General considerations on the spectrum of the transition matrix P

We assume in this paragraph that E is finite, $\# E=n$. Note that any ordering of E allows to express the transition kernel P of X as a $n \times n$ stochastic matrix.

Lemma (3.a)

(i) If λ is an eigenvalue of P then $|\lambda| \leq 1$.
(ii) If P is irreducible then $\operatorname{ker}(P-I d)=\operatorname{Vect}\left\{\left(\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right)\right\}$
(iii) If P is irreducible and aperiodic then -1 is not an eigenvalue of P.

General considerations on the spectrum of the transition matrix P

Proof of Lemma (3.a) (i): Let $f: E \rightarrow \mathbb{R}$, we have

$$
|P f(x)|=\left|\sum_{y \in E} P(x, y) f(y)\right| \leq\|f\|_{\infty} \sum_{y \in E} P(x, y)=\|f\|_{\infty},
$$

thus $\|P f\|_{\infty} \leq\|f\|_{\infty}$. If λ is an eigenvalue of P associated with eigenvalue f we have $\|P f\|_{\infty}=\mid \lambda\| \| f \|_{\infty}$, and thus $|\lambda| \leq 1$.

General considerations on the spectrum of the transition matrix P

Proof of Lemma (3.a) (ii) : An eigenfunction f associated with eigenvalue 1 is simply a function f that is harmonic on the whole of E. By the maximum principle for harmonic functions Theorem (2.8) we conclude that f must be constant on E.

Note that this result also implies unicity of invariant distribution : it is indeed the case that $\operatorname{dim}(\operatorname{ker}(P-I d))=1 \Rightarrow \operatorname{dim}\left(\operatorname{ker}\left(P^{T}-I d\right)\right)=1$.

General considerations on the spectrum of the transition matrix P

Proof of Lemma (3.a) (iii) : By exercise I.11.2 since P is irreducible, aperiodic and E is finite there must exists $r \in \mathbb{N}^{*}$ such that for any $k \geq r, P^{k}(x, y)>0$ for any $x, y \in E$. Now assume f is an eigenfunction associated with eigenvalue -1 , it must exist $x \in E$ such that $f(x) \neq 0$. Without loss of generality (even if it means taking $-f$ instead of f) we may assume $f(x)>0$. Then $P^{2 r} f(x)=\sum_{y \in E} P^{2 r}(x, y) f(y)$ implies, since $P^{2 r}$ is stochastic, that f has to be positive on the whole of E. But then $P^{2 r+1} f(x)=-f(x)$ brings a contradiction.
Note: We could also have used Perron-Frobenius theorem to prove the three assertions of the Lemma.

Theorem (3.b)

Assume P is irreducible, reversible with respect to its unique invariant probability π.
(i) The prehilbertian space $\left(\mathbb{R}^{E},\langle\cdot, \cdot\rangle_{\pi}\right)$ possesses an orthonormal basis of real-valued eigenfunctions ($f_{j}, 1 \leq j \leq n$) associated with real eigenvalues $1=\lambda_{1}>\lambda_{2} \geq \ldots \geq \lambda_{n} \geq-1$.
(ii) For any $t \in \mathbb{N},(x, y) \in E^{2}$,

$$
\frac{P^{t}(x, y)}{\pi(y)}=\sum_{j=1}^{n} f_{j}(x) f_{j}(y) \lambda_{j}^{t}=1+\sum_{j=2}^{n} f_{j}(x) f_{j}(y) \lambda_{j}^{t}
$$

Spectral decomposition for reversible chain

Proof of Theorem (3.b) (i) : Since $\pi(x)>0, x \in E$ it is straightforward that $\langle f, g\rangle_{\pi}:=\sum_{x \in E} \pi(x) f(x) g(x)$ defines a scalar product on \mathbb{R}^{E}. Now if X is reversible with respect to π,

$$
A(x, y):=\sqrt{\frac{\pi(x)}{\pi(y)}} P(x, y),(x, y) \in E^{2}
$$

defines a symmetric operator on \mathbb{R}^{E} (in other words, any ordering of E makes A a $n \times n$ symmetric matrix). By well-known linear algebra results for symmetric matrices, eigenvalues of A are real and there exists $\left\{\phi_{j}, j=1, \ldots, n\right\}$ an orthonormal basis (for the usual scalar product) of real-valued eigenfunctions associated with these eigenvalues sorted in decreasing order. Now setting $f_{j}(x):=\frac{\phi_{j}(x)}{\sqrt{\pi(x)}}, x \in E$, we find

$$
\left\langle f_{i}, f_{j}\right\rangle_{\pi}=\sum_{x \in E} \pi(x) f_{i}(x) f_{j}(x)=\sum_{x \in E} \phi_{i}(x) \phi_{j}(x)=\delta_{i j}
$$

so $\left\{f_{i}, 1 \leq j \leq n\right\}$ is orthonormal for $\langle\cdot, \cdot\rangle_{\pi}$.

Spectral decomposition for reversible chain

It remains to check that

$$
\begin{aligned}
P f_{j}(x) & =\sum_{y \in E} P(x, y) f_{j}(y) \\
& =\sum_{y \in E} \sqrt{\frac{\pi(y)}{\pi(x)}} A(x, y) \frac{\phi_{j}(y)}{\sqrt{\pi(y)}} \\
& =\sqrt{\frac{1}{\pi(x)}} A \phi_{j}(x) \\
& =\sqrt{\frac{1}{\pi(x)}} \lambda_{j} \phi_{j}(x)=\lambda_{j} f_{j}(x)
\end{aligned}
$$

as we wished. Now by Lemma (3.a) it must be that $\lambda_{1}=1>\lambda_{2} \geq \cdots \geq \lambda_{n} \geq-1$. Note in addition that if X is aperiodic, we can moreover deduce that $\lambda_{n}>-1$.

Proof of Theorem (3.b) (ii) : Writing the decomposition of $\mathbb{1}_{\{y\}}$ along the orthonormal basis ($f_{j}, 1 \leq j \leq n$), we have

$$
\mathbb{1}_{\{y\}}(\cdot)=\sum_{j=1}^{n}\left\langle f, f_{j}\right\rangle_{\pi} f_{j}(\cdot)=\sum_{j=1}^{n} f_{j}(y) \pi(y) f_{j}(\cdot)
$$

Now

$$
\begin{aligned}
P^{t}(x, y)=P^{t} \mathbb{1}_{\{y\}}(x) & =\sum_{j=1}^{n} f_{j}(y) \pi(y) P^{t} f_{j}(x) \\
& =\sum_{j=1}^{n} \lambda_{j}^{t} f_{j}(y) \pi(y) f_{j}(x)
\end{aligned}
$$

Now by Lemma (3.a) $f_{1}(x)=1$ for any $x \in E$, so the first term in the sum above is $\pi(y)$, yielding the desired result.

Bounding $t_{\operatorname{mix}}(\varepsilon)$ using spectral decomposition

Theorem

Assume that the chain X is irreducible, reversible, aperiodic.
We define $\left|\lambda^{*}\right|=\max \left\{\left|\lambda_{i}\right|, i \geq 2\right\}$, and the (absolute) spectral gap
$\gamma^{*}:=1-\left|\lambda^{*}\right|$, which is >0 in this setting by Lemma 4.a.
We also define the relaxation time $t_{\text {relax }}=\frac{1}{\gamma^{*}}$. and let
$\pi_{\text {min }}=\min _{x \in E} \pi(x)$.
Then

$$
\left|\lambda^{*}\right|^{t} \leq 2 d(t) \leq \frac{\left|\lambda^{*}\right|^{t}}{\pi_{\min }}
$$

and

$$
\left(t_{\text {relax }}-1\right) \log \left(\frac{1}{2 \varepsilon}\right) \leq t_{\text {mix }}(\varepsilon) \leq \log \left(\frac{1}{2 \varepsilon \pi_{\min }}\right) t_{\text {relax }}
$$

Proof of upper bound for $t_{\text {mix }}(\varepsilon)$ using spectral decomposition

We start by observing that

$$
\begin{aligned}
\left\|P^{t}(x, \cdot)-\pi\right\|_{T V} & =\frac{1}{2} \sum_{y \in E} \pi(y)\left|\frac{P^{t}(x, y)}{\pi(y)}-1\right| \\
& \leq \frac{1}{2} \max _{y \in E}\left|\frac{P^{t}(x, y)}{\pi(y)}-1\right|
\end{aligned}
$$

By spectral decomposition, then Cauchy-Schwarz we have

$$
\begin{aligned}
\left|\frac{P^{t}(x, y)}{\pi(y)}-1\right| & =\left|\sum_{j=2}^{n} \lambda_{j}^{t} f_{j}(x) f_{j}(y)\right| \\
& \leq \max _{j \geq 2}\left|\lambda_{j}\right|^{t}\left(\sum_{j=2}^{n} f_{j}^{2}(x)\right)^{1 / 2}\left(\sum_{j=2}^{n} f_{j}^{2}(x)\right)^{1 / 2}
\end{aligned}
$$

Proof of upper bound for $t_{\text {mix }}(\varepsilon)$ using spectral decomposition

It remains to bound above $\left(\sum_{j=2}^{n} f_{j}^{2}(x)\right)^{1 / 2}$. For that, use orthonormality of the basis $\left\{f_{j}\right\}_{1 \leq j \leq n}$ to get

$$
\begin{aligned}
\pi(x) & =\left\langle\mathbb{1}_{x}, \mathbb{1}_{x}\right\rangle_{\pi} \\
& =\left\langle\sum_{j=1}^{n} \pi(x) f_{j}(x) f_{j}, \sum_{j=1}^{n} \pi(x) f_{j}(x) f_{j}\right\rangle_{\pi} \\
& =\sum_{j=1}^{n} \pi^{2}(x) f_{j}^{2}(x)
\end{aligned}
$$

so that $\left(\sum_{j=2}^{n} f_{j}^{2}(x)\right)^{1 / 2} \leq \frac{1}{\sqrt{\pi(x)}}$ In the end, we have proven that $d(t) \leq \frac{\left|\lambda^{*}\right| t}{\pi_{\text {min }}}$, as required. The upper bound for $t_{\text {mix }}(\varepsilon)$ then follows from its definition and the fact that $\max _{j \geq 2}\left|\lambda_{j}\right|^{t} \leq \exp \left(-\gamma^{*} t\right)$.

Proof of lower bound for $t_{\text {mix }}(\varepsilon)$ using spectral decomposition

The starting point is that if $f: E \rightarrow \mathbb{R}$, then

$$
\left|P^{t}(x, \cdot) f-\pi f\right|=\sum_{y \in E}\left|P^{t}(x, y)-\pi(y)\|f(y) \mid \leq 2\| f \|_{\infty} d(t)\right.
$$

Now a good choice is to take $f=f_{2}$ or $f=f_{n}$ the eigenfunction associated to the eigenvalue λ such that $|\lambda|=\max _{j \geq 2}\left|\lambda_{j}\right|$ (the one realizing the spectral gap). In that case, not only $P^{t} f=\lambda^{t} f$, but moreover $\pi f=0$ because f is orthogonal to the first (constant) eigenvector. Choosing x such that $|f(x)|=\|f\|_{\infty}$, we get, as required,

$$
|\lambda|^{t}=\left(1-\gamma^{*}\right)^{t} \leq 2 d(t)
$$

The lower bound for $t_{\text {mix }}(\varepsilon)$ then follows from its definition and elementary considerations, using in particular that $\log \left(|\lambda|^{-1}\right) \geq|\lambda|^{-1}-1$.

