Assume X is Markov with state space E and kernel $P, D \subset E$ and $T:=\inf \left\{n \geq 0: X_{n} \in D^{c}\right\}$. For $g: D \rightarrow \mathbb{R}_{+}$a cost function and $\phi: D^{c} \rightarrow \mathbb{R}_{+}$a boundary condition, define the potential $u: E \rightarrow \overline{\mathbb{R}_{+}}$by

$$
u(x):=\mathbb{E}_{x}\left[\sum_{k=0}^{T-1} g\left(X_{k}\right)+\phi\left(X_{T}\right) \mathbb{1}_{\{T<\infty\}}\right], x \in E
$$

Remark: It is actually enough to define ϕ only on $\partial D=\left\{y \in D^{c}: \exists x \in D P(x, y)>0\right\}$

Equation satisfied by a potential

Theorem (2.4)

(i) Potential u satisfies

$$
\left(E_{g, \phi}\right) \quad u(x)=\left\{\begin{array}{ll}
P u(x)+g(x) & \text { if } x \in D \\
\phi(x) & \text { if } x \in D^{c}
\end{array} .\right.
$$

(ii) If $T<\infty \mathbb{P}_{x}$-a.s., $\left(E_{g, \phi}\right)$ possesses at most one nonnegative solution bounded on D.
(iii) u is the nonnegative minimal solution of $\left(E_{g, \phi}\right)$.

Combining (ii) and (iii) above shows that when $T<\infty, \mathbb{P}_{x}$-a.s., either u is bounded and it is the unique nonnegative minimal solution of $\left(E_{g, \phi}\right)$, either it is not, and there exists no such solution. On the other hand when $\exists x \in D: \mathbb{P}_{x}(T=\infty)>0$, we may have several nonnegative bounded solutions of $\left(E_{g, \phi}\right)$. Think, e.g. of $g \equiv 0$ on D, and $\phi \equiv 1$ on D^{c}. Then $u(x)=\mathbb{P}_{x}(T<\infty)$, but $v \equiv 1$ on E is also solution to $\left(E_{\sigma,}\right)$.

Equation satisfied by a potential

Note that potentials and equation ($E_{g, \phi}$) depend linearly on g, ϕ. More precisely, if $g=\alpha_{1} g_{1}+\alpha_{2} g_{2}, \phi=\alpha_{1} \phi_{1}+\alpha_{2} \phi_{2}$, then $u=\alpha_{1} u_{1}+\alpha_{2} u_{2}$ (where u_{i} is the potential associated with g_{i}, ϕ_{i}). Also $v=\alpha_{1} v_{1}+\alpha_{2} v_{2}$ solves $\left(E_{g, \phi}\right)$ provided v_{i} solves $\left(E_{g_{i}, \phi_{i}}\right)$. This allows to relax the assumption of nonnegativity of $g, \phi:$ a potential associated with general g, ϕ simply is defined as the difference between the potential associated with the positive parts of g, ϕ and the potential associated with the negative parts.

Proof of Theorem (2.4) (i)

If $x \in D^{c}$, then $T=0$ and it is obvious that $u(x)=\phi(x)$.
Otherwise $x \in D$ so $T \geq 1$, and applying Markov at time 1 leads to

$$
\begin{aligned}
u(x) & =g(x)+\sum_{y \in E} P(x, y) \mathbb{E}_{x}\left[\sum_{k=1}^{T-1} g\left(X_{k}\right)+\phi\left(X_{T}\right) \mathbb{1}_{\{T<\infty\}} \mid X_{1}=y\right] \\
& =g(x)+\sum_{y \in E} P(x, y) \mathbb{E}_{y}\left[\sum_{k=0}^{T-1} g\left(X_{k}\right)+\phi\left(X_{T}\right)\right] \\
& =g(x)+P u(x)
\end{aligned}
$$

Proof of Theorem (2.4) (ii), (iii)

Assume v is a nonnegative solution of $\left(E_{g, \phi}\right)$. Then, for $x_{0} \in D$,

$$
\begin{aligned}
v\left(x_{0}\right)= & \sum_{x_{1} \in D^{c}} g\left(x_{0}\right)+\phi\left(x_{1}\right)+\cdots+ \\
& +\sum_{x_{1}, \ldots, x_{n} \in D, x_{n} \in D^{c}}\left[g\left(x_{0}\right)+\cdots+g\left(x_{n-1}\right)+\phi\left(x_{n}\right)\right] \\
& +\sum_{x_{1}, \ldots, x_{n} \in D}\left[g\left(x_{1}\right)+\cdots+g\left(x_{n-1}\right)+v\left(x_{n}\right)\right]
\end{aligned}
$$

Thus

$$
\begin{aligned}
v\left(x_{0}\right)= & \mathbb{E}_{x}\left[\left[\sum_{k=0}^{T-1} g\left(X_{k}\right)+\phi\left(X_{T}\right)\right] \mathbb{1}_{\{T \leq n\}}\right]+ \\
& +\mathbb{E}_{x}\left[\left[\sum_{k=0}^{n-1} g\left(X_{k}\right)+v\left(X_{n}\right)\right] \mathbb{1}_{\{T>n\}}\right]
\end{aligned}
$$

The first term above converges to $u\left(x_{0}\right)$ as $n \rightarrow \infty$ by MCT. When v bounded on D and $T<\infty \mathbb{P}_{x_{0}}$-a.s, the second goes to 0 as $n \rightarrow \infty$ by DCT, yielding (ii).
In any case the second term is always nonnegative, yielding $v\left(x_{0}\right) \geq u\left(x_{0}\right)$ and (iii).

Dirichlet problem : a sufficient condition for existence and unicity

Corollary (2.4.1)

Assume $D \subsetneq E, X$ irreducible, recurrent, $g \equiv 0$ and ϕ bounded on ∂D. Then u is the unique bounded solution to the Dirichlet problem with boundary condition ϕ.

With the assumption on g, ϕ, it is clear that for any $x \in D, u(x) \leq \max _{y \in \partial D} \phi(y)$, so that u is bounded on D. If X is assumed irreducible, recurrent, then for any $x \in D, y \in D^{c}$, $T_{y}<\infty, \mathbb{P}_{x}$-a.s., and thus $T<\infty, \mathbb{P}_{x}$-a.s. By Theorem 2.4(ii) we deduce that u is the unique bounded solution to $\left(E_{0, \phi}\right)$.

Dirichlet problem : remarks

When $D=E$, by looking at the time-reversed chain (see exercises 11 and 12), one can prove that if X is irreducible, recurrent, the only harmonic functions on the whole of D are the constants.

On the other hand, as we have seen with the example of asymmetric SRW on \mathbb{Z}, these results do not hold anymore for a transient chain. Assume for example that $p>1 / 2$, and take e.g. $D=\mathbb{N}^{*}, \phi(0)=1$, then for any $\alpha \in[0,1]$, the function u_{α} such that

$$
u_{\alpha}(x)=\alpha\left(\frac{1-p}{p}\right)^{x}+(1-\alpha), x \in \mathbb{N}
$$

is bounded, and does satisfy $u=P u$ on D.

Sufficient condition for existence and unicity of bounded solution to ($E_{c, \phi}$)

Corollary (2.4.2)

Assume D finite, ϕ bounded, and X irreducible. Then u is the unique bounded solution to $\left(E_{g, \phi}\right)$.

Proof: Fix $y \in D^{c}$. Since X irreducible, for any $x \in D$, there exists $n(x)$ such that $P^{n(x)}=: p_{x}>0$. Since D is finite, $\operatorname{lcm}(n(x), x \in D)=: N$ is finite, and $p:=\inf \left\{p(x)^{N / n(x)}, x \in D\right\}>0$. But then $T \leq T_{y} \leq N G$, with $G \sim \operatorname{Geom}(p)$, and therefore $\max _{x \in D} \mathbb{E}_{x}[T]<\infty$. In particular assumptions of Theorem 2.4 (ii) is satisfied, by Theorem 2.4 we only have to show that u is bounded. Now

$$
\|u\|_{\infty} \leq\|g\|_{\infty}\left(\max _{x \in D} \mathbb{E}_{x}[T]\right)+\|\phi\|_{\infty}<\infty
$$

The case $\phi \equiv 0, D=E$ and Green functions

When $\phi \equiv 0, D=E$, and for some $y \in E, g=\mathbb{1}_{\{y\}}$, then $u=u_{y}$ is related to the Green function

$$
\begin{aligned}
G(x, y):=u_{y}(x) & =\mathbb{E}_{x}\left[\sum_{n \geq 0} \mathbb{1}_{\left\{x_{n}=y\right\}}\right] \\
& =\sum_{n \geq 0} P^{n}(x, y)
\end{aligned}
$$

Clearly $G(x, y)=+\infty$ iff $x \rightarrow y$ and y is recurrent.
Otherwise, by strong Markov at successive returns at y, the total numbers of visits at y is 0 with probability $\mathbb{P}_{x}\left(T_{y}=\infty\right)$, otherwise it is geometrically distributed with parameter $\mathbb{P}_{y}\left(T_{y}^{+}=\infty\right)$. Thus $G(x, y)=\frac{\mathbb{P}_{x}\left(T_{y}<\infty\right)}{\mathbb{P}_{y}\left(T_{y}=+\infty\right)}$.
Finally, for $\phi \equiv 0, D=E$, and general g, by superposition we find that

$$
u(x)=\sum_{y \in E} G(x, y) g(y)
$$

The case $\phi \equiv 0$ and Green functions

This can be easily extended to $D \subsetneq E$:

$$
G_{D}(x, y)=\mathbb{E}_{x}\left[\sum_{n=0}^{T-1} \mathbb{1}_{\left\{x_{n}=y\right\}}\right]=\frac{\mathbb{P}_{x}\left(T_{y}<T\right)}{\mathbb{P}_{y}\left(T<T_{y}^{+}\right)}
$$

and for general g,

$$
u(x)=\sum_{y \in D} G_{D}(x, y) g(y)
$$

Discounted costs

Theorem (2.5)

Let $g: E \rightarrow \mathbb{R}_{+}$be bounded, $\alpha \in(0,1)$. Then $u: E \rightarrow \mathbb{R}$ such that $u(x)=\mathbb{E}_{x}\left[\sum_{n \geq 0} \alpha^{n} g\left(X_{n}\right)\right]$ is the unique bounded solution to the equation $(\star) \quad u=\alpha P u+g$.

Proof: The fact that u solves (\star) comes from applying Markov at time 1 as in the previous proof. Moreover, if g bounded, so is u because $\|u\|_{\infty} \leq \frac{\|c\|_{\infty}}{1-\alpha}$. Finally if v is bounded and solves (\star) then $w=v-u$ is bounded and satisfies $w=\alpha P w$. But as P is contractive, it must be that $\|w\|_{\infty} \leq \alpha\|w\|_{\infty}$, forcing $w \equiv 0$, as required.

Resolvent

What we just explained can be rewritten as follows: $\|\mid P\| \| \leq 1$ so $\|\|\alpha P\| \mid<1$ and thus $I d-\alpha P$ is inversible. This guarantees the solution to

$$
u=\alpha P u+g \Leftrightarrow(I d-\alpha P) u=g
$$

is given by

$$
u=\left(\sum_{n \geq 0} \alpha^{n} P^{n}\right) g=(I d-\alpha P)^{-1} g
$$

The operator $R_{\alpha}:=\sum_{n \geq 0} \alpha^{n} P^{n}$ is called the resolvent.

