
Total variation distance

Definition (3.1)

Consider µ, ν probabilities on E , we define the total variation
distance between µ and ν as

||µ− ν||TV = sup
A⊂E
|µ(A)− ν(A)|.

It is straightforward that || · ||TV defines a distance on P(E ), the
set of probabilities on E .

Theorem (3.1.1)

Assume E is finite or countable. Then

||µ− ν||TV =
1

2

∑

x∈E
|µ(x)− ν(x)|

=
∑

{x :µ(x)≥ν(x)}

(µ(x)− ν(x)) = 1−
∑

x∈E
(µ(x) ∧ ν(x))
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Total variation distance : illustration

E

ν(x)− µ(x), x /∈ B
µ(x)− ν(x), x ∈ B

B := {x : µ(x) ≥ ν(x)} Bc

µ(x) ∧ ν(x), x ∈ E

||µ− ν||TV = 1
2

∑
x∈E |µ(x)− ν(x)| = ∑

x∈B(µ(x)− ν(x)) = 1− ∑
x∈E(µ(x) ∧ ν(x)).
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Proof of theorem (3.1.1)

Recall B = {x : µ(x) ≥ ν(x)}. For any A ⊂ E , we easily see that

µ(A)− ν(A) ≤ µ(A ∩ B)− ν(A ∩ B) ≤ µ(B)− ν(B),

so B realizes the supremum of µ(A)− ν(A),A ⊂ E . Similarly
µ(A)− ν(A) ≥ µ(Bc)− ν(Bc), so Bc realizes the supremum of
ν(A)− µ(A),A ⊂ E . Since µ(B) + µ(Bc) = ν(B) + ν(Bc) = 1
both B and Bc realize the supremum of |µ(A)− ν(A)|,A ⊂ E .
Moreover,

|µ(B)− ν(B)| = |µ(Bc)− ν(Bc)| =
1

2

∑

x∈E
|µ(x)− ν(x)|,

and the first two equalities of the theorem. Finally∑
x∈E (µ(x) ∧ ν(x)) = ν(B) + µ(Bc) so that

1−
∑

x∈E
(µ(x) ∧ ν(x)) = 1− µ(Bc)− ν(B) = µ(B)− ν(B),

finishing the proof.
Introduction to mixing times : total variation distance



Total variation distance and coupling

Recall (X ,Y ) is a coupling of µ and ν as soon as X ∼ µ,Y ∼ ν.

Theorem (3.1.2)

||µ− ν||TV = inf {P(X 6= Y ) : (X ,Y ) is a coupling of µ and ν}

Proof of Theorem (3.1.2) : First observe that if (X ,Y ) is a
coupling of µ and ν we have

P(X 6= Y ) ≥ P(X ∈ B,Y ∈ Bc)

= P(X ∈ B)− P(X ∈ B,Y ∈ B)

≥ P(X ∈ B)− P(Y ∈ B) = µ(B)− ν(B)

thus for any coupling (X ,Y ), P(X 6= Y ) ≥ ||µ− ν||TV .
Note that the inequality above becomes an equality provided
{Y ∈ B} ⊂ {X ∈ B}.
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Total variation distance and coupling

To finish the proof of the theorem it is enough to find an optimal
coupling ensuring {Y ∈ B} ⊂ {X ∈ B}. Let
p = 1− ||µ− ν||TV =

∑
x∈E (µ(x)∧ ν(x)). If p = 1, µ = ν and we

can always take X = Y . If p = 0, µ and ν have disjoint support,
so any coupling works.
Otherwise let γ0(x) := µ(x)∧ν(x)

p , x ∈ E , a probability on E .

γ1(x) := µ(x)−ν(x)
1−p , x ∈ B a probability on B,

γ2(x) := ν(x)−µ(x)
1−p , x ∈ Bc , a probability on Bc ,

Define Z0 ∼ γ0,Z1 ∼ γ1,Z2 ∼ γ2, ξ ∼ Ber(p) (independently) and

X = ξZ0 + (1− ξ)Z1, Y = ξZ0 + (1− ξ)Z2.

Now (X ,Y ) is a coupling of µ and ν and
P(X 6= Y ) = P(ξ = 0) = 1− p, as required.
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Further considerations

When E is metric, at most countable, and has no
accumulation point (e.g. E = N,Z,Zd), it can be shown that
the topology of total variation distance is equivalent to that of
convergence in distribution. See exercise III.3 for E = Z.

Working with variation distance allows for an elegant proof of
a relatively general version of the rare events theorem (see
exercises III.3 to III.7). More precisely if for any n ∈ N,
(ξn,m)0≤m≤n are independent Bernoulli with respective
parameters {pn,m, 0 ≤ m ≤ n} satisfying

λn =
n∑

m=0

pn,m −→
n→∞

λ, max
0≤m≤n

pn,m −→
n→∞

0,

then
n∑

m=0

ξn,m
(law)−→
n→∞

Z ∼ Poisson(λ).
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