Reminders

In what follows we consider X a Markov chain with kernel P with state space E.
Recall x is recurrent
iff $\mathbb{P}_{x}\left(T_{x}^{+}<\infty\right)=1$
iff $\mathcal{V}_{x}=+\infty$ a.s. under \mathbb{P}_{x}
iff $\sum_{n \geq 0} P^{n}(x, x)=+\infty$.
Recall further that recurrence is a class property, that is is $x \leftrightarrow y$ they are either both transient or recurrent.
Finally recall that λ is invariant iff $\lambda P=\lambda$.

Invariant measures of an irreducible, recurrent chain

Theorem

Assume X irreducible, and x is recurrent. Introduce

$$
\nu_{x}(y):=\mathbb{E}_{x}\left[\sum_{k=0}^{T_{x}^{+}-1} \mathbb{1}_{\left\{X_{k}=y\right\}}\right], y \in E . \text { Then }
$$

- ν_{x} is an invariant measure for the chain.
- ν_{x} is the unique invariant measure of X attributing mass 1 to
x. The chain admits a unique invariant probability iff $\mathbb{E}_{x}\left[T_{x}^{+}\right]<\infty$.

When $\mathbb{E}_{x}\left[T_{x}^{+}\right]<\infty$ we say x is positive recurrent and the invariant probability is $\pi=\nu_{x} / \mathbb{E}_{x}\left[T_{x}^{+}\right]$. Because of the above theorem positive recurrence remains a class property. When $\mathbb{E}_{x}\left[T_{x}^{+}\right]=+\infty$ we say x is null recurrent, and there exists no invariant probability for the chain.

Invariant measures of more general chains :remarks

Note that the irreducibility assumption is easy to relax : the chain restricted to the recurrent class of x is irreducible, thus the theorem implies there is a unique invariant measure charging the states in the class of x which attributes mass 1 to x, and it is ν_{x}. If x is positive recurrent, there is a unique (extreme) invariant probability charging only states in the class of x. If x is null recurrent, there is no invariant probability charging states in the class of x.
When there are several positive recurrent classes, then any invariant probability is a convex combination of these extreme invariant probabilities.
On the other hand, if there is only one positive recurrent class, then again there exists a unique invariant probability, $\pi=\nu_{x} / \mathbb{E}_{x}\left[T_{x}^{+}\right]$.

By definition of T_{x}^{+}, there is exactly one visit to x between 0 and $T_{x}^{+}-1$, thus $\nu_{x}(x)=1$. For any $n \in \mathbb{N}, \nu_{x}(y) P^{n}(y, x) \leq \nu_{x}(x)$ therefore $\nu_{x}(y)<\infty$ and so ν_{x} is indeed a nonnegative measure. Now

$$
\begin{aligned}
\nu_{x} P(y) & =\sum_{z \in E} \nu_{x}(z) P(z, y) \\
& =\sum_{z \in E} \mathbb{E}_{x}\left[\sum_{k=0}^{\infty} \mathbb{1}_{\left\{k<T_{x}^{+}\right\}} \mathbb{1}_{\left\{X_{k}=z\right\}}\right] P(z, y) \\
& =\mathbb{E}_{x}\left[\sum_{k=0}^{\infty} \mathbb{1}_{\left\{k<T_{x}^{+}\right\}} \sum_{z \in E} \mathbb{1}_{\left\{X_{k}=z\right\}} P(z, y)\right]
\end{aligned}
$$

where the interchange of summation comes from Fubini-Tonelli

Hence

$$
\begin{aligned}
\nu_{x} P(y) & =\sum_{z \in E} \nu_{x}(z) P(z, y) \\
& =\mathbb{E}_{x}\left[\sum_{k=0}^{\infty} \mathbb{1}_{\left\{k<T_{x}^{+}\right\}} \sum_{z \in E} \mathbb{1}_{\left\{X_{k}=z\right\}} P\left(X_{k}, y\right)\right] \\
& =\mathbb{E}_{x}[\underbrace{\left.\sum_{k=0}^{\infty} \mathbb{1}_{\left\{k<T_{x}^{+}\right\}} \sum_{z \in E} \mathbb{1}_{\left\{X_{k}=z\right\}} \mathbb{E}\left[\mathbb{1}_{\left\{X_{k+1}=y\right\}} \mid \mathcal{F}_{k}\right]\right]}_{\mathcal{F}_{k}-\text { measurable }}]
\end{aligned}
$$

where $\mathbb{E}\left[\mathbb{1}_{\left\{X_{k+1}=y\right\}} \mid \mathcal{F}_{k}\right]=P\left(X_{k}, y\right)$ comes from the Markov property at time k, and the above-mentioned measurability follows from the fact that T_{x}^{+}is a stopping time.

Thus

$$
\begin{aligned}
\nu_{x} P(y) & =\sum_{z \in E} \nu_{x}(z) P(z, y) \\
& =\mathbb{E}_{x}\left[\sum_{k=0}^{\infty} \mathbb{1}_{\left\{k<T_{x}^{+}\right\}} \sum_{z \in E} \mathbb{1}_{\left\{X_{k}=z\right\}} P\left(X_{k}, y\right)\right] \\
& =\mathbb{E}_{x}[\underbrace{\sum_{k=0}^{\infty} \mathbb{1}_{\left\{k<T_{x}^{+}\right\}} \sum_{z \in E} \mathbb{1}_{\left\{X_{k}=z\right\}}}_{\mathcal{F}_{k}-\text { measurable }} \mathbb{E}\left[\mathbb{1}_{\left\{X_{k+1}=y\right\}} \mid \mathcal{F}_{k}\right]] \\
& =\mathbb{E}_{x}\left[\sum_{k=0}^{\infty} \mathbb{1}_{\left\{k<T_{x}^{+}\right\}} \mathbb{1}_{\left\{X_{k+1}=y\right\}}\right]
\end{aligned}
$$

where we used $\sum_{z \in E} \mathbb{1}_{\left\{X_{k}=z\right\}}=1$ and the definition of conditional expectation.

Finally

$$
\begin{aligned}
\nu_{x} P(y) & =\sum_{z \in E} \nu_{x}(z) P(z, y) \\
& =\mathbb{E}_{x}\left[\sum_{k=0}^{\infty} \mathbb{1}_{\left\{k<T_{x}^{+}\right\}} \mathbb{1}_{\left\{X_{k+1}=y\right\}}\right] \\
& =\mathbb{E}_{x}\left[\sum_{k^{\prime}=1}^{T_{x}^{+}} \mathbb{1}_{\left\{X_{k^{\prime}}=y\right\}}\right]=\nu_{x}(y)
\end{aligned}
$$

where we set $k^{\prime}=k+1$ for obtaining the before-to-last equality.
To obtain the last we used that at both times 0 and T_{x}^{+}, the chain is at x so that whatever $y \in E$,
$\sum_{k=0}^{T_{\times}^{+}-1} \mathbb{1}_{\left\{X_{k}=y\right\}}=\sum_{k^{\prime}=1}^{T_{X}^{+}} \mathbb{1}_{\left\{X_{k^{\prime}}=y\right\}}$.

Proof of theorem

We have established that ν_{x} indeed is an invariant measure attributing mass 1 to state x. It is also obvious that $\nu_{x}(E)=\sum_{y \in E} \nu_{x}(y)=\mathbb{E}_{x}\left[T_{x}^{+}\right]$.
Before turning to proving unicity of such invariant measure, we establish

Lemma

Assume μ is an invariant, non-zero measure of X. Then for any $y \in E, \mu(y)>0$.

Since μ is non-zero there must exist $x \in E$ such that $\mu(x)>0$. For any $n \in \mathbb{N}, \mu(y)=\mu P^{n}(y) \geq \mu(x) P^{n}(x, y)$, so the claim follows from the irreducibility assumption.

It remains to prove unicity of an invariant measure which assigns mass 1 to x. Let λ be such a measure. Since λ is invariant and $\lambda(x)=1$, we have

$$
\begin{aligned}
\lambda(y) & =\lambda P(y) \\
& =P(x, y)+\sum_{z_{1} \neq x} \lambda\left(z_{1}\right) P\left(z_{1}, y\right) \\
& =P(x, y)+\sum_{z_{1} \neq x} \lambda P\left(z_{1}\right) P\left(z_{1}, y\right) \\
& =P(x, y)+\sum_{z_{1} \neq x} P\left(x, z_{1}\right) P\left(z_{1}, y\right)+\sum_{z_{1}, z_{2} \neq x} \lambda\left(z_{2}\right) P\left(z_{2}, z_{1}\right) P\left(z_{1}, y\right)
\end{aligned}
$$

Proof of theorem, unicity

Iterating

$$
\begin{aligned}
\lambda(y)= & \lambda P(y) \\
= & P(x, y)+\sum_{z_{1} \neq x} P\left(x, z_{1}\right) P\left(z_{1}, y\right)+\sum_{z_{1}, z_{2} \neq x} \lambda\left(z_{2}\right) P\left(z_{2}, z_{1}\right) P\left(z_{1}, y\right) \\
= & P(x, y)+\sum_{z_{1} \neq x} P\left(x, z_{1}\right) P\left(z_{1}, y\right)+\cdots+ \\
& +\sum_{z_{1}, \ldots, z_{n-1} \neq x} P\left(x, z_{n-1}\right) P\left(z_{n-1}, z_{n-2}\right) \ldots P\left(z_{2}, z_{1}\right) P\left(z_{1}, y\right) \\
& +\sum_{z_{1}, \ldots, z_{n} \neq x} \lambda\left(z_{n}\right) P\left(z_{n}, z_{n-1}\right) \ldots P\left(z_{2}, z_{1}\right) P\left(z_{1}, y\right)
\end{aligned}
$$

Proof of theorem, unicity

The last term in the sum being nonnegative, we have for any n,

$$
\begin{aligned}
\lambda(y) \geq & P(x, y)+\sum_{z_{1} \neq x} P\left(x, z_{1}\right) P\left(z_{1}, y\right)+\cdots+ \\
& +\sum_{z_{1}, \ldots, z_{n-1} \neq x} P\left(x, z_{n-1}\right) P\left(z_{n-1}, z_{n-2}\right) \ldots P\left(z_{2}, z_{1}\right) P\left(z_{1}, y\right) \\
\geq & \mathbb{P}_{x}\left(X_{1}=y\right)+\mathbb{P}_{x}\left(T_{x}^{+} \geq 2, x_{2}=y\right)+\cdots+ \\
& \mathbb{P}_{x}\left(T_{x}^{+} \geq n, X_{n}=y\right)
\end{aligned}
$$

which, by MCT, converges to $\nu_{x}(y)$ when $n \rightarrow \infty$.

We have established that if λ is invariant with $\lambda(x)=1$ then $\lambda \geq \nu_{x}$.
This implies $\mu=\lambda-\nu_{x}$ is also a (nonnegative) invariant measure. Since $\mu(x)=0$, by the lemma it has to be the zero measure, and we conclude that $\lambda=\nu_{x}$, as required.

The recurrence assumption is crucial in the theorem. Simple, asymmetric random walk on \mathbb{Z} has in fact infinitely many invariant measures charging the origin with mass one. Indeed for any $\alpha \in[0,1]$, the measure λ_{α} such that

$$
\lambda(x)=\alpha+(1-\alpha)\left(\frac{p}{1-p}\right)^{x}, x \in \mathbb{Z}
$$

is invariant, and such that $\lambda(0)=1$.

Transient chain : no invariant probability

Theorem

Assume X is irreducible, transient. Then X possesses no invariant probability.

By contradiction assume there exists π a probability invariant for X. Pick $x_{0} \in E$ such that $\pi\left(x_{0}\right)>0$. There must exists a finite $A \subset E$ such that $\pi(A) \geq 1-\pi\left(x_{0}\right) / 3$. We claim that for any $x, y \in E, P^{n}(x, y) \rightarrow 0$ as $n \rightarrow \infty$. Indeed transience implies $\sum_{n \geq 0} P^{n}(x, y) \leq \sum_{n \geq 0} P^{n}(y, y)<\infty$. Hence, since A is finite, there exists n_{0} such that for any $x \in A, P^{n_{0}}\left(x, x_{0}\right) \leq \pi\left(x_{0}\right) / 3$. Now

$$
\pi\left(x_{0}\right)=\pi P^{n_{0}}\left(x_{0}\right) \leq \pi\left(A^{c}\right)+\sum_{x \in A} \pi(x) P^{n}\left(x, x_{0}\right) \leq 2 \pi\left(x_{0}\right) / 3
$$

a contradiction.

