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Abstract. We consider a nearest neighbor random walk on the one-dimensional integer
lattice with drift towards the origin determined by an asymptotically vanishing function of
the number of visits to zero. We show the existence of distinct regimes according to the
rate of decay of the drift. In particular, when the rate is sufficiently slow, the position of
the random walk, properly normalized, converges to a symmetric exponential law. In this
regime, in contrast to the classical case, the range of the walk scales differently from its
position.

1. Introduction

We consider a self-interacting random walk X := (Xn)n≥0 on Z whose drift is a function
of the number of times it has already visited the origin. The random variable Xn represents
the position of the walker at time n ∈ Z+. We assume that |Xn+1 −Xn| = 1 for all n ≥ 0,
that is X is a nearest neighbor model. Let η0 be a positive integer and, for n ≥ 1, let

(1) ηn = η0 + #{i ∈ (0, n] : Xi = 0}.

Thus, ηn − η0 describes the number of visits of the walker to the origin by time n. Let
ε := (εn)n≥1 be a sequence taking values in [0, 1). For x ∈ Z and l ∈ N, let P ε

(x,l) denote a
measure on the nearest neighbor random walk paths defined as follows:

P ε
(x,l)(X0 = x, η0 = l) = 1

P ε
(x,l)(Xn+1 = j|Xn = i, ηn = m) =


1
2

if i = 0 and |j| = 1
1
2

(
1− sign(i)εm

)
if i 6= 0 and j − i = 1.

1
2

(
1 + sign(i)εm

)
if i 6= 0 and j − i = −1.

(2)

Here sign(x) is −1, 0, or 1 according to whether x is a negative, zero, or positive respectively.
The corresponding expectation is denoted by Eε

(x,l).
To simplify the notation, we usually denote P ε

(0,1) by P and Eε
(0,1) by E. If εn = 0 for all

n ≥ 1, we denote P by P, E by E, and refer to X as the simple random walk on Z.
We note that, unless ε is a constant sequence, X is not a Markov chain. However, the

pairs (Xn, ηn)n≥0 form a time-homogeneous Markov chain.
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Let dn = −sign(Xn)εηn , and let Fn = σ(X0, X1, . . . , Xn) denote the σ-algebra generated
by the random walk paths up to time n. Then

E
(
Xn+1 −Xn|Fn

)
= dn.(3)

That is dn is the local drift of the random walk at time n. Note that the drift is always
toward the origin.

The aim of this paper is to prove limit theorems for the model described above in the case
when limn→∞ εn = 0. If the convergence is fast enough, the asymptotic behavior of X is
similar to that of the simple random walk. In Theorem 2.1 we show that the functional central
limit theorem holds when nεn → 0 and that P and P are mutually absolutely continuous
if and only if

∑∞
n=1 εn < ∞. We refer to this regime as supercritical. On the other hand,

when εn converges to 0 slowly, the process exhibits a different limiting behavior. This case
is treated in Theorems 2.5–2.7. In particular, we show that when ε is a regularly varying
sequence converging to 0 and satisfying nεn → ∞, the position of the walk Xn, properly
normalized, converges in distribution to a symmetric exponential random variable. In this
case, in contrast to the simple random walk, the range of the walk up to time n scales
differently from Xn. We call this regime subcritical. The critical regime, which essentially
corresponds to sequences satisfying c1 ≤ nεn ≤ c2 for some 0 < c1 ≤ c2 < ∞, is subject of
future work.

The above definition of the random walk was inspired by a branching tree model arising
in [1] in the study of the invasion percolation cluster (denoted IPC) on a regular tree. The
scaling limit of this branching tree is further studied in [2] and is related to the critical regime
of our model.

It is well-known that there is a one-to-one correspondence between discrete random trees
and certain random walk paths (cf. [19]). More precisely, a rooted ordered tree θ is a
graph which is formally described in the following way. Vertices of θ belong to

⋃
n≥0 Nn. By

convention, N0 = ∅ is always a vertex of θ which is called the root. For a vertex v ∈ θ, we
let kv = kv(θ) be the number of children of v and whenever kv = k ∈ N, these children are
denoted v1, . . . , vk. In particular, the ith child of the root is simply i, and if vi ∈ θ then
∀1 ≤ j < i, vj ∈ θ as well. Edges of θ are the pairs of vertices (v, vi), with v, vi ∈ θ for some
i ∈ N. Define #θ to be the total number of vertices in θ, possibly infinite.

Let
(
vi, 0 ≤ i < #θ

)
be the vertices of θ listed in lexicographic order, so that v0 = ∅. The

Lukaciewicz path of θ is the piecewise constant function
(
V θ
t , t ∈ [0,#θ]

)
defined as follows:

For t ∈ [0,#θ], and n := [t],

V θ
t = V θ

n :=
n−1∑
i=0

(
kvi − 1

)
,

It is straightforward to check that the Lukaciewicz path (or in fact, its integer values) uniquely
determines – and hence represents – any finite tree θ. When the tree is infinite, note that
one can only recover from the path the part of the tree which lies left of its first infinite
branch. One may

The interest in such a coding comes from the fact that the Lukaciewicz path of a Galton-
Watson tree simply is a part of a certain random walk path (cf Corollary 1.6 of [19]), which
for instance, makes it easy to discuss scaling limits of sequences of Galton-Watson trees, or
also Galton-Watson trees conditioned to be large (see [19]).

Moreover, this representation helped finding the scaling limit of the IPC on a regular
tree (cf [2]). Indeed it was shown in [1] that IPC on a regular tree consists of a uniformly



A RANDOM WALK ON Z WITH DRIFT DRIVEN BY ITS OCCUPATION TIME AT ZERO 3

distributed single infinite rising branch (backbone) from which emerge subcritical percolation
clusters. Furthermore, the parameters of these subcritical percolation clusters depends on
the height at which they branch off the backbone, and when moving up the backbone, these
parameters tend to being critical. Note that a (sub)critical percolation cluster on a regular
tree is a (sub)critical Galton-Watson tree, and the corresponding Lukaciewicz path is above
the origin (except for its terminal value) and is the path of a random walk drifted downwards.

On the other hand, the absolute value of our random walk is the Lukaciewicz path of
a discrete random binary tree with an infinite rightmost branch, a backbone, from which
emerge off-backbone tree. Every off-backbone tree has a single vertex at its first generation,
from which emerges a subcritical Galton-Watson tree, the branching law in this off-backbone
tree depends on the height at which it branches off the backbone. Again in this case, the
further up one goes, the closer these trees are to being critical.

Thus, the two models are related, however, they exhibit several differences. Most impor-
tantly, our assumption that the random walk is simple corresponds to the fact that every
vertex in the Galton-Watson trees branching above the backbone has either 0 or 2 offsprings.
In order to recover the case of invasion percolation, one would need to consider a walk that
can not only move up or down, but also stay put. Note however that the reason for our
restriction to simple random walks was mainly computational, and one would expect a very
similar behviour for a more general random walk. The other main difference is that in the
case of IPC, the successive drifts are random, whereas in our study we choose the sequence
of drifts to be deterministic. On the other hand, for the IPC, a typical realization of the
sequence of drifts will be constant for long stretches of time, which simplifies the study in
this case (see [2]).

Another related class of random processes are oscillating random walks, namely time-
homogeneous Markov chains in Rd with transition function which depends on the position
of the chain with respect to a fixed hyperplane, cf. [18, 9].

We remark that the model can be interpreted as describing a gambler (Sisyphus) who learns
from his experience and adopts a new strategy whenever a ruin event occurs. This paper
intends to be a first step towards a more general study of random walks in Zd for which the
transition probabilities are updated each time the walk visits a certain set. Another possible
extension would be to consider a random environment version of the random walk X.

The paper is organized as follows. The main results are collected in Section 2. Some
general facts about random walks and regular varying sequence are recalled in Section 3.
The proofs are contained in Section 4 (supercritical case) and Section 5 (subcritical case).

2. Statement of main results

This section presents the main results of this paper. It is divided into two parts. The first
is devoted to the supercritical case while the second one covers the results for the subcritical
regime. Throughout the paper we assume that the drift sequence ε is fixed and consider the
random walk X under the measure P defined above.

2.1. Supercritical Regime. Let C(R+,R) be the space of continuous functions from R+

into R, equipped with the topology of uniform convergence on compact sets. For a sequence
of random variables Z := (Zn)n≥0 and each n ≥ 0, let IZn ∈ C(R+,R) denote the following
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linear interpolation of Z[nt]:

(4) IZn (t) =
1√
n

(
([nt] + 1− nt)Z[nt] + (nt− [nt])Z[nt]+1

)
.

Here and henceforth [x] denotes the integer part of a real number x.
We say that Z satisfies the invariance principle, if the sequence of processes

(
IZn (t)

)
t∈R+

converges weakly in C(R+,R), as n→∞, to the standard Brownian motion. We have:
Theorem 2.1.

(i) Assume that limn→∞ nεn = 0. Then X satisfies the invariance principle.
(ii) The distribution of X under P is either equivalent or orthogonal to the law P of the

simple random walk, according to whether
∑∞

n=1 εn is finite or not.

For the sake of comparison with the subcritical regime, we now state some consequences
of this result. Let

(5) Mn := max
i≤n

Xi, Mn := max
i≤n
|Xi|.

We have:
Corollary 2.2.

(i) Assume that limn→∞ nεn = 0. Then Mn/
√
n (respectively Mn/

√
n) converge in

distribution, as n → ∞, to sup0≤t≤1Bt (respectively to sup0≤t≤1 |Bt|), where Bt is
the standard Brownian motion.

(ii) Assume that
∑∞

n=1 εn <∞. Then lim sup
n→∞

Xn√
2n log log n

= 1, P -a.s.

This corollary extends to our model the limit theorem for the maxima and the law of the
iterated logarithm of the simple random walk.

2.2. Subcritical Regime. First, we recall the definition of regularly varying sequences (see
for example [7] or Section 1.9 of [6]).

Definition 2.3. Let r := (rn)n≥1 be a sequence of positive reals. We say that r is regularly
varying with index ρ ∈ R, if rn = nρ`n, where ` := (`n)n≥1 is such that for any λ > 0,
limn→∞ `[λn]/`n = 1.
The set of regularly varying sequences with index ρ is denoted by RV(ρ). If r ∈ RV(0), we
say that r is slowly varying.

In this section we make the following assumption:

Assumption 2.4 (subcritical regime).
Assume that ε ∈ RV(−α) for some α ∈ [0, 1]. Moreover,

• if α = 0, assume in addition that limn→∞ εn = 0;
• if α = 1, assume in addition that limn→∞ nεn/ log n =∞.

To state our results for this regime, we need to introduce some additional notations. We
say that two sequences of real numbers (xn)n≥1 and (yn)n≥1 are asymptotically equivalent
and write xn ∼ yn if limn→∞ xn/yn = 1. Let

T0 = 0 and Tn+1 = inf{k > Tn : Xk = 0}, n ≥ 0.(6)
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That is, Tn is the time of the n-th return to 0. Let

an = n+
n∑
i=1

1

εi
, cn = min{i ∈ N : ai ≥ n}, and bn =

1

εcn
.(7)

Lemma 3.1 below shows that an = E(Tn). The sequence (cn)n≥1 is an inverse of (an)n≥1,
and, by a renewal theorem of Smith [21], cn ∼ E(ηn). Therefore, bn can be understood
as a typical lifetime of the last excursion from the origin completed before time n. The
sequences (an)n≥1, (bn)n≥1, and (cn)n≥1 are regularly varying, and their asymptotic behavior,
as n → ∞, can be deduced from the standard results collected in Theorem 3.4 (see Corol-
lary 3.5). For the distinguished case εn = n−α with α ∈ (0, 1), we have an ∼ (1 + α)−1n1+α,

cn ∼ (1 + α)
1

1+αn
1

1+α , and hence bn ∼ (1 + α)
α

1+αn
α

1+α .
We have:

Theorem 2.5. Let Assumption 2.4 hold. Then, as n→∞, Xn/bn converges in distribution
to a random variable with density e−2|x|, x ∈ (−∞,∞).

Due to the symmetry of the law of X, the theorem is equivalent to the statement that
|Xn|/bn converges in distribution to a rate-2 exponential random variable. The proof of
Theorem 2.5 is based on a comparison of the distribution of Xn to a stationary distribution
of an oscillating random walk with constant drift εcn toward the origin.

We proceed with a more precise description of X, from which Theorem 2.5 can be in fact
derived in an alternative way (see Remark 5.6 below). Interestingly, the method we use to
establish these more precise results could possibly be adapted to the non nearest neighbor
case, provided one could show in this more general setting that the number of visits to the
origin is well-localized around its typical value. In this more general case, the method evoked
in Remark 5.6 would also remain valid.

Let N(c) denote Ito’s excursion measure associated with the excursions of the Brownian
motion with drift c < 0 above its infimum process, and let ζ denote the lifetime of an
excursion above the infimum (see Section 3.3 below for details). Let

Vn = max{i ≤ n : Xi = 0}, Sn := inf{i ≥ Vn : Xi = 0}
We have:

Theorem 2.6. Let Assumption 2.4 hold. Then:

(i) limn→∞ b2nP (X2n = 0) = 2.
(ii) For t > 0, lim

n→∞
b2

2nP
(
V2n = 2n− 2[tb2

2n]
)

= 2N(−1)(ζ > 2t).

In particular, limn→∞ P
(
(2n− V2n)/b2

2n ≤ x
)

=
∫ 2x

0
N(−1)(ζ > t)dt for all x > 0.

(iii) For n ∈ N, let Zn =
(
Zn(t)

)
t∈R+

be a continuous process for which Zn
(
k · b−2

2n

)
=

|X(V2n+k)∧Sn| · b−1
2n whenever k ∈ Z+, and which is linearly interpolated elsewhere.

Then, as n → ∞, the process Zn converges weakly in C(R+,R) to a non-negative

process with the law

∫ ∞
0

N(−1)( · , ζ > t)dt.

Part (i) states that, similarly to the classical renewal theory (cf. [14, 15]), the probability
to find the random walk at the origin at time 2n is asymptotically reciprocal to the expected
duration of the of the last excursion away from the origin completed before that time. Part
(ii) provides limit results on the law of the last visit time to the origin before a given time. It
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turns out that under Assumption 2.4, b2
2n is of smaller order that n (see Lemma 3.5 below).

In particular, in contrast to the classical arc-sine law (cf. [12, p. 196]), V2n/2n converges in
probability to 1. Finally, part (iii) is a limit theorem for the law of excursion away from 0
straddling time 2n.

The next theorem concerns the asymptotic behavior of the maxima of X. Let

hn :=
1

2
bn log(cn/bn) =

log(εcncn)

2εcn
.(8)

Note that by Assumption 2.4, εcncn → ∞ as n → ∞. Moreover, Corollary 3.5-(v) below
shows that

lim
n→∞

log(εcncn)

log n
=

1− α
1 + α

.

When εn = n−α with α ∈ (0, 1), we have hn ∼ 1
2(1− α)(1 + α)

−1+α
1+α n

α
1+α log n as n→∞.

Recall the random variables Mn defined in (5). We prove in Section 5:

Theorem 2.7. Let Assumption 2.4 hold. Then

lim
n→∞

1

log(εcncn)
log
(
− logP (Mn ≤ xhn)

)
= 1− x, x ∈ (0,∞)\{1}.

In particular,

lim
n→∞

1

log(εcncn)
logP

(
Mn > xhn

)
= 1− x, x > 1.

The above limits remain true when Mn is replaced with Mn.

Corollary 2.8. Let Assumption 2.4 hold. Then

lim sup
n→∞

Xn/hn = lim
n→∞

Mn/hn = lim
n→∞

Mn/hn = 1,

where the limits hold P -a.s. when α < 1 and in probability when α = 1.

We remark that under Assumption 2.4, limn→∞ hn/bn =∞, and hence limn→∞Xn/Mn = 0
in probability. In particular, Theorem 2.5 cannot be extended to a functional CLT for a
piecewise-linear interpolation of Xn/bn in C(R+,R).

3. Preliminaries

The goal of this section is threefold. First, in a series of lemmas we state in Section 3.1
some general facts about the measure P ε in the case when ε is a constant sequence. Second, in
Section 3.2, we recall some useful properties of regularly varying sequences (see Theorem 3.4),
and then apply this theorem (see Corollary 3.5) to draw conclusions regarding an, bn, and
cn defined in (7). Finally, in Section 3.3 we deal with the asymptotic behavior of a sequence
of random walks with a negative drift conditioned to stay positive. Lemma 3.6 is the key to
the proof of the last two parts of Theorem 2.6.
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3.1. Random walks with a negative drift and oscillating random walks. For a real

δ ∈ [0, 1), let (δ) denote the constant sequence δ, δ, . . . To simplify the notations we write P
(δ)
j

for P
(δ)
(j,1), P

(δ) for P
(δ)
(0,1), and let E

(δ)
j and E(δ) denote the respective expectation operators.

We remark that P (0) = P while P (δ) with δ ∈ (0, 1) correspond to so-called oscillating random

walks (cf. [18, 9]). If µ is a probability distribution on Z, we write P
(δ)
µ for the probability

measure
∑

j∈Z µ(j)P
(δ)
j and let E

(δ)
µ denote the corresponding expectation.

Recall Tn from (6) and set

τn = Tn − Tn−1, n ≥ 1,(9)

with the convention that∞−∞ =∞. That is, τn is the duration of the n-th excursion away
from 0. In the following lemma we recall a well-known explicit expression for the moment
generating function of τn (see for instance [14, p. 273] or [12, p. 276]). The moments of τn
can be computed as appropriate derivatives of the generating function.

Lemma 3.1. Let δ ∈ [0, 1). Then

E(δ)
(
sτ1
)

=
1−

√
1− (1− δ2)s2

1− δ
for 0 < s <

1√
1− δ2

.

In particular,

E
(
sτn
)

=
1−

√
1− (1− ε2

n)s2

1− εn for 0 < s < (1− ε2
n)−1/2.

E(τn) = 1 + ε−1
n .

E(τ 2
n) = 1 + ε−1

n + ε−2
n + ε−3

n .
E(τ 3

n) = 1 + ε−1
n + 3ε−4

n + 3ε−5
n .

For our proofs in Sections 4 and 5, we need the following monotonicity result.

Lemma 3.2. Let ε1 := (ε1
n)n≥1 and ε2 := (ε2

n)n≥1 be two sequences such that εjn ∈ (0, 1)
for j = 1, 2 and n ∈ N, and supn≥1 ε

2
n ≤ infn≥1 ε

1
n. Further, let x1, x2 ∈ Z+ be such that

x2 − x1 ∈ 2Z+. Then there exist two processes Y j := (Y j
n )n≥0, j = 1, 2, defined on the same

probability space, such that

(i) For j = 1, 2, Y j has the same distribution as X under P εj

xj
.

(ii) |Y 1
n | ≤ |Y 2

n | for all n ≥ 0.

Proof. Let (Un)n≥1 be an IID sequence of uniform random variables on [0, 1]. For j = 1, 2,

set Y 1
0 = x1, Y

2
0 = x2, η

j
0 = 1, and let

Y j
n+1 = Y j

n + 2I{
Un≥ 1

2

(
1+sign(Y jn )εj

η
j
n

)} − 1 and ηjn+1 = ηjn + I{Y jn+1=0}.

Clearly, (Y j
n )n≥0 has the same distribution as X under P εj

xj
. Moreover, using induction, it is

not hard to check that for all n ≥ 0, |Y 2
n+1| − |Y 2

n | ≥ |Y 1
n+1| − |Y 1

n |, unless Y 1
n = 0. But, since

Y 2
n − Y 1

n is an even integer, |Y 1
n+1| = 1 ≤ |Y 2

n+1| also in the latter case. �

In the next lemma, to avoid dealing with a periodic Markov chain, we focus on the process
(X2n)n≥0 rather than on X = (Xn)n≥0 itself. It is well-known (see [9] for a closely related
general result) that the law of the Markov chain X2n under P (δ) converges to its unique
stationary distribution µδ. The latter is given by

(10) µδ(0) =
2δ

1 + δ
, µδ(2i) =

2δ(1− δ)
(1 + δ)3

(1− δ
1 + δ

)2(|i|−1)

, i ∈ Z \ {0}.
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Let T = inf{n ≥ 0 : Xn = 0}. A standard coupling construction for countable stationary
Markov chains (see for instance [12, p. 315]) implies that

(11) sup
A⊂2Z+

|P (δ)(X2n ∈ A)− µδ(A)| ≤ P (δ)
µδ

(T > 2n).

Estimating the righthand side of (11) we get:

Lemma 3.3. For all δ ∈ (0, 1) and n ≥ 1,

sup
A⊂2Z+

|P (δ)(X2n ∈ A)− µδ(A)| ≤ 2(1 + δ2)−n.

Proof of Lemma 3.3. By Chebyshev’s inequality, for every λ > 0,

(12) Pµδ(T > 2n) ≤ e−2λnE(δ)
µδ

(eλT ).

By Lemma 3.1, for j ∈ Z,

(13) E
(δ)
j (eλT ) =

[
E

(δ)
1 (eλT )

]|j|
=
[1−

√
1− (1− δ2)e2λ

(1− δ)eλ
]|j|
, e2λ(1− δ2) < 1.

Note that the extra term eλ (comparing to the statement of Lemma 3.1) in the denominator
corresponds to the difference between the definition of τ1, the time of the first return to 0,
and T , the time of the first visit to 0.

Choose λ > 0 such that e2λ = 1 + δ2. Clearly, e2λ(1− δ2) = (1− δ4) < 1. Therefore,

Pµδ(T > 2n) ≤
(12)

(1 + δ2)−n
∑
j∈Z

µδ(2j)E
(δ)
2j (eλT )

=
(10),(13)

1

(1 + δ2)n
2δ

1 + δ

[
1 +

2(1− δ)
(1 + δ)2

∞∑
j=1

(1− δ
1 + δ

)2(j−1)(1−
√

1− (1− δ2)e2λ

(1− δ)eλ
)2j]

=
1

(1 + δ2)n
2

1 + δ
≤ 2(1 + δ2)−n,

completing the proof. �

3.2. Regularly varying sequences. We next recall some fundamental properties of regu-
larly varying sequences that are required for our proofs in the subcritical regime.

Theorem 3.4. [6], [7] Let r := (rn)n≥1 ∈ RV(ρ) for some ρ ∈ R.

(i) Suppose that ρ > −1. Then limn→∞
1
nrn

∑n
m=1 rm = 1

1 + ρ.

(ii) Suppose that ρ ≥ 0. Let (jn)n≥1 be a sequence of integers such that limn→∞ jn/n = γ
for some γ ∈ (0, 1]. Then maxjn≤i≤n ri ∼ rn and minjn≤i≤n ri ∼ γρrn as n→∞.

(iii) Suppose that ρ > 0. Let rinv := (rinv
n )n≥1, where rinv

n = min{i ≥ 1 : ri ≥ n}. Then
rinv
n ∈ RV(1/ρ) and rinv

[rn] ∼ r[rinv
n ] ∼ n as n→∞.

(iv) Suppose that ρ = 0. Then limn→∞
log rn
log n

= 0.

Corollary 3.5. Let Assumption 2.4 hold and recall a = (an)n∈N, b = (bn)n∈N, and c = (cn)n∈N
introduced in (7). We have

(i) an ∼ (1 + α)−1nε−1
n as n→∞. In particular, a ∈ RV(1 + α).

(ii) c ∈ RV(1/(1 + α)).
(iii) bn = ε−1

cn
∼ (1 + α)n/cn as n→∞. In particular, b ∈ RV(α/(1 + α)).
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(iv) lim
n→∞

n

b2
n log bn

= lim
n→∞

c2
n

n log bn
=∞.

(v) limn→∞
log(bn/cn)

log n
= 1− α

1 + α.

Part (i) of the corollary follows from Theorem 3.4-(i). Once this is established, part (ii)
follows from Theorem 3.4-(iii). Next, claims (i) and (iii) of Theorem 3.4 imply that

cnε
−1
cn
∼ (1 + α)acn ∼ (1 + α)n, as n→∞,

which proves (iii). To see that (iv) holds true observe that part (iii) along with Assump-
tion 2.4 imply:

nε2
cn

log(ε−1
cn

)
∼ 1

1 + α
·
cnεcn

log(ε−1
cn )
→∞ as n→∞.

Finally, (v) follows from (ii) and (iii) combined with Theorem 3.4-(iv).

3.3. Random walks conditioned to stay positive. The aim of this section is to prove
Lemma 3.6 below. We start by recalling some features of the excursion measure of neg-
atively drifted Brownian motion above its infimum (cf Chapter VI.8 in [20], in particular
Lemma VI.55.1).

Let (Zt)t≥0 be the canonical process on C(R+,R), namely Zt(ω) = ω(t) for ω ∈ C(R+,R),

and, for c ≤ 0, let W(c) be the law on C(R+,R) which makes Zt − ct into the standard
Brownian motion. For t ∈ R+, let Yt = Zt − inf{Zs : s ≤ t}, ζ = inf{t > 0 : Yt = 0},
and define Ỹt = Yt∧ζ . Then Ỹ =

(
Ỹt
)
t≥0

is a time-homogeneous continuous Markov process

”killed at zero” with taboo transition density function

P(c)
t (x, y) :=

W(c)
(
Ỹt ∈ dy, ζ > t

∣∣Ỹ0 = x
)

dy
=

=
1√
2πt

ec(y−x)−c2t/2[e−(y−x)2/2t − e−(y+x)2/2t
]
, x, y > 0, t > 0.

In words, Ỹ is an excursion of the Brownian motion with drift c ≤ 0 above its infimum
process and ζ is its lifetime.

For ω ∈ C(R+,R) let ζ(ω) = inf{t > 0 : ω(t) = 0}, and let

U = {f ∈ C(R+,R) : ω(0) = 0 and ω(t) = 0 for t > ζ(f)}

be the space of excursions from zero. By Ito’s theorem, under W(c), the excursions of the
process Y = (Yt)t≥0 away from zero form a Poisson point process on (0,+∞) × U with
intensity dt×N(c). The finite-dimensional distributions of N(c) can be expressed as follows.
Let

R(c)
t (y) :=

2y√
2πt3

exp
(
−(y − ct)2

2t

)
, y > 0, t > 0.

Then, for 0 < t1 < . . . < tm and x1, . . . , xm > 0,

N(c){f(tk) ∈ dxk : 1 ≤ k ≤ m} = R(c)
t1 (x1)dx1

m∏
k=2

P(c)
tk−1,tk

(xk−1, xk)dxk.(14)
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The law R(c)
t (y)dy is called the entrance law associated with N(c). Note that

N(c)(ζ > t) =

∫ ∞
0

R(c)
t (y)dy.(15)

In particular, N(0)(ζ > t) =
√

2
πt whereas for c < 0, N(c)(ζ > t) = |c| ·N(−1)(ζ > tc2). More

generally, (14) implies that for any constant c < 0,

N(c)
((
|c| · f(t/c2)

)
t∈R+

∈ ·
)

= |c| ·N(−1)
((
f(t)

)
t∈R+

∈ ·
)
.(16)

For m > 0, let C[0,m] := {f : [0,m] → R, f continuous }, equipped with the topology of
uniform convergence. Let πm : C(R+,R) → C[0,m] be the canonical projection defined by

πmω(t) = ω(t) for t ∈ [0,m]. Let N(c)( · |ζ > t) :=
N(c)( · ; ζ > t)

N(c)(ζ > t)
. A non-homogeneous in

time Markov process W+ on C[0, 1] with the law

M(0)(A) := P (W+ ∈ A ) = N(0)(π−1
1 A|ζ > 1), A is a Borel subset of C[0, 1],

is called Brownian meander (see for instance [4, 13] and references therein for further back-
ground). The meander is a weak limit of zero-mean random walks conditioned to stay
positive (see [8, 16] and [10]). Its finite-dimensional distributions were first computed in [3],
and it is not hard to check that these are consistent with our definition of the meander. The
Brownian meander can also be understood as a Brownian motion in C[0, 1] conditioned to
stay positive up to time 1, defined rigorously with the help of an appropriate h-transform.

Analogously, for c < 0, we call a non-homogeneous in time Markov process W
(c)
+ on C[0, 1]

with the law

M(c)(A) := P (W
(c)
+ ∈ A ) = N(c)(π−1

1 A|ζ > 1), A is a Borel subset of C[0, 1],

a drifted Brownian meander with drift c.
It is well-known a sequence of random walks with well-chosen asymptotically vanishing

drifts converges in distribution to drifted Brownian motion (see for instance Theorem II.3.2
in [17]). Part (ii) of the following lemma asserts that such walks, when conditioned to
stay positive up to the scaling time, also converge to a non-degenerate limit, which, not
surprisingly, is the drifted Brownian meander. Part (iii) is then a direct consequence of
this fact. Recall the notation P (δ) was introduced in the first paragraph of the section and
corresponds to a constant sequence δ, δ, .... Define

Λn = {X1 > 0, . . . , Xn > 0}.(17)

Lemma 3.6. Let (jn)n∈N be a sequence of positive reals and (mn)n∈N be sequence of positive
integers such that limn→∞ jn =∞, limn→∞ jn/jn+1 = 1, and limn→∞ εmnjn = γ ∈ (0,∞).

Then,

(i) limn→∞ jnP
(εmn )(Λ[j2n]) = 1

2N(−γ)(ζ > 1).

(ii) For n ∈ N, let Yn =
(
Yn(t)

)
t∈R+

be a continuous process for which Yn
(
j−2
n k
)

= j−1
n Xk

whenever k ∈ Z+, and which is linearly interpolated elsewhere.
Then the process π1Yn under P (εmn )( · |Λ[j2n]) converges weakly in C[0, 1] to a drifted
Brownian meander with drift −γ.

(iii) For n ∈ N, let Ỹn =
(
Ỹn(t)

)
t∈R+

be a continuous process for which Ỹn
(
j−2
n k
)

=

j−1
n Xk∧T1 whenever k ∈ Z+, and which is linearly interpolated elsewhere.
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Then the process Ỹn under P (εmn )( · |Λ[j2n]) converges weakly in C(R+,R) to a process

with law N(−γ)( · |ζ > 1).

Proof. Since P (ε)(Λj) is a non-increasing function of j and jn/jn+1 ∼ 1 as n → ∞, we can
assume without loss of generality that [j2

n] ∈ 2Z+.
The proof of the lemma is based on the fact that, as we already mentioned, the result is

known for a symmetric random walk, and that we can explicitly compare the law of a nearest-
neighbor drifted walk and the distribution P of the simple random walk. Set εmn = δn and
Jn = {y ∈ R : yjn ∈ N}. Counting the number of steps to the right and to the left, we obtain
for any m ∈ N, 0 < t1 < . . . < tm ≤ 1 and y1, . . . , ym ∈ R, y ∈ Jn,

P (δn)
(
Yn(tk) = yk, k = 1, . . . ,m;X[j2n] = 2yjn

)
=

= P
(
Yn(tk) = yk, k = 1, . . . ,m;X[j2n] = 2yjn

)(1− δ2
n)[j2n]/2

1− δn

(1− δn
1 + δn

)yjn
,(18)

where the extra factor (1− δn)−1 is due to the fact that the transition kernels of the random
walk under P (δn) and P coincide at the origin. In particular,

P (δn)(Λ[j2n]) =
∑
y∈Jn

P
(
Λ[j2n], X[j2n] = 2yjn

)(1− δ2
n)[j2n]/2

1− δn

(1− δ2
n

1 + δn

)yjn
.

(i) Using the identity P(Λ[j2n]) = 1
2P(X[j2n] = 0) (see for instance [12, p. 198]), we obtain:

P (δn)(Λ[j2n]) =
jn
2

∫ ∞
0

duP(X[j2n] = 0)P
(
X[j2n] = 2[jnu]

∣∣Λ[j2n]

)(1− δ2
n)[j2n]/2

1− δn

(1− δn
1 + δn

)[jnu]

.

The local limit theorem for the simple random walk (see for instance [12, p. 199]) implies
that

lim
n→∞

jnP(X[j2n] = 0) = 2 lim
n→∞

jnP(Λ[j2n]) =

√
2

π
.(19)

Furthermore (see for instance [16]), the sequence of probability measures (νn) defined on
Borel sets A ⊂ R+ by

νn(A) := jn

∫
A

duP
(
X[j2n] = 2[jnu]

∣∣Λ[j2n]

)
converges weakly to the Rayleigh distribution on R+ with the density ue−

u2

2 du. Using the
dominated convergence theorem, we conclude that

lim
n→∞

jnP
(δn)(Λ[j2n]) =

∫ ∞
0

du
u√
2π

exp
(
−u

2

2
− uγ − γ2

2

)
,

which proves Lemma 3.6-(i) in view of (15).

(ii) First we will prove the convergence of finite-dimensional distributions. It follows from
(18) that for any m ∈ N, positive reals 0 < t1 < · · · < tm ≤ 1, and Borel sets Ak ⊂ R+,
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k = 1, . . . ,m,

P (δn)
(
Yn(tk) ∈ Ak, k = 1, . . . ,m

∣∣Λ[j2n]

)
=(20) ∑

y∈Jn

P
(
Yn(tk) ∈ Ak, k = 1, . . . ,m;X[j2n] = 2yjn

∣∣Λ[j2n]

)
P
(
Λ[j2n]

)(1− δ2
n)[j2n]/2

1− δn

(1− δn
1 + δn

)yjn
P (δn)

(
Λ[j2n]

) .

Therefore, by the central limit theorem for random walks conditioned to stay positive (see
[8, 16]) combined with the first part of the lemma and (19),

lim
n→∞

P (δn)
(
Yn(tk) ∈ Ak, k = 1, . . . ,m

∣∣Λ[j2n]

)
=

√
2

π

1

N−γ(ζ > 1)

∫ ∞
0

du M(0)(Ytk ∈ Ak, k = 1, . . . ,m;Y1 ∈ du) exp
(
− uγ − γ2

2

)
=

1

N(−γ)(ζ > 1)

∫ ∞
0

du N(0)(Ytk ∈ Ak, k = 1, . . . ,m;Y1 ∈ du) exp
(
− uγ − γ2

2

)
= M(−γ)(Ytk ∈ Ak, k = 1, . . . ,m).

Next, tightness of the family of discrete distributions follows from the corresponding result
for the simple random walk available in Section 3 of [16], along with (20). This completes
the proof of Lemma 3.6-(ii).

(iii) We use the second part of the lemma, along with the fact that the process (Yn(t))t≥1

converges weakly in C(R+,R) to a Brownian motion with drift −γ (see for instance [17,
Theorem II.3.2]). The claim then follows immediately from the Markov property (applied
at time t = 1) under N(−γ)( · |ζ > 1) (cf. [20, Section VI.48]). �

4. Supercritical Regime

This section is devoted to the proof of Theorem 2.1 and is correspondingly divided into two
parts. The proof of the invariance principle for Xn given in Section 4.1 uses a decomposition
representing Xn as a sum of a martingale and a drift term. It is then shown that the drift
term is asymptotically small compared to the martingale, and that the martingale satisfies
the invariance principle. The criterion for the equivalence of P and P is proved in Section 4.2
by a reduction to a similar question for the law of the sequence of independent variables τn
defined in (9).

4.1. Invariance principle for Xn. The first part of the following proposition states that
Tn/n

2 converges in distribution, as n → ∞, to the hitting time of level 1 of the standard
Brownian motion, a non-degenerate stable random variable of index 1/2. The second part
is required to evaluate both the variance of the martingale term as well as the magnitude of
the drift in decomposition (25) below.

Proposition 4.1. Assume that limn→∞ nεn = 0. Then

(i) For λ ≥ 0, limn→∞E
(
e−λTn/n

2)
= e−

√
2λ.

(ii) 1
n
∑n

i=1 εiτi converges to zero in probability as n→∞.
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Proof.
(i) It is well-known (see for instance [12, p. 394]) that

lim
n→∞

E
(
e−λTn/n

2)
= lim

n→∞

(
E
(
e−λτ1/n

2))n
= e−

√
2λ, λ ≥ 0.

By Lemma 3.2-(i), E
(
e−λTn/n

2) ≥ E
(
e−λTn/n

2)
. Hence lim infn→∞E

(
e−λTn/n

2) ≥ e−
√

2λ. It

remains to show that lim sup
n→∞

E
(
e−λTn/n

2) ≤ e−
√

2λ.

Let δ ∈ (0, 1). Clearly,

(21) E
(
e−λTn/n

2) ≤ n∏
k=[δn]

E
(
e−λτk/n

2)
.

Thanks to Assumption 2.4, we can take n large enough so that kεk ≤ δ2/2 for all k ≥ [δn].
Then, for k ≥ [δn],

εk ≤
δ2

2k
≤ δ2

2[δn]
<
δ

n
.(22)

Using Lemma 3.2 to estimate the product in the righthand side of (21), we get

(23) E
(
e−λTn/n

2) ≤ (E(δ/n)
(
e−λτ1/n

2

)
)(1−δ)n

.

Next, we observe that, using Lemma 3.1,

E(δ/n)
(
e−λτ1/n

2)
=

1−
√

1− (1− δ2/n2)e−2λ/n2

1− δ/n
≤ 1−

√
1− e−(δ2+2λ)/n2

1− δ/n
= E

(
e−(δ2/2+λ)τ1/n2)

(1− δ/n)−1.(24)

Hence,

lim sup
n→∞

E
(
e−λTn/n

2) ≤
(23), (24)

lim sup
n→∞

(
E
(
e−(δ2/2+λ)τ1/n2))[(1−δ)n]

(1− δ/n)−(1−δ)n

=
(21)

e−(1−δ)
√
δ2+2λeδ(1−δ).

Letting δ → 0 completes the proof of Proposition 4.1-(i).

(ii) Fix δ ∈ (0, 1) and let S1 = 1
n

∑[δn]−1
k=1 εkτk, S2 = 1

n

∑n
k=[δn] εkτk. As before, we assume

that n is large enough, so that (22) holds true for all k ≥ [δn]. In particular, S2 ≤ δTn/n
2.

Next,

P (S1 + S2 ≥ 2
√
δ) ≤ P (S1 ≥

√
δ) + P (S2 ≥

√
δ) ≤ δ−1/2E(S1) + P (Tn/n

2 ≥ δ−1/2).

By Lemma 3.1, E(S1) ≤ 1
n

∑[δn]
k=1(1 + εk) ≤ 2δ. Therefore,

P (S1 + S2 ≥ 2
√
δ) ≤ 2

√
δ + P (Tn/n

2 ≥ δ−1/2).

By part (i), the second term goes to 0 as n→∞. Letting δ go to 0 finishes the proof. �

We are now in position to give the proof of the first part of Theorem 2.1.
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Proof of Theorem 2.1-(i). Recall Fn = σ(X1, . . . , Xn), dn = sign(Xn)εηn , and identity (3).
Let:

(25) Hn = Xn −Dn with Dn :=
n−1∑
k=0

dk.

It follows from (3) that H := (Hn,Fn)n≥0 is a martingale.
Let Sn =

∑ηn
k=1 εkτk. We next prove the following estimate:

(26) lim
n→∞

Sn/
√
n = 0, in probability.

Let δ > 0 and m > 0. Then,

{Sn > δ
√
n} ⊆ {ηn ≥ [

√
mn]} ∪ {

[
√
mn]∑
k=1

εkτk > δ
√
n}.

Hence, by Proposition 4.1-(ii), lim supn→∞ P (Sn ≥ δ
√
n) ≤ lim supn→∞ P (ηn ≥ [

√
mn]).

However, {ηn ≥ [
√
mn]} = {T[

√
mn] ≤ n}. Therefore,

lim sup
n→∞

P (Sn ≥ δ
√
n) ≤ lim sup

k→∞
P (Tk/k

2 ≤ 2/m).

By letting m→∞, and since δ is arbitrary, (26) follows Proposition 4.1-(i).
We next apply the martingale central limit theorem [12, pp. 412] to show that H satisfies

the invariance principle. Let

Vn =
n∑
k=1

E
(
(Hk+1 −Hk)

2
∣∣Fk) =

n∑
k=1

E
(
(Xk+1 −Xk − dk)2

∣∣Fk),
Due to the fact that H has bounded increments, it is enough to verify that limn→∞ Vn/n = 1
in probability. Note that by (3)

Vn =
n∑
k=1

(
1− 2d2

k + d2
k

)
= n−

n∑
k=1

d2
k,

and
∑n

k=1 d
2
k ≤

∑n
k=1 |dk| ≤ Sn. It follows from (26) that limn→∞

∑n
k=1 d

2
k/n = 0 in proba-

bility, and, consequently, the invariance principle holds for H.
In order to complete the proof, by [5, Theorem 2.1, p.11], it suffices to show that for

all m > 0 and any continuous function ϕ : C[0,m] → R, we have limn→∞E
(
ϕ(IXn )

)
=

limn→∞E
(
ϕ(IH,mn )

)
, where IH,mn (t) coincides with IHn (t) on [0,m]. Note that the limit in

the righthand side exists due to the invariance principle for H. Since ϕ is bounded, uniformly
continuous, this will follow once we prove that

Kn := max
t∈[0,m]

∣∣IXn (t)− IH,mn (t)
∣∣ →
n→∞

0, in P -probability.

By its definition in (4), IXn (t) (resp. IH,mn (t)) is a convex combination of X[nt] and X[nt]+1

(resp. H[nt] and H[nt]+1). Since |X[nt] −X[nt]+1| = 1 and |H[nt] −H[nt]+1| ≤ 2, it follows that

Kn ≤ max
t∈[0,m]

|X[nt] −H[nt]|+ 3√
n

≤ max
t∈[0,m]

S[nt] + 3√
n
≤ Snm + 3√

n
→
n→∞

0 in P -probability,

where the limit in the righthand side is due to (26). �
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4.2. Criterion for the equivalence of P and P.

Proof of Theorem 2.1-(ii). Recall Fn = σ(X0, . . . , Xn) and let Gn = FTn , the σ-algebra gen-
erated by the paths of X up to time Tn. Let F = σ(∪n≥0Fn) and G = σ(∪n≥0Gn).

Under both P and P, limn→∞ Tn = ∞ with probability one and hence G = F up to
null-measure sets. Therefore, the measures P and P are equivalent if P |G and P|G, their
restrictions to G, are equivalent.

Let γ := (γ0, γ1, . . . ) be a random walk path starting from the origin. That is, γ0 = 0 and
|γn+1 − γn| = 1 for all n. Let T0(γ) = 0 and, for n ≥ 1,

Tn(γ) = min{i > Tn−1(γ) : Xi = 0} and τn(γ) = Tn(γ)− Tn−1(γ).(27)

Counting the number of the steps to the left and to the right during each excursion of the
random walk from zero, we obtain

P (Xk = γk, ∀k ≤ Tn) =
n∏
k=1

1

2

(1

2
(1 + εk)

)τk(γ)/2(1

2
(1− εk)

)τk(γ)/2−1

= 2−Tn(γ)

n∏
k=1

(1− ε2
k)
τk(γ)/2

1− εk
,(28)

where the difference between the powers in the righthand side of the first line is due to the
fact that from 0, the probability of going either to the right or to the left is 1

2
. On the other

hand, P(Xk = γk, ∀k ≤ Tn) = 2−Tn(γ).
For n ≥ 1, let

Fn(γ) :=
P (Xk = γk, ∀k ≤ n)

P(Xk = γk, ∀k ≤ n)
=

n∏
k=1

(1− ε2
k)
τk(γ)/2

1− εk
,(29)

and set F∞ = lim supn→∞ Fn. Note that Fn ∈ Gn and hence F∞ ∈ G. By [12, Theorem 3.3,
p. 242],

P |G ∼ P|G if and only if F∞ <∞, P |G-almost surely;

P |G ⊥ P|G if and only if F∞ =∞, P |G-almost surely.

Identity (29) with n = 1 shows that distribution of τk under P is absolutely continuous
with respect to its distribution under P, and the corresponding Radon-Nikodym derivative
is (1− εk)−1(1− ε2

k)
τk/2. Since (τk)k≥1 is a sequence of independent random variables under

both measures, Kakutani’s dichotomy theorem (see [12, p. 244]) implies that

F∞ <∞ or =∞, P |G − a.s., according to whether lim
n→∞

E
(√

Fn
)
> 0 or = 0.

We have:

E
(√

Fn
)

=
n∏
k=1

E
((1− ε2

k)
τk/4

√
1− εk

)
=

Lemma 3.1

n∏
k=1

1−
√

1− (1− ε2
k)

1/2

√
1− εk

.

Choose any δ ∈ (0,
√

1/2− 1/2). Since limk→∞ εk = 0, we have for all k large enough,

1− εk
√

1/2 + δ ≤ 1−
√

1− (1− ε2
k)

1/2 ≤ 1− εk
√

1/2,

and

1− (1/2 + δ)εk ≤
√

1− εk ≤ 1− εk/2.
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In particular, limn→∞ E
(√

Fn
)
> 0 if and only if

∑∞
k=1 εk <∞. �

5. Subcritical Regime

The goal of this section is to prove the results presented in Section 2.2. In Section 5.1 we
obtain auxiliary limit theorems and large deviations estimates for ηn, the occupation time
at the origin. We first prove corresponding results for Tn, and then use the correspondence
between (Tn)n≥1 and (ηn)n≥1. Section 5.2 contains the proof of the limit theorem for Xn

stated in Theorem 2.5. In Section 5.3 we prove the more refined result given by Theorem 2.6.
Finally, Theorem 2.7 and Corollary 2.8, describing the asymptotic behavior of the range of
the random walk, are proved in Section 5.4.

5.1. Limit theorems and large deviations estimates for Tn and ηn. Let N(0, σ2)
denote a normal random variable with zero mean and variance σ2. We write Xn ⇒ Y when
a sequence of random variables (Xn)n≥1 converges to random variable Y in distribution. Let

gn :=
√
E(T 2

n)− (E(Tn))2 =
[∑n

i=1
(ε−3
i − ε−1

i )
]1/2

,(30)

where the first equality is the definition of gn while the second one follows from Lemma 3.1.
First, we prove the following limit theorem for the sequence (Tn)n≥1.

Proposition 5.1. Let Assumption 2.4 hold. Then

Tn − an
gn

⇒ N(0, 1), as n→∞.

In particular, limn→∞ Tn/an = 1, where the convergence is in probability.

Next, we derive from this proposition the following limit theorem for (ηn)n≥1.

Proposition 5.2. Let Assumption 2.4 hold. Then

ηn − cn√
n
⇒ N

(
0,

1 + α

1 + 3α

)
.

In particular, limn→∞ ηn/cn = 1, where the convergence is in probability.

Finally, we complement the above limit results by the following large deviation estimates.

Proposition 5.3. Let Assumption 2.4 hold. Then, for x > 0,

lim
n→∞

1

nεn
logP

(∣∣∣Tn
an
− 1
∣∣∣ > x

)
< 0.

Corollary 5.4. Let Assumption 2.4 hold. Then, for x > 0,

lim
n→∞

b2
n

n
logP

(∣∣∣ηn
cn
− 1
∣∣∣ > x

)
< 0.

In both the corollaries above, the existence of the limit is a part of the claim.

Corollary 5.5. Let Assumption 2.4 hold. Then, there exists a sequence (θn)n≥1 such that
θn ∈ (0, 1) for all n, limn→∞ θn = 0 and

lim
n→∞

exp
( n

b2
n log n

)
· P
(∣∣∣ηn
cn
− 1
∣∣∣ > θn

)
= lim

n→∞
b2
nP
(∣∣∣ηn
cn
− 1
∣∣∣ > θn

)
= 0.
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We remark that the estimates stated in Corollary 5.5 are not optimal and, furthermore,
the second is actually implied by the first one. However, the statement in the form given
above is particularly convenient for reference in the sequel.

Corollary 5.4 is deduced from Proposition 5.3 using a routine argument similar to the
derivation of Proposition 5.2 from Proposition 5.1, and thus its proof will be omitted. In
turn, Corollary 5.5 is an immediate consequence of Corollary 5.4 and Corollary 3.5-(iv).
Indeed, these two results combined together imply that

lim
n→∞

exp
( n

b2
n log n

)
· P
(∣∣∣ηn
cn
− 1
∣∣∣ > x

)
= lim

n→∞
b2
nP (|ηn/cn − 1| > x) = 0

for all x > 0. Let n0 = 1, for p ∈ N let np be the smallest integer greater than np−1

such that exp
(

n
b2n logn

)
· P
(∣∣ηn
cn
− 1
∣∣ > 1/p

)
< 1/p for all n ≥ np, and set θn = 1/p for

n = np, . . . , np+1 − 1.

Proof of Proposition 5.1. Let Sn = (Tn − an)/gn. By Lemma 3.1, E(Sn) = 0 and E(S2
n) =.

By Lyapunov’s version of the CLT for the partial sums of independent random variables,
[12, p. 121], Sn ⇒ N(0, 1) if

lim
n→∞

1

g3
n

n∑
m=1

E
(
|τm − 1− E(τm)|3

)
= 0.

By Lemma 3.1, and using the fact that εm ∈ (0, 1),

E
(
|τm − 1− ε−1

m |3
)
≤ 4E

(
(τm − 1)3 + ε−3

m

)
≤ 4(8ε−5

m + ε−3
m ) ≤ 36ε−5

m .

Next, by Theorem 3.4-(i), as n→∞,
∑n

m=1 ε
−5
m ∼ (1 + 5α)−1nε−5

n and

(31) g2
n ∼ (1 + 3α)−1nε−3

n .

Therefore,

1

g3
n

n∑
m=1

ε−5
m ∼

(1 + 5α)−1nε−5
n

(1 + 3α)−3/2n3/2ε
−9/2
n

=
(1 + 3α)3/2

(1 + 5α)

1
√
nεn
→ 0, as n→∞,

where we use Assumption 2.4 to obtain the last limit. This completes the proof of the weak
convergence of (Tn − an)/gn.

The convergence of Tn/an in probability will follow, provided that limn→∞ an/gn = ∞.
Using again Theorem 3.4-(i), and then Assumption 2.4, we obtain, as n→∞,

an
gn
∼ (1 + α)−1nε−1

n

(1 + 3α)−1/2n1/2ε
−3/2
n

∼ (1 + 3α)1/2

1 + α

√
nεn →∞, as n→∞.

The proof of the proposition is completed. �

Proof of Proposition 5.2. First, we observe that the second statement of the proposition
follows from the first one and the fact that limn→∞ cn/

√
n =∞ (cf. Corollary 3.5-(iv)).

We next prove the central limit theorem for ηn. As in Proposition 5.1, let gm denote the

variance of Tm and let T̃m = (Tm−am)/gm. Fix x ∈ R. By Corollary 3.5-(iv), x
√
n+cn ∼ cn
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as n→∞, and hence

P
(ηn − cn√

n
≤ x

)
= P (ηn ≤ cn + x

√
n) = P (T[cn+x

√
n]+1 > n)

= 1− P
(
T̃[cn+x

√
n]+1 ≤

n− a[cn+x
√
n]+1

g[cn+x
√
n]+1

)
.(32)

By (31), as n→∞, g[cn+x
√
n]+1 ∼ (1 + 3α)−1/2(cn + x

√
n)1/2ε

−3/2

[cn+x
√
n]
∼
√

cnε
−3
cn

1+3α
, and hence

a[cn+x
√
n]+1 − n

g[cn+x
√
n]+1

∼
∑[cn+x

√
n]+1

i=cn
ε−1
i√

cnε−3
cn /(1 + 3α)

∼
Theorem 3.4−(ii)

x
√
n · ε−1

cn

√
1 + 3α√

cnε−3
cn

.

The rightmost expression above tends to x
√

(1+3α)
1+α

, as n→∞. Therefore,

lim
m→∞

P
(
T̃m ≤ x

√
1 + 3α

1 + α

)
=

Proposition 5.1

lim
m→∞

1− P
(
T̃m ≤ −x

√
1 + 3α

1 + α

)
=

(32)
lim
n→∞

P
(ηn − cn√

n
≤ x

)
,

completing the proof of Proposition 5.2. �

Proof of Proposition 5.3. Let ρn = mink≤n εk. Theorem 3.4-(ii) implies that ρn ∼ εn as

n→∞. Let λ ∈ (−∞, 1
2
) and define Λ(λ) =

∫ 1

0

(
x−α −

√
x−2α − 2λ

)
dx. We shall prove that

lim
n→∞

1

nεn
logE

(
eλρ

2
nTn
)

= Λ(λ).(33)

Once this result is established, we will deduce the proposition by applying standard Cheby-
shev’s bounds for the tail probabilities of Tn.

To prove (33) we first observe that, by Lemma 3.1,

1

nεn
logE

(
eλρ

2
nTn
)

=
1

nεn

n∑
i=1

log
(

1 +
εi −

√
1− (1− ε2

i )e
2ρ2nλ

1− εi

)
.(34)

Fix δ ∈ (0, 1). We next show that, when n is large enough, the contribution of the first [δn]
summands on the righthand side of (34) is bounded by a continuous function of δ which
vanishes at 0. We have∣∣∣ 1

nεn

[δn]∑
i=1

log
(

1 +
εi −

√
1− (1− ε2

i )e
2ρ2nλ

1− εi

)∣∣∣ ≤ 1

nεn

[δn]∑
i=1

(1 + εi)
∣∣e2ρ2nλ − 1

∣∣
εi +

√
1− (1− ε2

i )e
2ρ2nλ

≤ 2

nεn

[δn]∑
i=1

∣∣e2ρ2nλ − 1
∣∣

εi
≤

2a
[δn]

nεn

∣∣e2ρ2nλ − 1
∣∣.

Since (an)n≥1 ∈ RV(1 + α), Theorem 3.4 implies that, as n→∞, a
[δn]
∼ δ1+αan ∼ δ1+α

1+α
ε−1
n .

Therefore,

2a
[δn]

nεn

∣∣e2ρ2nλ − 1
∣∣ ∼
n→∞

2δ1+αε−1
n

(1 + α)nεn
2ε2

nλ =
4λδ1+α

1 + α
−→ 0
δ→0

.
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Hence,

lim
δ→0

lim sup
n→∞

∣∣∣ 1

nεn

[δn]∑
i=1

log
(

1 +
εi −

√
1− (1− ε2

i )e
2ρ2nλ

1− εi

)∣∣∣ = 0.

Next, using elementary estimates on remainders of Taylor’s series, we obtain

lim
n→∞

1

nεn
logE

(
eλρ

2
nTn
)

= lim
δ→0

lim
n→∞

1

nεn

n∑
i=[δn]

log
(

1 +
εi −

√
1− (1− ε2

i )e
2ρ2nλ

1− εi

)
= lim

δ→0
lim
n→∞

1

nεn

n∑
i=[δn]

(1 + εi)(e
2ρ2nλ − 1)

εi +
√

1− (1− ε2
i )e

2ρ2nλ

= lim
δ→0

lim
n→∞

1

n

n∑
i=[δn]

2λρn

εi +
√
ε2
i − 2ρ2

nλ

= lim
δ→0

lim
n→∞

1

n

n∑
i=[δn]

2λ

εi/ρn +
√

(εi/ρn)2 − 2λ
=

∫ 1

0

2λ

x−α +
√
x−2α − 2λ

dx = Λ(λ).

This completes the proof of (33).
We note that limλ→−∞ Λ(λ) = −∞. In addition,

Λ′(λ) =

∫ 1

0

(
x−2α − 2λ

)−1/2
dx.

This function is strictly increasing and hence Λ is strictly convex. Note also that Λ′(0) = 1
1+α

,
limλ→−∞ Λ′(λ) = 0, and limλ→ 1

2
Λ′(λ) =∞.

For z > 0, let Jz(λ) = Λ(λ) − λz/(1 + α). This function is convex and Jz(0) = 0. Since
J ′z(λ) = Λ′(λ) − z/(1 + α), the minimum of Jz is uniquely attained at some λ∗ ∈ (−∞, 1

2
),

and Jz(λ
∗) < 0 for z 6= 1. In addition, if z > 1, λ∗ > 0 and if z < 1, λ∗ < 0.

By Theorem 3.4-(i), as n→∞,

anρ
2
n ∼

nε−1
n ε2

n

1 + α
=

nεn
1 + α

.

It follows that if λ ∈ (0, 1
2
), then for x > 0, as n→∞,

1

nεn
logP

(
Tn/an ≥ 1 + x) ≤ 1

nεn

[
logE

(
eλρ

2
nTn
)
− λanρ2

n(1 + x)
]
∼ J1+x(λ).

Therefore,

lim sup
n→∞

1

nεn
logP

(
Tn/an ≥ 1 + x) ≤ min

0<λ< 1
2

J1+x(λ) < 0.

If λ < 0, then for x ∈ (0, 1), as n→∞,
1

nεn
logP

(
Tn/an ≤ 1− x) ≤ 1

nεn

[
logE

(
eλρ

2
nTn
)
− λanρ2

n(1− x)
]
∼ J1−x(λ).

Therefore,

lim sup
n→∞

1

nεn
logP

(
Tn/an ≤ 1− x

)
≤ min

λ<0
J1−x(λ) < 0.

Moreover, since limλ→ 1
2

Λ′(λ) = ∞, the log-generating function Λ(λ) is steep in the termi-

nology of [11]. Therefore, by the Gärtner–Ellis theorem (cf. p. 44 in [11], see also Remark (a)
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following the theorem), the above upper limits are in fact the limits. The proof of Proposi-
tion 5.3 is completed. �

5.2. Proof of Theorem 2.5. Since the law of X is symmetric about 0, the theorem is
equivalent to the claim that limn→∞ P (Xn > xbn) = e−2x/2 for all x > 0. Furthermore, since
limn→∞ bn =∞ and bn ∼ bn+1, it suffices to show that

lim
n→∞

P (X2n > xb2n) = e−2x/2, x > 0.

The idea of the proof is the following. In this subcritical regime, we have seen in the beginning
of the section that the number of visits to the origin by time 2n is very-well localized around
its typical value c2n (cf Proposition 5.2, Corollaries 5.4 and 5.5). From properties of regular
varying sequences, this will imply that the drift at time 2n is also very-well localized around
its typical value εc2n (see assertions (35) and (41) below). Then, by Lemma 3.2, we are
able to compare our walk with oscillating walks with a drift close to εc2n (see (36) and (44)
below), for which we know the stationary distribution. In particular, Lemma 3.3 allows us
to show that the distribution of Xn is close to that stationary distribution. Let us now turn
to the precise argument.

Fix x > 0. We begin with an upper bound for P (X2n > xb2n). Recall the definition of (θn)
from Corollary 5.5. For n ≥ 1, let

Γn = {Xn > xbn, ηn ≤ (1 + θn)cn}.
We have

P (X2n > xb2n) ≤ P (Γ2n) + P (η2n > (1 + θ2n)c2n).

We proceed with an estimate of the righthand side. By Theorem 3.4-(ii), as n→∞,
(35) ξn := min

i≤(1+θn)cn
εi ∼ ε(1+θn)cn ∼ εcn .

For n ≥ 1 consider the sequence αn = (αn,k)k≥1 defined as follows: αn,k = εk for k ≤ (1+θn)cn
and αn,k = ξn for k > (1 + θn)cn. Since on event Γn we have ηn ≤ (1 + θn)cn, it follows that
P (Γ2n) = Pα2n (Γ2n) ≤ Pα2n (X2n > xb2n).

Recall the notation P (δ) introduced in the second paragraph of Section 3 (this notation is
distinct from P δ and emphasizes that the sequence (δ) is constant). Since ξn = mink≥1 αn,k,
Lemma 3.2 implies:

Pα2n (X2n > xb2n) ≤ P (ξ2n)(X2n > xb2n) ≤ P (ξ2n)
µ
ξ2n

(X2n > xb2n) = µ
ξ2n

(
(xb2n,∞)

)
.(36)

Therefore

(37) P (X2n > xb2n) ≤ µ
ξ2n

(
(xb2n,∞)

)
+ P (η2n > (1 + θ2n)c2n).

The second term on the righthand side of (37) converges to 0, as n → ∞, due to Proposi-
tion 5.2. Furthermore, (10) and (35) yield that, as n→∞,

µ
ξ2n

(
(xb2n,∞)

)
∼ 2ξ2n

∞∑
j=[xb2n/2]

(1− ξ2n

1 + ξ2n

)2(j−1)

∼ 1

2

(1− ξ2n

1 + ξ2n

)xb2n
−→
ρ→0

1

2
e−2x.(38)

Using (37), we conclude that

lim sup
n→∞

P (X2n > xb2n) ≤ e−2x/2.
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We now turn to a lower bound on P (X2n > xb2n). It follows from Corollary 3.5-(iv) that
there exists a sequence (κn)n≥1 taking values in 2Z+ and satisfying

lim
n→∞

κn/n = 0 and lim
n→∞

κnε
2
cn

log(ε−1
cn

)
=∞.(39)

Note that the second limit in (39) ensures that limn→∞ κn =∞. Let

Υn = {m ∈ N : |m− cn| ≤ θncn}.(40)

By Theorem 3.4-(ii), we have, as n→∞,

(41) βn := max
m∈Υn

εm ∼ εcn .

Since the function z → z2/ log(z−1) is increasing on (0, 1), the second limit in (39) along

with (41) imply that limn→∞
κnβ2

n

log(β−1
n )

= limn→∞
κnβ2

n−κn
log(β−1

n−κn )
=∞. Therefore,

(42) lim
n→∞

(1 + β2
n)−κnβ−sn = lim

n→∞
(1 + β2

n−κn)−κnβ−sn−κn = 0 for all s ∈ R.

We have

P (X2n > xb2n) =
1

2
P (|X2n| > xb2n) ≥ 1

2
P (|X2n| > xb2n, η2n−κ2n

∈ Υ2n−κ2n
)

=
1

2

∑
m∈Υ2n−κ2n

P (|X2n| > xb2n, η2n−κ2n
= m)

=
1

2

∑
m∈Υ2n−κ2n

∑
j∈2Z

E
(
I{η2n−κ2n

=m,X2n−κ2n
=j}P(j,m)(|Xκ2n

| > xb2n)
)
.(43)

For j ∈ 2Z and m ∈ Υ2n−κ2n
, Lemma 3.2 implies that

P(j,m)(|Xκ2n
| > xb2n) ≥ P

(β2n−κ2n
)

j (|Xκ2n
| > xb2n) ≥ P (β2n−κ2n

)(|X|κ2n
> xb2n).(44)

Plugging this inequality into the righthand side of (43), we obtain

(45) P (X2n > xb2n) ≥ P (η2n−κ2n
∈ Υ2n−κ2n

)P (β2n−κ2n
)(Xκ2n

> xb2n).

The first term on the righthand side of (45) converges to 1, as n → ∞, by Corollary 5.5.
Moreover, by Lemma 3.3,

P (β2n−κ2n
)(Xκ2n

> xb2n) ≥ µ
β2n−κ2n

(
(xb2n,∞)

)
− 2(1 + β2

2n−κ2n
)−κ2n .

The second term on the righthand side converges to 0 due to (42). Therefore, (38) and (41)
imply that

lim inf
n→∞

P (X2n > xb2n) ≥ e−2x/2,

which completes the proof of Theorem 2.5. �

5.3. Proof of Theorem 2.6.
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Proof of Theorem 2.6-(i). As in the previous paragraph, this proof once again relies on
Lemma 3.3 and Corollary 5.4. We adopt notation from the proof of Theorem 2.5 above.

It follows from (37) that

P (X2n = 0) ≥ µ
ξ2n

(0)− P (η2n ≥ (1 + θ2n)c2n).

Therefore,

b2nP (X2n = 0) ≥
(10)

2

1 + ξ2n

ξ2n

εc2n
− b2nP (η2n ≥ (1 + θ2n)c2n).

The second term on the righthand side converges to 0 due to Corollary 5.4 while he first
term converges to 2 due to (35). Hence,

lim inf
n→∞

b2nP (X2n = 0) ≥ 2.

The upper bound is obtained in a similar way. Recall Υn was defined in (40). By (45),

P (X2n = 0) ≤ 1− P (η2n−κ2n
∈ Υ2n−κ2n

)P (β2n−κ2n
)(Xκ2n ≥ 2)

≤ 1− (1− P (η2n−κ2n
6∈ Υ2n−κ2n

)P (β2n−κ2n
)(Xκ2n

≥ 2)

= P (β2n−κ2n
)(Xκ2n

= 0) + P (η2n−κ2n
6∈ Υ2n−κ2n

)

≤ µ
β2n−κ2n

(0) + 2(1 + β2
2n−κ2n

)−κ2n + P (η2n−κ2n
6∈ Υ2n−κ2n

),

where in the last step we used Lemma 3.3. Therefore,

b2nP (X2n = 0) ≤
(10)

2
1 + β2n−κ2n

β2n−κ2n

εc2n
+ 2(1 + β2

2n−κ2n
)−κ2nβ−1

2n−κ2n

β2n−κ2n

εc2n

+b2nP (η2n−κ2n
6∈ Υ2n−κ2n

).

The third term on the righthand side converges to 0 due to Corollary 5.4. The second term
on the righthand side converges to 0 by (41) and (42). Finally, the first term on the righthand
side converges to 2 by (41). Hence,

lim sup
n→∞

b2nP (X2n = 0) ≤ 2.

This completes the proof of the first part of Theorem 2.6. �

Proof of Theorem 2.6-(ii). Recall Υn from (40) and Λn from (17). By Corollary 5.5, and
using the Markov property, we obtain for t > 0,

lim inf
n→∞

b2
2nP (V2n = 2n− 2[tb2

2n])

= lim inf
n→∞

b2
2n

∑
m∈Υ

2n−2[tb22n]

P (V2n = 2n− 2[tb2
2n], η2n−2[tb22n] = m)

= lim inf
n→∞

b2
2n

∑
m∈Υ

2n−2[tb22n]

P (X2n−2[tb22n] = 0, η2n−2[tb22n] = m) · 2P (εm)(Λ2[tb22n]),(46)

The factor 2 in the last line comes from the fact that we also want count excursions to the
negative half-line and a symmetry argument.
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Recall (41). By Lemma 3.2,

lim inf
n→∞

b2
2nP (V2n = 2n− 2[tb2

2n])

≥ 2 lim inf
n→∞

b2
2nP

(
X2n−2[tb22n] = 0, η2n−2[tb22n] ∈ Υ2n−2[tb22n]

)
P

(β
2n−2[tb22n]

)
(Λ2[tb22n]).

Using again Corollary 5.5, and taking in account that limn→∞ b2n/b2n−2[tb22n] = 1, we get

lim inf
n→∞

b2
2nP (V2n = 2n− 2[tb2

2n]) ≥ 2 lim inf
n→∞

b2
2nP (X2n−2[tb22n] = 0)P

(β
2n−2[tb22n]

)
(Λ2[tb22n]).

Using Lemma 3.6-(i) and Theorem 2.6-(i), we conclude that

lim inf
n→∞

b2
2nP (V2n = 2n− 2[tb2

2n]) ≥ 2 · 1√
2t

∫ ∞
0

du
2u√
2π

exp
(
− u2

2
− u
√

2t− t
)

=
√

2N(−
√

2)(ζ > t).

A very similar argument shows that

lim sup
n→∞

b2
2nP (V2n = 2n− 2[tb2

2n]) ≤
√

2N(−
√

2)(ζ > t),

from which Theorem 2.6-(ii) follows in view of (16).

Proof of Theorem 2.6-(iii). Fix a bounded continuous function F : C(R+,R) → R, a
constant t > 0. Let Zn be the process defined in the statement of the theorem and let(
Z̃n(t)

)
t∈R+

be a continuous process for which Z̃n
(
k/b2

2n

)
= |Xk∧Sn|/b2n whenever k ∈ Z+,

and which is linearly interpolated elsewhere.
For n large enough, so that the quantities below are well defined, the Markov property

implies that

E
(
F (Zn)|V2n = 2n− 2[tb2

2n], η2n = m
)

= E(εm)
(
F (Z̃n)

∣∣Λ2[tb22n]

)
.

Let

Hn(t) := b2
2n

∑
m∈Υ2n

E(εm)
(
F (Z̃n)

∣∣Λ2[tb22n]

)
P
(
V2n = 2n− 2[tb2

2n], η2n = m
)
.(47)

Since F is bounded, Corollary 5.5 implies that

lim
n→∞

∣∣b2
2nE

(
F (Zn);V2n = 2n− 2[tb2

2n]
)
−Hn(t)

∣∣ = 0.(48)

Recall Υn was defined in (40). For m ∈ N, let mn ∈ Υ2n and mn ∈ Υ2n be such that

E(εmn )
(
F (Z̃n)

∣∣Λ2[tb22n]

)
= min

m∈Υ2m

E(εm)
(
F (Z̃n)

∣∣Λ2[tb22n]

)
and

E(εmn )
(
F (Z̃n)

∣∣Λ2[tb22n]

)
= max

m∈Υ2m

E(εm)
(
F (Z̃n)

∣∣Λ2[tb22n]

)
.

Since limn→∞ εmn b2n = limn→∞ εmn b2n = 1, Lemma 3.6 implies that there exists

lim
n→∞

E(εmn )
(
F (Z̃n)

∣∣Λ2[tb22n]

)
= lim

n→∞
E(εmn )

(
F (Z̃n)

∣∣Λ2[tb22n]

)
= E

(
F (Y )

)
(49)

where Y = (Y (s))s∈R+ is a non-negative process in C(R+,R) such that 1√
2t

(
Y (2ts)

)
s∈R+

is distributed according to the law N(−
√

2t)( · |ζ > 1), and the underlying probability space
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is enlarged, if needed, to include this process. The scaling property (16) implies that Y is
distributed according to the law N(−1)( · |ζ > 2t).

In virtue of Theorem 2.6-(ii) and Corollary 5.5, the claim of Theorem 2.6-(iii) follows from
the above convergence and (47). �

Remark 5.6. Theorem 2.6-(ii) along with (49) yield

lim
n→∞

P (|X2n| > xb2n) =

∫ ∞
0

dt N(−1)(Xt > x, ζ > t) =

∫ ∞
x

dy

∫ ∞
0

dt
2y√
2πt3

exp
(
−(y − ct)2

2t

)
.

It is not hard to check that the right-hand side above is exp(−2x) in agreement with Theo-
rem 2.5.

5.4. Proof of Theorem 2.7 and Corollary 2.8.

Proof of Theorem 2.7. For i ≥ 1 let Si = maxTi−1≤k<Ti |Xk|. For x > 0 let xn = xhn, where
hnis defined in the statement of the theorem. Recall (θn)n≥1 from Corollary 5.5 and Υn from
(40).

Fix any x ∈ (0,∞)\{1}, λ ∈ (0, 1), and assume that n ∈ N below is large enough, so that
1− θn > λ. Then, on one hand,

P
(
Mn ≤ xn

)
= P

(
Mn ≤ xn, ηn < cn(1− θn)

)
+ P

(
Mn ≤ xn, ηn ≥ cn(1− θn)

)
≤ P (ηn 6∈ Υn) +

[cn(1−θn)]∏
i=[λcn]

P
(
Si ≤ xn

)
,(50)

and on the other hand,

P
(
Mn ≤ xn

)
≥ P

(
Mn ≤ xn, ηn ≤ cn(1 + θn)

)
≥ −P (ηn 6∈ Υn) +

[cn(1+θn)]∏
i=1

P
(
Si ≤ xn

)
.(51)

Observe now that

lim
n→∞

cnεcn
nε2

cn

=
Theorem 3.4−(iii)

lim
n→∞

cn
acnεcn

=
Theorem 3.4−(i)

(1 + α) <∞,

and hence, by Corollary 5.5, for all z > 0,

lim
n→∞

P (ηn 6∈ Υn)

e−(cnεcn )z
= 0.(52)

Next, by the well-known formula for the ruin probability (see for instance [12, p. 274]),

(53) P (Si ≤ xn) = 1− ρi
(1 + ρi)xn − 1

,

where ρi = 2εi
1− εi . For n ∈ N let

(54) χn := min
1≤i≤(1+θn)cn

ρi ∼ 2εcn and βn,λ := max
λcn≤i≤(1+θn)cn

ρi ∼ 2λ−αεcn ,
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where we use Theorem 3.4-(iii) to state the equivalence relations. Since the righthand side
in (53) is an increasing function of ρi, we obtain:

log

[(1+θn)cn]∏
i=1

P (Si ≤ xn) ≥ [(1 + θn)cn] log
(

1− χn
(1+χn)xn−1

)
)
∼

n→∞
− cnχn

(1 + χn)xn
.

We next estimate the rightmost expression above. Using (54) and the definition of hn given
in the statement of Theorem 2.7, we have, as n→∞,

1

log(εcncn)
· log

cnχn
(1 + χn)xn

∼ 1−
2xεcnhn

log(εcncn)
∼ 1− x,

Similarly, as n→∞,

log

[(1−θn)cn]∏
i=[λcn]

P (Si ≤ xn) ≤ [(1− θn − λ)cn] log

(
1− βn,λ

(1 + βn,λ)
xn − 1

)
∼ −(1− λ)cnβn,λ

(1 + βn,λ)
xn ,

and

1

log(εcncn)
· log

(1− λ)cnβn,λ
(1 + βn,λ)

xn
∼ 1−

2xλ−αεcnhn
log(εcncn)

∼ 1− xλ−α,

Since λ ∈ (0, 1) is arbitrary, we conclude from (50), (51), and (52) that

lim
n→∞

1

log(cnεcn)
log
(
− logP (Mn ≤ xn)

)
= 1− x.

Note that if x > 1, this is equivalent to limn→∞
1

log(cnεcn )
log
(
P (Mn > xn)

)
= 1− x.

To complete the proof of Theorem 2.7, observe that

P
(

max
Ti−1≤k<Ti

Xk ≤ xn
)

=
1

2
+

1

2
P
(
Si ≤ xn

)
= 1− 1

2

ρi
(1 + ρi)

xn − 1
.

Therefore, replacing Mn with Mn and Si with maxTi−1≤k<Ti Xk in (50) and (51), the proof
given above for Mn goes through verbatim for Mn. �

Proof of Corollary 2.8. Theorem 2.7 implies limn→∞Mn/hn = 1 in probability. Further-
more, by Corollary 3.5-(iii), εcncn ∈ RV((1− α)/(1 + α)). Therefore, if α < 1, Theorem 2.7
implies that for any x > 0 there exists a constant z = z(x) > 0 such that

P
(
|Mn − hn| > xhn

)
≤ n−z

for all n sufficiently large.
Once this point is reached, the rest of the proof is standard (see for instance [12, Sec-

tion 1.7]). Fix γ > 1 and let mn = [γn]. Using the Borel-Cantelli lemma, we obtain that

P
(
|Mmn − hmn| > xhmn i.o.

)
= 0, x > 0.

Therefore limn→∞Mmn/hmn = 1, a.s. Moreover, if mn ≤ k < mn+1,

Mmn

hmn

hmn
hk
≤ Mk

hk
≤
Mmn+1

hmn+1

hmn+1

hk
.

Since limn→∞mm+1/mm = γ and (hn)n≥1 ∈ RV(α/(1 + α)), Theorem 3.4-(ii) implies that

γ−
α

1+α ≤ lim inf
k→∞

Mk

hk
≤ lim sup

k→∞

Mk

hk
≤ γ

α
1+α , P − a.s.
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Since γ > 1 is arbitrary, it follows that limk→∞Mk/hk = 1, P -a.s. Furthermore, if (kn)n≥1 is
a random sequence such that Xkn = Mkn , we have:

lim sup
n→∞

Xn

hn
≥ lim sup

n→∞

Xkn

hkn
= lim

n→∞

Mkn

hkn
= 1,

where the limits hold P -a.s. when α < 1 and in probability when α = 1. Since Xn ≤ Mn,
this finishes the proof of the corollary. �
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