Recurrence criterion for a reversible chain via effective resistance to infinity (exercise II.19)

Consider $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ infinite countable, locally finite graph, and let $x_{0} \in \mathcal{V}$. Assume $\left(\mathcal{G}_{n}\right)_{n \geq 0}$ is a nondecreasing sequence of finite subgraphs of \mathcal{G} with $\mathcal{G}_{n} \rightarrow \mathcal{G}$. Then, by Rayleigh, $\lim _{n \rightarrow \infty} \mathcal{R}\left(x_{0} \leftrightarrow \mathcal{G}_{n}^{c}\right)$ exists (in $\left.\overline{\mathbb{R}_{+}}\right)$. Since for any n there exist n_{1}, n_{2} such that $\mathcal{G}_{n_{1}} \subset B\left(x_{0}, n\right) \subset \mathcal{G}_{n_{2}}$, again by Rayleigh the above limit does not depend on the choice of $\left(\mathcal{G}_{n}\right)$, we denote it by $\mathcal{R}\left(x_{0} \leftrightarrow \infty\right)$.
Using the theorem of the previous paragraph
$\mathbb{P}_{x_{0}}\left(T_{B\left(x_{0}, n\right)^{c}}<T_{x_{0}}^{+}\right)=\frac{1}{c\left(x_{0}\right) \mathcal{R}\left(x_{0} \leftrightarrow B\left(x_{0}, n\right)^{c}\right)} \underset{n \rightarrow \infty}{\longrightarrow} \frac{1}{c\left(x_{0}\right) \mathcal{R}\left(x_{0} \leftrightarrow \infty\right)}$
Since under $\mathbb{P}_{x_{0}}, T_{B\left(x_{0}, n\right)^{c}} \geq n$, the above LHS goes to $\mathbb{P}\left(T_{x_{0}}^{+}=+\infty\right)$ as $n \rightarrow \infty$, so
Theorem (2.16)

$$
x_{0} \text { recurrent } \Leftrightarrow \mathcal{R}\left(x_{0} \leftrightarrow \infty\right)=+\infty
$$

SRW on $\mathbb{Z}^{d}, d \leq 2$ is recurrent (exercise II.20)

Here \mathcal{G} is the usual lattice graph on \mathbb{Z}^{d}. Let
$\Pi_{k}:=\left\{(x, y) \in \mathcal{E}:\|x\|_{\infty}=k,\|y\|_{\infty}=k+1\right.$, so that, for
$0 \leq k \leq n, \Pi_{k}$ is a cut set between 0 and $B(0, n)^{c}$ (where the distance used for $B(0, n)$ is the infinite norm). By Nash-Williams,

$$
\begin{aligned}
\mathcal{R}\left(0 \leftrightarrow B(0, n)^{c}\right) & \geq \sum_{k=0}^{n} \frac{1}{\sum_{e \in \Pi_{k}} c(e)} \\
& =\sum_{k=0}^{n} \frac{1}{2 d(2 k+1)^{d-1}},
\end{aligned}
$$

and it follows that $\mathcal{R}(0 \leftrightarrow \infty)=+\infty$ for $d \leq 2$.
We conclude that SRW on $\mathbb{Z}^{d}, d=1,2$ is recurrent.

Let θ be the unit flow from 0 to $B(0, n)^{c}$ (where, in this slide, we now use $\|\cdot\|_{1}$ to define $\left.B(0, n)\right)$ such that the incoming and outcoming flow at every node of $S(0, k)$ is $1 / \#(S(0, k))$. The existence of such flow can be proven thanks to an urn model (see exercise 23). Now since $\#(S(0, k)) \sim C_{d} k^{d-1}$, it follows that

$$
E\left(I_{1}\right) \leq E(\theta) \leq \sum_{k=1}^{n} \sum_{e \in S(0, k)} \frac{1}{\#(S(0, k))^{2}} \leq C_{d}^{\prime} \sum_{k=1}^{n} \frac{1}{k^{d-1}}
$$

and we conclude by Thomson that $R(0 \leftrightarrow \infty)<\infty$ when $d \geq 3$. We conclude that SRW is transient on $\mathbb{Z}^{d}, d \geq 3$.

