
Upper bound for mixing times by coupling

Theorem (3.3)

Assume (X ,Y ) is, under Px ,y , a coupling of Markov chains with
transition kernel P on E, started respectively at δx , δy . Set
τcouple = inf{t : Xt = Zt}. Then

||Pt(x , ·)− Pt(y , ·)||TV ≤ Px ,y (τcouple > t).

Moreover d(t) ≤ max(x ,y)∈E2 Px ,y (τcouple > t).
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Upper bound for mixing times by coupling

Proof : Set Zt = Yt1{t<τcouple} + Xt1{t≥τcouple}. Then, by Markov
property at time τcouple, (X ,Z ) remains a coupling of Markov
chains started at δx , δy . We refer to (X ,Z ) as a coalescent
coupling : we have indeed Xs = Zs ⇒ Xt = Zt ∀t ≥ s. Of course
τ̃couple := inf{t : Xt = Zt} = τcouple.
Now (Xt ,Zt) is a coupling of Pt(x , ·) and Pt(y , ·), so that

||Pt(x , ·)− Pt(y , ·)||TV ≤ Px ,y (Xt 6= Zt) = P(τcouple > t).

It remains to recall that
d(t) ≤ d(t) = max(x ,y)∈E2 ||Pt(x , ·)− Pt(y , ·)||TV to conclude.
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Exemple 1 : lazy SSRW on the discrete circle

Consider (εt)t∈N, (ξt)t∈N i.i.d according to the Bernoulli
distribution with parameter 1/2. Set

Xt+1 = Xt + 1{ξt+1=εt+1=1} − 1{ξt+1=0,εt+1=1} [n],

Yt+1 = Yt + 1{ξt+1=1,εt+1=0} − 1{ξt+1=εt+1=0} [n].

It is easily seen that (X ,Y ) is a coupling of lazy symmetric simple
random walks on the discrete circle Z

nZ . Between time t and t + 1,
each of the two walks may jump by +1 along the discrete circle
with probability 1/4, by −1 with probability 1/4, and otherwise
stays put.
In fact, the variable εt+1 is used to determine which of the two
walks jumps between t and t + 1 while the other one stays put,
and the variable ξt+1 is used to determine wether the direction in
which the moving walk makes its jump.
It is easily seen that X − Y is the symmetric simple random walk
on the discrete circle.
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Example 1 : lazy SSRW on the discrete circle

We could also have used (X ,Z ) the coalescent coupling deduced
from (X ,Y ). Note that S = X − Z is a simple random walk on
the discrete circle absorbed at the origin. Now if S is started at k ,
it is known (this is the expected time of play in glamber’s ruin
problem, deduced from the fact that (St(n − St)− t ∧ τcouple)t≥0
is a martingale) that E[τcouple] = k(n − k). Hence, whatever the

starting points for X ,Y , E[τcouple] ≤ n2

4 , and by Markov inequality
we deduce that

max
x ,y∈ Z

nZ

Px ,y (τcouple > t) ≤ n2

4t
,

so we conclude by Theorem (3.3) that tmix ≤ n2, and thus
tmix(ε) ≤ dlog2(1/ε)en2.
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Example 1 : lazy SSRW on the discrete circle

This, in fact, provides the correct order of magnitude for tmix as

n→∞. Indeed, by CLT,
Xcn2√
c/2n
→ Z ∼ N (0, 1). For c = 1/16

and n large enough we find that

P(|Xcn2 | ≥ n/4) ≤ P(|Z | ≥
√

2) ≈ 0.157.

But then Pn2/16(0,Bc
n/4) ≤ 0.16, and since π(Bc

n/4) = 1/2 we have

d(n2/4) ≥ 1/2− 0.16 > 1/4 so tmix ≥ n2/16 for large enough n.
We have shown that for large enough n,

n2

16
≤ tmix ≤ n2,

in other words, tmix = Θ(n2).
The case of lazy asymmetric simple random walk on the discrete
circle can be treated in the exact same way : simply note that
X − Y remains, in fact, symmetric.
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Exercise III.13 : lazy SSRW on the discrete d-dimensional
torus

The idea is similar, except we have to work with d coordinates.
Add (it)t∈N i.i.d according to uniform distribution on {1, ..., d}.
Whenever it+1 = i , perform a jump for one of the two walks along
the ith coordinate, leaving the other idle. Now along each
coordinate, we have a coupling of (1− 1/2d)-lazy SSRW on the
discrete circle.
The important observation is that we can accelerate coalescing of
the two walks by letting each X i − Z i be absorbed at the origin. It
is easy that if τcouple

i denotes the coupling time of the ith
coordinate, for any starting points x , y we have
Ex ,y [τcouple

i ] ≤ dn2

4 . Now τcouple = max1≤i≤d τcouple
i , but a simple

bound provides E[τcouple] ≤
∑d

i=1 E[τcouple
i ] ≤ d2n2

4 , so by
Markov’s inequality and Theorem (3.3) we conclude that
tmix ≤ d2n2.
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Exercise III.13 : lazy SSRW on the discrete d-dimensional
torus

When d is fixed and n→∞ this obviously provides the right order
of magnitude for tmix. On the other hand when n is fixed and
d →∞ our last bound is too naive.
In the case n = 2, τcouple exactly has the distribution of the
collection time in the coupon collector problem. Note that in that
case τcouple is remarkably concentrated around its mean value
d log(d), which allows to show that tmix(ε) ≤ d log(d) + C (ε)d
whatever the choice of ε ∈ (0, 1).
For more general n, this is a bit more involved, and the right
estimate is E[τcouple] ≤ C (n)d log(d), but one could at least easily
establish that E[τcouple] ≤ C (n)d(log(d))2.
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Exercise III.14 : lazy SRW on binary tree with depth k

The idea is to first couple the depths of the walks until these match
(it is enough that only one of the two jumps at each step until the
depths are the same), then the walks (by performing a similar
move in the tree for both walks so their depths remains the same)
when they meet. This allows to ensure that the coupling time is
bounded above by the time it takes to reach the leaves of the tree
for the walk which starts closest to the root (by then the depths
must match), plus the time it takes that walk to get back to the
root, at which they must necessarily have met. Note this commute
time is exactly the commute time between 0 and k for (|Xt |, t ≥ 0)
which is an asymmetric simple random walk reflected at 0, k .
It follows (e.g. using theorem for expected commute times and
effective resistances for |X |) that E[τcouple] ≤ 8 · 2k , thus by
Markov’s inequality and Theorem (3.3) tmix ≤ 32 · 2k .
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Exercise III.14 : lazy SRW on binary tree with depth k

Once again this coupling method gives the right order of
magnitude for tmix when k →∞. Indeed if the walk starts at a
leaf on the right side of the tree, it must go through the root
before it can visit any vertex in the left side of the tree. It remains
to argue that for some constant c, starting from a leaf, the number
of visits to the set of leaves before it reaches the root is greater
than c2k with probability at least 1/4. Such estimate is easy to
establish by studying the (asymmetric) walk (|Xt |, t ≥ 0), and we
conclude that tmix = Θ(2k).

Mixing times and coupling of Markov chains



Coupling methods : further examples

Coupling methods are also useful in examples of walks on the
permutation group Sn : see exercise III.16 for which jumps are
transpositions.
Exercise III.17 focuses on a random walk on graph colourings,
where the graph is fixed, and jumps are performed by changing the
colour of only one vertex, as long as the new clour differs from
that of neighbouring vertices. Provided there are enough colours
(in particular there exists admissible colourings, the space of
admissible colourings is a communicating class, and the stationary
distribution is the uniform distribution on admissible colourings), a
coupling argument can be used to bound above the mixing time.
Since the walk can be started at any colouring (admissible or not),
this suggests an algorithm to approximate the uniform drawing of
an admissible colouring : run the walk for a time larger than that
bound.
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