Reminders

In what follows we consider X a Markov chain with kernel P with
state space E.

Recall x is recurrent

iff Po(TS <o0) =1

iff Vy = +00 a.s. under P,

iff > >0 P"(x,x) = +o00.

Recall further that recurrence is a class property, that is is x <> y
they are either both transient or recurrent.

Finally recall that A is invariant iff AP = \.
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Invariant measures of an irreducible, recurrent chain

Assume X irreducible, and x is recurrent. Introduce

TH-1

vx(y) == Ex Z Lix,=yy| ¥ €E. Then
k=0

@ v, is an invariant measure for the chain.

@ vy is the unique invariant measure of X attributing mass 1 to
x. The chain admits a unique invariant probability iff
Ex[T{] < oo.

When E,[T,F] < oo we say x is positive recurrent and the invariant
probability is m = vy /E,[T;]. Because of the above theorem
positive recurrence remains a class property.

When E,[TJ] = 400 we say x is null recurrent, and there exists

no invariant probability for the chain.



Invariant measures of more general chains :remarks

Note that the irreducibility assumption is easy to relax : the chain
restricted to the recurrent class of x is irreducible, thus the theorem
implies there is a unique invariant measure charging the states in
the class of x which attributes mass 1 to x, and it is vy. If x is
positive recurrent, there is a unique (extreme) invariant probability
charging only states in the class of x. If x is null recurrent, there is
no invariant probability charging states in the class of x.

When there are several positive recurrent classes, then any
invariant probability is a convex combination of these extreme
invariant probabilities.

On the other hand, if there is only one positive recurrent class, then
again there exists a unique invariant probability, 7 = v /E,[T;].
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Proof of theorem, invariance of v,

By definition of T,', there is exactly one visit to x between 0 and
T.5 —1, thus vx(x) = 1. For any n € N, v, (y)P"(y, x) < vx(x)
therefore v (y) < 0o and so vy is indeed a nonnegative measure.
Now

vPy) = S u(2)P(z,y)

zeE

~ Y,
zcE
£ 3 ey Dt Pl y>]

zeE

Z]l{k<r+}]1{xk —z4| P(z,y)

where the interchange of summation comes from Fubini-Tonelli
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Proof of theorem, invariance of v,

Hence

Vx'D(y) = ZVX(Z)P(ZL)/)

zeE

= EX Z]l{k<T;r}Z]l{Xk:z}P(Xk7y)
Lk=0 zeE

= B |D Tperiy 2 1 a=ab E (L) | Fi |
k=0 z€E

L Fi—measurable

where E [1x, =1 | Fx] = P(Xk,y) comes from the Markov
property at time k, and the above-mentioned measurability follows
from the fact that T, is a stopping time.
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Proof of theorem, invariance of v,

Thus
wP(y) = > wn(2)P(z,y)
zeE
= ]EX Z]l{k<TX+}Z]]-{Xk:z}P(Xk7y)
Lk=0 zeE

= B | D> Tperiy D Lixmay B [Lixe,=yy | Fil
k=0 z€E

L Fi—measurable

= Ex Zﬂ{kdr}]l{xkﬂ:y}]
Lk=0

where we used ), 1 x,—,1 = 1 and the definition of conditional
expectation.
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Proof of theorem, invariance of v,

Finally

nPl) = S ul2)P(z.y)

zeE

= Ex Z]l{k<Tj}]1{Xk+1=y}]
Lk=0

T
= Ex Z]I{Xkl:y} :VX(Y)
k'=1

where we set k' = k + 1 for obtaining the before-to-last equality.
To obtain the last we used that at both times 0 and T,', the chain
is at x so that whatever y € E,

TH-1 TF
Zk:o H{Xk:y} - Ek’:l ]I{Xk/:y}-
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Proof of theorem

We have established that v, indeed is an invariant measure
attributing mass 1 to state x. It is also obvious that

VX(E) = ZyeE Vx(y) = ]EX[T;—]

Before turning to proving unicity of such invariant measure, we
establish

Assume v is an invariant, non-zero measure of X. Then for any
y € E, uly)>0.

Since p is non-zero there must exist x € E such that p(x) > 0.
For any n € N, pu(y) = uP"(y) > n(x)P"(x,y), so the claim
follows from the irreducibility assumption.
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Proof of theorem, unicity

It remains to prove unicity of an invariant measure which assigns
mass 1 to x. Let A be such a measure. Since A is invariant and
A(x) = 1, we have

Ay) = AP(y)

= P(x,y)+ Y MNa1)P(a1,y)
717X

= P(x,y)+ Z AP(z1)P(z1,y)
71 #x

= P(y)+ > P,z)P(zi,y)+ > Mz2)P(z2,21)P(z1,y)

217#x 21,227X
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Proof of theorem, unicity

Iterating
Ay) = AP(y)
= P(oy)+ Y P, 21)P(zi,y)+ Y M22)P(22,21)P(z1, y)
z1#£X 21,227X
= P(x,y)+ Z P(x,z1)P(z1,y) + -+
Z1#X

+ Z P(x,zn-1)P(zn-1,2n—2) - - . P(z2, 21) P(z1, )

Z15eeey zn—17éx

+ Z XN zn)P(2zn, 2n-1) - - . P(z2, 21) P(z1, y)

Z1 ey ZnFEX
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Proof of theorem, unicity

The last term in the sum being nonnegative, we have for any n,

My) = Plx,y)+ Y Plx,z1)P(z1,y) + -+
z1#X

+ Z P(x,zn—1)P(zp-1,2p—2) ... P(z2,21)P(z1, y)

Z]yeny Zn_lyéx
> Pu(Xi=y)+P (TS >2, X =y)+--+
Po(T 20, Xo = y)

which, by MCT, converges to vx(y) when n — oc.
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Proof of theorem, unicity

We have established that if A is invariant with A(x) = 1 then

A > Uy,

This implies i = A — vy is also a (nonnegative) invariant measure.
Since p(x) = 0, by the lemma it has to be the zero measure, and
we conclude that \ = vy, as required.
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Transient chain : no unicity

The recurrence assumption is crucial in the theorem.

Simple, asymmetric random walk on Z has in fact infinitely many
invariant measures charging the origin with mass one. Indeed for
any a € [0, 1], the measure A, such that

AX) = a+(1-a) <”>X, x€ET

= T

is invariant, and such that A\(0) = 1.
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Transient chain : no invariant probability

Assume X is irreducible, transient. Then X possesses no invariant
probability.

By contradiction assume there exists 7 a probability invariant for
X. Pick xg € E such that w(xp) > 0. There must exists a finite

A C E such that m(A) > 1 — 7(x0)/3. We claim that for any

x,y € E, P"(x,y) — 0 as n — oo. Indeed transience implies
Ym0 PT(x,y) £ 050 P"(y,y) < 00. Hence, since A is finite,
there exists ng such that for any x € A, P™(x,xg) < 7(x0)/3. Now

m(x0) = TP™(x0) < w(A°) + Zw(x)P”(x,xo) < 2m(x0)/3,
X€EA

a contradiction.
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