
Reminder

Assume X is Markov (λ,P), and (Fn)n≥0 its natural filtration.
Recall that by the Markov property at time n, the conditional
distribution of Xn+1 given Fn is P(Xn, ·). Thus, for f : E → R
bounded or satisfying some intergrability conditions, we have

E[f (Xn+1) | Fn] =
∑
y∈E

P(Xn, y)f (y)

= Pf (Xn)
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Martingale problem for a Markov chain

Theorem (2.1)

TFAAE :

(i) X is Markov with kernel P.

(ii) For any f : E → R bounded, if

M f
n := f (Xn)− f (X0)−

n−1∑
k=0

(P − Id)f (Xk),

then (M f
n )n≥0 is a (Fn)-martingale.

Of course (ii) above can be generalized to any unbounded function
f such that M f

n remains integrable.
Note that the converse part in the theorem implies that knowing
the distribution of X0 and that all processes M f are martingales is
enough to fully determine the law of X .
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Martingale problem for a Markov chain

If X is Markov with kernel P, f : E → R bounded, it is clear that
for all n, M f

n is Fn-measurable, integrable, and

E[M f
n+1 | Fn]

= E[f (Xn+1 | Fn]− f (X0)−
n∑

k=0

(P − Id)f (Xk)

using that f (X0) +
∑n−1

k=0(P − Id)f (Xk) is Fn-measurable. By the
above computation E[f (Xn+1 | Fn] = Pf (Xn), whence

E[M f
n+1 | Fn] = Pf (Xn)− f (X0)−

n∑
k=0

(P − Id)f (Xk)

The nth term in the sum if Pf (Xn)− f (Xn), yielding the desired
result.
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Martingale problem for a Markov chain

Assume now that for any f : E → R bounded, M f is a
(Fn)-martingale. With f = 1{y} we find that

P[Xn+1 = y | Fn] = P(Xn, y),

in particular

P(Xn+1 = y | X0 = x0, ...,Xn = xn) = P(xn, y),

hence X is indeed Markov with kernel P.
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Conditions for f (n,Xn) to be a martingale

Theorem (2.2)

Assume f : N× E → R is such that f (n,Xn) is integrable for any
n ∈ N, and satisfies Pf (n + 1, x) = f (n, x) for any n ∈ N, x ∈ E .
Then (f (n,Xn))n∈N is a (Fn)-martingale.

Proof : E[f (n + 1,Xn+1) | Fn] = Pf (n + 1,Xn) = f (n,Xn)

Corollary (2.2.1)

Assume that fλ is an eigenfunction of P associated with eigenvalue
λ ∈ C∗, i.e. Pfλ = λfλ, and that fλ(Xn) is integrable. Then(
fλ(Xn)
λn

)
n∈N

is a (Fn)-martingale.

In particular, if f is P-harmonic, that is Pf = f , then (f (Xn))n≥0 is
a (Fn)-martingale.
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Application : Martingales of SRW (exercise II.3)

We have Pf (x) = pf (x + 1) + (1− p)f (x − 1).
In particular PId(x) = x + (2p − 1).
It follows from Theorem (2.1) (or rather its generalization to
unbounded functions) that (Sn − n(2p − 1))n∈N is a
(Fn)-martingale.
In the symmetric case, this martingale can be used to recover
gambler’s ruin probabilities.
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Application : Martingales of SRW (exercise II.3)

Let us compute

E[(Sn+1 − (n + 1)(2p − 1))2 | Fn]

= p(Sn + 1− (n + 1)(2p − 1))2 + (1− p)(Sn − 1− (n + 1)(2p − 1))2

= p(Sn − n(2p − 1) + 2(1− p))2 + (1− p)(Sn − n(2p − 1)− 2p)2

= (Sn − n(2p − 1))2 + 4(1− p)p(Sn − n(2p − 1))

−4p(1− p)(Sn − n(2p − 1)) + 4p(1− p)2 + 4p2(1− p)

= (Sn − n(2p − 1))2 + 4p(1− p).

It follows from Theorem (2.2) that(
(Sn − n(2p − 1))2 − 4np(1− p)

)
n∈N is a (Fn)-martingale.

In the symmetric case, this martingale can be used to compute the
expected time of play in gambler’s ruin.
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Application : Exponential martingales of SRW (exercise
II.3)

For f (x) = exp(αx) we find

Pf (x) = (p exp(α) + (1− p) exp(−α))f (x),

that is, such f is an eigenfunction of P associated with eigenvalue
λ = peα + (1− p)e−α. It follows from Corollary (2.2.1) that for
any α ∈ R, (

exp(αSn)

(peα + (1− p)e−α)n

)
n∈N

is a (Fn)-martingale (it is refered to as an exponential martingale
of the SRW).

Note that λ spans values [2
√

p
(1−p) ,+∞). Now α0 = log

(
1−p
p

)
corresponds to λ0 = p 1−p

p + (1− p) p
1−p = 1, so that exp(α0·) is

P-harmonic and
(
1−p
p

)Sn
is a (Fn)-martingale. This last

martingale can be used to recover gambler’s ruin probabilities in
the asymmetric case.
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Martingales of Galton-Watson process (exercise II.5)

Assume that if ξ has the offspring distribution, then E[ξ] = m, and
that ζ is a minimal fixed point of the moment generating function
of ξ (as we’ve seen previously, ζ also is the probability of extinction
for the process started with a single one).
Then

(
Zn
mn

)
n≥0, (ζZn)n≥0 are both (Fn)-martingales.

Note however, that this particular case rather shows a limitation of
the general method. Indeed , it is here much easier to make direct
proofs using Zn+1 =

∑Zn
k=1 ξn,k and computing the conditional

expectations, rather than trying to express the kernel of Z , which
in general does not have a nice expression.
Similar considerations hold for the Wright-Fisher model (see
exercise II.6).
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Stopped versions

As we will see in the next paragraph, when X is irreducible on E
finite, the only P-harmonic functions are the constants. So long for
deducing useful martingales. Thankfully, we have the following
result

Theorem (2.3)

Let D ( E , T := inf{n ≥ 0 : Xn ∈ Dc}, and assume f : E → R is
such that f (Xn∧T ) is integrable for any n ≥ 0 and that for some
α ∈ R∗, Pf (x) = αf (x)∀x ∈ D, Then(

f (Xn∧T )

αn∧T

)
n≥0

is a (Fn)-martingale.
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Stopped versions : proof

Variables 1{T>n},
XT

αT 1{T≤n} are both Fn-measurable because T is
a stopping time. Also Xn ∈ D on {T > n} so
Pf (Xn)1{T>n} = αf (Xn)1{T>n}. It follows

E
[
f (X(n+1)∧T )

α(n+1)∧T | Fn

]
= E

[
f (Xn+1)

αn+1
1{T>n} | Fn

]
+

f (XT )

αT
1{T≤n}

=
Pf (Xn)1{T>n}

αn+1
+

f (XT )

αT
1{T≤n}

=
f (Xn)

αn
1{T>n} +

f (XT )

αT
1{T≤n} =

f (Xn∧T )

αn∧T ,

and we are done.

Martingales associated with a Markov chain



A solution to Pf = f on D, f ≡ φ on Dc is called a solution to the
Dirichlet problem with boudary condition φ. As we shall see in
next section, under irreducibility assumptions such solution exists
and is unique.
Now Theorem (2.3) ensures that if f is f solves such Dirichlet
problem, then (f (Xn∧T ))n≥0 is a martingale. If T <∞ a.s. and
Doob’s optional stopping theorem applies (e.g. if f remains
bounded, which will be the case if φ is itself bounded on
∂D = {y ∈ Dc : ∃x ∈ DP(x , y) > 0}), this ensures that for any
x ∈ D,

f (x) = Ex [φ(XT )].

For example, if for some y0 ∈ ∂D we set φ = 1y0 , then we can
compute the probability to exit D through y0 starting at any x ∈ D
by solving the corresponding Dirichlet problem (and in fact, this is
exactly what we did to compute gambler’s ruin probabilities).
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