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RESEARCH STATEMENT

My research interests are in probability, and more precisely, they include superprocesses,
interacting particle systems, random trees and percolation. In my PhD work, I established
limit theorems for super-Brownian motion and for the voter model. More recently, in
a joint work with Omer Angel and Jesse Goodman, we have studied the scaling limit
of invasion percolation on a regular tree. Also, in collaboration with Iddo Ben-Ari and
Alexander Roitershtein, we studied a one-dimensional random walk, whose drift is function
of the number of visits at the origin. After introducing these objects (Section 1), I will
describe the results I obtained (Section 2) and future research plans (Section 3).

1. Introduction

Both particle systems and percolation have been studied extensively in probability theory
since the late fifties. They were first introduced to describe models in statistical mechan-
ics. Since then, these objects have been as well thought of as being models for epidemics
(oriented percolation and the contact process), behavioral systems, models for competing
species (the voter model), neural networks, genetic evolution. Although part of the moti-
vation came from physics or biology, mathematicians have studied these models for their
own sake.

1.1. Interacting particle systems. A particle system typically consists of a finite or
infinite set of particles in which each particle evolves in a finite or countable state space E.
Without interaction, the particles would evolve as independent continuous time Markov
chains with state space E. The “interaction” usually refers to the fact that the motion of
the particle in E depends on the state of neighboring particles.

A first example is the critical branching particle system, which can be seen as a model
for an evolving population, where one keeps track not only of the genealogy of individuals
but also of their location in space. It is described in the following way. Particles (or
individuals) move independently in space according to a given Markov process W , and, at
rate 1 independent exponential times die and give birth to a random number of offspring
according to a given distribution with mean 1 and positive finite variance. In the case
when W is d-dimensional random walk, this system is called branching random walk and
it was proven by Watanabe that it possesses a scaling limit, later called “super-Brownian
motion” by Dynkin.

The voter model is a second example of interacting particle system. It was initially
introduced as a model for two competing species∗ denoted 0 and 1. At any time t ≥ 0,
each site x ∈ Z

d is occupied by an individual which belongs to one of the two species.
Such an individual has a rate 1 exponentially distributed lifetime. When it dies, it is
immediately replaced by a new individual, whose species is chosen among those of its
neighbors, according to the jump kernel p on Z

d ×Z
d. The jump kernel p is fixed, and we

assume it is irreducible, centered, symmetric, translation invariant, isotropic, and that it

∗it is also possible to interpret 0 and 1 as two opinions hold by voters placed at each vertex of
the lattice, which is the reason for the name given to this model
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has exponential moments†. Lifetimes and neighbor choices are assumed independent. The
state of this model at time t is described by the set of positions of individuals belonging
to specie 1, denoted ξt ⊂ Z

d, or by the measure
P

x∈ξt
δx.

Recently, Cox, Durrett and Perkins have etablished that in dimension d ≥ 2, a conve-
niently rescaled version of the voter model converges towards super-Brownian motion. We
use this convergence to estimate hitting probabilities of a far point for the voter model in
d ≥ 2 (see 2.2).

It should be emphasized that the study of the voter model is made easier by the fact
that its dual is a system of coalescing random walks.

The Lotka-Volterra model can be described as a modified version of the voter model.
The replacement mechanism remains identical, but here, lifetimes of the individuals de-
pend on local densities f0, f1 of individuals of type 0 and 1. More precisely, for given
parameters α0 > 0, α1 > 0, an individual of type 1 at x dies at rate f1(x, ξ) + α1f0(x, ξ),
and similarly, an individual of type 0 at x dies at rate f0(y, ξ) + α0f1(x, ξ). The case
(α0, α1) = (1, 1) exactly corresponds to the voter model. We further notice that for
αi < 1, an individual of the species i survives longer when surrounded by individuals of
type 1− i. On the contrary, for αi > 1, species i fares better in the presence of individuals
of its own type. This model is much harder to study than the voter model. However,
Cox, Durrett and Perkins have recently proven that in d ≥ 2, a rescaled version (where
in particular, one lets a sequence of parameters (αN

0 , α
N
1 ) go to (1, 1) at the right speed)

of Lotka-Volterra models converges to a super-Brownian motion with drift. This result
allowed Cox and Perkins to study Lotaka-Volterra model, close to (1, 1), and in dimension
d ≥ 3. The case d = 2 is more delicate (see section 3).

1.2. Invasion percolation. Bond percolation models a fluid flow in a random medium.
We consider an infinite graph G, whose edges e, e ∈ G are assigned i.i.d uniform random
variables Xe on (0, 1). For a given parameter p ∈ [0, 1], the edge (or bond) e is said to
be occupied (open) if Xe ≥ p, while it is said to be vacant (closed) when Xe < p. It
is well-known that the existence of an infinite cluster of closed bonds undergoes a phase
transition, as there is a critical value pc ∈ [0, 1] such that for p < pc there is no infinite
cluster with probability 1, while for p > pc there exists an infinite cluster with probability
1.

Invasion percolation is a related stochastic growth model, which is a nice example of
self-criticality. An infinite subgraph of G is grown inductively as follows. Define I0 to be
the vertex o. For N ≥ N0, given IN , let IN+1 be obtained by adjoining to IN the edge
in its boundary with smallest weight Xe. The invasion percolation cluster is the random
infinite subgraph

S

N≥N0
IN ⊂ G.

Invasion percolation and critical percolation are closely related. Suppose indeed that
A is a critical percolation cluster in G. If the edge IN+1 \ IN gets into A, then one will
invade every vertex in A before being able to leave it. When building the IPC, one thus
explores successively different critical percolation clusters, and one can expect that larger
and larger clusters are invaded. This intuition was confirmed by Chayes, Chayes and
Newmann who proved that for any ε > 0 the number of edges in the IPC with weight
greater than pc + ε is almost surely finite. Therefore, it is natural to compare IPC to IIC
(incipient infinite cluster, defined by Kesten). In this direction, Jarai established that in
Z

2, IIC and IPC measures were equivalent far from the root. One could be tempted to
believe then that scaling limits of the two objects, if they exist, would be the same.

Recent work by Angel, Goodman, den Hollander and Slade have shown otherwise.
They obtain a structural representation of the IPC on a regular tree, which in particular
allows one to understand that IPC and IIC are ”locally” equivalent far from the origin,
but globally different. One can conjecture that such a phenomenon also takes place in Z

2.

†for example, one can think of the nearest-neighbor jump kernel
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We use this structural representation to find the scaling limit of IPC on a regular tree (see
paragraph 2.3). We also describe the distinct limit of the IIC on this regular tree. Finally,
the random walk model introduced in 2.4 is partially inspired by this problem.

We should note here that a particular case of percolation is linked to super-Brownian
motion. Oriented percolation corresponds to the case when the oriented edges of the
graph of Z

d × N are those {(i, n), (j, n + 1)}, for i and j neighbors in Z
d and n ∈ N.

Van der Hofstadt and Slade proved recently that scaling limit of oriented percolation can
be expressed in terms of the canonical measure of super-Brownian motion, for d > 4.
Furthermore, van der Hofstadt, den Hollander and Slade have established that scaling
limit of the IIC of oriented percolation can be expressed in terms of excursion measure of
super-Brownian motion conditioned to survive forever, for d > 4.

1.3. Super-Brownian motion, random trees. In fact, super-Brownian motion has
recently appeared at the limit of a wider range of interacting particle systems, including
for instance lattice trees and contact process. It seems that super-Brownian motion can
be thought of, in a similar way to Brownian motion, as a universal object, which provides
information on a variety of discrete models.

Numerous path properties of super-Brownian motion (such as hitting probabilities,
Hausdorff measure properties of the support and of the range), as well as its links with a
class of partial differential equations were established in the eighties, by Dawson, Dynkin,
Perkins and others. Part of my PhD thesis has consisted in establishing new asymptotic
results for the occupation measure and additive functionals of super-Brownian motion (see
paragraph 2.1)

Moreover, this precise knowledge of the path properties of super-Brownian motion
proves extremely useful for establishing asymptotic properties of the discrete models in-
troduced in 1.1 (see also paragraphs 2.1, 2.2 and 3).
We should note that a number of the properties of super-Brownian motion were in fact
studied in the larger class of superprocesses, for which the spatial displacement is a general
Markov process, and the branching mechanism is not anymore necessarily quadratic.

The Brownian snake approach to super-Brownian motion (and in particular its canoni-
cal measure, or ”excursion measure”), due to Le Gall, allows to clearly separate the spatial
displacement from the quadratic branching mechanism. It also allows a very simple de-
scription of the integrated super-Brownian excursion appearing in the limit of unoriented
percolation. It further extends to the description of a general superprocess.

This approach was inspired by the work of Aldous, who gave sense to the scaling limit
of rescaled Galton-Watson trees conditioned to survive. This scaling limit is a continuum
tree which can be expressed in terms of a normalized Brownian excursion. Recent work of
Duquesne and Le Gall allowed to extend these results to the case of a more general class
of branching mechanisms.

We make use of the theory of Duquesne and Le Gall in our study of the scaling limit
of the IPC introduced in 1.2 (see paragraph 2.3).

2. Description of the results

2.1. Asymptotic results for the occupation measure and additive functionals

of super-Brownian motion.

2.1.1. Local behavior of local times of super-Brownian motion [1]. Let X be a super-
Brownian motion under the probability measure PX0

. For a function f : R
d → R, the

notation 〈Xt, f〉 is shorthand for
R

Rd f(x)Xt(dx). For d ≤ 3, there exists a random contin-

uous function (t, x) → Lx
t from (0,∞)×R

d into R+ such that for any bounded continuous
function Ψ on R

d,

(1)

Z t

0

< Xs,Ψ > ds =

Z

Rd

Ψ(x)Lx
t dx.
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Lx
t is called the local time of X at point x ∈ R

d and time t > 0. Local times of superpro-
cesses have been studied by many authors (such as Sugitani, Adler and Lewin, Krone).
In [1], I obtained precise asymptotics for the local times of super-Brownian motion. For
simplicity, I will describe here a special case of the main theorem.

Let x0 ∈ R
d \ {0} and consider the process Xdefined under the measure Pδx0

. Set

ψ(c) =
√
c if d = 3, ψ(c) = c/ ln(c) if d = 2. Then (ψ(c)(L

x/c
t − L0

t ))t≥0 converges, as

c→ ∞, to (β
(x)

a(x)L0
t

)t≥0 where β is a one-dimensional Brownian motion independent of X

(and a(x) an explicit constant depending only on x).
In fact, the result is more general, it is valid for any initial measure whose closed

support does not contain the origin, and the statement involves finitely many values of x
(say x1, ...xk) and the precise correlations between βxi and βxj for 1 ≤ i < j ≤ k.

Let K be a compact set of R
d. As can be guessed from formula (1), this result allows

to obtain limit theorems for the occupation measure of a compact set K/c for a super-
Brownian motion started at δx0

. More precisely, let φ and ξ denoteK-supported integrable
functions such that

R

K
φ(x)dx 6= 0,

R

K
ξ(x)dx = 0. Set φc, ξc to be the functions defined

by the relations φc(x) = φ(cx), ξc(x) = ξ(cx). Then for a super-Brownian motion X
started from µ, and t > 0,

(2)

„

cd
Z t

0

< Xs, φc > ds, cdψ(c)

Z t

0

< Xs, ξc > ds

«

(law)−→
c→∞

„

L0
t

Z

K

φ(x)dx,Ut

«

,

where, conditionally on L0
t , Ut is Gaussian with variance aξL

0
t , and aξ is a constant

depending only on ξ.
In d = 3, after rescaling, this allows to recover and extend an analytic result of Lee, who

obtained a limit theorem for the occupation measure of K for a super-Brownian motion
started at δcx0

, and conditioned to hit K.

2.1.2. Limit theorems for the occupation measure of super-Brownian motion, [2]. This
joint work with J-F. Le Gall was motivated by the following simple question. Consider the
population of a branching random walk system (with branching coefficient γ), introduced
in 1.1. Suppose that initially, this population reduced to a single individual located at a
point x far from the origin, and condition on the event that an individual will eventually
visit the origin. Then, what is the typical number of individuals who visit the origin?
We address a continuous version of this problem, and consider a d-dimensional super-
Brownian motion X with branching rate γ, starting at a distant site x. The order of the
probability for X to hit the unit ball B1 is known from results of Dawson, Iscoe and Perkins
(89). For a super-Brownian motion conditioned to hit B1, we study the asymptotics of the
distribution of mass over B1. More precisely, if Z denotes the total occupation measure
of super-Brownian motion, and ϕ is a nonnegative measurable function on R

d, we are
looking at the asymptotic behavior of the variable fd(x)〈Z, ϕ〉 under Pδx(· | Z(B1) > 0),
as |x| → ∞, and where fd is a convenient renormalization.

In the case d ≥ 5, we prove that for fd = 1, the law of this variable converges to
a probability distribution whose moments can be expressed, thanks to known recursive
formulas for the moments of Z under the excursion measure Nx of super-Brownian motion.
Furthermore, in the case d ≤ 3, fd = |x|d−4 and the convergence directly follows from the
existence of a continuous local time, and in fact, the limit (2) discussed in the previous
paragraph provides a more precise result.

The most interesting part concerns the critical dimension d = 4, in which case we
establish that the law of (ln(|x|)−1〈Z, ϕ〉 under Pδx(· | Z(B1) > 0) converges as |x| → ∞
to an exponential distribution with mean γ(4π2)−1

R

ϕ(y)dy.
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3. Hitting probability of a distant point for the voter model [3]

Consider the voter model introduced in 1.1, and suppose that initially there is only one
individual of type 1, located at the origin of Z

d. We denote by (ξ0t , t ≥ 0) the process, and
P the probability measure under which it is defined. Recall that ξ0

t is the set of points
x ∈ Z

d such that the individual at x and at time t belongs to the species 1. We also
recall that the transition kernel p : Z

d × Z
d → [0, 1] is symmetric, translation invariant,

centered, isotropic and with exponential moments. The isotropy assumption means there
exists σ ∈ (0,∞) such that

∀i, j ∈ {1, ..d},
X

y∈Zd

yiyjp(0, y) = σ2δij .

Let x ∈ R
d\{0}, c ∈ R

∗
+, and let [x]c be the point in Z

d/c closest to x with some convention
when there is more than one such point. In [3], the main goal of my work is to obtain
asymptotics on P (∃t ≥ 0 : c[x]c ∈ ξ0t ). Let us define

φd(c) =

8

>

>

>

<

>

>

>

:

c2

ln(c)
if d = 2,

c2 if d = 3,

c2 ln(c) if d = 4,

cd−2 if d ≥ 5.

let β2 = 2π, β3 be the probability that a rate 1 random walk in Z
3 with jump kernel p

started at the origin never returns to the origin. Then, if d = 2 or d = 3,

lim
c→∞

φd(c)P (∃t ≥ 0 : c[x]c ∈ ξ0t ) =
2σ2

βd

„

2 − d

2

«

|x|−2.(3)

If d ≥ 5, there exist positive constants ad, bd depending on x such that

ad ≤ lim inf
c→∞

φd(c)P (∃t ≥ 0 : c[x]c ∈ ξ0t ) ≤ lim sup
c→∞

φd(c)P (∃t ≥ 0 : c[x]c ∈ ξ0t ) ≤ bd.

In dimension 4, I obtain less precise results. For some positive a4,

lim inf
c→∞

φ4(c)P (∃t ≥ 0 : c[x]c ∈ ξ0t ) ≥ a4.

However, the existence of a positive b4 such that a statement similar to the ones in di-
mension d ≥ 5 holds is only conjectured. Nevertheless, the same proof as in d = 2 or 3
leads to

lim sup
c→∞

c2P (∃t ≥ 0 : c[x]c ∈ ξ0t ) = 0.

The proof of this result in dimensions 2 and 3 is particularly interesting because it uses
the corresponding results for occupation measure of super-Brownian motion and the fact,
proved earlier by Bramson, Cox and Le Gall, that the scaling limit of the voter model
started with a single one and conditioned to survive is super-Brownian motion under its
excursion measure N0, with branching coefficient 2βd and diffusion constant σ2.

Moreover, the proof of (3) requires interesting intermediate results. One of these ex-
presses that the probability for the voter model under P ∗

α := P (.|ξα 6= ∅) to escape B(0, A)
decays exponentially with A. One also shows that under P ∗

α , the range of the voter model
does not contain any ”isolated” point, with probability arbitrarily close to 1 when α is
taken large enough.

3.1. Scaling limit of the invasion percolation cluster on a regular tree, in col-

laboration with Omer Angel and Jesse Goodman [5]. For σ ∈ Z
∗
+\{1}, we consider

a regular tree Tσ (in which any vertex has degree σ + 1, except for the root o which has
degree σ). We let (IPC) denote the invasion percolation cluster on Tσ as defined in 1.2,
and (IIC) the incipient infinite cluster on Tσ.
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The structural representation of the (IPC) due to Angel, Goodman, den Hollander and
Slade (2006) is the following. The (IPC) is a discrete tree which possesses a single infinite
rising backbone, uniformly distributed among all rising paths from the root to infinity.
From this backbone, denoted BB, emerge, at every height and in every direction away from
it, subcritical percolation clusters. The values of the parameters of subcritical percolation
clusters are function of the height at which they emerge (more precisely they depend on
the maximal weight of edges of the backbone above this height). When climbing up the

backbone, these values (Ŵk, k ≥ 0) converge to the parameter of critical percolation 1/σ.
Moreover, for any ε > 0,

(k(1 − σŴ[kt]), t ≥ ε)
(law)−→
k→∞

(L(t), t ≥ ε).(4)

The process L above is determined by its graph, which is the lower envelope of a Poisson
point process on (0,∞) × (0,∞) with intensity 1.

As mentioned in paragraph 1.2, this description allows to explain the similarities and
differences between (IPC) and (IIC). The latter is indeed also a discrete tree with a
(uniform) single infinite rising backbone, from which emerge critical percolation clusters.

It turns out that the convergence of the subcritical parameters Ŵk towards the critical
value 1/σ is slow enough so that the scaling limits of these two objects is different.

One may code a sin-tree (a tree with a single infinite rising backbone) T with a pair of
height functions. The first, denoted HT

G , values at time n the height (the generation) of
the nth vertex — for the lexicographical order — of T. The second, denoted HT

D , codes in
a similar way the mirror image T• of T. We define these two coding functions as functions
of R+, by linearly interpolating between two consecutive integers. In [5], we prove the
convergence of rescaled versions of the pairs of coding functions for both (IPC) and (IIC).
For a given process X we let X t := inf{Xs, s ≤ t}. With respect to the topology of
uniform convergence on compact intervals,

„

1

k
H

(IPC)
G (k2t),

1

k
H

(IPC)
D (k2t), t ≥ 0

«

(law)−→
k→∞

 

r

4σ

σ − 1
(Yt − 2Y t),

r

4σ

σ − 1
(Ỹt − 2Ỹ t), t ≥ 0

!

.

In the expression above,

Yt = Bt −
Z t

0

L (−Y s) ds, Ỹt = B̃t −
Z t

0

L
“

−Ỹ s

”

ds,

B and B̃ are two independent standard Brownian motions and L is the lower enveloppe
process appearing in (4).
The case of the (IIC) is easier, and corresponds informally to replace L by 0 in the above
discussion. We obtain

„

1

k
H

(IIC)
G (k2t),

1

k
H

(IIC)
D (k2t), t ≥ 0

«

(law)−→
k→∞

 

r

4σ

σ − 1
(Bt − 2B t),

r

4σ

σ − 1
(B̃t − 2B̃ t), t ≥ 0

!

.

Here again, B, B̃ are two independent standard Brownian motions, (alternatively speak-

ing, B − 2B, B̃ − 2B̃ are two independent Bessel processes of dimension 3).
We also describe the scaling limits of other processes coding (IIC), (IPC), as well as

those of the trees themselves. Finally, this convergence allows us to describe the law of
the scaling limits of the volume and surfaces of balls in the (IPC) in terms of the limiting
height functions. In the latter case, this leads to a simple expression of the scaling limit
of the surface of balls of the (IPC).
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3.2. A random walk on Z whose drift is function of the number of visits to the

origin, in collaboration with Iddo Ben-Ari and Alexander Roitershtein [4]. We
fix a sequence of positive reals (εn)n∈N which goes to 0 at infinity. We consider a nearest-
neighbor random walk X on Z, with a drift at every point but the origin. This drift always
points towards 0, and its value at time n is εηn , where ηn = {p : 0 ≤ p ≤ n,Xp = 0}. The
main difficulty here is that X is not a Markov chain (however (X, η) is).

In order to relate this model with the preceding discussion, we note that X is none
other that the coding (Lukaciewicz path) of a binary sin-tree with a right backbone, and
whose subtree emerging at height n on the backbone, if non-empty, can be identified with
a binary Galton-Watson tree with subcritical branching parameter 1 − εn.

We let P be the probability measure under which this walk is defined, and P the law
of the simple random walk on Z.

When the sequence ε converges sufficiently fast towards 0, it is not surprising that the
asymptotic behavior of this walk is not different from that of the simple random walk.
More precisely, we prove that when nεn → 0, the functional central limit theorem remains
valid, moreover the measures P and P are mutually absolutely continuous if and only if
P

εn <∞.
When the convergence of ε towards 0 is slower, our walk behaves very differently.

Suppose nεn → ∞ and that ε is regularly varying. Then, the position of the walk, when
suitably rescaled, converges to a symmetric exponential variable (moreover, the excursion
straddling n also possesses a non-degenerate scaling limit. Furthermore, in this case,
position and maximum of the walk scale differently. The intermediate regime is more
delicate (see paragraph 3.3 below for the case when nεn → cste).

4. Projects

4.1. Coexistence for the two-dimensional Lotka-Volterra model, project with

Ed Perkins. Cox and Perkins have established coexistence results (i.e. the existence of
an invariant measure which charges configurations with infinitely many 0’s and infinitely
many 1’s) for the Lotka-Volterra model in d ≥ 3. Coexistence was proved for values
α0 < 1, α1 < 1 sufficiently close to (1, 1). Their approach is based on a comparison with
the dynamics of the voter model and the result of the convergence of rescaled Lotka-
Volterra model towards a super-Brownian motion with drift.

We conjecture that this result remains valid in the two-dimensional case (which is
most relevant for biological applications). But the two-dimensional situation is much
more delicate. For instance, coexistence does not hold for the 2-dimensional voter model
whereas it holds for d ≥ 3. Moreover, the first order drift now vanishes for α0 = α1 < 1.
The approach is based on proving a new limit theorem for a sequence of Lotka-Volterra
models. This is done through looking at the martingale problems satisfied by the sequence
of rescaled models. The convergence of most of the terms in these martingale problems
can be dealt with similarly as in Cox and Perkins. There is however a new drift term,
which requires some careful analysis, and in particular, requires some new estimates on
coalescing random walks.

4.2. Sin-trees. One would be tempted to generalize the result obtained for (IPC) and
(IIC). Indeed, it is possible, for β > 1, to obtain the process Bt−βBt as a limit of rescaled
height functions of well-chosen sin-trees. Such a process only is a diffusion for β = 0, 1
or 2. The study of these processes is therefore complicated when β ∈ R

∗
+ \ {1, 2}. The

approach in terms of trees would allow in particular a more simple computation of the law
of the occupation measure of intervals, as well as that of the local time at a given height.
One could also investigate an extension to the more general case when the Brownian
motion B is replaced with a drifted one, or a stable process, or even a general Lévy
process. One can also consider the case of processes such as the one discussed in the next
paragraph.
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4.3. The critical case of the walk of paragraph 2.4, in preparation with Alexan-

der Roitershtein. When nεn → 1, we are able to study the walk described in paragraph
2.4. We obtain that it possesses a scaling limit, unique in law solution of the equation

Yt = Bt −
Z t

0

sgn(Ys)

`0s(Y )
ds.

Above, `0s(Y ) is the local time of Y at the origin, and at time s. We may define the
process (Y, `0(Y )) through its excursion measure from {0} × [0,∞), and the proof of the
convergence relies on a decomposition of the trajectory of (Y, η) into its excursions away
from {0} × N.
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