Definitions

Consider X an irreducible Markov chain on a finite state space E of size n, and denote by π the unique invariant probability of X.

Definition (3.2)

For $t \in \mathbb{N}$ define

$$
\begin{gathered}
d(t):=\max _{x \in E}\left\|P^{t}(x, \cdot)-\pi\right\|_{T V} \\
\bar{d}(t):=\max _{x \in E, y \in E}\left\|P^{t}(x, \cdot)-P^{t}(y, \cdot)\right\|_{T V} .
\end{gathered}
$$

The mixing time at level ε is defined as

$$
t_{\text {mix }}(\varepsilon)=\inf \{t \in \mathbb{N}: d(t) \leq \varepsilon\}
$$

We'll have a particular interest in

$$
t_{\text {mix }}:=t_{\text {mix }}(1 / 4)
$$

Theorem (3.2.1)

$d(t) \leq \bar{d}(t) \leq 2 d(t)$.
Proof: The second inequality follows trivially from the triangle inequality. As for the first, since π is invariant,

$$
\begin{aligned}
d(t) & =\max _{x \in E} \max _{A \subset E}\left|P^{t}(x, A)-\pi(A)\right| \\
& =\max _{x \in E} \max _{A \subset E}\left|\sum_{y \in E} \pi(y)\left(P^{t}(x, A)-P^{t}(y, A)\right)\right| \\
& \leq \max _{x \in E} \max _{A \subset E} \sum_{y \in E} \pi(y)\left|P^{t}(x, A)-P^{t}(y, A)\right| \leq \bar{d}(t)
\end{aligned}
$$

Theorem (3.2.2)

\bar{d} is submultiplicative, that is, for any $s, t \in \mathbb{N}$,

$$
\bar{d}(t+s) \leq \bar{d}(t) \bar{d}(s)
$$

Proof: Fix $x, y \in E$ and assume $\left(X_{s}, Y_{s}\right)$ realize an optimal coupling of $P^{s}(x, \cdot), P^{s}(y, \cdot)$ and denote by $\mathbb{P}_{x, y}$ their joint law (so under $\mathbb{P}_{x, y}, \operatorname{Pt}\left(X_{s}, \cdot\right)$ has law $P^{t+s}(x, \cdot), P^{t}\left(Y_{s}, \cdot\right)$ has law $P^{t+s}(y, \cdot)$, and $\left.\mathbb{P}_{x, y}\left(X_{s} \neq Y_{s}\right)=\bar{d}(s)\right)$. Then

$$
\begin{aligned}
& \left\|P^{t+s}(x, \cdot)-P^{t+s}(y, \cdot)\right\|_{T V} \\
= & \frac{1}{2} \sum_{w \in E}\left|\mathbb{E}_{x, y}\left[P^{t}\left(X_{s}, w\right)-P^{t}\left(Y_{s}, w\right)\right]\right| \\
\leq & \frac{1}{2} \sum_{w \in E} \mathbb{E}_{x, y}\left[\left|P^{t}\left(X_{s}, w\right)-P^{t}\left(Y_{s}, w\right)\right| \mathbb{1}_{\left\{X_{s} \neq Y_{s}\right\}}\right] \\
\leq & \bar{d}(t) \mathbb{P}_{x, y}\left(X_{s} \neq Y_{s}\right)=\bar{d}(t) \bar{d}(s)
\end{aligned}
$$

where for the inequality at the last line, we used from its definition that $\bar{d}(t) \geq \frac{1}{2} \sum_{w \in F}\left|P^{t}\left(X_{s}, w\right)-P^{t}\left(Y_{s}, w\right)\right|$.

Theorem (3.2.3)

For any $\varepsilon \leq 1 / 2$, we have

$$
t_{\text {mix }}(\varepsilon) \leq\left\lceil\log _{2}\left(\frac{1}{\varepsilon}\right)\right\rceil t_{\text {mix }}
$$

Proof: By the above results, for $\ell \in \mathbb{N}^{*}$,

$$
\begin{aligned}
d\left(\ell t_{\text {mix }}\right) & \leq \bar{d}\left(\ell t_{\text {mix }}\right) \\
& \leq \bar{d}\left(t_{\text {mix }}\right)^{\ell} \\
& \leq\left(2 d\left(t_{\text {mix }}\right)\right)^{\ell} \leq \frac{1}{2^{\ell}},
\end{aligned}
$$

thus if $\ell \geq \log _{2}\left(\frac{1}{\varepsilon}\right), d\left(\ell t_{\text {mix }}\right) \leq \varepsilon$, as required.

