Total variation distance

Definition (3.1)

Consider u, v probabilities on E, we define the total variation
distance between p and v as

|| —v||Tv = sup |u(A) — v(A)|.
ACE

It is straightforward that || - |[7v defines a distance on P(E), the
set of probabilities on E.

Theorem (3.1.1)

Assume E is finite or countable. Then

= vllrv = 5 3 1) — v(0)

x€eE

= > () - v(x) =1 Y (1) Av(x))

{x:p(x)>v(x)} x€E
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Total variation distance : illustration

N AL
Y S

B :=A{x:p(z) >v(z)} B¢

I = vllry = 5 Seek (@) — v(@)] = Seen(p(z) — v(2)) = 1 = Sacp(p(@) A v(2).
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Proof of theorem (3.1.1)

Recall B = {x : u(x) > v(x)}. For any A C E, we easily see that
u(A) — v(A) < (AN B) — v(AN B) < u(B) — 1(B),

so B realizes the supremum of p(A) — v(A), A C E. Similarly
wu(A) —v(A) > pu(B€) — v(B€), so B realizes the supremum of
v(A) — u(A),A C E. Since pu(B) + u(B°) =v(B) +v(B°) =1
both B and B€ realize the supremum of |u(A) — v(A)|,A C E.
Moreover,

[u(B) —v(B)| = |u(B®) — v(B)| = % > lulx) = v(x)|,
x€E

and the first two equalities of the theorem. Finally
S e (a(x) A v(x)) = U(B) + p(B) so that

1= 3 (u(x) A v(x)) = 1 — u(B) — (B) = u(B) — v(B),

x€E

finishing the proof.
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Total variation distance and coupling

Recall (X, Y) is a coupling of i and v as soon as X ~ p, Y ~ v.

Theorem (3.1.2)

llw—v||7v =inf {P(X #Y) : (X,Y) is a coupling of j and v}

Proof of Theorem (3.1.2) : First observe that if (X, Y) is a
coupling of 1 and v we have

P(X £Y) > P(XeB,Y e B°)
P(X € B)—P(X € B,Y € B)
> P(X € B)—P(Y € B) = u(B) — v(B)

thus for any coupling (X, Y), P(X #Y) > ||u— v||7rv.
Note that the inequality above becomes an equality provided
{Y eB} c{XeB}.
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Total variation distance and coupling

To finish the proof of the theorem it is enough to find an optimal
coupling ensuring {Y € B} C {X € B}. Let

p=1—|lp—vllTv =2 ce(pu(x) Av(x)). f p=1, p = and we
can always take X = Y. If p =0, p and v have disjoint support,
so any coupling works.

Otherwise let yo(x) := M ,x € E, a probability on E.

1(x) = %:(X) x€Ba probab|I|ty on B,

Y2(x) = L’;() x € B¢, a probability on B¢,

Define Zy ~ 70, Z1 ~ 71, Z2 ~ 72, & ~ Ber(p) (independently) and

X=82+(1-&)21, Y =84+ (1-¢)2.

Now (X, Y) is a coupling of 1 and v and
P(X #Y)=P({ =0) =1—p, as required.
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Further considerations

@ When E is metric, at most countable, and has no
accumulation point (e.g. E = N, Z,Z9), it can be shown that
the topology of total variation distance is equivalent to that of
convergence in distribution. See exercise I11.3 for E = Z.

@ Working with variation distance allows for an elegant proof of
a relatively general version of the rare events theorem (see
exercises 1.3 to 111.7). More precisely if for any n € N,
(&n,m)o<m<n are independent Bernoulli with respective
parameters {p, m,0 < m < n} satisfying

)\n:Zan—>)\, maXx an—>0
’ n—oo 0<m<n

then .
Z Enm (li—WQ Z ~ Poisson(A).

m=0
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