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[0,0,0.2,0.2,0.6], [0.2,0,0.1,0.1,0.6]]

I.1 Discrete time Markov chains : definition, first properties



2-D Ising

Copy https://www.youtube.com/watch?v=BwyTfMV55RQ
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Epidemics model

https://www.lewuathe.com/covid-19-dynamics-with-sir-
model.html (18:00)
https://www.frontiersin.org/articles/10.3389/fpubh.2020.00230/full
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Notation

E : finite or countable state space

X or (Xn)n∈N : the discrete-time chain, a sequence of E
valued random variables

(Fn)n∈N (or sometimes (Fn) for short) its natural filtration :
Fn := σ(X0, ...,Xn), n ∈ N
P : the transition kernel on E , P : E × E → [0, 1] such that
∀x ∈ E , P(x , ·) is a probability on E .
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Discrete-time Markov chain : definition

Definition

(a) The sequence of E -valued random variables (Xn, n ∈ N) is a
discrete-time Markov chain iff
∀n ∈ N, ∀(x0, ..., xn+1) ∈ En+2,

P(Xn+1 = xn+1 | Xi = xi , 0 ≤ i ≤ n) = P(Xn+1 = xn+1 | Xn = xn).
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Discrete-time Markov chain : definition

Definition

(b) When, for any x , y ∈ E , P(Xn+1 = y | Xn = x) does not
depend on n, we denote this quantity by P(x , y), and we say that
the chain is time-homogeneous, with transition kernel P.

We will always assume time-homogeneity in what follows.
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Discrete-time Markov chain : definition

Definition

(c) We say X has initial distribution µ, or that X is started at µ
whenever P(X0 = x0) = µ(x0), x0 ∈ E . We denote by Pµ the law
of the chain X started at µ. We also use Px as shorthand for Pδx .

Remark : By (a) and (b) the finite-dimensional laws of X are
known (see theorem below) and the existence of Pµ thus follows
from a simple application of Kolmogorov’s extension theorem.
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Discrete-time Markov chain : definition

Definition

When (a),(b),(c) are satisfied, we simply say X is Markov(µ,P).

For any n ∈ N, the law of (X0, ...Xn) only depends on µ,P
(precisions in the next slide), so does the law of X , Pµ.
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Finite-dimensional distributions of X

Let X be Markov(µ,P).

Theorem

(a) For n ∈ N, (x0, ..., xn) ∈ En+1. Then

Pµ(Xi = xi , 0 ≤ i ≤ n) = µ(x0)
n−1∏
i=0

P(xi , xi+1).

By (a) and (b), for n ≥ 1,

Pµ(Xn = xn | Xi = xi , 0 ≤ i ≤ n − 1) = P(xn−1, xn),

which allows to prove the theorem by induction on n.
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Finite-dimensional distributions of X , Markov(µ,P)

Theorem

(b) Pµ(Xn+k = y | Xn = x) = Pk(x , y), where P0(x , y) = 1{x=y}
and for n ≥ 0,

Pn+1(x , y) =
∑
z∈E

Pn(x , z)P(z , y) =
∑
z∈E

P(x , z)Pn(z , y).

Remark : When E is finite, say with elements {x1, ..., xN}, one can
represent P as a N × N matrix, whose entry at row i and column j
is Pij = P(xi , xj). Then, Pn defined above simply corresponds to
the nth power of P.
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Finite-dimensional distributions of X , Markov(µ,P)

Theorem

(c) Pµ(Xn = y) =
∑

x∈E µ(x)Pn(x , y) =: µPn(y).

Remark : When E is finite, with elements {x1, ..., xN}, one can
represent µ as a 1× N line matrix whose jth entry is µj = µ(xj).
Then µPn simply is the usual matrix product.
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Finite-dimensional distributions of X , Markov(µ,P)

Theorem

(c) Let f : E → R,
Eµ(f (Xn)) =

∑
x∈E ,y∈E µ(x)Pn(x , y)f (y) =: µPnf .

Remark : When E is finite, with elements {x1, ..., xn}, one can
represent f as a vector whose jth entry is fj = f (xj). Then µPnf
simply is the usual matrix product.
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Simple Markov property

Theorem

Let X Markov(µ,P). Conditionnally given {Xk = x}, the process
(Xn+k , n ≥ 0) is Markov(δx ,P), and is independent of (X0, ...,Xn).
Equivalently, for any A ∈ Fk , n ∈ N, (xk , ..., xk+n) ∈ En+1, we
have

Pµ(A ∩ {Xi+k = xi+k , 0 ≤ i ≤ n} | Xk = x)

= Pµ(A)1{x=xk}

n−1∏
i=0

P(xk+i , xk+i+1)

= Pµ(A)Px(Xi = xk+i , 0 ≤ i ≤ n)
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Simple Markov property : a short proof

When, for some (x0, ..., xk) ∈ E k+1, A = {Xi = xi , 0 ≤ i ≤ k}, we
find

Pµ(A ∩ {Xi+k = xi+k , 0 ≤ i ≤ n} ∩ {Xk = x})

= µ(x0)1{xk=x}

n+k−1∏
i=0

P(xi , xi+1),

and the desired equality easily follows for such an event A.
Now, since E is at most countable, the collection of elementary
events

{
{Xi = xi , 0 ≤ i ≤ k}, (x0, ..., xk) ∈ E k+1

}
generates Fk

(in fact events in Fk , except the empty set, are unions, at most
countable, of elementary events), so we are done.
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Simple Markov property : a somewhat more sophisticated
formulation

Theorem

Let X be Markov(µ,P). Conditionnally given Fk , the process
(Xn+k , n ≥ 0) has law PXk

.
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Strong Markov property : motivation

The simple Markov property states that if we condition the chain
to be at x at time k , its trajectory can be simply decomposed into
two independent parts : the one up to time k , and the trajectory
after time k, which is again Markov (started at x).
It is natural to ask if the property still holds for certain random
times. A natural condition on such random time is to be able to
decide that such random time takes value n by only looking at the
trajectory of the process up to time n.
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Strong Markov property

Definition

T : Ω→ N ∪ {+∞} is an (Fn)n∈N stopping time iff for any n ∈ N,

{T = n} ∈ Fn.

Theorem

Let X Markov(µ,P), and T be an (Fn)-stopping time.
Conditionnally given {T <∞,XT = x}, the process (XT+k , n ≥ 0)
is Markov(δx ,P), and is independent of (X0, ...,XT ).

Proof : exercise 10 in the Exercise sheet I.
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Strong Markov property

Definition

T : Ω→ N ∪ {+∞} is an (Fn)n∈N stopping time iff for any n ∈ N,

{T = n} ∈ Fn.

Theorem

Let X Markov(µ,P), and T be an (Fn)-stopping time.
Conditionnally given {T <∞,XT = x}, the process (XT+k , n ≥ 0)
is Markov(δx ,P), and is independent of (X0, ...,XT ).

Proof : exercise 10 in the Exercise sheet I.
See also exercise 4.3 for an example of application of the result.
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Strong Markov property : alternate formulation

Definition

Let FT := {A : ∀n ∈ N A ∩ {T = n} ∈ Fn}

Theorem

Let X Markov(µ,P), and T be an almost surely finte
(Fn)-stopping time. Conditionnally given FT , the process
(XT+k , n ≥ 0) has distribution PXT

.
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Strong Markov : application

Let x ∈ E , X Markov (δx ,P), and assume that T = T+
x <∞ a.s.

(we’ll say x is recurrent when it is the case). Then, by the strong
Markov property, (XT+n, n ≥ 0) is Markov (δx ,P), and is
independent of (X0, ...,XT ).
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Decomposition of a trajectory into excursions from a
recurrent state

Let x be recurrent for X . Define T0 := 0 and for i ≥ 0,
Ti+1 := inf{n > Ti : Xn = x}, so that Ti is the time of ith return
of the chain at x . Further define, for i ≥ 1, ei := (XTi−1

, ...,XTi
)

the so-called ith excursion from state x .
By strong Markov property, (ei , i ≥ 1) forms a sequence of i.i.d.
random variables.
Remark : When x is not recurrent (a.k.a transient), a similar
decomposition of the trajectory into independent parts holds.
However, there are only finitely many parts (a geometric number
with parameter Px(T+

x =∞)), as the chain eventually leaves state
x without returning. Beware that these parts are not i.d. More
precisely, all finite parts have the same law (that of an excursion
conditioned to return at x), while the infinite last part has the law
of an excursion conditioned not to return.
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Important examples of stopping times

Let A ⊂ E , define TA = inf{n ≥ 0 : Xn ∈ A} the entrance time in
A, and T+

A = inf{n ≥ 1 : Xn ∈ A} the so-called return time in A.
For short, we write Tx (T+

x , resp.) for T{x} (T+
{x} resp.). Then for

any A ⊂ E , TA.T
+
A are stopping times in the natural fitration of

X . The proof is left as an easy exercise.
Note however that neither T+

x − 1 nor LA = sup{n ≥ 0 : Xn ∈ A}
nor sup{n ≤ N : Xn ∈ A} are stopping times.
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Random mapping representation (exercise 9)

Theorem

(a) Let X0 ∼ µ, and φ : E × Λ→ E. Let (Zn, n ≥ 0) be a sequence
of i.i.d. random variables, also independent of X0, taking values in
Λ. Finally set Xn+1 = φ(Xn,Zn+1) for any n ∈ N. Then X is a
Markov chain started at µ.
(b) Reciprocally, any (time-homogeneous) Markov chain taking
values in E , started at µ, admits such a representation.

Remark : No particular assumption has to be made on the set Λ.
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Random mapping representation : proof

(a) First note that for any k , Xk is σ(X0,Z1, ...,Zk−1) measurable.
In particular, Zn is independent of (X0, ...,Xn). Thus

P(Xn+1 = y | X0 = x0, ...,Xn−1 = xn−1,Xn = x)

= P(φ(x ,Zn) = y | X0 = x0, ...,Xn−1 = xn−1,Xn = x)

= P(φ(x ,Zn) = y)

=

∫
{z∈Λ:φ(x ,z)=y}

dPZ1(z) =: P(x , y)

where we have used at the last line that Zn has the same law as
Z1. The above expression does not depend on n, as required.
Obvisously P defines a transition kernel on E , but one can also
check directly that∑

y∈E
∫
{z∈Λ:φ(x ,z)=y} dPZ1(z) =

∫
Λ dPZ1(z) = 1.
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Random mapping representation : proof

(b) We will set Λ = [0, 1], and Z1 ∼ Unif[0, 1]. Even if it means
ordering its elements, one can always write E = {yi , 1 ≤ i ≤ N}
when it is finite, or E = {yi , i ∈ N} when it is countable. It
remains to set

φ(x , z) = yj whenever

j−1∑
`=1

P(x , y`) < z ≤
j∑

`=1

P(x , y`),

with the convention
∑0

1 = 0.

Note that the proof of (b) provides an algorithm to simulate a
Markov chain with kernel P.
It will also be useful for defining free coupling.
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Image of a Markov chain by an application

If X is Markov with state space E , and f : E → F is not injective,
beware that the process (Yn := f (Xn), n ∈ N) is in general not a
Markov chain.
Exercise : Find an example for which Y is indeed not Markov.
Challenge : Find a necessary and sufficient condition on f so Y
remains Markov.
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Classification of states

Definition

We say x leads to y and write x → y iff ∃n ∈ N such that
Pn(x , y) > 0.
We say x communicates with y and write x ↔ y iff x → y and
y → x

Recall Ty := inf{n ≥ 0 : Xn = y} and introduce
Vy :=

∑
n≥0 1{Xn=y}. Note that {Ty <∞} = {Vy > 0}, and

Ex [Vy ] =
∑

n≥0 P
n(x , y).

Theorem

TFAE :

(i) x → y

(ii) Px [Ty <∞] > 0

(iii) Ex [Vy ] > 0.
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Communication classes

It is straightforward that the relation → is reflexive, transitive, but
non symmetric. Now ↔ is reflexive, transitive and symmetric,
hence it is an equivalence relation, and E can be decomposed into
communication classes (that is, equivalence classes for the relation
↔).

Definition

When all states communicate (i.e. when there is only one
communication class) we say that the chain X (or the kernel P) is
irreducible.

Definition

A class C is closed iff
x ∈ C and x → y ⇒ y ∈ C .

When C is closed, the restriction P̃ of the kernel P to states in C
still is a transition kernel. A Markov chain X̃ defined on C with
kernel P̃ is irreducible.
On the other hand, when C is opened, whatever the starting point,
the chain has a positive probability to leave C at some point in
time and never return (however, when C is infinite, one can not
exclude in general that it remains in C indifinitely).
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Recurrence, transience : definition

Definition

We say x is recurrent iff Px(T+
x <∞) = 1. Otherwise x is called

transient.

Note that when x is recurrent, by strong Markov at T1,T2, ... the
successive return times at x , it must be that Vx = +∞ a.s. under
Px .

Theorem

If x is recurrent and x → y then x ↔ y and y is recurrent.
Hence recurrence is a class property.
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Recurrence, transience : class properties

Proof : By applying the strong Markov at successive returns at x ,
under Px , Vx ∼ Geom(P(T+

x =∞)) (where a parameter 0
geometric variable simply takes value +∞ a.s.). Hence TFAE :

(i) x is transient.

(ii) Ex [Vx ] =
∑

n∈N Pn(x , x) <∞.

Now consider x recurrent and y such that x → y . For some k ∈ N
we have Pk(x , y) =: p > 0. If y 9 x , we would have
P+
x (Tx = +∞) ≥ p > 0, a contradiction. Thus
∃` ∈ N : Pell(y , x) > 0. It remains to see that∑

i∈N
P i (y , y) ≥

∑
n≥0

P`+n+k(y , y)

≥
∑
n≥0

P`(y , x)Pn(x , x)Pk(x , y) = +∞

using that
∑

n≥0 P
n(x , x) = +∞. By equivalence of (i) and (ii)

above we conclude that y is recurrent.
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Recurrence and transience : immediate properties

1 If x recurrent and x ↔ y , then
Px(Ty <∞) = Py (Tx <∞) = 1, and Vy = +∞ a.s. under
Px .

2 An opened class is always transient.

3 A finite closed class is always recurrent

4 If E <∞ there is at least one finite, closed, recurrent class.

We leave the proofs as exercises.
Remark : An infinite closed class can be either recurrent or
transient (think, e.g., of the SRW example)
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Invariant distributions

Definition

The measure π on E is invariant for X (or P) iff πP = π.

If π is an invariant probability and X0 ∼ π then Xn ∼ π for all
n ≥ 0.
If π1, π2 are invariant probabilities, and α ∈ [0, 1] then
απ1 + (1− α)π2 is also invariant. Thus the set of all invariant
probabilities of X is convex.
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Stationary distributions are invariant

Theorem

If, for some µ probability on E, µPn → π as n→∞ then π is an
invariant probability.

Proof : By Fatou

πP(y) =
(

lim
n→∞

µPn
)
P

=
∑
x∈E

(
lim
n→∞

µPn(x)
)
P(x , y)

≤ lim
n→∞

µPn+1(y) = π(y)

Since both sides are probabilities, we must have equality and we
conclude.
Remark : A slight adaptation of the reasoning, hence the result,
remain true even if we only assume convergence along a
subsequence.
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Reversibility

Definition

We say X is reversible w.r.t λ iff

λ(x)P(x , y) = λ(y)P(y , x) ∀(x , y) ∈ E 2.

The above equations are called detailed balance equations.

Theorem

If λ solves detailed balance, then it is invariant.

Proof : If λ solves detailed balance, then

λP(y) =
∑
x∈E

λ(x)P(x , y) =
∑
x∈E

λ(y)P(y , x) = λ(y).
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