Recurrence criterion for a reversible chain via effective resistance to infinity (exercise II.19)

Consider $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ infinite countable, locally finite graph, and let $x_0 \in \mathcal{V}$. Assume $(\mathcal{G}_n)_{n \geq 0}$ is a nondecreasing sequence of finite subgraphs of \mathcal{G} with $\mathcal{G}_n \to \mathcal{G}$. Then, by Rayleigh, $\lim_{n\to\infty} \mathcal{R}(x_0 \leftrightarrow \mathcal{G}_n^c)$ exists (in $\overline{\mathbb{R}_+}$). Since for any *n* there exist n_1, n_2 such that $\mathcal{G}_{n_1} \subset B(x_0, n) \subset \mathcal{G}_{n_2}$, again by Rayleigh the above limit does not depend on the choice of (\mathcal{G}_n) , we denote it by $\mathcal{R}(x_0 \leftrightarrow \infty)$.

Using the theorem of the previous paragraph

$$\mathbb{P}_{x_0}(T_{B(x_0,n)^c} < T_{x_0}^+) = \frac{1}{c(x_0)\mathcal{R}(x_0 \leftrightarrow B(x_0,n)^c)} \xrightarrow[n \to \infty]{} \frac{1}{c(x_0)\mathcal{R}(x_0 \leftrightarrow \infty)}$$

Since under \mathbb{P}_{x_0} , $T_{B(x_0,n)^c} \ge n$, the above LHS goes to
 $\mathbb{P}(T_{x_0}^+ = +\infty)$ as $n \to \infty$, so

Theorem (2.16)

$$x_0$$
 recurrent $\Leftrightarrow \mathcal{R}(x_0 \leftrightarrow \infty) = +\infty.$

Application : another proof of Polya's theorem, extensions

Here \mathcal{G} is the usual lattice graph on \mathbb{Z}^d . Let $\Pi_k := \{(x, y) \in \mathcal{E} : ||x||_{\infty} = k, ||y||_{\infty} = k + 1$, so that, for $0 \le k \le n$, Π_k is a cut set between 0 and $B(0, n)^c$ (where the distance used for B(0, n) is the infinite norm). By Nash-Williams,

$$egin{aligned} \mathcal{R}(0 \leftrightarrow B(0,n)^c) &\geq & \sum_{k=0}^n rac{1}{\sum_{e \in \Pi_k} c(e)} \ &= & \sum_{k=0}^n rac{1}{2d(2k+1)^{d-1}}, \end{aligned}$$

and it follows that $\mathcal{R}(0 \leftrightarrow \infty) = +\infty$ for $d \leq 2$. We conclude that SRW on \mathbb{Z}^d , d = 1, 2 is recurrent. Let θ be the unit flow from 0 to $B(0, n)^c$ (where, in this slide, we now use $|| \cdot ||_1$ to define B(0, n)) such that the incoming and outcoming flow at every node of S(0, k) is 1/#(S(0, k)). The existence of such flow can be proven thanks to an urn model (see exercise 23). Now since $\#(S(0, k)) \sim C_d k^{d-1}$, it follows that

$$E(I_1) \leq E(\theta) \leq \sum_{k=1}^n \sum_{e \in S(0,k)} \frac{1}{\#(S(0,k))^2} \leq C'_d \sum_{k=1}^n \frac{1}{k^{d-1}},$$

and we conclude by Thomson that $R(0 \leftrightarrow \infty) < \infty$ when $d \ge 3$. We conclude that SRW is transient on \mathbb{Z}^d , $d \ge 3$.