Potentials

Assume X is Markov with state space E and kernel P, D C E and
T :=inf{n>0:X, € D}. For g: D — R, a cost function and
¢ : D¢ — R, a boundary condition, define the potential

u: E— TR, by
T-1
u(x) =B | > &(Xi) + d(XT)U{Tcoe} | > x € E.
k=0

Remark : It is actually enough to define ¢ only on
OD ={y e D°:3x e D P(x,y) > 0}
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Equation satisfied by a potential

Theorem (2.4)
(i) Potential u satisfies

_ JPu(x)+g(x) ifxeD
(Ego)  ul) = {¢(x) ifx € D¢

(i) If T < oo Py-a.s., (Eg,4) possesses at most one nonnegative
solution bounded on D.

(iii) u is the nonnegative minimal solution of (Egz 4) .

Combining (ii) and (iii) above shows that when T < oo, Py-a.s.,
either u is bounded and it is the unique nonnegative minimal
solution of (Eg,¢), either it is not, and there exists no such solution.
On the other hand when 3x € D : P, (T = c0) > 0, we may have
several nonnegative bounded solutions of (E, ). Think, e.g. of
g=0onD,and =1 on D°. Then u(x) =Py(T < =), but

v =1 on F is also solution to (F,
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Equation satisfied by a potential

Note that potentials and equation (Eg 4) depend linearly on g, ¢.
More precisely, if g = a181 + a2g2, ® = @101 + azpr, then

u = aiuy + apus (where uj is the potential associated with gj, ¢;).
Also v = ayvi + asw solves (Eg ) provided v; solves (Eg, ¢,).
This allows to relax the assumption of nonnegativity of g, ¢ : a
potential associated with general g, ¢ simply is defined as the
difference between the potential associated with the positive parts

of g, ¢ and the potential associated with the negative parts.
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Proof of Theorem (2.4) (i)

If x € D¢, then T =0 and it is obvious that u(x) = ¢(x).
Otherwise x € D so T > 1, and applying Markov at time 1 leads to

-1
u(x) = g(x)+ > PO,Y)Ex | Y 8(Xk) + ¢(XT)L{Teoey | Xa =y
y€eE Lk=1
[T—1
= g(x)+ > Ply)E, | > g(Xe) + ¢(XT)| |
y€eE L k=0

= g(x) + Pu(x)
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Proof of Theorem (2.4) (ii), (iii)

Assume v is a nonnegative solution of (Eg4). Then, for xo € D,

vix) = > glo)+ola)+-+

x1€D¢

+ Z [g(XO) +ot g(Xn—l) + (b(xn)]

X1,.-5Xn—1€D,xp€DC

+ > lgla) -+ g(xa1) + v(x)]

X1,..0sXn €D
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Thus

T-1
v(ixo) = Ex [ g(Xk) + o(X7) | Lyr<ny| +
k=
n—1
+Ex g(Xi) + v(Xn) | Lirsnm
k=0

The first term above converges to u(xp) as n — oo by MCT. When
v bounded on D and T < oo P,;-a.s, the second goes to 0 as

n — oo by DCT, yielding (ii).

In any case the second term is always nonnegative, yielding

v(xo) > u(xo) and (iii).
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Dirichlet problem : a sufficient condition for existence and
unicity

Corollary (2.4.1)

Assume D C E, X irreducible, recurrent, g =0 and ¢ bounded on
OD. Then u is the unique bounded solution to the Dirichlet
problem with boundary condition ¢.

With the assumption on g, ¢, it is clear that for any

x € D, u(x) < max,cpp ¢(y), so that u is bounded on D.

If X is assumed irreducible, recurrent, then for any x € D,y € D€,
T, < 00, Py-as., and thus T < oo, Py-a.s. By Theorem 2.4(ii) we
deduce that v is the unique bounded solution to (Eg ).
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Dirichlet problem : remarks

When D = E, by looking at the time-reversed chain (see exercises
11 and 12), one can prove that if X is irreducible, recurrent, the
only harmonic functions on the whole of D are the constants.

On the other hand, as we have seen with the example of
asymmetric SRW on Z, these results do not hold anymore for a
transient chain. Assume for example that p > 1/2, and take e.g.
D = N*, ¢(0) =1, then for any « € [0, 1], the function u, such
that

Uo(x) = a (1;”>X+(1 _a)xeN

is bounded, and does satisfy v = Pu on D.
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Sufficient condition for existence and unicity of bounded
solution to (E. )

Corollary (2.4.2)

Assume D finite, ¢ bounded, and X irreducible. Then u is the
unique bounded solution to (Egz 4).

Proof : Fix y € D€. Since X irreducible, for any x € D, there
exists n(x) such that P"*) =: p, > 0. Since D is finite,
lem(n(x),x € D) =: N is finite, and

p = inf{p(x)V/") x € D} > 0. But then T < T, < NG, with
G ~ Geom(p), and therefore maxycp Ex[T] < co. In particular
assumptions of Theorem 2.4 (ii) is satisfied, by Theorem 2.4 we
only have to show that u is bounded. Now

lelloo < Ilglloe <maxEx[T1) T 16lloe < 0.
xeD

Potentials associated with a Markov chain



The case ¢ =0, D = E and Green functions

When ¢ =0, D = E, and for some y € E, g = Iy, then v =u,
is related to the Green function

Glx.y)=uy(x) = Ex D> Tix—y

n>0

= D P(xy)
n>0
Clearly G(x,y) = +o0 iff x — y and y is recurrent.
Otherwise, by strong Markov at successive returns at y, the total
numbers of visits at y is 0 with probability P, (T, = c0), otherwise

it is geometrically distributed with parameter ]P’y(T;r = 00). Thus
Py (T,

G(x,y) = %-

Finally, for ¢ =0, D = E, and general g, by superposition we find

that
u(x) =Y Glx,y)g(y).

y€E
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The case ¢ = 0 and Green functions

This can be easily extended to D C E :

T-1
P (T, < T)

Gp(x,y) = E, Lix—p| = FL—%
;) o= Py(T < T))

and for general g,

u(x) = Go(x,y)g(y)-

yeD
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Discounted costs

Let g : E — R, be bounded, o € (0,1). Then u: E — R such
that u(x) = Ex [ano a”g(Xn)] is the unique bounded solution to

the equation (x) u= aPu+g.

Proof : The fact that u solves (x) comes from applying Markov at
time 1 as in the previous proof. Moreover, if g bounded, so is u
because ||ul|co < % Finally if v is bounded and solves (*) then
w = v — u is bounded and satisfies w = aPw. But as P is
contractive, it must be that ||w||o < a||w||s, forcing w =0, as
required.
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Resolvent

What we just explained can be rewritten as follows : |||P||| < 1 so
[||aP]||| < 1 and thus Id — «P is inversible. This guarantees the
solution to

u=aPu+g < (Ild—aPu=g

is given by
u= Za”P” g =(ld—aP) g
n>0
The operator R, 1= ano o P" is called the resolvent.
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