
Ergodic theorem for Markov chains

Theorem

(i) Assume X is Markov(λ,P), irreducible,

∀x ∈ E ,

∑n−1
k=0 1{Xk=x}

n

Pλ−a.s−→
n→∞

1

Ex [T+
x ]
.

(ii) Assume in addition that X is recurrent and that ν is a
nondegenerate invariant measure for the chain. If
f : E → R, g : E → R∗+ are such that∑

x∈E |f (x)|ν(x) <∞,
∑

x∈E g(x)ν(x) <∞, then∑n−1
k=0 f (Xk)∑n−1
k=0 g(Xk)

Pλ−a.s−→
n→∞

∑
x∈E f (x)ν(x)∑
x∈E g(x)ν(x)

.
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Ergodic theorem for Markov chains

Corollary

Assume X is Markov(λ,P), irreducible, positive recurrent, with
invariant probability π, and assume f : E → R is such that∑

x∈E |f (x)|π(x) <∞. Then∑n−1
k=0 f (Xk)

n

Pλ−a.s−→
n→∞

∑
x∈E

f (x)π(x).

Proof of the corollary : Simply apply (ii) of the theorem with
g ≡ 1 : we have indeed

∑n−1
k=0 g(Xk) = n, while∑

x∈E g(x)π(x) = 1 because π is a probability.
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Preliminary considerations

When the chain is positive recurrent, (ii) implies (i) : simply take
g ≡ 1, f = 1{x}.
When the chain is transient, Ex [T+

x ] =∞ and Pλ-a.s., Vx <∞,
thus

1

n

n−1∑
k=0

1{Xk=x} ≤
1

n
Vx

Pλ−a.s−→
n→∞

0 =
1

Ex [T+
x ]
.

As for the null recurrent case, we shall prove (i) and (ii) in the
same argument, later on.
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Proof of ergodic theorem (ii)

First observe that if we can prove the assertion under Px for any
x ∈ E , the general result follows for λ =

∑
x∈E λ(x)δx . Also, even

if it means writing f = f + − f −, we may assume f : E → R+.
From now on, we therefore fix some x ∈ E and work under Px , and
assume f takes nonnegative values.
Because the chain is irreducible recurrent, by 1.3, the invariant
measure ν of the statement has to be a multiple of the measure νx
defined in that section : there exists α > 0 such that ν = ανx (in
fact since νx(x) = 1 it must be that α = ν(x), but this is
irrelevant for the rest of our proof).
Let T0 = 0,T1 = T+

x , . . .Tr+1 = inf{n > Tr : Xn = x}, . . . denote
the sucessive returns at x , and for any r ≥ 0,
er+1 := (XTr , ...,XTr+1−1) the rth excursion away from x . By
strong Markov (er , r ≥ 1) forms a sequence of i.i.d random
variables.
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Proof of ergodic theorem (ii)

Let Zr (f ) :=
∑Tr−1

k=Tr−1
f (Xk) (it is called an additive functionnal of

er ), it follows that (Zr (f ), r ≥ 1) are also i.i.d. Observe that

E[Z1(f )] =
∑
y∈E

νx(y)f (y) = α−1
∑
y∈E

ν(y)f (y) <∞

so the strong law of large numbers implies

1

N

N∑
r=1

Zr (f )
Pλ−a.s−→
n→∞

α−1
∑
y∈E

ν(y)f (y).
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Proof of ergodic theorem (ii)

Let r(n) be such that Tr(n) ≤ n < Tr(n)+1. Because x is recurrent
it must be that r(n)→∞ a.s. as n→∞.
Now, since we assumed f to be nonnegative, we have∑r(n)

i=1 Zi (f )

r(n)
≤

∑n−1
k=0 f (Xk)

r(n)
≤

∑r(n)+1
i=1 Zi (f )

r(n)
.

Since r(n)→ +∞, both LHS and RHS tend to
α−1

∑
y∈E ν(y)f (y), so does the middle term. By performing the

exact same reasoning with g , the desired result follows.
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Proof of ergodic theorem (i) : the null recurrent case

Assume x is null recurrent. We have proven, only assuming
recurrence, that ∑n−1

k=0 f (Xk)

r(n)
→ α−1

∑
y∈E

ν(y)f (y).

On the other hand we have a.s.

Tr(n)

r(n)
→ Ex [T+

x ] = +∞,

and also
Tr(n)+1

r(n) → +∞ a.s, because r(n)→∞. Since

Tr(n)

r(n)
≤ n

r(n)
≤

Tr(n)+1

r(n)
,

it follows that n
r(n) → +∞ a.s. Thus∑n−1

k=0 f (Xk)

n
=

∑n−1
k=0 f (Xk)

r(n)

r(n)

n

Pλ−a.s−→
n→∞

0 =
1

Ex [T+
x ]
.
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Aperiodicity (exercise 11)

Definition

Let T(x) := {n ∈ N∗ : Pn(x , x) > 0}, and d(x) = gcd(T(x))

Lemma

If x ↔ y, then d(x) = d(y).

Proof : exercice 11.

Definition

Assume X is irreducible. If for some (hence all) x ∈ E one has
d(x) = 1 the chain is called aperiodic. If for some (hence all)
x ∈ E one has d(x) = d ≥ 2 the chain is called d-periodic.
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Aperiodicity (exercise 11)

Lemma

Assume X irreducible, aperiodic. For any x , y there exists
n0(x , y) ∈ N such that

∀n ≥ n0(x , y) Pn(x , y) > 0

Proof : When x = y , gcd([|1,m|] ∩ T(x)) decreases with n and
tends to 1 so it eventually reaches value 1, at m0, say. Write
{k1, ..., kr} := gcd([|1,m|] ∩ T(x)), by Bezout there exists
(`1, ..., `r ) ∈ Z such that

∑r
i=1 `iki = 1.

With n0(x , x) = k1
∑r

i=1 |`i |ki , any n ≥ n0(x , x) can be written

n = k1

r∑
i=1

|`i |ki + k1a + b
r∑

i=1

`iki ,

with
∑r

i=1 |`i |k + a the quotient of Euclidian division of n by k1
and 0 ≤ b < k1, its remainder of Euclidian division of n by k1.
This proves the lemma for x = y .
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For x 6= y , by irreducibility there exists n1 = n1(x , y) ∈ N such
that Pn1(x , y) > 0 and it suffices to take n0(x , y) = n1 + n0(x , x),
so we are done with the proof of the lemma.
In the particular case when E is finite,
N0 := max{n0(x , y), (x , y) ∈ E} is finite. Then

∀n ≥ N0, ∀(x , y) ∈ E 2, Pn(x , y) > 0,

in other words, every entry of the matrix Pn is positive.
When this property is satisfied, we say the chain is strongly
irreducible. We have proven

Corollary

If E finite and X is irreducible aperiodic, then it is strongly
irreducible.
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d-periodic chain (exercise 12)

Theorem

Assume X is irreducible, d-periodic for some d ≥ 2. Then there
exists a partition of E into d classes C0, ...,Cd−1 such that for any
r ∈ [|0, r − 1|], (Xdk+r , k ≥ 0) is an irreducible aperiodic chain
with state space Cr .

Proof : exercise 12.
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Convergence theorem

Theorem

Assume X is irreducible, aperiodic, positive recurrent, and let π
denote the unique invariant probability of X , and λ any starting
distribution. Then

∀x ∈ E Pλ(Xn = x) −→
n→∞

π(x).

In other words, Xn converges in law towards X∞ ∼ π.
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Proof of convergence theorem : preliminaries

In the case when E is finite, there are direct and easier proofs
(using Perron-Froebenius theorem) than the Doeblin’s proof we are
going to present.
More generally, if the operator P possesses a spectral gap (it is
automatically the case under the assumptions of the theorem when
E is finite), not only do we have convergence, but in that case the
convergence is exponentially fast. We’ll come back to this when
speaking of mixing times.
Doeblin’s proof, on the other hand, relies on a coupling argument :
when coupling occurs, the chain has reached equilibrium. The
proof is general enough that it can not give any additional
information on the speed at which this coupling occurs. Before
getting into the proof, we shall digress and precise what we mean
by coupling.

Long term behaviour of Markov chains



Coupling

Definition

Assume µ and ν are two probability distributions. A coupling of µ
and ν is any couple of random variables (X ,Y ) such that X ∼ µ
and Y ∼ ν.

For example, a coupling of Pλ1 ,Pλ2 (we’ll also say a coupling of
Markov chains started at λ1, λ2) is any pair of chains (X ,Y ) such
that X is Markov (λ1,P) and Y is Markov (λ2,P). If (X ,Y )
remains itself Markov we speak of a Markovian coupling.
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Coupling of Markov chains

Recall we can use a mapping representation for the chain X , so
that for some application φ : E × [0, 1]→ E and (Un, n ≥ 0) i.i.d
∼ Unif[0, 1], one has Xn+1 = φ(Xn,Un). Introducing (Vn, n ≥ 0)
i.d. and independent of (Un, n ≥ 0) allows to define very natural
Markovian couplings : X0 ∼ λ1,Y0 ∼ λ2, and

independent coupling :

Xn+1 = φ(Xn,Un), Yn+1 = φ(Yn,Vn)

independent/coalescing coupling :

Xn+1 = φ(Xn,Un), Yn+1 =

{
φ(Yn,Vn) if Xn 6= Yn

φ(Yn,Un) if Xn = Yn

.

free coupling

Xn+1 = φ(Xn,Un), Yn+1 = φ(Yn,Un)
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Coupling of Markov chains

The last two (independent/coalescent, free) are coalescent
couplings, meaning that when the trajectories meet, from then on
they remain together :

Xn = Yn ⇒ Xn+1 = Yn+1

In general, independent coupling is not coalescing. However, as
Doeblin observed, it has many interesting properties. First, the
kernel Q of (X ,Y ) on E × E and its powers are easy to write
down :

Qn((x , y), (x ′, y ′)) = Pn(x , x ′)Pn(y , y ′) ∀n ∈ N.

Hence, if X is irreducible aperiodic, so is the independent coupling
(X ,Y ). Indeed by the lemma on aperiodicity, for any
n ≥ max(n0(x , x ′), n0(y , y ′)), Qn((x , y), (x ′, y ′)) > 0.
Moreover if π is an invariant probability for X , then π ⊗ π is an
invariant probability for (X ,Y ). Thus if X is irreducible, aperiodic,
positive recurrent, so is (X ,Y ).
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Doeblin’s proof of convergence theorem

Recall X is assumed irreducible, aperiodic, positive recurrent.
Consider the independent coupling (X ,Y ) and the
independent/coalescing coupling (X ,Z ) with X started at λ and Y
and Z both started at π. Let

T = inf{n ≥ 0 : Xn = Yn} = inf{n ≥ 0 : Xn = Zn}.

Now T is the hitting time of any point of the diagonal, so it is less
than T(x ,x) for some x ∈ E . It follows, by positive recurrence of
(X ,Y ), that E[T ] ≤ E[T(x ,x)] <∞, in particular this implies that
T <∞ a.s.
Then for any y ∈ E ,

|P(Xn = y)− π(y)| = |P(Xn = y)− P(Zn = y)| ≤ P(T > n)→ 0,

and we are done.
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