
Context

Consider X an irreducible, reversible chain, The reversibility
assumption means there exists an invariant measure µ such that
for any (x , y) ∈ E 2 µ(x)P(x , y) = µ(y)P(y , x) .

As we have seen previously, setting V = E ,
E = {{x , y} : P(x , y) > 0}) and c(x , y) = Kµ(x)P(x , y) = c(y , x)
for some K > 0, the conductance model on G = (V, E) with
conductance function c has the same kernel as X .
This constant K can be taken in an arbitrary way. Beware that
certain quantities defined below may depend on K , but it should
always be the case that functionals of the chain X will not.

In practice, it may be sometimes useful (in particular when
comparing two conductance models on the same set of edges) to
consider a slightly looser setting : allow some pairs {x , y} such
that P(x , y) = 0 to be in the set E of edges, and set the
conductance function at zero along these edges (in other words,
having no edge present between two states is equivalent to putting
an edge of infinite resistance between those states)
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Context
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In what follows, we single out a source a ∈ E , a sink Z ( E \ {a}
and we denote by D := E \ (Z ∪ {a}). As in the previous
paragraph, we let T := inf{n ≥ 0 : Xn ∈ Dc}.
We always make the assumption that for any x ∈ D, T <∞
Px -a.s. (note that this is e.g. the case if D finite, or if X is
recurrent)
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Electric potential

Definition (2.6)

For α > β two real numbers, let the (electric) potential fixed at α
at a, and at β on Z be the unique function Vα,β such that

Vα,β(a) = α, Vα,β(z) = β ∀z ∈ Z ,

Vα,β harmonic on D, i.e.PVα,β(x) = Vα,β(x) ∀x ∈ D

Existence and unicity of Vα,β was established in the previous
paragraph (Thm 2.4). These also guarantee the following easy
lemma.

Lemma (2.6.1)

We have V1,0(x) = Px(Ta < TZ ), x ∈ E .
For any α > β, Vα,β = (α− β)V1,0 + β.
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Current

Let ~E the set of oriented edges of G. For a function Φ : ~E → R and
~e = (x , y) ∈ ~E we write Φ(~e) = Φ(x , y)

Definition (2.7)

To a potential V = Vα,β one associates the (electric) current from

a to Z , I = Iα,β :
→
E → R such that for any {x , y} ∈ E ,

I (x , y) = −I (y , x) = c(x , y)(V (x)− V (y)).

Note that Iα+c,β+c = Iα,β that is, Iα,β depends only on α, β
through the difference α− β. More precisely for any c ≥ 0 there is
a unique current associated with all potentials Vα,β such that
α− β = c .
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Properties of a current from a to Z

Lemma (2.7.1)

A current I from a to Z satisfies

(i) V (x)− V (y) = I (x , y)r(x , y), with r(x , y) = 1
c(x ,y) .

(ii) For any x ∈ D, divx(I ) :=
∑

y :{x ,y}∈E I (x , y) = 0.

(iii) If x1 ∼ x2 ∼ · · · ∼ xn ∼ xn+1 = x1 is a cycle∑n
k=1 r(xk , xk+1)I (xk , xk+1) = 0.

(iv) diva(I ) =: ||I || > 0

(i) above is Ohm’s law, (ii) and (iii) are Kirchoff’s node and cycle
laws. The current I such that ||I || = 1 is called the unit current
from a to Z . It is the one associated with potentials Vα,α−c such
that c = 1

||I1,0||
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Proof of lemma (2.7.1)

(i) is the definition of the current I .
For any x ∈ D,∑

y :y∼x
I (x , y) =

∑
y :y∼x

c(x , y)(V (x)− V (y))

= c(x)PV (x)− c(x)V (x) = 0,

by the fact that V is harmonic on D, yielding (ii).
If x1 ∼ · · · ∼ xn+1 = x1, we have by Ohm’s law

n∑
k=1

r(xk , xk+1)I (xk , xk+1) =
n∑

k=1

V (xk)− V (xk+1) = 0.

Finally, (iv) relies on the fact that V reaches its maximum at a by
Lemma (2.6.1), so that∑

y :y∼a
I (x , y) =

∑
y :y∼a

c(a, y)(V (a)− V (y)) ≥ 0.
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Maximum principle for harmonic functions

We just used that the function V , harmonic on D has to reach its
maximum on D ∪ ∂D somewhere on the boundary ∂D. This is
known as maximum principle for harmonic functions, which can be
easily proven independently.

Theorem (2.8)

If f : E → R is harmonic on D and reaches its supremum at some
element x0 ∈ D. Then f is constant on the set of states which can
be reached by the chain (Xn∧T ) (also called the chain absorbed at
Dc).

Proof of theorem (2.8) : Let S = {x ∈ E : f (x) = f (x0)}. If x ∈ S
and P(x , z) > 0, we must have z ∈ S because

||f ||∞ = f (x) =
∑
y∼x

P(x , y)f (y) ≤ P(x , z)f (z)+(1−P(x , z))||f ||∞.
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Probabilistic interpretation of current

Theorem (2.9)

Unit current I from a to Z can be expressed along a given oriented
edge (x , y) as

I (x , y) = Ea

[
TZ−1∑
k=0

1{Xk=x ,Xk+1=y} − 1{Xk=y ,Xk+1=y}

]
,

Proof : Observe first that RHS has divergence 1 at a, since in the
trajectory from a up to TZ oriented edges incident from a are
exactly crossed once more than edges towards a. Using Markov at
time k , the above RHS is

GD∪{a}(a, x)P(x , y)− GD∪{a}(a, y)P(y , x)

= c(x , y)

(
GD∪{a}(a, x)

c(x)
−

GD∪{a}(a, y)

c(y)

)
.
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Current as expected edge crossings : proof

Letting W (x) :=
GD∪{a}(a,x)

c(x) , we have found that the expected

edge crossings is given by c(x , y)(W (x)−W (y)). To verify this
defines a current (hence the unit current by our preliminary
remark), it remains to check W is harmonic on D.

PW (x) =
∑
y∼x

P(x , y)W (y)

=
∑
y∼x

c(x , y)

c(x)

GD∪{a}(a, y)

c(y)

=
1

c(x)

∑
y∼x

P(y , x)GD∪{a}(a, y)

=
1

c(x)

∑
y∼x

Ea

[
TZ−1∑
k=0

1{Xk=y ,Xk+1=y}

]

=
1

c(x)
GD∪{a}(x).
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Flows

Definition (2.10)

A function θ : ~E → R is a flow from a to Z iff

θ is antisymmetric, that is θ((x , y)) = −θ((y , x)) for any
(x , y) ∈ ~E .

divx(θ) = 0 for any x ∈ D.

diva(θ) ≥ 0,

θ(x , y) = 0 for any x , y ∈ Z

Theorem (2.10)

Assume D finite, and that θ is a flow from a to Z satisfying
Kirchoff’s cycle law. Then θ is a current from a to Z .
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Proof of Theorem (2.10)

For any ~e = (x , y) such that x and y are both in Z we have
θ(~e) = I (~e) = 0.
Thus we may as well identify all vertices in Z into a single one, say
z̃ , allowing for multiple edges between a vertex x ∈ D ∪ {a} and z̃ .
More precisely, the new set of vertices is Ẽ = {a} ∪ D ∪ {z̃}, and
edges between any pair of vertices with at least one not initially in
Z are kept with their original conductance (note that the new
graph G̃ is finite because D is finite and G was assumed locally
finite).
Note also that θ remains, on G̃, a flow from a to z̃ , which still
satisfies the cycle law (any part of the cycle inside Z can be simply
forgotten as the flow along the corresponding edges is null).
Since

∑
x∈Ẽ divx(θ) =

∑
x∈E

∑
y :y∼x θ(x , y) = 0 by antisymmetry

of θ, the fact that divx(θ) = 0 for any x ∈ D implies that

diva(θ) = −divz̃(θ).
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Proof of Theorem (2.10)

Now let I be a current from a to Z such that ||I || = diva(θ). As
the corresponding potential is fixed on Z , I remains a current on
G̃, and by the same proof as for θ we must have

diva(I ) = −divz̃(I ).

Now f = θ− I remains a flow from a to z̃ , and it satisfies the node
law at every vertex of Ẽ , and it must also satisfy the cycle law
because both I and θ do.
Assume by contradiction there exists x1, x2 ∈ Ẽ such that
f (x1, x2) > 0. By the node law at x2 there must exist x3 such that
f (x2, x3) > 0, etc... Because Ẽ is finite, there must exist p < p + n
such that xp = xp+n, but this would contradict the cycle law.
In the end I = θ on G̃, so it remains true on G and θ indeed is a
current.
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Circuit reduction

Theorem (2.11)

One can perform the following changes in the circuit without
changing potentials at the preserved nodes, nor current along the
preserved edges

(i) Two resistors in series with resistances r1, r2 can be replaced
by a single resistor with resistance r1 + r2.

(ii) Two resistors in parallel with conductances c1.c2 can be
replaced by a single resistor with conductance c1 + c2.

(iii) Nodes with the same potential can be identified.

(iv) Star-Triangle (or Y −∆) transformation (see the
corresponding figure).

Electric networks analogy



Circuit reduction

(i) Ohm’s and Kirchoff’s law remain satisfied replacing e, e ′ with ẽ,
preserving potentials at the preserved extremeties of e, e ′ and
setting I (ẽ) = I (e) = I (e ′). Everything else in the circuit is
preserved. This transformation obviously does not affect node’s
law at the preserved nodes.
(ii) Replace e, e ′ with ẽ. Preserve potentials at the preserved
extremities, and set I (ẽ) = I (e) + I (e ′). Everything else in the
circuit is preserved. This transformation obviously does not affect
node’s law at the preserved nodes.
(iii) If there exist edges between nodes with same potential,
current has to be null along those edges, so we may as well supress
them, and node’s law at the newly created vertex follows from
node’s law at old vertices which are identified. Current and
potentials are preserved elsewhere in the circuit.
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Star-Triangle (Y −∆)

r1

x1

x2

r2 x0 r3 x3

x1

x2 x3

r1,2

r2,3

r1,3

r1 =
r1,2×r1,3

r1,2+r1,3+r2,3
c1,2 =

c1×c2
c1+c2+c3

The expression for c1,2 comes from checking the two circuits are
equivalent when setting Vx1 = Vx3 = 0, Vx2 = 1. By the same
method, one obtains similar expressions for c1,3, c2,3. General
potentials can then be treated thanks to superposition principle
We leave details as an exercise.
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Gambler’s ruin through circuit reduction (exercise II.17)

SRW on Z with parameter p ∈ (0, 1) exactly corresponds to the
conductance model with
c(x , x + 1) = r(x , x + 1)−1 =

(
p

1−p

)x
, x ∈ Z. As for gambler’s

ruin problem, we may as well consider the chain absorbed at
{0,N}, so we may set a = {0}, D = [|1,N − 1|], Z = {N}. By
Theorem 2.10, resistances in series add up, so, for p = 1/2,
effective resistance between the origin and x ∈ D is given by x ,
and that between x and N is given by N − x .
For p 6= 1/2, effective resistance between the origin and x ∈ D is

given, for p = 1/2, by
1−

(
1−p
p

)x

1− 1−p
p

, that between x and N is given by(
1−p
p

)x
−
(

1−p
p

)N

1− 1−p
p

(see also the figure in the next slide).
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Gambler’s ruin through circuit reduction (exercise II.17)

0 1 2 3 4 x N

1−p

p

(

1−p

p

)

2
(

1−p

p

)

x−1
(

1−p

p

)

x

x + 1

0 x N

1−(1−p
p )

x

1−
1−p
p

(1−p
p )

x
−(1−p

p )
N

1−
1−p
p

Quantities expressed above and below

correspond to resistances of edges
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Gambler’s ruin through circuit reduction (exercise II.17)

Now the chain on the reduced circuit is simply a three-state chain
on {0, x ,N} absorbed at {0,N}, and its whole trajectory depends
only on the first step. More precisely, the probability of ruin can be
expressed as the conductance between 0 and x divided by the sum
of the conductances from x , thus for p = 1/2,

Px(T0 < TN) =
1

x
× 1

1
x + 1

N−x
=

N − x

N

For p 6= 1/2,

Px(T0 < TN) =
1

1−
(

1−p
p

)x 1
1(

1−p
p

)x
−
(

1−p
p

)N + 1

1−
(

1−p
p

)x

=

(
1−p
p

)x
−
(

1−p
p

)N
1−

(
1−p
p

)N
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Effective resistance from a to Z

Definition (2.12)

Let I a current from a to Z associated with potential V . The
effective resistance from a to Z is

R(a↔ Z ) :=
V (a)− V (Z )

||I ||
.

Since ||I || and V (a)− V (Z ) are both proportional to α− β, the
above quantity does not depend on the choice of α, β, hence the
definition is well-posed.
Note however, that effective resistance does depend on the choice
of the constant K such that c(x , y) = Kµ(x)P(x , y) = c(y , x) (it
is proportional to 1/K , see exercice II.13).
Notice that R(a↔ Z ) = 1

||I1,0|| .

Also if I is the unit current and V1 is the corresponding potential
null on Z then R(a↔ Z ) = V1(a).
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Effective resistance

Theorem (2.12)

Pa(TZ < T+
a ) =

1

c(a)R(a↔ Z )

Corollary (2.12.1)

GD∪{a}(a, a) = c(a)R(a↔ Z ).

Proof : Recall that for any x ∈ D, V1,0(x) = Px(Ta < TZ ). Thus

||I1,0|| =
∑

y :{a,y}∈E

c(a, y) (1− Py (Ta < TZ ))

= c(a)
∑
y :y∼a

P(a, y)Py (TZ < Ta) = c(a)Pa(TZ < T+
a )

yielding the result of the theorem. Now, the number of visits at a
before reaching Z is geometrically distributed with parameter
Pa(TZ < T+

a ), yielding the result of the corollary.
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Hitting time, commute time and effective resistance

Theorem

(a) Let a ∈ E , a /∈ Z ⊂ E , D = E \ ({a} ∪ Z ), and V1 be
the potential associated with the unit current from a
to Z . Then Ea[τZ ] =

∑
x∈E c(x)V1(x).

(b) For a, b ∈ E , Ea[τb] + Eb[τa] = cGR(a↔ b)

The quantity Ea[τb] + Eb[τa] is refered to as the commute time
between a and b.
Proof of (a) : Recall, from the proof of the probabilistic
interpretation of the unit current, that

V1(x) =
GD∪{a}(a, x)

c(x)
=

Ea

[∑τZ−1
k=0 1{Xk=x}

]
c(x)

,

so that ∑
x∈E

c(x)V1(x) =
∑
x∈E

Ea

[
τZ−1∑
k=0

1{Xk=x}

]
= Ea[τZ ]
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Hitting time, commute time and effective resistance

Proof of (b) : When Z = {b}, V1, the potential associated with
the unit current from a to b, is the unique harmonic function on D
taking value R(a↔ b) at a and 0 at b.

Now Ṽ1 = R(a→ b)− V1 remains harmonic on D, it takes value
0 at a and R(a↔ b) at b, so it is the potential associated with
the unit current from b to a.
Therefore, by (a),

Ea[τb] + Eb[τa] =
∑
x∈E

c(x)(V1(x) + Ṽ1(x)) = R(a↔ b)
∑
x∈E

c(x),

and we are done.
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Energy

Definition

If θ is a flow from a to Z define the energy of θ as

E (θ) :=
∑
e∈E

r(e)θ(e)2.

When θ is a current, this corresponds physically to the power
dissipated in the circuit.

Lemma (2.12.2)

The energy of the unit current I is E (I ) = R(a↔ Z ).
Moreover E (I1,0) = (R(a↔ Z ))−1
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Proof of Lemma (2.12.2) : Let V associated with unit current I ,
then E (I ) =

∑
{x ,y}∈E I (x , y)(V (x)− V (y)) by Ohm’s law. Since

each edge has two orientations and
I (x , y)(V (x)− V (y)) = I (y , x)(V (y)− V (x)) we find

E (I ) =
1

2

∑
x∈E

∑
y∈E

I (x , y)(V (x)− V (y))

=
∑
x∈E

V (x)
∑
y∈E

I (x , y)

where we used antisymmetry of I once again at the last line. Now
V (x) = 0 for any x ∈ Z , while for any x ∈ D,

∑
y∈E I (x , y) = 0.

It follows that

E (I ) = V (a)diva(I ) = V (a) = R(a↔ Z ).

Finally, as we have seen previously, I0,1 = I
R(a↔) yielding the

second result of the lemma.
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Thomson’s principle

Theorem (2.13 — Thomson’s principle)

Assume D is finite (and recall G is locally finite). Then

R(a↔ Z ) = inf{E (θ) : θ unit flow from a to Z},

and this infimum is reached for θ = I , the unit current.

Proof : By our assumptions, the set S of edges with at least one
extremity in D ∪ {a} is finite, hence flows from a to Z form a
subset of RS . Pick M ≥ E (I ), unit flows with energy bounded by
M form a non-empty compact set K , hence the infimum in the
RHS above is reached at some unit flow θ0 ∈ K .
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Thomson’s principle

Now consider n edges (each with at least one extremity in
D ∪ {a}) ~e1, ..., ~en forming a cycle and define the flow
γ : γ(~ei ) = 1, 1 ≤ i ≤ n (γ being null on edges outside the cycle).
For any ε ∈ R, we must have E (θ0 + εγ) ≥ E (θ0). However

0 ≤ E (θ0 + εγ)− E (θ0) = 2ε
n∑

i=1

θ0(~ei )r(ei ) + O(ε2)

and so it must be that
∑n

i=1 r(ei )θ0(~ei ) = 0. Since the reasoning
is valid for any cycle, it follows that θ0 satisfies the cycle law, by
Theorem (2.9) it must be the unit current.
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Rayleigh’s principle

Theorem (2.14 — Rayleigh’s principle)

Consider two conductance models X ,X ′ on the same graph G,
with respective conductance functions c , c ′. Assume
c ′(e) ≤ c(e)↔ r(e) ≤ r ′(e) for any e ∈ E . Then
R(a↔ Z ) ≤ R′(a↔ Z ).

Proof : Clearly for any unit flow θ from a to Z , E (θ) ≤ E ′(θ), now
apply Thomson’s principle.
A consequence of Rayleigh’s principle is that removing an edge
between any two vertices can only increase effective resistance
between a and Z .
Similarly, adding an edge can only decrease effective resistance.
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Nash-Williams

Definition

The subset of edges Π ⊂ E is a cutting set between a and Z iff any
path from a to some z ∈ Z must contain at least one edge in Π.

Theorem (2.15 — Nash-Williams)

Assume {Πk}1≤k≤K are disjoint cutting sets between a and Z .
Then

R(a↔ Z ) ≥
K∑

k=1

1∑
e∈Πk

c(e)
.
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Nash-Williams : proof

Let θ be a unit flow from a to Z . Because Πk is a cutting set from

a to Z it must be that 1 ≤
∑

e∈Πk
|θ(e)| ≤

(∑
e∈Πk

|θ(e)|
)2

. By

Cauchy-Schwarz

1 ≤

∑
e∈Πk

c(e)

×
∑

e∈Πk

r(e)θ(e)2

 ,

But then because the {Πk , 1 ≤ k ≤ K} are disjoint

E (θ) ≥
K∑

k=1

1∑
e∈Πk

c(e)
,

and we conclude thanks to Thomson’s principle.
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