satisfies the two conditions so it must be that
Ex[exp(−θζ)] = 0 for any x ∈ E, i.e. ζ = +∞ Px-a.s.

Conversely, assume the chain is non-explosive so zx = Ex[exp(−θζ)] = 0 for any
x ∈ E. Assume z̃ is such that Qz̃ = θz̃ and ||z̃||∞ ≤ 1, by the previous two questions
we must have z̃x ≤ zx = 0, so z̃ ≤ 0. By applying the same argument to −z̃, we must
also have z̃ ≥ 0 hence z̃ = 0.

Exercise 40 Show that an irreducible chain is non-explosive provided one of the three
following conditions holds :

— E finite.
— qmax := supx∈E qx <∞
— the chain is recurrent.

Obviously the first condition implies the second.
Assume the second holds, then the sequence of holding times (Jn − Jn−1, n ≥ 1) can be
coupled with a sequence (en, n ≥ 1) of i.i.d exponential variables with parameter qmax, so
that Jn − Jn−1 ≥ en. Now, a.s. +∞ =

∑
n≥1 en ≤ ζ, so the chain is non-explosive. Note that

we could also have directly applied the result of exercise 4.
Assume the third condition holds, and that the chain is started at x. By assumption the
chain must visit x infinitely often, so the total holding time at x is infinite, hence ζ (the sum
of all holding times) as well.

Exercise 41 Assume in this exercise that X is a birth chain, i.e. it takes values on N and
has Πi,i+1 = 1 for any i ∈ N. Show that the chain is explosive iff

∑
i≥0

1
qi
<∞.

This is a simple application of exercise 6.

8 General case, further results

Exercise 42 Consider a continuous-time chain with generator Q, A ⊂ E and TA the
hitting time of A. Show that

Ex[TA] =

{
0 if x ∈ A
1
qx

+
∑

y 6=x πxyEy[TA] if x /∈ A
Notice that for x /∈ A the above equation can be rewritten as

∑
y∈E qxyEy[TA] + 1 = 0.

Application Compute E1[T3] for the chains of exercises 1,2.
If x ∈ A, TA = 0 so that Ex(TA) = 0.
Otherwise the time spent at x before the first jump time J1 of the chain is exponential with
parameter qx. For y 6= x, Px(XJ1 = y) =

qxy
qx

= πxy. By strong Markov at time J1, the law of

TA under Px is that of J1 + T̃A, where with probability πxy, T̃A has the law of TA under Py.
Thus, for x /∈ A.

Ex[TA] =
1

qx
+
∑
y 6=x

πxyEy[TA].

Even if it means multiplying by qx = −qxx, we deduce that for x /∈ A,

−qxxEx[TA] =
∑
y 6=x

qxyEy[TA] + 1,
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yielding the desired equation.
Application : In both cases, we get the system

q[11]E1[T3] + q12E2[T3] + 1 = 0, q21E1[T3] + q22E2[T3] + 1 = 0.

Its resolution in the setting of exercise 1 gives E1[T3] = E1[T2] = 1. As for the setting of
exercise 2, we find E1[T3] = 5/4,E2[T3] = 3/2.

Exercise 43 Jobs arrive at a server according to the jump times of a Poisson process X
with parameter λ, service times are assumed independent of X and i.i.d exponential with
parameter µ. Let (Yt, t ≥ 0) the number of jobs in the queue at time t, (Jn, n ≥ 1) the jump
times of Y and S1 = J1, Sn = Jn − Jn−1, n ≥ 1.

1. Find the distribution of f Sn+1 knowing YJn = 0 ?

2. Find the distribution of Sn+1 knowing YJn > 0 ?

3. Find the distribution of YJn+1 knowing YJn .

4. Find the generator of Y .

5. Find a necessary and sufficient condition for the chain to be recurrent.

6. Show that for C ≥ 0, π(k) = C
(
λ
µ

)k
, k ∈ N is an invariant measure of the chain.

Does the chain possess a stationary distribution ?

1. Conditionally given YJn = 0, there are no jobs in the queue at time Jn. The jump
time Jn+1 then corresponds necessarily to the arrival of the next job, i.e. to the next
jump time of X. Thus, knowing YJn = 0, Sn+1 ∼ exp(λ). In other words if Q is the
generator of Y we have found that q0 = q01 = λ.

2. Conditionally given YJn > 0, there is at least one job in the queue waiting for the
current job being serviced. The nezt jump of Y corresponds either to the end of the
service time or to the arrival of the next job in the queue. Service times being
independent of X, it follows that knowing YJn > 0, Sn+1 = min(e, e′) where
e ∼ exp(λ), independent of e′ ∼ exp(µ). Thus, knowing YJn > 0, Sn+1 ∼ exp(λ+ µ).

In other words, for k > 0, qk,k+1 = λ, qk,k−1 = µ, qk = λ+ µ.

3. By the above

P(YJn+1 = 1 | YJn = 0) = 1, P(YJn+1 = YJn+1 | YJn > 0) = 1−P(YJn+1 = YJn−1 | YJn > 0) =
λ

λ+ µ
.

4. See above.

5. The corresponding jumo chain, say Z, has transition matrix Π s.t.

π01 = 1, ∀k ∈ N∗, πk,k+1 = 1− πk,k−1 =
λ

λ+ µ
.

We deduce that Z is SRW on N reflected at 0, with p := λ
λ+µ , hence it is recurrent iff

p ≤ 1/2 i.e. λ ≤ µ.

What we just showed is not very surprising : when the average service time 1/µ is
greater than the average waiting time 1/λ between two successive jobs arrivals, the
queue length will tend to infinity corresponding to the transient case. In the opposite
case there will be arbitrarily large times when the server is inactive, corresponding to
the recurrent case.
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6. Recall that q00 = −λ, q10 = µ, q`0 = 0∀` ≥ 2, so

(πQ)0 =
∞∑
`=0

C

(
λ

µ

)`
q`0 = −Cq0 + C

λ

µ
q10 = 0.

For k ∈ N∗ (recall that qkk = −λ− µ, qk−1,k = λ, qk+1,k = µ and
q`,k = 0∀` : |`− k| ≥ 2)

(πQ)k =

∞∑
`=0

C

(
λ

µ

)`
q`k

= C

(
λ

µ

)`(
λ
µ

λ
− λ− µ+ µ

λ

µ

)
= 0.

In the end πQ = 0, so π is indeed invariant for Q. Observe it is easy to deduce an
invariant measure for Z, namely

π̃(k) = qkπ(k), k ∈ N

If λ > µ chains Y , Z are transient and cannot possess an invariant distribution.

If λ ≤ µ the invariant measure is unique up to a constant multiple. When λ = µ the
total mass of π is infinite and there cannot be an invariant distribution (null
recurrent case). When λ < µ (positive recurrent case), one can set C = µ−λ

µ to
express the unique invariant distribution

π0(k) =
µ− λ
µ

(
λ

µ

)k
, k ∈ N.

Remarks : Convergence theorem for continuous-time chains (see the exercise below)
ensures then the law of Yt converges to π as t→∞.

In fact (see exercise ...) for a recurrent chain,

λx(y) := Ex

[∫ T+
k

0
ds1{Xs=y}

]
, y ∈ E

defines a stationary measure (the unique one which attributes mass 1/qx to state x,
and it has total mass Ex[T+

x ]). In the positive recurrent case, the unique invariant
distribution is therfore given by

π0(x) =
λx(x)

λx(E)
=

1

qxEx[T+
x ]
.

Finally, this last result can be generalized into a continuous-time version of ergodic
theorem. In the poisitive recurrent case, it ensures that as t→∞,
1
t

∫ t
0 f(Xs)ds −→

∑
x∈E f(x)λ(x), where f : E → R is s.t.

∑
x∈E f(x)λ(x) <∞ and λ

is the unique stationary distribution of the chain.
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Exercise 44 Show that if λxqxy = λyqyx for any x, y ∈ E, then λQ = 0.
For any x ∈ E,

(λQ)x =
∑
y∈E

λ(y)qyx =
∑
y∈E

λ(x)qxy = λx
∑
y∈E

qxy = 0,

since Q is a generator.

Exercise 45 Assume X with generator Q is an irreducible recurrent continuous-time
chain. Denote by T+

x := inf{t ≥ J1 : Xt = x} the return time at x.

1. Show that

µ(y) := Ex

[∫ T+
x

0
1{Xs=y}

]
, y ∈ E

defines a stationary measure.

2. Explain why it is unique up to a constant multiple.

3. Show that for s > 0,

µy = Ex

[∫ T+
x +s

s
1{Xu=y}du

]
and deduce that µ = µP (s).

1. For y ∈ E, denoting τ+
x the return time at x for the jump chain, and νx the

stationary measure of the jump chain which attributes mass 1 to x (such measure
exists and is unique since the jump chain clearly also is irreducible and recurrent,
and it satisfies therefore νxΠ = νx),

µ(y) = Ex

τ+x −1∑
n=0

Sn+11{Yn=y}


=

1

qy
Ex

τ+x −1∑
n=0

1{Yn=y}


=

1

qy
νx(y)

=
1

qy

∑
z∈E

νx(z)π(zy)

=
1

qy

∑
z∈E

νx(z)
qzy
qz

=
1

qy

∑
z∈E,z 6=y

µ(z)qzy.

Now since qy = −qyy we deduce that∑
z∈E

µ(z)qzy = 0,

so µQ = 0, and µ is invariant for chain X.
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2. If ν is stationary for Π, then µ(y) = ν(y)
qy
, y ∈ E is stationary for X. Unicity, up to a

constant multiple, for invariant measure of the jump chain hence implies unicity up
to a constant multiple for invariant measure of X.

3. Let y ∈ E. By strong Markov property at T+
x we find∫ s

0
1{Xu=y}du

(loi)
=

∫ T+
x +s

T+
x

1{Xu=y}du,

yielding the desired equality. Setting v = u− s and applying Markov at v,

µy = Ex

[∫ T+
x +s

s
1{Xu=y}du

]

= Ex

[∫ T+
x

0
1{Xv+s=y}dv

]

= Ex

[∫ T+
x

0
1{Xv+s=y}dv

]

= Ex

[∫ T+
x

0

∑
z∈E

1{Xv=z}dv

]
pzy(s)

=
∑
z∈E

µ(z)pzy(s) = (µP (s))y,

as required.

Exercise 46 Let X be a continuous-time chain with kernel Q. Let h > 0 and
(Zn := Xnh, n ≥ 0).

1. Show that Z is a discrete time chain, what is its transition kernel ?

2. Show that X is irreducible and recurrent iff Z also is.

3. Assume in this question X to be irreducible, positive recurrent, with invariant
distribution λ. What is the invariant distribution of Z ? Establish convergence
theorem for Z.

4. Explain why the above implies the convergence theorem for X.

1. Markov property at time nh for X implies Markov property for Z at time n, it
follows easily that Z indeed is a Markov chain. Its kernel, say R, is such that
rxy = Px(Xh = y) = (P (h))xy, so that R = P (h).

2. Successive states visited by Z are subsets of the successive states visited by X, so if
Z is irreducible and recurrent, X must be as well.

Conversely if X is irreducible it exactly means that its jump chain Y also is, i.e. for

any x, y,∈ E there exists n ∈ N such that Π
(n)
xy > 0. But then for any x, y ∈ E,

(P (t))xy ≥ Px(Jn ≤ t < Jn+1, Yn = y) > 0, ∀x, y ∈ E, ∀t > 0, so that (P (h))xy > 0.
We conclude that irreducibility of X implies that of Z.
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Since
∫∞

0 p
(
xxt)dt = 1

qx

∑
n≥0 π

(n)
xx and recurrence of X is equivalent to recurrence of

Y , we deduce that recurrence of X is equivalent to having
∫∞

0 p
(
xxt)dt = +∞. By

Markov at time t ∈ [nh, (n+ 1)h], pxx((n+ 1)h) ≥ pxx(t)e−qxh, so

∑
k≥1

pxx(kh) ≥ e−qxh

h

∫ ∞
0

pxx(t),

and we conclude that recurrence of X implies that of Z.

3. Recall that if x ∈ E, T+
x denotes return time at x for the chain X. The previous

exercise implies that if X is positive recurrent, λ(y) =
Ex
[∫ T+

x
0 1{Xs=y}ds

]
Ex[T+

x ]
, y ∈ E is the

unique stationary distribution of X, and for any s > 0, λP (s) = λ. In particular
λP (h) = λ, so λ is also one (hence the unique since Z is irreducible and recurrent)
stationary distribution of Z. The fact that Z possesse a stationary distribution now
implies it is positive recurrent. Finally, we have seen that (P (h))xy > 0 for any
x, y ∈ E so Z clearly is aperiodic, and satisfies the convergence theorem : for any
x, y ∈ E,

Px(Zn = y) = (P (nh))xy −→
n→∞

λ(y).

4. We first argue that for any x, y ∈ E, (P (t))xy is uniformly continuous, indeed
1− Px(Xs = x) ≤ Px(J1 ≤ s) = e−qxs, so for t ≥ 0,

|(P (t+ s))xy − (P (t))xy| ≤ 4(1− Px(Xs = x)) ≤ 4e−qxs.

Now, setting nt = bt/hc, the preceding inequality imples
|(P (t))xy − (P (nth))xy| ≤ 4qxh. Fix ε > 0, and h sufficiently small so that
4qxh ≤ ε/2. As t→∞, nt →∞ so for t large enough, convergence theorem for Y
implies that |(P (nth))xy − λ(y)| ≤ ε/2. In the end

|(P (t))xy − λ(y)| ≤ ε.

We have established convergence theorem for the chain X started at a given x ∈ E.
It is then straightforward to generalize to an arbitrary initial condition.

Exercise 47 Fix λ ∈ (0, 1), {qi, i ∈ N) ∈ (R∗+)N, and consider the continuous-time Markov
chain on N with generator such that q0,1 = q0, qi,i+1 = λqi, i ≥ 1, qi,i−1 = (1− λ)qi, i ≥ 1.

1. Show that X is irreducible, and transient iff λ > 1/2.

2. Show that the chain is reversible with respect to an invariant measure ν which will
be specified.

3. Assume for some a > 0 that qi = ai. Upon what condition on λ, a does the chain
possess an invariant distribution ν (i.e. a distribution ν such that νQ = 0) ?

4. Is it true that a continuous-time chain possessing an invariant distribution must be
positive recurrent ?

1. The corresponding jump chain is ASRW reflected at 0 with p = λ. Thus X is clearly
irreducible, and transient iff p = λ > 1/2.
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2. Detailed balance reads

ν(0)q0 = ν1(1− λ)q1, ν(i)λqi = ν(i+ 1)(1− λ)qi+1, i ≥ 1.

Setting

ν(i) = ν(0)
λi−1

(1− λ)i
q0

qi

allows to check detailed balance, and the chain is reversible with respect to such ν.

3. If qi = ai, setting λ
1−λ = b, we find that

ν(i) = K

(
b

a

)i
,

so that the chain possesses an invariant distribution iff b < a i.e. iff λ
1−λ < a.

4. No : when a > 1 it is therefore possible to find a λ > 1/2 such that λ
1−λ < a, and

then the chain is transient AND possesses an invariant distribution. Note however
that when it is this case, the chain is necessarily explosive.

9 Simple random walks and their continuous-time versions

Exercise 48 Consider a connected unoriented finite graph G = (V, E), and the
continuous-time chain which, when at x, jumps at rate 1 to any of the neighbours of x,
independently.

1. Write the generator of the chain.

2. Show it is reversible and express the unique invariant distribution of the chain. Is the
chain positive recurrent ?

3. Compute the expected return time at the starting point in the following cases, for
both the discrete and the continuous-time versions of the chain :
— G is the d-dimensional hypercube.
— G is the complete graph with n nodes.
— G is the n-star (consider both cases when starting point is the center of the star

and when it is not).
— G is a d-regular tree of height n (consider different cases depending on the

starting point).
— X is the rook’s walk on an n× n chessboard (each jump of the chain consists in

one allowed move choosen uniformly at random).

1. We have Q(x, x) = −dx, and Q(x, y) = 1{x,y}∈E for x 6= y, with dx the degree of x,
i.e. the number of neighbours of x in the graph.

2. The chain is clearly reversible with respect to a uniform measure on vertices of the
graph. Since we assumed G finite, there exists an invariant distibution : the uniform
one. The chain is irreducible because the graph is connected, and since G is finite, it
is positive recurrent.
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3. Let λ, resp. π denote the invariant distributions associated with the continuous-time,
and the discrete-time chain, so that (recall dG =

∑
x∈V dx = 2|E|).

λ(x) =
1

dx|V|
, π(x) =

dx
2|E| , ∀x ∈ V.

The expected return time of the continuous-time chain to its starting point, say x, in
general, satisfies Ex[T+

x ] = 1
qxλ(x) = |V|

dx
, and for the discrete-time version we have

ExT+
x = 1

π(x) = dG
dx

= 2|E|
dx

. Thus we only need to compute dx, |V|, |E| to evaluate these
quantities.

— Here |V| = 2d, dx = d ∀x ∈ E, 2|E| = d2d so Ex[T+
x ] equals 2d/d in continuous-time

and 2d in discrete-time.
— Set |V| = n, so 2|E| = n(n− 1), dx = n− 1 for any x, so Ex[T+

x ] equals 1 in
continuous-time and n in discrete-time.

— Here |V| = n+ 1, 2|E| = 2n, dx = n for x the center and dx = 1 otherwise. When
x is the center of the center, Ex[T+

x ] = n+1
n in continuous-time and 2 in

discrete-time. When x is not the center, Ex[T+
x ] = n+ 1 in continuous-time, 2n in

discrete time.
— Here |V| = dn+1−1

d−1 =: N , 2|E| = 2|V| − 2, dx = d if x is the root, d+ 1 if x is at
height 1, ..., n− 1 and 1 if x is a leaf. For the continuous-time version,
Ex[T+

x ] = N
d ,

N
d+1 , N resp, when starting point is the root, an intermediate vertex,

a leaf, resp. For the discrete-time version, Ex[T+
x ] = 2N−2

d , 2N−2
d+1 , 2N − 2 resp.

— Here |V| = n2, dx = 2(n− 1) for any x ∈ V, 2|E| = 2n2(n− 1), so Ex[T+
x ] = n2

2(n−1)

for the continuous-time version, and n2 for the discrete-time version.

Exercise 49 Consider (Xt, t ≥ 0) the continuous-time version of the symmetric simple
random walk on Zd which jumps at rate λ. We also introduce its rescaled version (XN

t )t≥0

with N ∈ N∗ and XN
t := X[Nt]/

√
N, t ≥ 0.

1. Express the generator Q of X, and the generator QN of XN .

2. For f : Rd → R, write the expression of Qf(x), x ∈ Zd, and then that of
QNf(x), x ∈ Zd/

√
N .

3. When f ∈ C2(Rd,R), what can be said of the limit of QNf(x) as N →∞ ?

1. For any x ∈ Zd,

Q(x, x+ ei) =
λ

2d
,Q(x, x− ei) =

λ

2d
, i = 1, ..., d, Q(x, x) = −λ.

Similarly for x ∈ Zd/
√
N ,

QN (x, x+ ei/
√
N) =

Nλ

2d
,Q(x, x− ei/

√
N) =

Nλ

2d
,Q(x, x) = −Nλ.

2. For f : Rd → R, x ∈ Zd,

Qf(x) =
λ

2d

(
d∑
i=1

[f(x+ ei) + f(x− ei)− 2f(x)]

)
,
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and for x ∈ Zd/
√
N ,

QNf(x) =
Nλ

2d

(
d∑
i=1

[
f(x+ ei/

√
N) + f(x− ei/

√
N)− 2f(x)

])
.

3. When f ∈ C2(Rd,R), as N →∞∑d
i=1

[
f(x+ ei/

√
N) + f(x− ei/

√
N)− 2f(x)

]
∼∑d

i=1
1
N
∂2f
∂x2i

(x), so

QNf(x)→ λ

2
∆f(x).

Exercise 50 Consider (XN
t , t ≥ 0) a continuous-time version of the asymmetric simple

random walk which jumps at rate λ and to the right with probability 1
2(1 + α

N ) for some

α ∈ R fixed and N ∈ N∗ large enough that |α|N < 1. We again introduce a rescaled version

(Y N
t )t≥0 with N ∈ N∗ as before and Y N

t :=
XN

[N2t]

N , t ≥ 0.

1. Express the generator QN of Y N .

2. For f : Rd → R, write the expression of QNf(x), x ∈ Z/N .

3. When f ∈ C2(R,R), what can be said of the limit of QNf(x) as N →∞ ?

1. for x ∈ Z/N ,

QN (x, x) = −N2λ,Q(x, x+ 1/Nei) =
N2λ

2
(1 +

α

N
), Q(x, x− 1/N) =

N2λ

2
(1− α

N
).

2. For f : Rd → R, x ∈ Zd/N ,

QNf(x) =
N2λ

2

[
(1 +

α

N
)f(x+ 1/N) + (1− α

N
)f(x− 1/N)− 2f(x)

]
.

3. When N →∞ and f ∈ C2(R,R),[
(1 +

α

N
)f(x+ 1/N) + (1− α

N
)f(x− 1/N)− 2f(x)

]
∼ 2αf ′(x)

N2
+
f ′′(x)

N2
,

so

QNf(x)→ αλf ′(x) +
λ

2
f ′′(x).

10 Queues

Exercise 51 In this exercise, we consider the M/M/1/n− 1 queue, which is described
almost exactly as the M/M/1 queue of exercise III.14 : customers arrive at rate λ > 0,
service times are independent exponentials with parameter µ > 0 except now the queue has
a maximal size n− 1 (in other words, customers arriving when the queue is of size n− 1 are
turned away and do not add up to the queue).

1. Express the generator of the chain, or/and draw its diagramm.
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2. Show the chain is reversible, positive recurrent and compute its unique invariant
distribution.

3. Consider a customer arriving when the queue is at equilibrium. What is the
probability that he is turned away ? Conditionally given he is not turned away, what
is his expected waiting time ? Find an equivalent of this conditional waiting time as
n→∞.

1. We have

Q(x, x+ 1) = λ, x ∈ {0, ..., n− 2}, Q(x, x− 1) = µ, x ∈ {1, ..., n− 1},

Q(x, x) =


−λ if x = 0

−λ− µ if x ∈ {1, ..., n− 2}
−µ if x = n− 1

.

2. The chain is clearly irreducible on a finite state space so it is positive recurrent. It is
reversible w.r.t the measure π as soon as π satisfies,

π(x)λ = π(x+ 1)µ, x ∈ {0, ..., n− 2}, i.e. π(x) = C

(
λ

µ

)x
,

for some constant C. The unique invariant distribution is π as above with

C =
1−λ

µ

1−
(
λ
µ

)n if λ 6= µ, and C = 1/n if λ = µ. From now on we use notation π to

designate this unique invariant distribution.

3. The probability that a customer finding the queue at equilibrium is turned away is
π(n− 1). Conditionally given he is not, he finds a queue of k ∈ {0, ..., n− 2}
customers with probability π(k)/(1− π(n− 1)), and then his waiting time is that of
k + 1 service times, of expectation (k + 1)/µ. Thus, conditionally he is not turned
away, his expected waiting time is

E[T ] =
1

1− π(n− 1)

n−2∑
k=0

(k + 1)C

(
λ

µ

)k
=

1

1− C
(
λ
µ

)n−1

n−1∑
k=1

k

(
λ

µ

)k−1

.

If λ = µ we find

E[T ] =
n

n− 1

n(n− 1)

2
=
n2

2
.

On the other hand if x 6= 1,
∑n−1

k=0 x
k = 1−xn

1−x so
∑n−1

k=1 kx
k−1 = (n−1)xn−nxn−1+1

(1−x)2
, and

therefore when λ 6= µ.

E[T ] =
1−

(
λ
µ

)n
1−

(
λ
µ

)n−1

(n− 1)
(
λ
µ

)n
− n

(
λ
µ

)n−1
+ 1(

1− λ
µ

)2

Now when λ > µ, a simple computation provides

E[T ] ∼ µ

λ− µn
(
λ

µ

)n
.
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Finally when λ < µ,

E[T ] ∼ µ2

(µ− λ)2

Exercise 52 In this exercise we consider the M/M/s queue, where there are now
s ∈ N∗ ∪ {+∞} servers. Customers arrive at rate λ, if they find an available server at arrival
they go directly to it, otherwise they wait until one gets free. Service times are independent
exponentials of parameter µ, and Xt denotes the total number of customers in the system at
time t, including both the customers currently being served and those waiting.

1. Express the generator of the chain, or/and draw its diagramm.

2. Show that the chain is non-explosive (one may prefer to distinguish between the
cases s <∞ and s = +∞).

3. Show that the chain is reversible, with respect to an invariant measure π which
satisfies

π(k)

π(k − 1)
=

{
λ
kµ if 1 ≤ k ≤ s
λ
sµ if k > s

.

4. Find a necessary and sufficient condition on s, λ, µ for the chain to be positive
recurrent.

5. In the case s =∞, find the expected waiting time of a customer who enters the
queue at equilibrium.

1. We have are dealing with a birth-and-death chain and Q(x, x+ 1) = λ, ∀x ≥ 0,
Q(x, x− 1) = xµ, x = 1, ..., s, Q(x, x− 1) = sµ for x ≥ s, and of course
Q(x, x) = −λ− xµ, x = 0, ..., s,Q(x, x) = −λ− sµ, x ≥ s.

2. If s <∞ we have qmax <∞ so by theorem, the chain is non explosive.
If s =∞ let θ > 0 and z a bounded nonnegative solution to Qz = θz. Assume for
now z0 > 0. Then we have λ(z1 − z0) = θz0 so z1 − z0 > 0, and since for any x ≥ 1,

λ(zx+1 − zx) = θzx + xµ(zx − zx−1),

zx+1 − zx > 0, and

(zx+1 − zx) >
xµ

λ
(zx − zx−1)

so zx+1 − zx increases at least as c2x as soon as xµ ≥ 2, contradicting our assumption
that z is bounded. Hence z0 = 0, and then zx = 0 for all x. Hence the chain is non
explosive.

3. One easily checks that for such π, and any x ∈ N,
π(x)Q(x, x+ 1) = π(x+ 1)Q(x, x− 1), so detailed balance is satisfied for such π.

Alternatevely, we may have observed that the chain is recurrent as soon as sµ ≥ λ
(indeed the chain restricted to {s, s+ 1, ...} is a continuous-time simple random walk
with rate λ+ µs and probability to jump to the right λ

λ+µs , it is recurrent as soon as

p ≤ 1/2). Also there is an obvious coupling for chains X,X ′ with parameters s ≤ s′
such that X ′0 ≤ X0 implies X ′t ≤ Xt∀t ≥ 0, so that the chain with s =∞ has to be
recurrent, hence non explosive.
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4. For finite s observe that for k ≥ s π(k) = C λkss

s!(µs)k
, and for s =∞, π(k) = C λk

µkk!
.

Thus there exists an invariant distribution for the chain as soon as λ < µs. But for
λ > µs we have seen that the chain is recurrent hence it must be positive recurrent.
On the other hand when λ ≤ µs non trivial invariant measures all have infinite mass,
so the chain can not be positive recurrent.

5. When s =∞, the new customer always finds an available server, so his expected
waiting time is his expected servive time µ.

Exercise 53 In this exercise we consider the M/M/s/s queue, with s ∈ N∗, but here
customers are turned away when all s servers are busy. Express the generator of the chain,
show it is reversible, positive recurrent, and compute the unique invariant distribution of
this chain.
Here Q(x, x+ 1) = λ, x = 0, ..., s− 1, Q(x, x− 1) = xµ, x = 1, ..., s and
Q(x, x) = −λ− µx, x = 0, ..., s− 1, Q(s, s) = −µs. The chain is clearly reversible with

respect to π(k) = C λk

k!µk
, k = 0, ...s. It is irreducible on a finite state space so it clearly is

positive recurrent. The unique invariant distribution is the one such measure with

C =
(∑s

k=0
λk

µkk!

)−1
.

Exercise 54 In this exercise we briefly introduce the M/G/1 queue. Customers still arrive
at the jump times of a Poisson process with rate λ, service times are still i.i.d but now they
are distributed as a random variable T with mean µ.

1. In general, is the process a continuous-time Markov chain ?

2. Consider Xn the number of customers in the queue when the nth customer leaves the
system. Show that

Xn+1 = Xn + Yn+1 − 1{Xn>0},

where Yn+1 is the number of extra arrivals between the times the nth and the
(n+ 1)th customers leave the system. Is (Xn) a discrete-time chain ?

3. Compute the expectation of Yn+1 given {Xn > 0} and deduce a necessary and
sufficient condition for positive recurrence of the chain.

1. If service times do not have the memoryless property the process can not satisfy
Markov property.

Indeed starting from 1 customer, J1 = min(T, e) with e exponential with parameter λ
independent of T . Markov property would entail for any s, t > 0 that

P(T > t+ s)P(e > t+ s)

P(T > t)P(e > t)
= P1(J1 > t+ s | J1 > t) = P1(J1 > s) = P(T > s)P(e > s),

which implies memoryless property for T .

2. Let Tn the time at which the nth customer leaves the system, and let T denote the
service time of the (n+ 1)th customer. Tn clearly is a stopping time. Conditionally
given {Xn > 0}, Yn+1 is the number of arrivals (jumps of a Poisson process with rate
λ) which fall in [Tn, Tn + T ] and thus is independent of FTn . Given {Xn = 0}, one
must first wait for the next client to arrive (say at Tn + e), and then for his service
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time, so Yn+1 equals one plus the number of arrivals in [Tn + e, Tn + t+ e] (that is the
previous distribution shifted by one).

In other words
Xn+1 = Xn + 1{Xn=0} + Zn+1 − 1{Xn>0},

with Zk, k ≥ 1 i.i.d and having the law of the number of points of a Poisson process
with rate λ that fall in [0, T ], and clearly (Xn) is a discrete-time Markov chain.

3. We have E[Zk] = E[E[Zk | T ]] = E[λT ] = λµ so E[Yn+1 | Xn > 0] = E[Zk] = λµ.

If X is started at 0, its first step brings it to 1 + Z1. Then, as long as X remains
positive, it performs a random walk on the integers where the increments are the
Zk − 1, k = 2, 3, ..., of expectation λµ− 1. By standard arguments, the chain started
at 0 will then return a.s. to zero in finite time iff λµ ≤ 1. Also the expectation of the
return time is finite (i.e. the walk is positive recurrent) iff λµ < 1.

11 Branching processes

Exercise 55 In this exercise we consider a continuous-time Galton-Watson process with
rate λ and a reproduction law charging only 0 and 2. More precisely at rate λ, each present
individual dies and independently of the past, is replaced by 0, resp. 2 individuals with
probabilities 1− p, resp p.

1. Write the generator of the chain.

2. With gu(x) := ux, establish that

Qgu(y) = λg′u(y)φ(u),

where φ(u) = pu2 − u+ 1− p.
3. Let f(t, u) := E1(uZt), so f(0, u) = u. Check that f(t, u) = P (t)gu(1), and use the

forward equation to establish that

∂f

∂t
(t, u) = φ(u)

∂f

∂u
(t, u).

4. Explain why P (t)gu(x) = (P (t)gu(1))x. Use the backward equation to establish that

∂f

∂t
(t, u) = λφ(f(t, u)).

1. We have Q(0, 0) = 0 and for x ∈ N∗, Q(x, x) = −λx,
Q(x, x− 1) = λx(1− p), Q(x, x+ 1) = λxp.

2. We have, for y ∈ N∗,

Qgu(y) = λy((1− p)uy−1 + puy+1 − uy) = λyuy−1φ(u),

as required. For y = 0, Qgu(y) = 0 = g′u(0)φ(u), and we are done.
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3. We have indeed

P (t)gu(1) =
∑
y∈N

P1y(t)u
y =

∑
y∈N

P1(Xt = y)uy = E1[uZt ] = f(t, u).

Now

∂f

∂t
(t, u) = P ′(t)gu(1) = P (t)Qgu(1) = φ(u)P (t)g′u(1) = φ(u)E1[Ztu

Zt−1]

which yields the desired result.

4. Since every individual’s descendance is independent of the rest of the population, the
process started from x ∈ N∗ is the sum of x independent copies of the process started
at 1, hence P (t)gu(x) = Ex[uZt ] =

(
E1[uZt ]

)x
= (P (t)gu(1))x. Now using backward

equation

∂f

∂t
(t, u) = P ′(t)gu(1) = QP (t)gu(1)

= λ((1− p)P (t)gu(0) + pP (t)gu(2)− P (t)gu(1)) = λφ(P (t)gu(1)),

as required.

Exercise 56 In this exercise we consider a general continuous-time Galton-Watson process
with rate λ and reproduction law µ. Prove that the results of the previous exercise still hold
for an adequate function φ which you will explicit.
By the exact same reasoning all results hold with φ(u) = E[uξ], where ξ has law µ.

Exercise 57 Consider, for N ∈ N∗ the continuous-time Galton-Watson process (ZNt )t≥0

with rate 1, and reproduction law µN such that µN (0) = (1 + pN )/2, µ(2) = (1− pN )/2, with

pN ∈ (0, 1). Introduce XN
t :=

ZNvNt
mN

, t ≥ 0, where for any N ∈ N, vN ,mN are positive reals.

1. Write the generator of the chain XN .

2. Assume that as N →∞, mN →∞, pNvN → α, vNm
−1
N → β, and that f : R+ → R is

twice continuously differentiable. What can be said of the limit of QNf as N →∞ ?

1. When the process XN is at x ∈ N∗/mN , this means there are mNx individuals in the
population, also observe that the time change causes rates for XN to be accelerated
by vN compared to those of ZN . We thus can write the generator QN for the chain
XN , for x ∈ N∗/mN (note of course that Q(0, 0) = 0),

QN (x, x−1/mN ) = vNmNx(1+pN )/2, QN (x, x+1/mN ) = vNmNx(1−pN )/2, Q(x, x) = vNmNx.

2. Now if f : R+ → R, x ∈ N∗/mN ,

QNf(x) =
vNmNx

2
((1 + pN )f(x− 1/mN ) + (1− pN )f(x+ 1/mN )− 2f(x))

As N →∞, e find that

QNf(x) ∼ vNmNx

2

(
−2pNf

′(x)/mN + f ′′(x)/m2
N

)
,

and with our assumptions

QNf(x)→ −αxf ′(x) +
β

2
f ′′(x).
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12 Harmonic functions

Exercise 58 Let X be an E-valued Markov chain with transition kernel P . The function
h : E → R is said to be harmonic at x ∈ E iff

∑
y∈E P (x, y)h(y) = h(x).

We assume in this exercise that X is irreducible.

1. Assume in this question that E is finite. Show that if h is harmonic on the whole of
E it is constant. Does the property still hold when E is infinite ?

2. If h is harmonic on a finite subset A of E show that

sup
x∈E

h(x) = sup
x∈E\A

h(x).

3. Let B ( E, and assume A = E \B is finite. The function hB : B → R being given,
show that h(x) = Ex[hB(XτB )], x ∈ E defines the unique extension of hB to E that is
harmonic on A.

1. Is E is finite, h reaches its maximum M at some x ∈ E. By harmonicity at x,
M = h(x) =

∑
y1
P (x, y1)h(y1) so that h(y1) = M for any y1 such that P (x, y1) > 0.

By induction, for any n ∈ N, and any yn such that Pn(x, yn) > 0, we must have
h(yn) = M . Since the chain is irreducible it follows that h equals M on the whole of
E.

In the case of SSRW on E = Z (that is P (x, x+ 1) = 1− P (x, x− 1) = 1/2 for any
x ∈ Z), any affine function f : x→ a+ b is harmonic on the whole of Z :

Pf(x) =
1

2
(a(x+ 1) + b) +

1

2
(a(x− 1) + b) = ax+ b = f(x), ∀x ∈ Z

in particular functions that are harmonic on the whole of Z are not necessarily
constant.

2. Function h reaches its maximum MA on A which is assumed finite. One can repeat
the proof of the previous question to see that there must necessarily be a point of
∂A = {y ∈ E \A : ∃x ∈ A P (x, y) > 0} ⊂ E \A where h is at least MA. The desired
claim follows, it is refered to as the maximum principle.

3. Because the chain is irreducible and A is finite it must be that τB <∞ a.s. (otherwise
the chain would have to visit a point of x ∈ A infinitely often, and by irreducibility
there must exist n ∈ N, y ∈ B with Pn(x, y) > 0, yielding a contradiction).

We now check h is harmonic on A : for x ∈ A, using Markov property at time 1,

h(x) = Ex[hB(XτB )] =
∑

P (x, y)Ey[hB(XτB )],

as required.

Finally let us check unicity. Assume h1, h2 are harmonic on A and coincida with hB
on B. It is immediate that the difference h1 − h2 remains harmonic on A, and is 0 on
B. By the above question it reaches its maximum on B so it must be nonpositive on
A. By the same reasoning h2 − h1 must also be nonpositive on A and we conclude
that h1 = h2.
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13 Martingales

Exercise 59 Let X an E-valued Markov chain with kernel P , (Fn)n its natural filtration.

1. Assume f : E → R is such that for any n ∈ N, E[|f(Xn)|] <∞. Show that(
Mf
n := f(Xn)− f(X0)−

n−1∑
k=0

(P − I)f(Xk), n ≥ 0

)

is a (Fn)-martingale.

2. What can be said of (f(Xn)) when f is harmonic on E, and for any n ∈ N,
E[|f(Xn)|] <∞ ?

3. Assume g : E → R to be such that for any n ∈ N, E[|g(Xn)|] <∞ and further assume
that for some λ ∈ R∗, Pg = λg. Show that (g(Xn)/λn) is a (Fn)-martingale.

4. Assume h : N× E → R to be such that or any n ∈ N, E[|h(n,Xn)|] <∞, and further
assume that

∀x ∈ E, ∀n ∈ N Ph(n+ 1, x) =
∑
y∈E

P (x, y)h(n+ 1, y) = h(n, y).

Show that (h(n,Xn))n is a (Fn)-martingale.

1. Measurability and integrability properties of Mf
n are straightforward from the

assumptions. Note in addition that Mf
n − Pf(Xn) is Fn-mesurable. By Markov

property at time n the law of Xn+1 conditionally given Fn is P (Xn, ·). Thus

E[Mf
n+1 | Fn] = Mf

n − Pf(Xn) + E[f(Xn+1) | Fn]

= Mf
n − Pf(Xn) +

∑
x∈E

f(x)P (Xn, x) = Mf
n ,

and we conclude that (Mf
n )n is indeed a (Fn)-martingale.

2. In this case Mf
n = f(Xn)− f(X0), so (f(Xn)) also is a (Fn)-martingale.

3. Again measurability and integrability follow easily from the assumptions. Moreover

E[g(Xn+1) | Fn] = Pg(Xn) = λg(Xn)

so (g(Xn)/λn) indeed is a (Fn)-martingale.

4. Again measurability and integrability follow easily from the assumptions, moreover

E [h(n+ 1, Xn+1) | Fn] = Ph(n+ 1, Xn) = h(n,Xn),

as required.

Exercise 60
Let (Xn) be SRW on Z with p = P (x, x+ 1) = 1− P (x, x− 1) = 1− q, (Fn)n its natural
filtration

1. Show that (Xn − (p− q)n) is a (Fn)-martingale.
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2. Show that
(

( qp)Xn
)

is a (Fn)-martingale.

3. Explain how to recover gambler’s ruin probabilities from the above.

4. Show that ((Xn − (p− q)n)2 − 4pqn) is a (Fn)-martingale.

5. For λ ∈ R, let Φ(λ) = log(p exp(λ) + q exp(−λ)). Show that exp (λXn − nΦ(λ)) is a
(Fn)-martingale.

1. Simply note that E[Xn+1 | Fn] = Xn + p− q and apply the third point of the
preceding exercise.

2. We have E[(q/p)Xn+1 ] = (q/p)Xn
(
p× (q/p) + q × (q/p)−1

)
= (p/q)Xn so the desired

result follows.

3. Let T = T0 ∧ TN , and consider the chain started at k ∈ {0, ..., N}. Even if it means
bounding T by nG with G ∼ Geom(pn) one finds that T <∞ Pk-a.s.

In the case p = q = 1/2, Xn∧T remains bounded, Doob’s optional stopping can be
applied and

NPk(XT = N) = Ek[XT ] = k,

it follows that

Pk(XT = 0) = 1− Pk(XT = N) =
N − k
N

.

In the case p 6= 1/2, (q/p)Xn∧T remaining bounded, and Doob’s optional stopping can
again be applied to show

Pk(XT = 0) + (1− Pk(XT = 0))(q/p)N = Ek[(p/q)XT ] =

(
q

p

)k
,

and it follows that

Pk(XT = 0) =
(q/p)k − (q/p)N

1− (q/p)N
.

4. We find

E[(Xn+1 − (p− q)(n+ 1))2 | Fn] = p(Xn − (p− q)n+ 2q)2 + q(Xn − (p− q)n− 2p)2

= (Xn − (p− q)n)2 + 4pq

and we conclude to the desired result.

5. The result follows from the fact that

E[exp(λXn+1) | Fn] = exp(λXn)Φ(λ),

and from the second point of the preceding exercise.

Exercise 61 Let X be an E-valued Markov chain with transition kernel P .
Assume further that A ( E is finite, B = E \A, and h∂A : ∂A→ R bounded. Letting h be
the unique function on A ∪ ∂A which is harmonic on A and coincides with h∂A on ∂A. Show
that Mn = Ex[h(Xn∧T∂A)] is a (Fn)-martingale.
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By the maximum principle h reaches its maximum on ∂A and is therefore bounded on
A ∪ ∂A. Since T = T∂A is a (Fn)-stopping time, 1{T>n},1{T≤n} are Fn-mesurable, so

E[h(Xn+1∧T ) | Fn] = E[h(Xn+1)1{T>n} | Fn] + E[h(XT )1{T≤n} | Fn]

= Ph(Xn)1{T>n} + h(XT )1{T≤n}

= h(XT∧n),

where at the last line we used that {Xn ∈ A} ⊂ {T > n} and the fact that h is harmonic on
A.

Exercise 62 Let (Zn) be a Galton-Watson process un processus with reproduction law µ,
i.e.

Z0 = 1, Zn =

Zn−1∑
i=1

ξn,i, n ≥ 1,

where (ξn,i, n ≥ 0, i ≥ 1) are i.i.d with law µ. For n ≥ 0 et Fn = σ(ξk,i, k ≤ n, i ≥ 1).

1. Let m =
∑

k≥0 kµ(k), and assume it is finite. Show that (m−nZn) is a
(Fn)-martingale.

2. When m > 1, and µ(0) > 0, establish the existence of ζ ∈ (0, 1) such that Gµ(ζ) = ζ,
where Gµ(x) =

∑
n≥0 µ(k)kn. Show that (ζZn) is a (Fn)-martingale.

1. We have

E[Zn+1 | Fn] = E

[
Zn∑
k=1

ξn+1,k | Fn
]

= E

∑
k≥1

ξn+1,k1{Zn≥k}


=

∑
k≥1

1{Zn≥k}m = mZn,

and the result follows.

2. The existence of ζ follows from the fact that Gµ is convex, increasing, and satisfies
Gµ(0) = µ(0), Gµ(1) = 1, G′µ(1) = m > 1. We then see that

E[ζZn+1 | Fn] =

Zn∏
i=1

E[ζξn+1,i ] = Gµ(ζ)Zn = ζZn

as required.

Exercise 63 For N ≥ 2, consider X a Wright-Fisher chain on {0, ..., N}, i.e. for any n ≥ 0,
conditionally given Xn, Xn+1 ∼ Bin(N,Xn/N).

1. Find kernel P of X. Is the chain irreducible ?

2. Show (Xn)n is a (Fn)-martingale (with (Fn) being the natural filtration of X).

3. Let τ = T0 ∧ TN . Compute Pk(Xτ = N) as a function of k ∈ {0, ..., N} and N .
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4. Show
(

N
N−1

)N
Xn(N −Xn) is a (Fn)-martingale. Deduce that(

N

N − 1

)n
k(N − k)

4

N2
≤ Pk(τ > n) ≤

(
N

N − 1

)n
k(N − k)

1

N − 1
.

1. For fixed i, j ∈ {0, ..., N}, P (i, j) is the probability that a binomial with parameters
N, i/N takes value j, hence

P (i, j) =

(
N

j

)(
i

N

)j (N − i
N

)N−j
.

2. If X ∼ Bin(n, p) one has E[X] = np, thus

E[Xn+1 | Fn] = N
Xn

N
= Xn,

and (Xn) is a (bounded) martingale.

3. The stopping time τ can be e.g. bounded by a geometric variable with parameter
N−N , it is therefore a.s. finite and by Doob’s optional stopping we deduce

Pk(Xτ = N) =
k

N
.

4. If X ∼ Bin(n, p) we have E[X2] = np(1− p) + n2p2, thus
E[X(n−X)] = n2p− npq − n2p2 = (n2 − n)pq. It follows that

E[Xn+1(N − (Xn+1)) | Fn] = (N2 −N)
Xn

N

N −Xn

N
=

(
1− 1

N

)
Xn(N −Xn),

which yields that

(
Mn =

(
N
N−1

)N
Xn(N −Xn)

)
is a martingale. Evidently (Mn∧τ )

also is a martingale. Noticing that Mτ = 0 we find

k(N − k) = Ek[Mτ∧n] = E[1{τ>nMn] =

(
N

N − 1

)N
E[1{τ>nXn(N −Xn)].

Moreover if Xn ∈ {1, ..., N − 1}, N − 1 ≤ Xn(N −Xn) ≤ N2

4 , so the desired
inequalities follow.

14 Discrete potential theory

Exercise 64 Consider X an E-valued irreducible chain and D ⊂ E. Let
T = inf{n ≥ 0 : Xn ∈ Dc}, and set, for x, y ∈ E,

GD(x, y) := Ex

[ ∞∑
n=0

1{Xn=y,T>n}

]
Note that GD generalies the Green function of the last exercise of the previous sheet (in
that exercise, we were in the case D = E). For c : D → R+ introduce

uD(x) =
∑
y∈D

c(y)GD(x, y).
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1. Show that uD(x) = Ex
[∑T−1

n=0 c(Xn)
]
.

2. Establish that uD is solution to

(?) u(x) =

{
Pu(x) + c(x) x ∈ D
0 x ∈ Dc

3. Show that if u is solution to (?), then
(
Mn := u(Xn∧T ) +

∑n−1
k=0 c(Xk)1{T>k}

)
is a

(Fn)-martingale (with (Fn) the natural filtration of X) provided E[|Mn|] <∞ ∀n.

4. Assume in this question that c is bounded on D and that for any x ∈ D T <∞
Px-a.s. Show then that uD is the unique bounded solution of (?).

1. Since c is nonnegative one can use Fubini-Tonelli to see that

∑
y∈D

c(y)GD(x, y) =
∑
y∈D

c(y)Ex

[ ∞∑
n=0

1{Xn=y,T>n}

]

= Ex

[ ∞∑
n=0

c(Xn)1{T>n}

]
,

as required.

2. Obvisouly uD(x) = 0 if x ∈ Dc.

By this fact, the expression of the first question and the Markov property at time 1,
we find for x ∈ D that

uD(x) = c(x) +
∑
y∈D

P (x, y)Ey

[
T−1∑
n=0

c(Xn)

]
= c(x) + PuD(x).

3. Since u(XT )1{T≤n} is Fn-mesurable, {T > n} ∈ Fn, and on this event Xn ∈ D we
find

E[u(X(n+1)∧T ) | Fn] = E
[
u(Xn+1)1{T>n+1} + u(XT )1{T≤n} | Fn

]
= 1{T>n}Pu(Xn) + u(XT )1{T≤n}

= u(XT∧n)− c(Xn)1{T>n}.

Finally since
∑n

k=0 c(Xk)1{T>k} is Fn-mesurable, we obtain that

E[Mn+1 | Fn] = u(XT∧n)− c(Xn)1{T>n} +

n∑
k=0

c(Xk)1{T>k} = Mn.

4. Let u be a bounded solution of (?). As c is also bounded, Mn is integrable for any n
and by the previous question (Mn) is a martingale (started at 0). In particular

u(x) = Ex[Mn]⇒ Ex[u(XT∧n)] = u(x)− Ex

[
n−1∑
k=0

c(Xk)1{T>k}

]
.

As n→∞, using that T <∞ Px-a.s. along with the boundedness of u, and
dominated convergence, the above lefthand side converges to Ex[u(XT )] = 0 (using
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XT ∈ Dc). Now, by monotone convergence (c being nonnegative) the righthand side

converges to u(x)− Ex
[∑T−1

k=0 c(Xk)
]

= u(x)− uD(x). This reasoning holds for any

x ∈ D. Of course both u uD cancel on Dc, in the end u ≡ uD.

Remark : When c ≡ 0, we proved that if for any x ∈ D, T <∞ Px-a.s., a function
that is harmonic on D and vanishes on Dc also vanishes on D. This slightly extends
the result of exercise 1 above for null boundary conditions, which required D to be
finite.

Exercise 65 We make the same assumptions as in the previous exercise and recall that

∂D := {y ∈ E : ∃x ∈ D P (x, y) > 0}.

Introduce

G→∂D(x, y) := Ex

[ ∞∑
n=0

1{Xn=y,T=n}

]
, x ∈ D, y ∈ ∂D,

and for φ : ∂D → R+,

u∂D(x) =
∑
y∈∂D

φ(y)G→∂D(x, y).

1. Show that u∂D(x) = Ex
[
φ(XT )1{T<∞}

]
, x ∈ D. On what set is u∂D harmonic ?

2. Assume here that φ : ∂D → R+, c : D → R+ are bounded. Assume further that for
any x ∈ D T <∞ Px-a.s. Establish that uD + u∂D is the unique bounded solution to

u(x) =

{
Pu(x) + c(x) x ∈ D
φ(x) x ∈ ∂D

.

1. Using Fubini-Tonelli, for any x ∈ D,

u∂D(x) =
∑
y∈∂D

φ(y)G→∂D(x, y)

=
∑
y∈∂D

φ(y)Ex

[ ∞∑
n=0

1{Xn=y,T=n}

]

= Ex

∑
y∈∂D

φ(y)1{XT=y,T<∞}


= Ex

[
φ(XT )1{T<∞}

]
.

2. If x ∈ ∂D, u∂D(x) = φ(x). If x ∈ D, P (x, y) = 0 for y /∈ D ∪ ∂D thus by Markov
property at time 1,

u∂D(x) =
∑

y∈D∪∂D
P (x, y)Ey

[
φ(XT )1{T<∞}

]
= Pu∂D(x),

hence u∂D coincides with φ on ∂D and is harmonic on D.
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3. Thanks to our assumption on φ, u∂D is bounded, hence so is u− u∂D. But then
u− u∂D satisfies equation (?) of the previous exercise, and thus u− u∂D = uD as
required.

Remark : In the case c ≡ 0, we have shown that provided φ is bounded and for any
x ∈ D, T <∞ Px-a.s., the unique function that is harmonic on D and coincides with
φ on ∂D is u∂D. This extends the result of exercise 1 which required D to be finite.
Note further that maximum principle is self-evident with this approach since
obviously

max
x∈D∪∂D

Ex
[
φ(XT )1{T<∞}

]
≤ max

x∈∂D
φ(x).

Exercise 66 Let X an E-valued chain with kernel P , irreducible and recurrent. What can
be said of the set of nonnegative functions that are harmonic on the hole of E ?
From a previous exercise if Ph = h then (h(Xn)) is a nonnegative martingale, so it must
Px-a.s. converge to some H. Since the chain is irreducible and recurrent, it visits any y ∈ E
infinitely often, so the sequence (h(Xn)) takes value h(y) infinitely often. It follows (by
considering a subsequence) that we must have H = h(y) a.s., and since the reasoning is
valid for any y, it follows that h must be constant.

15 Time reversal

Let X be an irreducible E-valued Markov chain with kernel P , and π a non trivial invariant
measure of X. Define, for any x, y ∈ E,

P̂ (x, y) :=
π(y)P (y, x)

π(x)
.

Exercise 67

1. Show that P̂ is well-defined and that it is the transition kernel of an E-valued chain
X̂, also irreducible. write P̂µ for the law of X̂ when started at µ.

2. Show that π is also invariant for X̂.

3. Show that for any t ≥ 0, x0, ..., xt ∈ E, we have

π(x0)Px0 (X0 = x0, ..., Xt = xt) = π(xt)P̂xt
(
X̂0 = xt, ..., X̂t = x0

)
.

Deduce that if π is an invariant distribution of X, for any n ≥ 0, the law of
(X0, ..., Xn) under Pπ matches that of (Xn, ..., X0) under P̂π.

4. What happens when X is reversible ?

1. X being irreducible implies that π(x) > 0 for any x ∈ E (cf an eercise of the first
sheet), which ensures that P̂ (x, y) is well defined for any x, y ∈ E.

To check that it is a transition kernel, fix x ∈ E and compute∑
y∈E

P̂ (x, y) =
∑
y∈E

π(y)P (y, x)

π(x)

=
πP (x)

π(x)
= 1,
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using that π is invariant.

Since π(x) > 0 for any x ∈ E, P r(x, y) > 0 implies P̂ r(y, x) > 0, thus irreducibility of
X implies that of X̂.

2. We have

πP̂ (y) =
∑
x∈E

π(x)P̂ (x, y)

=
∑
x∈E

π(y)P (y, x) = π(y),

so π also is invariant for X̂.

3. Using definition of P̂ ,

π(xt)P̂xt
(
X̂0 = xt, ..., X̂t = x0

)
= π(xt)P̂ (xt, xt−1)...P̂ (x1, x0)

= P (xt−1, xt)...P (x0, x1)π(x0)

= π(x0)Px0 (X0 = x0, ..., Xt = xt)

Since π is a distribution, we deduce that for any n ≥ 0,

P̂π
(
X̂0 = xn, ..., X̂n = x0

)
= Pπ (X0 = x0, ..., Xn = xn) ,

and the desired equality of laws.

4. When X is reversible, we find P̂ = P , and then whatever µ distibution on E, the law
of X under Pµ matches that of X̂ under P̂µ. In particular, a reversible chain and its
time-reversal, when at stationarity, are indistinguishable.

Exercise 68 Let X be an E-valued Markov chain, π a non trivial invariant measure of X,
X̂ the corresponding time-reversal. Consider further µ a nonnegative measure on E.

1. Establish that
µP

π
= P̂

(µ
π

)
.

2. Let g : E → R∗+. Show that the following assertions are equivalent

i The function g is P̂ -harmonic on E.

ii If µ is the measure on E such that for any x ∈ E, µ(x) = g(x)π(x), then it is
invariant P .

3. What happens when X is irreducible and recurrent ?

1. For each x ∈ E,

P̂
(µ
π

)
(x) =

∑
y∈E

µ(y)

π(y)
P̂ (x, y)

=
∑
y∈E

P (y, x)
µ(y)

π(x)
=
µP

π
(x).
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2. From the above, if g = µ
π then

P̂ g = P̂
(µ
π

)
=
µP

π
,

so that
g = P̂ g ⇔ µP = µ,

as required.

3. When X (thus X̂) is irreducible and recurrent, the only nonnegative harmonic
functions are the constants, and we recover the fact that any invariant measure must
be a multiple of π.

16 Reversible chains, electric networks analogy

In this paragraph we let X be irreducible, with kernel P , reversible with respect to the
nonnegative measure π.
Recall such chain is equivalent to a conductance model on the graph
G = (V = E, E = {(x, y) : P (x, y) > 0}), with conductance function c : E → R+ satisfying
that for some constant K > 0

c(x, y) = Kπ(x)P (x, y), ∀(x, y) ∈ E .

We further remind that we write c(x) =
∑

y∼x c(x, y), and cG =
∑

x∈E c(x).
When looking at the dependence in K, we will add the superscript (K) to these notations.

Exercise 69 (Influence of the constant K)
Recall

c(K)(x, y) = Kπ(x)P (x, y), x, y ∈ E,
and fix a ∈ E,Z ⊂ E, a /∈ Z. We assume that the time to reach {a} ∪ Z from any point in
E \ ({a} ∪ Z) is a.s. finite.

1. Let α > β be real. How does the function V = V
(K)
α,β satisfying

V (a) = α, V (z) = β ∀z ∈ Z, V (·)P -harmonic on E \ ({a} ∪ Z)

depend on the choice K ? How does it depend on the choice of α, β ?

2. Express the current I
(K)
α,β associated with V

(K)
α,β as a function of I

(1)
α,β, then as a

function of K,α, β and I
(1)
1,0 .

3. How does the unit current from a to Z depend on the choice of K ?

4. How does the effective resistance between a and Z, denoted R(K)(a↔ Z), depend on
the choice of K ?

1. Kernel P being fixed, it does not depend on K, neither does V
(K)
α,β . We write it Vα,β

in what follows.

Note however that V = β + (α− β)V1,0 takes value α at a, β on Z, and remains
harmonic on E \ ({a} ∪ Z) (as V1,0 is). Solution to the Dirichlet problem is unique
from our assumption and exercise 9, hence Vα,β = β + (α− β)V1,0.
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2. By Ohm’s law, for x, y ∈ E,

I
(K)
α,β (x, y) = c(K)(x, y)(Vα,β(x)− Vα,β(y))

= K(α− β)π(x)P (x, y)(V1,0(x)− V1,0(y))

so that
I

(K)
α,β = KI

(1)
α,β,

I
(K)
α,β = K(α− β)I

(1)
1,0 .

3. The force ||I(K)
α,β || of the current I

(K)
α,β is by definition

diva(I
(K)
α,β ) =

∑
y∼a

I
(K)
α,β (a, y)

= K(α− β)||I(1)
1,0 ||

Thus we must choose a potential difference α− β = 1

K||I(1)1,0 ||
between a and Z to

create a unit current (i.e. of force 1) between a and Z. For this choice of α, β, the
corresponding current if

I
(K)
α,β = K(α− β)I

(1)
1,0 =

I
(1)
1,0

||I(1)
1,0 ||

,

so the unit current between a and Z does not depend on the choice of K.

4. Effective resistance between a and Z is such that for any α > β,

R(K)(a↔ Z) =
α− β
||I(K)
α,β ||

=
1

||I(K)
1,0 ||

=
1

K
R(1)(a↔ Z).

Exercise 70
Let a ∈ E,Z ⊂ E with a /∈ Z. Assume τZ = inf{t ≥ 0 : Xt ∈ Z} is a.s. finite regardless of
the starting point, and set for x ∈ E,

GZ(a, x) := Ea

[
τZ−1∑
t=0

1{Xt=x}

]
.

Introduce V (x) = GZ(a,x)
c(x) , x ∈ E (beware of the fact that even if it does not appear in our

notation, the function V should a priori depend on a and on the choice of the constant
K > 0 such that c(x, y) = Kπ(x)P (x, y), x, y ∈ E).

1. What value(s) takes the function V on Z ?

2. Establish that V (a) = R(K)(a↔ Z).

3. Show V to be harmonic on E \ {a} ∪ Z.

4. Show that
Ea[τZ ] =

∑
x∈E

c(x)V (x)
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5. For a, y ∈ E establish that

Ea[τy] + Ey[τa] = cGR(a↔ y).

6. For x, y ∈ E write

Sxy =

τZ−1∑
t=0

1{Xt=x,Xt+1=y}.

Show then that Ea[Sxy] = GZ(a, x)P (x, y), and deduce that if I is the unit current
from a to Z,

I(x, y) = Ea[Sxy − Syx].

1. By definition of τZ and GZ , GZ(a, z) = 0 for any z ∈ Z, hence V cancels on Z.

2. We have V (a) = GZ(a,a)
c(a) . Using notation of the previous exercise

V1,0(x) = Px(τa < τZ) (because x→ Px(τa < τZ) satisfies the same Dirichlet problem
as V1,0, and the solution to that problem is unique by exercise 9). Letting
τ+
a = inf{t > 0 : Xt = a}, we obtain in particular that

Pa(τ+
a < τZ) =

∑
x∈E

P (a, x)V1,0(x)

=
1

π(a)

∑
x∈E

π(a)P (a, x)V1,0(x)

= 1 +
1

π(a)

∑
x∈E

π(a)P (a, x)(V1,0(x)− V1,0(a))

= 1− 1

π(a)
||I(1)

1,0 ||

By definition of R(1)(a↔ Z) and the previous exercise we deduce that

Pa(τ+
a < τZ) = 1− 1

π(a)R(1)(a↔ Z)
= 1− 1

c(a)R(K)(a↔ Z)
.

The above expression does not depend on K because c(a) = Kπ(a) which is why we
shall forget the dependence in K in the notation and write c(a)R(a↔ Z).

It remains to be seen, using Markov property at the successive visit times at a before
reaching Z, that GZ(a, a) is the expectation of a geometric random variable with
parameter Pa(τZ < τ+

a ) so that

V (a) =
GZ(a, a)

c(a)
= R(K)(a↔ Z),

as required.
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3. If x ∈ E \ ({a} ∪ Z), using that c(·) = Kπ(·), reversibility of the chain and the
Markov property at time t :

c(x)
∑
y∈E

P (x, y)V (a, y) =
∑
y∈E

1

c(y)
Ea

[
τZ−1∑
t=0

Kπ(x)P (x, y)1{Xt=y}

]

=
∑
y∈E

Ea

[
τZ−1∑
t=0

K

c(y)
π(y)P (y, x)1{Xt=y}

]

=
∑
y∈E

Ea

[
τZ−1∑
t=0

1{Xt=y,Xt+1=x}

]

= Ea

[
τZ−1∑
t=0

1{Xt+1=x}

]
= GZ(a, x),

where in the last equality we used x 6= a, x /∈ Z to see that under Pa,∑τZ−1
t=0 1{Xt+1=x} =

∑τZ−1
t=0 1{Xt=x}.

4. Simply

Ea[τZ ] =
∑
x∈E

GZ(a, x) =
∑
x∈E

c(x)V (x).

5. If a = y the desired equality is straightforward. Otherwise, even if it means setting
Z = {y}, the above points imply

Ea[τy] =
∑
x∈E

c(x)V a,y(x),

where V a,y is the unique function that is harmonic on E \ {a, y} and such that

V a,y(a) = R(K)(a↔ y), V a,y(y) = 0.

Similarly

Ey[τa] =
∑
x∈E

c(x)V y,a(x),

where V y,a is the unique function that is harmonic on E \ {a, y} and such that

V y,a(y) = R(K)(a↔ y), V y,a(a) = 0.

The function W = R(K)(a↔ y)− V a,y satisfies the same Dirichlet problem, so that
V y,a = R(K)(a↔ y)− V a,y. We finally obtain

Ea[τy] + Ey[τa] =
∑
x∈E

c(x)(V a,y(x) + V y,a(x))

=
∑
x∈E

c(x)R(a↔ y) = R(a↔ y)cG ,

as required (again c(·)R(· ↔ ·) does not depend on K, which is why we droped the
superscripts).
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6. Observe that the current IV from a to Z associated with V satisfies

R(a↔ Z) =
V (a)− V (z)

||IV ||
=
R(a↔ Z)

||IV ||
,

hence it it the unit current from a to Z (by the preceding exercise it does not depend
on K).

By Markov property at t,

Ea[Sxy] = Ea

[
τZ−1∑
t=0

1{Xt=x,Xt+1=y}

]

= Ea

[
τZ−1∑
t=0

1{Xt=x}P (x, y)

]
= GZ(a, x)P (x, y).

Thus

Ea[Sxy − Syx] = GZ(a, x)P (x, y)−GZ(a, y)P (y, x)

= V (x)c(x)P (x, y)− V (y)c(y)P (y, x)

= (V (x)− V (y))c(x, y) = I(x, y),

as required.

Exercise 71 Show that (a, b)→ d(a, b) = R(a↔ b) defines a distance on E. For the
triangle inequality, one shall use that the unit current from a to c can be seen as the sum of
unit currents from a to b and from b to c.
Assume K is fixed in the following, we will not refer to it in our notation.
The fact that d(a, b) ≥ 0 is obvious.
From the preceding exercise, using its notation, we find that

R(a↔ b) = V a,y(a) = V y,a(y) = R(b↔ a),

which ensures symmetry.
Moreover if R(a↔ b) = 0 then

Ea[τb] + Eb[τa] = 0

hence a = b.
Finally fix a, b, c ∈ E. Let Ia,b (resp. Ib,c, Ia,c) the unit current from a to b (resp. from b to c
and from a to c). These three currents are respectively associated with V a,b, V b,c, V a,c.
Observe that, as Ia,c, Ia,b + Ib,c is antisymmetric, satisfies the cycle law because both Ia,b

and Ib,c do, and finally

divx(Ia,b + Ib,c) = divx(Ia,b) + divx(Ib,c)

= 1{x=a} − 1{x=b} + 1{x=b} − 1{x=c}

= 1{x=a} − 1{x=c}.

It follows that indeed Ia,b + Ib,c = Ia,c, and the potential associated with Ia,c is
W := V a,b + V b,c. It follows that

R(a↔ c) = W (a)−W (c) = V a,b(a)− V a,b(c) + V b,c(a)− V b,c(c).
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By maximum principle V a,b reaches its maximum at a and its minimum at b so V a,b(c) ≥ 0
and similarly V b,c(a) ≤ V b,c(b) = R(b↔ c), we conclude that

R(a↔ c) ≤ R(a↔ b) +R(b↔ c).

Exercise 72 Let G = (V,
→
E ) be a finite oriented graph. We assume each edge to be present

in both its orientations.
Extremities of an oriented edge

→
e are denoted e−, e+.

We let E1/2 a set containing exactly one element out of each {e,−e}.
Denote by `2(V) the space of functions from V → R equipped with the scalar product

〈f1, f2〉`2(V) =
∑
x∈V

f1(x)f2(x).

Denote by `2−(
→
E ) the set antisymmetric functions on oriented edges, equipped with the

scalar product

〈θ1, θ2〉
`2−(
→
E )

=
∑
e∈E1/2

θ1(e)θ2(e).

The following applications map one of these two spaces to the other :

d :

{
`2(E)→ `2−(

→
E )

f → df : df(e) = f(e−)− f(e+),
d∗ :

 `2−(
→
E )→ `2(E)

θ → d∗θ : d∗θ(x) =
∑

e∈
→
E :e−=x

θ(e).

1. Check that

〈θ1, θ2〉
`2−(
→
E )

=
1

2

∑
e∈
→
E

θ1(e)θ2(e)

2. Establish that d, d∗ are adjoint operators, i.e. for any f ∈ `2(V), g ∈ `2−(
→
E ),

〈df, g〉
`2−(
→
E )

= 〈f, d∗g〉`2(V).

3. Check that if v is a potential fixed on a, Z and if i is the corresponding current from
a to Z then Ohm’s law can be rewritten dv = ri, and the node law becomes
d∗i(x) = 0 ∀x /∈ ({a} ∪ Z). How can the cycle law be rewritten in this setting ?

1. The equality follows from the definition of E1/2 and the fact that antisymmetry of
θ1, θ2 ensures

θ1(−e)θ2(−e) = θ(e)θ(e).
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2. Letting ε = −e and using antisymmetry of g,

〈df, g〉
`2−(
→
E )

=
1

2

∑
e∈
→
E

f(e−)− f(e+)g(e)

=
1

2

∑
e∈
→
E

f(e−)g(e)− 1

2

∑
e∈
→
E

f(e+)g(e)

=
1

2

∑
e∈
→
E

f(e−)g(e)− 1

2

∑
ε∈
→
E

f(ε−)g(−ε)

=
∑
e∈
→
E

f(e−)g(e).

Moreover

〈f, d∗g〉`2(V) =
∑
x∈V

f(x)
∑

e∈
→
E :e−=x

g(e)

=
∑
x∈V

∑
e∈
→
E :e−=x

f(e−)g(e)

=
∑
e∈
→
E

f(e−)g(e)

which completes the proof.

3. For e ∈
→
E , if we set x = e−, y = e+, we have

dv(e) = v(x)− v(y); i(e) = i(x, y); c(e) = c(x, y),

so Ohm’s law indeed reads c× dv = i, or dv = ri.

Moreover for x ∈ V
d∗i(x) =

∑
y∈V:(x,y)∈

→
E

i(x, y) = divx(i),

so that node law now reads d∗i(x) = 0, ∀x /∈ {a} ∪ Z.

Finally cycle law ensures that if e1, ..., en is a cycle, then

n∑
k=1

dv(ek) =
n∑
k=1

i(ek)r(ek) = 0.

Exercise 73 We make similar assumption and use the same notation as in the previous
exercise. Although here, we assume that the initial edges of our graph are unoriented and
equipped with conductances {c(e), e ∈ E}. We then simply extend the definition of

conductance to oriented edges : e ∈
→
E has the same conductance as the unoriented edge. We

introduce a new scalar product on `2−(
→
E ) :

〈θ, θ′〉r =
1

2

∑
e∈
→
E

r(e)θ(e)θ′(e).
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For e ∈
→
E we let χe = 1{e} − 1{−e}. Finally we introduce two subspaces of `2−(

→
E ) :

? = Vect


∑

e∈
→
E :e−=x

c(e)χe, x ∈ V

 , ♦ = Vect

{
n∑
k=1

χek , e1, ..., en cycle

}

Show that ? = ♦⊥, and recover Thomson’s principle.
It is easily checked that

〈χe, χe′〉 =


1 if e = e′

−1 si e = −e′
0 otherwise .

.

Fix x ∈ V and e1, ..., en cycle, and set θ1 =
∑

e∈
→
E :e−=x

c(e)χe, θ2 =
∑n

k=1 χ
ek .

If ek is such that e−k 6= x, e+
k 6= x, then clearly

〈θ1, χ
ek〉r = 0.

For any k ∈ {2, ..., n}, such that x = e−k , then x = e+
k−1 (and so x = (−ek−1)−). But then

〈θ1, χ
ek−1 + χek〉 >r= −c(ek−1)r(ek−1) + c(ek)r(ek) = 1− 1 = 0.

Finally if x = e−1 , x = e+
n since we are dealing with a cycle, and the above reasoning again

applies. This proves that ?,♦ are orthogonal spaces.
Let us now show their intersection is reduced to {0}. A θ in the intersection must be
orthogonal to both ? and ♦. Since θ ∈ ?⊥ we have for any x ∈ V,

〈
∑

e∈
→
E :e−=x

c(e)χe, θ〉r =
∑

e∈
→
E :e−=x

c(e)θ(e)r(e) = divx(θ) = 0,

so θ satisfies the node law everywhere.
On the other hand since θ ∈ ♦⊥, we have for any cycle e1, ..., en,

〈
n∑
k=1

χek , θ〉r =

n∑
k=1

θ(ek)r(ek) = 0,

so θ satisfies the cycle law.
Since θ checks both node and cycle laws and the space is finite, it must be that there exists
v such that θ = dv. The node law for θ means v is harmonic on the whole of V entier, it
must be constant which implies θ = 0.

We have therefore shown that ? = ♦⊥, in other words `2−(
→
E ) = ?⊕ ♦.

Let the unit current from a to Z be denoted by I. It satisfies cycle law everywhere so
I ∈ ♦⊥ = ?. It also satisfies node law at any x /∈ {a} ∪ Z, so that d∗I(x) = 0∀x /∈ {a} ∪ Z.

If θ ∈ `2−(
→
E ) satisfies d∗θ = d∗I (i.e. if it is a unit flow from a to Z), then d∗(θ − I) = 0, i.e.

θ − I ∈ ?⊥, therefore θ = I + θ − I is the orthogonal decomposition of θ on ?⊕ ♦.
Bu then

||θ||2r = ||I||2r + ||θ − I||2r ,
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and we conclude that I minimizes the energy of unit flows from a to Z.
It remains to see that I = Ia,Z = dV a,Z where V a,Z is a potential, that without loss of
generality can be assumed to vanish on Z, so it must take value R(a↔ Z) at a. Then

||I||2r = 〈I, dV 〉r =
1

2

∑
e∈
→
E

I(e)(V (e−)− V (e+))

=
1

2

∑
x,y∈V:(x,y)∈

→
E

I(x, y)(V (x)− V (y))

=
∑
x∈V

V (x)
∑
y∈V

I(x, y)

= V (a)diva(I) = R(a↔ Z).

We deduce the following rewriting of Thomson’s principle

R(a↔ Z) = inf{||θ||2r : θ ∈ `2−(
→
E ) d∗θ(a) = d∗Ia,Z}

and this infimum is reached at θ = Ia,Z .

Exercise 74 Show that if we modify a graph by identifying two of its nodes, then the
effective resistance between a and Z in the new graph is bouded by that in the old graph.
What happens when the transformation consists in removing an edge between two points ?
Identifying two points is equivalent to put an infinite conductance between the two vertices
leaving other conductances unchanged. We conclude thanks to Rayleigh’s principle.
On the other hand, removing an edge is equivalent to setting its conductance to zero,
leaving other conductances unchanged. Rayleigh’s principle again applies.

Exercise 75 Recover ruin’s probability Px(τ0 < τN ) (for SRW going up with probability p)
using the analogy with electric networks.
Fix p ∈ (0, 1). Let ci conductance of edge (i, i+ 1) for i = 0, ..., N − 1, so for any
i ∈ {0, ..., N − 1},

P (i, i+ 1) =
ci

ci + ci+1
=

1

1 + c
,

and if we set c = 1
p − 1 = q

p we recover SRW going up with probability p, and down with
probability q = 1− p.
Now fix x ∈ {1, ..., N − 1}. If p = 1/2, c = 1, and equivalent resistance between 0 and x is x,
that between x and N is N − x, so equivalent conductances are 1/x, 1/(N − x), hence

Px(τN < τ0) =
1

N−x
1
x + 1

N−x
=

x

N
.

If p 6= 1/2 equivalent resistance between 0 and x is 1−ck
1−c =

1−
(
q
p

)k
1− q

p
, that between x and N
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equals ck 1−cN−k
1−c =

(
q
p

)k
−
(
q
p

)N
1− q

p
. We deduce

P(τN < τ0) =

1− q
p(

q
p

)k
−
(
q
p

)N
1− q

p(
q
p

)k
−
(
q
p

)N +
1− q

p

1−
(
q
p

)k =
1−

(
q
p

)k
1−

(
q
p

)N .

Exercise 76 Consider a square split into 3× 3 squares ; and the RW whose every step is to
a uniformly random neighbouring or diagonally neighbouring square. We write x for the
bottom left square, y the top right square. Compute Px(τy < τ+

x ), then Ex[τy].
Let V be the unique function harmonic outside x, y, and such that V (x) = 1, V (y) = 0. A
priori determining V amounts to solve a linear system of 7 equations with 7 variables, but
this is a bit cumbersome. Instead note that a symmetry argument allows to see that squares
on each antidiagonal must be at same potential. Again by symmetry, squares on the central
antidiagonal must all be at potential 1/2. It only remains two equations and two unknowns,
and it is then easily checked that the two direct neighbours of x are at potential 3/5, and
squares directly neighbouring y are at potential 2/5.
It is then easy to find the force of the correponding current, it is 2 ∗ 2/5 + 1/2 = 13/10, and
in the end R(x↔ y) = 10

13 .
Now since c(x) = 3

P(τy < τ+
x ) =

1

3R(x↔ y)
=

13

30
.

For Ex[τy] we use formula of exercise 5, which reads

Ex[τy] =
∑
v∈E

c(v)V (v),

with V the unique function harmonic outside x, y, and such that
V (x) = R(x↔ y) = 10/13, V (y) = 0. This potential is only 10/13 times that which we just
computed, it follows that

Ex[τy] = R(x↔ y) ∗
(

3 + (5 + 5) ∗ 3

5
+ (3 + 8 + 3) ∗ 1

2
+ (5 + 5) ∗ 2

5

)
=

200

13
.

Remark : One could also have used triangle-star equivalence in order to compute the
effective resistance between x and y.

Exercise 77 Let G = (V, E) be a countably infinite graph equipped with conductances
(c(e), e ∈ E), and satisfying

∀x ∈ V,
∑

(x,y)∈E

c(x, y) <∞.

Let (Gn), (Hn) two nondecreasing sequence of subgraphs of G s.t. for any n, a ∈ Gn ∩Hn,
and s.t.

⋃Gn =
⋃Hn = G. We let Zn = G \ Gn, (resp. Yn = H\Hn), and denote by G∗n (resp.

H∗n) the graph deduced from G by identifying all vertices in Zn as a single node zn (resp. all
vertices in Yn as a single node yn). Let R(a↔ Zn;G∗n) denote the effective resistance from a
to zn in G∗n, (resp. R(a↔ Yn;H∗n) the effective resistance from a to yn in H∗n).
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1. Show that
lim
n→∞

R(a↔ Zn;G∗n), lim
n→∞

R(a↔ Yn;H∗n)

both exist in R+, and that they must be equal.

2. Show that the chain on G defined by this conductance model is recurrent iff this
common limit is finite.

1. By Rayleigh R(a↔ Zn;G∗n)n≥0 is nondecreasing, so its limit `1 exists in R+.
Similarly we let `2 := limn→∞R(a↔ Yn;H∗n).

If `1 = +∞, fix A > 0, there must exist n1 s.t. R(a↔ Zn;G∗n) ≥ A for any n ≥ n1.
Since (Hn) is nondecreasing and s.t.

⋃Hn = G, there must exist n2 s.t. Hn ⊃ Gn1 for
any n ≥ n2. But then again by Rayleigh, for any n ≥ n2 we have

R(a↔ Yn;H∗n) ≥ R(a↔ Zn1 ;Gn1) ≥ A,

and since this hold for any A we conclude that `2 = `1 = +∞.

Otherwise both our limits are finite. Fix ε > 0, there exists n1 s.t.
R(a↔ Zn;G∗n) ≥ `1 − ε for any n ≥ n1. By the same proof as above, one can find n2

s.t. for any n ≥ n2,

R(a↔ Yn;H∗n) ≥ R(a↔ Zn1 ;Gn1) ≥ `− ε.

Since this hold for any ε we conclude that `2 ≥ `1. By a symmetric argument `1 ≥ `2,
and we conclude that `1 = `2. In what follows we let ` = R(a↔∞) denote the
common limit.

2. From the previous question we can always choose without affecting the limit

Gn = {y ∈ G : dG(a, y) ≤ n} = BG(a, n),

the ball of radius n centered at a, (with dG the graph distance).

Let us remind that

Pa(τZn < τ+
a ) =

1

c(a)R(a↔ Zn)
,

so that

Pa(τZn < τ+
a ) −→

n→∞

{
0 if ` = +∞

1
c(a)` otherwise.

,

using the assumption c(a) <∞.

Under Pa, τZn ≥ n, so that τZn →∞ p.s. We deduce that
limn→∞ Pa(τZn < τ+

a ) = Pa(τ+
a = +∞), which allows to conclude that

Pa(τ+
a < +∞) =

{
1 if R(a↔∞) = +∞
1− 1

c(a)` < 1 otherwise.

Exercise 78 Use Nash-Williams’ inequality to show that symmetric SRW on Zd, d ≤ 2 is
recurrent.
We set c(e) = 1 for any e ∈ Zd.
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We use the disjoint cutting (between 0 and infinity) sets

Πk := {(x, y) ∈ E : ||x||∞ = k, ||y||∞ = k + 1},

and we notice that
∑

e∈Πk
c(e) = |Πk| = 2d(2k + 1)d−1, k ≥ 1. By Nash-Williams,

R(0↔∞) ≥
∑
k≥1

1

2d(2k + 1)d−1
.

It follows that R(a↔∞) = +∞ provided d ≤ 2, which by the preceding exercise, ensures
that symmetric SRW on Zd, d = 1, 2 is recurrent.

Exercise 79 Consider an infinite rooted d-regular tree (where the root has degree d and all
other vertices have degree d+ 1), and the λ-biased walk on that tree which is such that,
when not at the root, the walk moves towards the root with probability λ

λ+d , and otherwise,
it moves from its location to one of its d descendants choosen uniformly at random.

1. Explain what is the corresponding electric network, and compute the effective
resistance between the root and depth n of the tree as a function of n, d, λ.

2. What is the limit of these effective resistances when n→∞ as a function of d, λ ?
Find a recurrence criterion for our walk in terms of d, λ.

3. What can be said for the λ-biased RW on a rooted tree where any vertex at depth k
has exactly dk ∈ N∗ descendants

1. In order to get a λ-biased walk, we need, at each given vertex v other than the root,
that the conductance of the edge from v leading to the root is λ times the
conductance of any other edge from v. We can therefore set c(e) = λ−` for any edge
e ∈ E linking a vertex of depth ` to one of depth `+ 1 in T .

We aim at computing R(0↔ n), the effective resistance between the root and
vertices at depth at least n, B(0, n− 1)c.

If we impose potential V0 > 0 at the root and potential 0 at every vertex of depth at
least n, we find by a symmetry argument that all nodes at same depth must have
same potential.

For any k ∈ {0, ..., n}, we may therefore identify as a single node vk every vertex at
depth k. The resulting electric network possesses dk+1 parallel edges between vk and
vk+1, of same conductance λ−k, which is equivalent to a single edge with conductance
dk+1λ−k.

It remains to sum the series resistance between v0 (the root) and vn (vertices of
depth n) :

R(0↔ n) =
n−1∑
k=0

1

dk+1λ−k
=

1
d

1−(λd )
n

1−λ
d

if λ 6= d

n
d if λ = d.

2. As n→∞, we deduce that R(0↔ n)→∞ iff λ ≥ d. From exercise 12, it follows
that λ-biased on the rooted infinite d-regular tree enraciné, is recurrent iff λ ≥ d.
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3. We only have used the fact that the number of descendants of a given vertex only
depends on its depth.

More precisely, if vertices at generation k have dk descendants, the number of edges
between vk and vk+1 is equal to d0d1...dk, and one finds that

R(0↔ n) =

n−1∑
k=0

λk∏k
i=0 di

.

The walk on such tree is recurrent iff the above sum diverges.

Exercise 80 A professor owns a total of n umbrellas, some at home and some left at his
office. The professor walks from home to office in the morning and from office to home in
the evening. He takes one umbrella with him if it rains and if he can (i.e. if there is at least
one umbrella at his starting location). In addition we assume that independently at each
travel, it rains with probability p.

1. Find a reversible Markov chain which models the problem and compute its invariant
probability. Asymptotically, what is the proportion of walks during which the
professor gets wet ?

2. Find the expectation of the number of walks before n umbrellas are found in the
same place.

3. Find the expectation of the number of walks before (not including) the first one
during which the professor gets wet.

Set q = 1− p in what follows.

1. Let us say 1 denotes the house and 2 the office. Our Markov chain will take values in
{(i, k), i ∈ {1, 2}, k ∈ {0, ..., n}, state (i, k) meaning that the professor is in location i
with k umbrellas. For example, state (1, 4) would mean that the professor is at home
with 4 umbrellas at his disposal ; the next state visited by the chain will be (2, n− 3)
with probability p (if it rains the next morning), else (2, n− 4) (if it does not). It is
then easily seen that the chain is irreducible, positive recurrent, and that it
corresponds to the following conductance model (so it is reversible)

(2, n)

(1, 0) (1, 1)

(2, n− 1)

(1, x)

(2, n− x+ 1) (2, n− x)

(1, n− 1)

(2, 1)

(1, n)

(2, 0)

q p p q q p q

Figure 1. Le modèle de conductances

The initial location is irrelevant for the questions we want to address, which is why
w.l.o.g we may assume the chain is started at (1, x), for some x ∈ {0, ..., n} (if you
would rather have him start from his office, simply permute the labels for locations).

The function c : V → R∗+ (recall c(x) =
∑

y∼x c(x, y)) is everywhere 1, except at the
boundary {(1, 0), (2, 0)} where it takes value q. Hence cG = 2n+ 2q, and

π(i, 0) =
q

2q + 2n
, i = 1, 2, π(i, k) =

1

2q + 2n
, i = 1, 2, k = 1, ..., n.
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The asymptotic proportion of time spent at (1, 0) or (2, 0) (i.e. at a place without
any umbrella) is therefore

π(1, 0) + π(2, 0) =
2q

2q + 2n
.

Walks under the rain are necessarily from one of these two states, and the proportion
of walks from these two states that are indeed made under the rain is p we conclude
that the asymptotic proportion of walks during which the professor gets wet is 2pq

2q+2n .

2. We are going to make use of formulaes obtained in exercise 5. First let us compute
the effective resistance between a = (1, x) and Z = (1, n)∪ (2, n)∪ (1, 0)∪ (2, 0) (so Z
exactly corresponds to states of the chain for which umbrellas are all located at the
same location). Add series resistance :

(1, 0)

(2, n)

(1, 1) (1, x) (1, n)

(2, 0)

q p

pq
x−1

pq
n−x

q

∼
(1, 0)

(2, n)

(1, x) (1, n)

(2, 0)

q (x−1)pq
xq+p

pq
n−x

Figure 2. Equivalent networks : given values are resistances

Vertices of Z have the same null potential, they can be identified. This leads to
summing parallel conductances between a and Z and obtain

R(a↔ Z) =
1

pq
x−1+q + pq

n−x
=

(x− p)(n− x)

pq(n− p) .

Note that when n→∞, this is maximal for x ∼ n/2 and then R(a↔ Z) ∼ n
4pq .

Impose potential R = R(a↔ Z) at a = (1, x), and null potential at Z, it is then easy
to see that for some constant W , we must have

0

0

qW
x−1 R

0

0

(n−x−1)R
n−x

R
n−x

WW
x−1

qR
n−x

2R
n−x

(1+q)R
n−x

(n−x−1+q)R
n−x

(1+q)W
x−1

2W
x−1

(x−2+q)W
x−1

Figure 3. Potential at each point when it is fixed to R at a and to 0 at Z.

Of course W = 0 if x = 1, but if x ≥ 2, use the potential is harmonic at (2, n− x+ 1)
to find that

W = qR+ p
x− 2 + q

x− 1
W,
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so

W =
q

q + p2

x−1

R = R− p2R
q(x− 1) + p2

.

It only remains to compute

Ea[τZ ] =
∑
y∈E

c(y)V (y) =
∑
y∈E

V (y)

=

x−1∑
k=1

kW

x− 1
+

x−1∑
k=1

(k + q)W

x− 1
+

n−x∑
k=1

kR
n− x +

n−x∑
k=1

(k + q)R
n− x

= (x+ q)W + (n− x+ q)R =

(
n+ 2q − p2

q(x− 1) + p2

)
R.

As n→∞, notice that the above is maximal for x ∼ n/2, and then Ea[τZ ] ∼ n2

4pq .

3. Let f(x) := E(1,x)[τZ ] which we compute in the previous question, and T the number
of walks before (not including) the first one during which the professor gets wet.
Evidently T ≥ τZ . But in fact, notice that T has same distribution under P(1,n) and
under P(2,n), so that T − τZ under Pa has same distribution as T under P(2,n).

Using Markov property

E(2,n)(T ) = 1 + pf(1) + qE(1,0)(T )

= 1 + pf(1) + qp+ q2(1 + E(2,n)(T )),

thus

E(2,n)(T ) =
1

1− q2

(
1 + pf(1) + q2

)
In the end

Ea[T ] = f(a) +
1

1− q2

(
1 + pf(1) + q2

)
.

In particular, when n→∞ and x ∼ n/2, since f(1) ∼ n(1−p)
pq << f(x), we find that

Ea[T ] ∼ n2

4pq .

Exercise 81 (Pólya’s urn)
Consider (Pólya’s) urn with d balls of distinct colors. At time t− 1/2, t ≥ 1, one draws
uniformly and independently of previous steps a ball from the urn, and then replace that
ball along with another one of the same color.
Let Xt(j) the number of balls of color j which have been drawn up to time t.

1. Show that for any (n1, ..., nd) such that n1 + ...+ nd = n, we have

P(Xn = (n1, ..., nd)) =

∏d
i=1 ni!

d(d+ 1)...(d+ n− 1)

(
n

n1, ..., nj

)
=

(d− 1)!n!

(d+ n− 1)!
.

How does the above simplify when d = 2 ?

2. Deduce that Xt
t converges in distribution towards a Dirichlet variable with

parameters (1, ..., 1) (that is, of uniform density on the simplex
{(x1, ..., xd) ∈ Rd+ : x1 + ....xd = 1}).
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1. For any t ≥ 0, at time t there are exactly d+ t balls in the urn. Conditionally given
Xt, the probability to draw a ball of color j at time t+ 1/2 is Xt(j)+1

d+t , for any

j ∈ {1, ..., d}. Observe there are
(

n
n1,...,nj

)
ways to draw n1 balls of color 1, ..., nd balls

of color d up to time n, and the desired formula follows.

When d = 2, we thus have P(Xt = (k, n− k)) = 1
n+1 for any k ∈ {0, ..., n}, so that the

number of balls of color 1 drawn up to time n has a uniform distribution on {0, ..., n}.
2. From the above Xn follows a uniform distribution on {(n1, ..., nd) : n1 + ...+ nd = n}.

It is then straightforward to establish that Xn/n converges in distribution towards a
variable uniform on {(x1, ..., xd) ∈ Rd+ : x1 + ....xd = 1}.

Exercise 82 Assume Gn has vertices Vn = {x ∈ Zd : ∀i ∈ {1, ..., d} 1 ≤ xi ≤ n} and edges
En are between vertices of Vn which are nearest-neighbours in Zd (so we are dealing with a
n× ...× n slab of Zd+).
Set all conductances of edges of En to 1, and set a = (1, ..., 1), z = (n, ..., n).

1. Assume Πk = {(v, w) ∈ En : ||v||∞ = k, ||w||∞ = k + 1}, k = 1, ..., n− 1. Show that for
any k = 1, ..., n− 1, Πk is a cutting set, and that∑

e∈Πk

c(e) = |Πk| = dkd−1.

Deduce that

R(a↔ z) ≥


n− 1 if d = 1
1
2 log(n− 1) if d = 2

Cd := 1
d

∑
k≥1 k

1−d if d ≥ 3

.

2. Consider a Polya’s urn with initially one ball of each color 1, ..., d. Introduce as in the
previous exercise the process (Xt, t ≥ 0), and set X̃t = Xt + (1, ..., 1) so that X̃t(i) is
the number of balls of color i in the urn at time t. Introduce I a unit flow from a to
z. On edges {(x, y) ∈ En :

∑d
i=1 yi ≤ n+ d} set

I(x, y) = P(∃t ∈ {0, ..., n− 1} : X̃t = x, X̃t+1 = y),

and on edges {(x, y) ∈ En :
∑d

i=1 yi > n+ d} set

I(x, y) = I((n+ 1, ..., n+ 1)− y, (n+ 1, ..., n+ 1)− x).

For k ∈ {1, ..., n}, show that for any y ∈ Bn such that
∑d

i=1 yi = k + d, the flow
entering y is ∑

{x:
∑d
i=1 xi=k+d−1,x∼y}

I(x, y) =
1(

k+d−1
d−1

) .
Deduce that the energy E(I) of this flow satisfies

E(I) ≤


n if d = 1

2 log(n) if d = 2

2 (d− 1)!
∑n

k=1
1

kd−1 if d ≥ 3

.
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3. For what values of d do we have R(a↔ z)→∞ as n→∞ ? For what values of d
does this effective resistance converges to a finite limit as n→∞ ?

4. Use the above to recover Pólya’s theorem : symmetric SRW on Zd is recurrent iff
d ≤ 2.

1. Let k ∈ {1, ..., n− 1} be fixed. Each vertex v of Gn s.t. ||v||∞ = k + 1 which possesses
a unique coordinate equal to k+ 1 is linked with exactly one vertex w s.t. ||w||∞ = k.
There are exactly dkd−1 tels noeuds, and thus there are dkd−1 elements in Πk.

By Nash-Williams,

R(a↔ z) ≥
n−1∑
k=1

1∑
e∈Πk

c(e)
=

n−1∑
k=1

1

dkd−1
,

which yields the desired inequality.

2. Let us write Sk = {x ∈ Gn :
∑d

i=1 xi = k} (this is the intersection of the sphere of
radius 1 for `1-norm with vertices in Gn). For d ≤ k ≤ n+ d, observe the incident flow
into Sk is 1, and it is uniformly split between the distinct vertices of Sk. Since Sk
precisely has

(
k+d−1
d−1

)
vertices, we deduce that for k ≥ 2 and e+ ∈ Sk, we have

I(e) ≤ k!(d− 1)!

(k + d− 1)!
≤ (d− 1)!

kd−1

From the definition of E(I) (reminding all edges have conductance 1), we find that

E(I) ≤ 2
n∑
k=2

(d− 1)!

kd−1
,

yielding the desired inequalities. As R(a↔ z) minimizes the energy of all unit flows
from a to Z, we conclude to similar bounds for R(a↔ z).

3. It follows that R(a↔ z)→ ` <∞ as long as d ≥ 3.

4. Une légère modification du raisonnement de la première question (en remplaçant Gn
par la boule de rayon n pour la norme infinie dans Zd) permet d’assurer que
R(0↔∞) = +∞ lorsque d = 1, 2, ce qui permet d’assurer que la marche simple sur
Zd, d = 1, 2 est récurrente.

Une légère modification de l’argument de la deuxième question (quitte à répartir le
courant d’intensité 1 de façon équitable entre les 2d cadrans, et à considérer le
courant entre 0 et la sphère de rayon n pour la norme 1) permet quant à lui de
démontrer que R(0↔∞) reste bornée pour tout d ≥ 3, de sorte que la marche
simple est transiente lorsque d ≥ 3.

17 Martingales for continuous-time chains

Exercise 83 Assume Q is the generator on a discrete space E, and that the forward
equation P ′(t) = P (t)Q,P (0) = I has a unique nonnegative solution.
Show that the two following assertions are equivalent for a continuous-time process X
taking values in E :
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(i) X is a continuous-time Markov chain with generator Q.

(ii) For any f : E → R bounded(
Mf
t := f(Xt)− f(X0)−

∫ t

0
Qf(Xs)ds

)
t≥0

is a continuous-time martingale w.r.t. the natural filtration of X.

Assume (i), and consider a bounded f : R→ R, so integrability conditions are easily
satisfied. Recall pxy(t) = Px(Xt = y) = P(Xt+s = y | Xs = x), so we have,

E[f(Xt+s) | Fs] =
∑

x∈E,y∈E
E[f(Xt+s)1{Xs=x}1{Xt+s=y} | Fs]

=
∑

x∈E,y∈E
1{Xs=x}

∑
y∈E

pxy(t)f(y) = P (t)f(Xs).

We also remind that (P (t), t ≥ 0) is the unique solution to the forward equation
P (0) = I, P ′(t) = QP (t). Thus

E
[∫ t+s

0
Qf(Xu)du | Fs

]
=

∫ s

0
Qf(Xu)du+

∫ t+s

s
QE [f(Xu) | Fs] du

=

∫ s

0
Qf(Xu)du+

∫ t+s

s
QP (u− s)f(Xs)du

=

∫ s

0
Qf(Xu)du+

(∫ t+s

s
P ′(u− s)du

)
f(Xs)

=

∫ s

0
Qf(Xu)du+ P (t)f(Xs)− f(Xs)

It follows that

E[Mf
t+s | Fs] = P (t)f(Xs)− f(X0)−

∫ s

0
Qf(Xu)du− P (t)f(Xs) + f(Xs) = Mf

s ,

as required.
Conversely assume (ii) holds. Fix 0 ≤ t0 ≤ ... ≤ tn, x0, ..., xn ∈ E and set
B = {Xt0 = x0, ..., Xtn = xn}, and for y ∈ E, t ≥ tn, gB(y, t) = P(Xtn+t = y | B). Setting

f = 1{y} and using martingale property for (Mf
t )t≥0, for any t ≥ 0, yields

E[1{Xtn+t=y} | Ftn ] = 1{Xtn=y} +
∑
z∈E

∫ tn+t

tn

qzyP(Xu = z | Ftn)du.

Since B = {Xt0 = x0, ...Xtn = xn} ∈ Ftn , we deduce

gB(t+ h, y) = P({Xtn+t+h = y} | B) = 1{xn=y} +
∑
z∈E

∫ tn+t+h

tn

qzygB(u, z)du.

Since gB is bounded, it follows that it is differentiable w.r.t. its first variable, and that

gB(tn, y) = 1{xn=y},
∂gB
∂t

(t, y) =
∑
z∈E

qzygB(t, z), t ≥ 0
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It is therefore clear that gB(t, y), t ≥ tn, y ∈ E only depends on B through the value xn. In
particular, given {Xtn = xn}, for any t ≥ 0, Xtn+t is independent of B. Since events such as
B generate Ftn , it follows by standard arguments that given {Xtn = xn}, (Xtn+t)t≥0 is
independent of Ftn and has the same law as (Xt)t≥0 under Pxn , so we have establish the
Markov property for (Xt, t ≥ 0).
Again with the same argument Px(Xt = y) = Pxy(t) satisfies Pxy(0) = 1{x=y},
∂Pxy(t)
∂t (t, y) =

∑
z∈E qxzPzy(t), so that P (t) is the unique solution to the forward equation,

and we are done.

Exercise 84 Consider a continuous-time Markov chain X with generator Q, and assume
f : E → R is such that Qf = αf for some α ∈ R. Show that, under suitable integrability
conditions, (exp(−αt)f(Xt))t≥0 is an (Ft)-martingale.
Thanks to the forward equation, if we set g(t, x) = P (t)f(x), we find that

∂g

∂t
(t, x) = P ′(t)f(x) = P (t)Qf(x) = αP (t)f(x) = αg(t, x),

and since g(0, x) = P (0)f(x) = f(x) it follows easily that g(t, x) = P (t)f(x) = exp(αt)f(x)
for any x ∈ E. Now

E [exp(−α(t+ s))f(Xt+s) | Fs] = exp(−α(t+ s))P (t)f(Xs)

= exp(−α(t+ s)) exp(αt)f(Xs) = exp(−αs)f(Xs)

and we are done.

18 Potentials for continuous-time chains

Exercise 85 Assume X is a continuous-time irreducible chain on E, D ( E, and
T = inf{t ≥ 0 : Xt /∈ D}. Fix a cost function c : D → R+ and a boundary condition
φ : Dc → R+. Introduce the potential

V (x) = Ex
[∫ T

0
c(Xs)ds+ φ(XT )1{T<∞}

]
.

Show that V is the nonnegative minimal solution to{
−QV (x) = c(x),∀x ∈ D
V (x) = φ(x), x /∈ D

,

and that it is the unique bounded solution provided T <∞ a.s. whatever the starting point.
One may first establish that if J denotes the random number of jumps before hitting Dc, we
have ∫ T

0
c(Xs)ds+ φ(XT )1{T<∞} =

J∑
n=1

c(Yn−1)Sn + φ(YJ)1{J<∞},

and use the corresponding result for discrete-time chains.
The suggested formula is obvious. Since the chain is assumed irreducible, qx > 0 for any
x ∈ E.
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Since conditionally given Yn, Sn is independent of FS1+...+Sn and is exponentially
distributed with parameter qYn , we deduce that

V (x) = Ex
[∫ T

0
c(Xs)ds+ φ(XT )1{T<∞}

]
= Ex

[
J∑
n=1

c(Yn)

qYn
+ φ(YJ)1{J<∞}

]
,

Using the discrete time corresponding result it follows that V is the nonnegative minimal
solution (and the unique bounded solution provided TDc <∞ a.s.) to{

V (x) = ΠV (x) + c(x)
qx
, x ∈ D

V (x) = φ(x), x /∈ D
.

Now observe that ΠV (x) =
∑

y 6=x
qxy
qx
V (y) so that ΠV (x) = QV (x)

qx
+ V (x), thus{

V (x) = ΠV (x) + c(x)
qx
, x ∈ D

V (x) = φ(x), x /∈ D
⇔
{
−QV (x) = c(x), x ∈ D
V (x) = φ(x), x /∈ D

,

and the desired result follows.

Exercise 86 Assume X is non explosive, and that the function f : E → R is bounded.
Establish that

G(x) := Ex
[∫ ∞

0
exp(−λt)f(Xt)dt

]
is the unique bounded solution to (λ−Q)G(x) = f(x), x ∈ E. One may introduce
T ∼ exp(λ) independent of X, the chain X̃ on E ∪ {†} defined as X killed at time T , and
use the result of the previous exercise.
Introduce the chain X̃ as suggested, its generator Q̃ is such that for any x ∈ E,

Q̃(x, x) = Q(x, x)− λ, Q̃(x, y) = qxy, x 6= y ∈ E, Q̃(x, †) = λ.

For any φ : Ẽ → R such that φ(†) = 0, we find that for any x ∈ E,

Q̃φ(x) = Qφ(x)− λφ(x),

hence for x ∈ E, (λ−Q)φ(x) = f(x) is equivalent to −Q̃(x) = f(x). Since {†} is an
absorbing state, note further that −Q̃φ(†) = 0 whatever the function φ. In the end as long
as f(†) = 0,

(λ−Q)G(x) = f(x),∀x ∈ E ⇔ −Q̃G(x) = f(x), x ∈ Ẽ.
Moreover, since T is independent of X we have

G(x) = Ex
[∫ ∞

0
f(Xt)1{T>t}dt

]
so that

G(x) = Ex
[∫ T

0
f(X̃t)dt

]
, x ∈ E.

Of course G is bounded since f is. By the previous exercise, we find that G it is the only
bounded solution to −Q̃G(x) = f(x), x ∈ Ẽ, and we are done.
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