Total variation distance

Definition (3.1)

Consider μ, ν probabilities on E, we define the total variation distance between μ and ν as

$$
\|\mu-\nu\|_{T V}=\sup _{A \subset E}|\mu(A)-\nu(A)|
$$

It is straightforward that $\|\cdot\|_{T V}$ defines a distance on $\mathcal{P}(E)$, the set of probabilities on E.

Theorem (3.1.1)

Assume E is finite or countable. Then

$$
\begin{aligned}
& \|\mu-\nu\|_{T V}=\frac{1}{2} \sum_{x \in E}|\mu(x)-\nu(x)| \\
= & \sum_{\{x: \mu(x) \geq \nu(x)\}}(\mu(x)-\nu(x))=1-\sum_{x \in E}(\mu(x) \wedge \nu(x))
\end{aligned}
$$

Recall $B=\{x: \mu(x) \geq \nu(x)\}$. For any $A \subset E$, we easily see that

$$
\mu(A)-\nu(A) \leq \mu(A \cap B)-\nu(A \cap B) \leq \mu(B)-\nu(B),
$$

so B realizes the supremum of $\mu(A)-\nu(A), A \subset E$. Similarly $\mu(A)-\nu(A) \geq \mu\left(B^{c}\right)-\nu\left(B^{c}\right)$, so B^{c} realizes the supremum of $\nu(A)-\mu(A), A \subset E$. Since $\mu(B)+\mu\left(B^{c}\right)=\nu(B)+\nu\left(B^{c}\right)=1$ both B and B^{C} realize the supremum of $|\mu(A)-\nu(A)|, A \subset E$. Moreover,

$$
|\mu(B)-\nu(B)|=\left|\mu\left(B^{c}\right)-\nu\left(B^{c}\right)\right|=\frac{1}{2} \sum_{x \in E}|\mu(x)-\nu(x)|,
$$

and the first two equalities of the theorem. Finally

$$
\sum_{x \in E}(\mu(x) \wedge \nu(x))=\nu(B)+\mu\left(B^{c}\right) \text { so that }
$$

$$
1-\sum_{x \in E}(\mu(x) \wedge \nu(x))=1-\mu\left(B^{c}\right)-\nu(B)=\mu(B)-\nu(B),
$$

finishing the proof.

Total variation distance and coupling

Recall (X, Y) is a coupling of μ and ν as soon as $X \sim \mu, Y \sim \nu$.

Theorem (3.1.2)

$$
\|\mu-\nu\|_{T V}=\inf \{\mathbb{P}(X \neq Y):(X, Y) \text { is a coupling of } \mu \text { and } \nu\}
$$

Proof of Theorem (3.1.2) : First observe that if (X, Y) is a coupling of μ and ν we have

$$
\begin{aligned}
\mathbb{P}(X \neq Y) & \geq \mathbb{P}\left(X \in B, Y \in B^{c}\right) \\
& =\mathbb{P}(X \in B)-\mathbb{P}(X \in B, Y \in B) \\
& \geq \mathbb{P}(X \in B)-\mathbb{P}(Y \in B)=\mu(B)-\nu(B)
\end{aligned}
$$

thus for any coupling $(X, Y), \mathbb{P}(X \neq Y) \geq\|\mu-\nu\|_{T V}$.
Note that the inequality above becomes an equality provided $\{Y \in B\} \subset\{X \in B\}$.

Total variation distance and coupling

To finish the proof of the theorem it is enough to find an optimal coupling ensuring $\{Y \in B\} \subset\{X \in B\}$. Let
$p=1-\|\mu-\nu\|_{T V}=\sum_{x \in E}(\mu(x) \wedge \nu(x))$. If $p=1, \mu=\nu$ and we can always take $X=Y$. If $p=0, \mu$ and ν have disjoint support, so any coupling works.
Otherwise let $\gamma_{0}(x):=\frac{\mu(x) \wedge \nu(x)}{p}, x \in E$, a probability on E.
$\gamma_{1}(x):=\frac{\mu(x)-\nu(x)}{1-p}, x \in B$ a probability on B,
$\gamma_{2}(x):=\frac{\nu(x)-\mu(x)}{1-p}, x \in B^{c}$, a probability on B^{c},
Define $Z_{0} \sim \gamma_{0}, Z_{1} \sim \gamma_{1}, Z_{2} \sim \gamma_{2}, \xi \sim \operatorname{Ber}(p)$ (independently) and

$$
X=\xi Z_{0}+(1-\xi) Z_{1}, \quad Y=\xi Z_{0}+(1-\xi) Z_{2}
$$

Now (X, Y) is a coupling of μ and ν and $\mathbb{P}(X \neq Y)=\mathbb{P}(\xi=0)=1-p$, as required.

- When E is metric, at most countable, and has no accumulation point (e.g. $E=\mathbb{N}, \mathbb{Z}, \mathbb{Z}^{d}$), it can be shown that the topology of total variation distance is equivalent to that of convergence in distribution. See exercise III. 3 for $E=\mathbb{Z}$.
- Working with variation distance allows for an elegant proof of a relatively general version of the rare events theorem (see exercises III. 3 to III.7). More precisely if for any $n \in \mathbb{N}$, $\left(\xi_{n, m}\right)_{0 \leq m \leq n}$ are independent Bernoulli with respective parameters $\left\{p_{n, m}, 0 \leq m \leq n\right\}$ satisfying

$$
\lambda_{n}=\sum_{m=0}^{n} p_{n, m} \underset{n \rightarrow \infty}{\longrightarrow} \lambda, \quad \max _{0 \leq m \leq n} p_{n, m} \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

then

$$
\sum_{m=0}^{n} \xi_{n, m} \xrightarrow[n \rightarrow \infty]{(\text { law })} Z \sim \operatorname{Poisson}(\lambda)
$$

