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Two-state chain (exercise 1)
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Two-state chain : special values of parameters

When p = 0 or q = 0 we’ll say the two states do not communicate.
In that case each state forms a communication class. When p = 0
δ1 is invariant, when q = 0, δ2 is invariant.
When both parameters are null, both δ1 and δ2 are invariant,
hence all probabilities. It is not surprising since the chain remains
forever at its starting state. In that case both states (hence both
classes) are recurrent.
When only one of the parameters is null, the other positive, say
p > 0, q = 0, state 1 will a.s. be visited finitely many times before
the chain gets stuck at 2. Thus 1 is transient, while 2 is recurrent.
When p = q = 1, the chain can – and does in this case – only visit
its starting point at even times, and we’ll say that the chain is
2-periodic.
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Two-state chain : generic values of parameters

When pq > 0, (p, q) 6= (1, 1), the chain is irreducible, aperiodic,
recurrent, hence ergodic. Clearly, then
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whatever the initial distribution µ. Thus the law of the chain at
time n always converges (exponentially fast) towards

π :=

(
q

p + q

p

p + q

)
.

Note that π is not only the stationary distribution of the chain, but
also its unique invariant probability. It is easily proven directly, as
eigenvalue 1 is of multiplicity one for P, hence for PT also.
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Number of consecutive ones at the beginning of a
sequence in a moving window of size k (exercise 2)
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Number of consecutive ones in a moving window

The above Markov chain is obtained when looking at an infinite
sequence of bits (zeroes and ones) on the integer line, by counting
the number of consecutive ones from the left in a window of size k
which slides by one to the right at each increment of time. We
assume further that the window initially reveals bits from 0 to
k − 1, and that bits to the right of the first zero are i.i.d Bernoulli
variables with parameter 1/2.
It is easy that the chain is irreducible, aperiodic and recurrent. We
will prove that in such a case there exists a unique invariant
probability. It is obvious from the above that the chain reaches
stationarity at time k (from time k onwards, the bits which are
read are i.i.d Ber(1/2)) The (unique) invariant probability of the
chain thus corresponds to the distribution of the number of ones in
a sequence of k i.i.d Ber(1/2) bits :
π = [1/2 1/4 1/8 1/16 · · · 2−k+1 2−k 2−k ].
Existence, unicity and expression of π can also be checked directly
from solving πP = π.
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Number of consecutive ones in a moving window

Note that when the chain starts from state k − 1, it is at 0 at time
k − 1, which is quite far from its stationarity distribution. Hence,
in that case, distance from stationarity remains large up to time
k − 1, before it abruptly drops to 0 at time k .
At this point, this is only an informal statement. We need to
better define what we mean by ”distance from stationarity” to
make this statement more precise. See exercise 2 for more details.
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Random walks on Zd (exercise 3)

Let (ξi )i≥1 i.i.d., taking values in Zd . Define the random walk

S0 = 0,Sn =
n∑

i=1

ξi .

Whenever the distribution of ξ only charges the direct neighbours
of the origin, we speak of a nearest-neighbour random walk, and
when d = 1 we simply refer to it as simple random walk. When
the distribution of ξ also charges the origin itself we speak of lazy
versions of these nearest-neighbour random walks.
The case when P(ξ = ei ) = P(ξ = −ei ) = 1

2d , i = 1, ..., d is
refered to as simple symmetric random walk.
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Simple random walks on Z : classes, periodicity

We assume P(ξ = 1) = 1− P(ξ = −1) = p ∈ [0, 1]. The common
lazy version corresponds to P̃ = (P + Id)/2.
When p ∈ (0, 1) the chain is clearly irreducible : for any n ∈ N,
Pn(0, n) = pn > 0, Pn(0,−n) = (1− p)n > 0. On the other hand,
when p = 0 or p = 1 no two states communicate so each state
forms its own class.
The chain is however 2-periodic : when starting at 0, it can only
visit 0 at even times.
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SRW on Z : transience, recurrence

Moreover, there are exactly
(2n
n

)
trajectories of length 2n which

start and end up at the origin, so

P0(S2n = 0) =
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)
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By Stirling (
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(2n)!
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so that
E0[V0] =

∑
n∈N

P0(Sn = 0) =∞⇔ p = 1/2,

and it follows from the characterization of recurrence of last
section that SRW on Z is recurrent iff p = 1/2.
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Simple symmetric RW on Zd : transience, recurrence

Slightly more delicate combinatorics lead to

P0(S2n = 0) ∼ c

nd/2

so that ∑
n∈N

P0(Sn = 0) =∞⇔ d ≤ 2,

and it follows that simple symmetric RW on Zd is recurrent iff
d ≤ 2.
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SRW : Invariant measures

It can be shown that whatever the value of p there exists no
invariant probability for the chain. More precisely, if we try to find
all (nonnegative) measures λ such that λP = λ we find that for
any n ∈ Z,

pλ(n − 1) + (1− p)λ(n + 1) = λ(n)

⇔ p(λ(n)− λ(n − 1)) = (1− p)(λ(n + 1)− λ(n)).

When p ∈ {0, 1/2, 1}, it follows that any invariant measure is
proportional to the counting measure, that is there exists α ≥ 0
such that λ(n) = α, n ∈ Z.
When p ∈ (0, 1) \ {1/2}, any invariant measure λ is such that for

some α, β ≥ 0, λ(n) = α + β
(
1−p
p

)n
, n ∈ Z.
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Gambler’s ruin

For k ∈ [|0,N|], let pk = Pk(TN < T0). Obviously p0 = 0, pN = 1.
For k ∈ [|1,N − 1|], by Markov at time 1, we find that

pk = ppk+1 + (1− p)pk−1 ⇔ p(pk+1 − pk) = (1− p)(pk − pk−1).

If p = 1/2, it follows that pk = k/N, k ∈ [|0,N|].
If p ∈ (0, 1) \ {1/2}, we obtain

pk =
1−

(
1−p
p

)k
1− 1−p

p

, k ∈ [|0,N|].

This computation of exit probabilities from the strip [|0,N|] for
SRW is refered to as gambler’s ruin : 1− pk indeed corresponds to
the probability of ruin for a gambler who enters a game with
fortune k, bets 1 at each independent hand with probability p of
winning, and leaves the game when he reaches fortune N or has no
money left.
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Probability of escape for transient SRW

When p > 1/2, it follows from the above that
P1(T0 = +∞) ≥ limN→∞ P1(TN < T0) = 1− 1−p

p = 2p−1
p > 0.

Therefore, when p > 1/2, not only do we know that the walk is
transient, but we can precisely compute the probability of escape
to infinity from the origin : 2p − 1.
When p < 1/2, by symmetry, we obtain the same result with p
replaced with 1− p, hence 1− 2p.
In both cases, the probability of escape from the origin is |1− 2p|.
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Branching process

Let {ξn,i , n ∈ N, i ∈ N∗} a sequence of i.i.d, N-valued random
variables and define

Zn+1 =
Zn∑
i=1

ξn,i .

In an idealized model for the evolution of a population, one may
think of ξn,i as the number of offsprings of the ith individual in the
nth generation, so Zn is the size of the population at the nth
generation.
In the case µ(1) = 1 for which the transition kernel simply is Id .
Whatever µ the offspring distribution, when at 0 the chain Z
remains stuck there, we say 0 is an absorbing state, of course 0 is
alone in its communication class.
When µ(0) > 0, any given state leads to 0, so that every other
class is opened and therefore transient. Thus limn→∞ Zn exists a.s.
and either takes value +∞ (the population explodes) or 0 (the
population goes extinct).
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Branching process : extinction vs explosion

By noticing that {ξn,i , i ≥ 1} and Zn are independent, and writing
G (x) =

∑
n≥0 x

nµ(n) one shows that for any x ∈ [0, 1],

Gn+1(x) := E1[xZn+1 ] = Gn(G (x))

Now the probability of extinction is

ζ := lim
n→∞

P1(Zn = 0) = lim
n→∞

Gn(0),

so ζ is the minimal fixed point of G in [0, 1].
It is then easy to deduce that ζ = 1 iff µ(1) < 1 and
m :=

∑
i≥1 iµ(i) ≤ 1.
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Coupon collector (exercise 4)
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Coupon collector

The above chain corresponds to the coupon collector model. A
total of N coupons are to be collected. The collector receives a
coupon choosen independently and uniformly at random at each
time increment. If Xn denote the number of distinct coupons that
the collector possesses at time n, it is straightforward that X is
indeed the Markov chain on [|0,N|] with kernel

P(k , k + 1) = 1−P(k, k) =
N − k

N
, 0 ≤ k ≤ N − 1, P(N,N) = 1.

Each state forms its own communication class, all are transient
except N which is absorbant. It is obvious that the chain does
indeed end up in the state N eventually.
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Coupon collector : time of collection

By the strong Markov property at Tk ,
Tk+1 − Tk := Gk ∼ Geom(N−kN ), and is independent of Tk , so

under P0, the time of collection TN is given by
∑N−1

k=0 Gk .

One has E[TN ] =
∑N−1

k=0
N

N−k ∼ N log(N), while

Var[TN ] =
N−1∑
k=0

k

N

N2

(N − k)2
∼ N2π2

6

Thus Var[TN ]
(E[TN ])2

→ 0 and by Markov’s inequality, it follows that
TN

N log(N) → 1 as N →∞, in probability.
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Birth and death chains (exercise 5)
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Birth and death chains : classes

The class of 0 is {0, ...,N1} where N1 := inf{n ∈ N : pnqn+1 = 0}.
In particular the chain is irreducible iff
pi > 0∀i ∈ N, qi > 0∀i ∈ N∗. We discuss the transience or
recurrence of the chain in that case later on.
Furthermore, for any k ≥ 1, if Nk <∞ the class of Nk + 1 is given
by {Nk + 1, ...,Nk+1} where
Nk+1 := inf{n ≥ Nk + 1 : pnqn+1 = 0}.
When N1 <∞, we have either pN1 = 0, in which case the finite
class of 0 is clearly recurrent, or pN1 > 0, qN1+1 = 0 in which case
the finite class of 0 is opened, hence transient (and the chain
eventually will leave that class forever). Similar reasoning applies
for further finite classes : either they are opened and transient, or
closed and recurrent. If there exists one last infinite class, its
transience or recurrence will be discussed later on.
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Irreductible birth and death chains : transience vs
recurrence

As we did in the gambler’s ruin computations,let
hk = Pk(TN < T0), k ∈ [|0,N|]. Of course h0 = 0, hN = 1, and if
k ∈ [|1, ...,N − 1|], by Markov at time 1, we find that

hk = rkhk + pkhk+1 + qkhk−1

⇔ pk(hk+1 − hk) = qk(hk − hk−1).

It follows that, in the irreductible case,

hk = h1

(
k−1∑
`=0

∏̀
i=1

qi
pi

)
,

and thus the chain is transient iff
∑∞

`=0

∏`
i=1

qi
pi
<∞.
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Irreductible birth and death chains : invariant measures

In this case, λP = λ reads λ0 = r0λ0 + q1λ1, and

λk = rkλk + pk−1λk−1 + qk+1λk+1, ∀k ≥ 1

Solutions to λP = λ, if they exist, are clearly unique up to a
multiplicative constant. Note that the simpler detailed balance
equations

pkλk = qk+1λk+1, ∀k ≥ 0

indeed imply λP = λ, and are easier to solve, we find :

λk = λ0

k−1∏
i=0

pi
qi+1

.

When λ solves detailed balance, we say the chain is reversible with
respect to λ. Finally observe that there exists a (unique) invariant
probability iff

∑
k≥0

∏k−1
i=0

pi
qi+1

<∞.
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Conductance model (exercise 6)

Consider G = (V, E) a locally finite graph, V being the (at most
countable) set of vertices, E the set of unoriented edges (at most a
finite number from each vertex), that is pairs of vertices. For more
generality, we authorize self-loops, that is edges of the form {x , x}
for some x ∈ V. Let

c :

{
E → R∗+
e → c(e)

a conductance function, c(e) or c(x , y) being the conductance of
edge e = {x , y}.
For a vertex x denote c(x) =

∑
e:e={x ,y} c(e) the sum of all

conductances of edges from x . For short we’ll talk of c(x) as the
conductance at x . Finally introduce

P(x , y) :=

{
c(x ,y)
c(x) if {x , y} ∈ E

0 if {x , y} /∈ E
The chain on V with kernel P is called a conductance model (on
G, with conductance function c).
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Conductance model : reversibility, invariant measures

In other words, when at vertex x at time n, the chain chooses an
edge incident from x proportionally to its conductance, and goes
at time n + 1 to the other extremity of that edge (possibly x itself
if the choosen edge is a self-loop).
The chain is irreducible iff G is connected (otherwise
communication classes are the connected components of G). Since
the graph is unoriented, all classes are closed, so all finite classes
are recurrent. Infinite classes may be transient or recurrent, we’ll
come back to this later on.
It is straightforward that the chain is reversible with respect to λ
such that for some α > 0, λ(x) = αc(x), x ∈ V.
As we will establish later on, there exists an invariant probability
(and the chain is positive recurrent) iff cG :=

∑
x∈V c(x) <∞, and

in that case it is given by π(x) = c(x)
c(G) , x ∈ V.
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Conductance models = reversible chains

Theorem

Any conductance model on a connected graph is an irreductible
reversible chain.
Conversely, any irreductible, reversible chain is a conductance
model.

Proof : We have gone over the direct implication in the previous
slide.
Conversely, consider an irreducible reversible Markov chain.
Conductances at each vertex are set equal to the invariant
measure, say λ, with respect to which the chain is reversible. The
conductance along a given edge, say {x , y}, is then given by
c(x , y) := λ(x)P(x , y) = λ(y)P(y , x).
Note that we could have choosen to multiply all conductances with
the same positive factor without changing the chain.
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Conductance model : SRW on a graph

Whenever all edges are equiped with the same conductance, e.g. 1,
we get SRW on the graph G, where at each step, the chain goes to
one nearest neighbour in the graph choosen uniformly at random.
In that case the invariant measure are the uniform measures, so
there exists an invariant probability iff V is finite. Important
examples include

SRW on the complete graph with N vertices,

simple (symmetric) RW on Zd (edges are between nearest
neighbours on the usual lattice),

simple (symmetric) random walk on the d-dimensional

discrete torus
( Z
NZ
)d

SRW on the hypercube {0, 1}d =
( Z
2Z
)d

,

and many others : SRW on the triangular lattice, SRW on a
random d-regular graph, shuffling by random transpositions,
etc...
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Mapping representation for the lazy SRW on the
hypercube (exercise 9)

Assume (ζi )i≥1 are i.i.d according to the uniform distribution on
{1, .., d}, and (ξi )i≥1 are i.i.d, according to Ber(1/2), independent
of (ζi )i≥1.
Now consider Λ = {1, ..., d} × {0, 1}, so that (ζi , ξi ) ∈ Λ and

φ :

{
Λ× {0, 1}d → {0, 1}d
((ζ, ξ), x) → y = φ(x)

,

such that yi = xi if i 6= ζ, and yζ = ξ.
Then Xn+1 = φ((ζn, ξn),Xn) defines a lazy random walk on the
d-dimensional hypercube.
Note that the time at which every coordinate has been updated is
exactly the collection time in a coupon collector.
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Random walks on groups (exercise 7)

Consider a group (G , •), and a probability µ on G . The chain X
with kernel P(g , h • g) = µ(h), g ∈ G , h ∈ G is a random walk on
G . This includes many examples : simple random walk on Zd , on
the discrete torus, on the hypercube, ...
This is the right setting for modelling card shuffling : when G = �n
is the group of permutations, the configuration of a deck of n
cards can be given by g ∈ G and one can think of X as the
successive steps in the shuffling of the deck. A particular method
of shuffling simply corresponds to a particular choice of µ. We will,
however, only look at idealized, specific choices of µ for which
computations remain trackable.
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Let X be a random walk on the group G associated with measure
µ, as above.

Theorem

X is irreducible iff µ generates G, that is, iff
H := {h1 • h2 · · · • hn : n ∈ N, µ(hi ) > 0 ∀i ∈ [|1, n|]} = G.

Uniform measures on G are always invariant for X

There exists an invariant probability iff G is finite. In that
case, it is unique and it is the uniform one.

If µ(h) = µ(h−1) for any h ∈ G then X is reversible. This is a
necessary and sufficient condition for reversibility with respect
to the uniform measure. This is however, a sufficient but not
necessary condition for reversibility in general.

Proof : see exercise 7
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Stock management

Let (ξi , i ≥ 1) a sequence of i.i.d integer valued variables, think of
ξn as the demand at time n. A very simple model for stock
management is to assume that stock is renewed at (maximum)
level b ∈ N∗ each time it passes below the threshold a ∈ N∗. We
assume obviously that a < b. Then

Xn+1 =

{
(Xn − ξn)+ if Xn > a

(b − ξn)+ if Xn ≤ a

gives the level of stock at time n + 1 as a simple function of the
level at time n, Xn and the demand at that time, ξn. The chain
always takes values in [|0, b|]. It is a bit cumbersome to treat the
general case, though we can say that when P(ξ1 = 0) ∈ (0, 1) the
class of b is always recurrent, and if there are any other they must
be transient. There exists a unique invariant probability, which
allows to compute quantities of interest as, e.g. the asymptotic
proportion of time demand can not be fully satisfied.
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Interacting particle systems : see Liggett

This is a very large framework, in which the state space is typically
SV , where S is a (typically finite) space of states, and V are the
interacting particles (or agents), corresponding to the vertices in a
locally finite graph. The state of x ∈ V at time n + 1, say ξn+1(x),
will depend on its own at time n, ξn(x), that of its neighbours
{ξn(y), y ∼ x}, and some added independent randomness.
Most of these models are more practical to study in their
continuous-time setting (more on that later on).
Mean-field versions correspond to the case when the underlying
graph is the complete graph.
These include colouring of graphs, zero-range process, contact
process, Glauber dynamics for the Ising model, exclusion processes,
voter model, models for rumour/epidemics (SIR/SIS), etc... They
would require a full course on the subject.
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