We assume in this paragraph that *E* is finite, #E = n. Note that any ordering of *E* allows to express the transition kernel *P* of *X* as a $n \times n$ stochastic matrix.

Lemma (3.a)

Proof of Lemma (3.a) (i) : Let $f : E \to \mathbb{R}$, we have

$$|Pf(x)| = \left|\sum_{y\in E} P(x,y)f(y)\right| \le ||f||_{\infty} \sum_{y\in E} P(x,y) = ||f||_{\infty},$$

thus $||Pf||_{\infty} \leq ||f||_{\infty}$. If λ is an eigenvalue of P associated with eigenvalue f we have $||Pf||_{\infty} = |\lambda|||f||_{\infty}$, and thus $|\lambda| \leq 1$.

Proof of Lemma (3.a) (ii) : An eigenfunction f associated with eigenvalue 1 is simply a function f that is harmonic on the whole of E. By the maximum principle for harmonic functions Theorem (2.8) we conclude that f must be constant on E. Note that this result also implies unicity of invariant distribution : it is indeed the case that $\dim(\ker(P_{in}, Id)) = 1 \Rightarrow \dim(\ker(P_{in}, Id)) = 1$

 $\dim(\ker(P - Id)) = 1 \Rightarrow \dim(\ker(P^T - Id)) = 1.$

Proof of Lemma (3.a) (iii) : By exercise I.11.2 since P is irreducible, aperiodic and E is finite there must exists $r \in \mathbb{N}^*$ such that for any $k \ge r$, $P^k(x, y) > 0$ for any $x, y \in E$. Now assume fis an eigenfunction associated with eigenvalue -1, it must exist $x \in E$ such that $f(x) \ne 0$. Without loss of generality (even if it means taking -f instead of f) we may assume f(x) > 0. Then $P^{2r}f(x) = \sum_{y \in E} P^{2r}(x, y)f(y)$ implies, since P^{2r} is stochastic, that f has to be positive on the whole of E. But then $P^{2r+1}f(x) = -f(x)$ brings a contradiction. Note : We could also have used Perron-Frobenius theorem to

prove the three assertions of the Lemma.

Theorem (3.b)

Assume P is irreducible, reversible with respect to its unique invariant probability π .

(i) The prehilbertian space (ℝ^E, ⟨·, ·⟩_π) possesses an orthonormal basis of real-valued eigenfunctions (f_j, 1 ≤ j ≤ n) associated with real eigenvalues 1 = λ₁ > λ₂ ≥ ... ≥ λ_n ≥ −1.

(ii) For any
$$t \in \mathbb{N}$$
, $(x, y) \in E^2$,

$$\frac{P^t(x,y)}{\pi(y)} = \sum_{j=1}^n f_j(x)f_j(y)\lambda_j^t = 1 + \sum_{j=2}^n f_j(x)f_j(y)\lambda_j^t.$$

Reversible finite-state chain and spectral decomposition

Spectral decomposition for reversible chain

Proof of Theorem (3.b) (i) : Since $\pi(x) > 0, x \in E$ it is straightforward that $\langle f, g \rangle_{\pi} := \sum_{x \in E} \pi(x) f(x) g(x)$ defines a scalar product on \mathbb{R}^{E} . Now if X is reversible with respect to π ,

$$A(x,y) := \sqrt{rac{\pi(x)}{\pi(y)}} P(x,y), (x,y) \in E^2$$

defines a symmetric operator on \mathbb{R}^E (in other words, any ordering of E makes $A = n \times n$ symmetric matrix). By well-known linear algebra results for symmetric matrices, eigenvalues of A are real and there exists $\{\phi_j, j = 1, ..., n\}$ an orthonormal basis (for the usual scalar product) of real-valued eigenfunctions associated with these eigenvalues sorted in decreasing order. Now setting $f_j(x) := \frac{\phi_j(x)}{\sqrt{\pi(x)}}, x \in E$, we find

$$\langle f_i, f_j \rangle_{\pi} = \sum_{x \in E} \pi(x) f_i(x) f_j(x) = \sum_{x \in E} \phi_i(x) \phi_j(x) = \delta_{ij}$$

Spectral decomposition for reversible chain

It remains to check that

$$Pf_j(x) = \sum_{y \in E} P(x, y) f_j(y)$$

=
$$\sum_{y \in E} \sqrt{\frac{\pi(y)}{\pi(x)}} A(x, y) \frac{\phi_j(y)}{\sqrt{\pi(y)}}$$

=
$$\sqrt{\frac{1}{\pi(x)}} A\phi_j(x)$$

=
$$\sqrt{\frac{1}{\pi(x)}} \lambda_j \phi_j(x) = \lambda_j f_j(x),$$

as we wished. Now by Lemma (3.a) it must be that $\lambda_1 = 1 > \lambda_2 \ge \cdots \ge \lambda_n \ge -1$. Note in addition that if X is aperiodic, we can moreover deduce that $\lambda_n > -1$.

Spectral decomposition for reversible chain

Proof of Theorem (3.b) (ii) : Writing the decomposition of $\mathbb{1}_{\{y\}}$ along the orthonormal basis $(f_j, 1 \le j \le n)$, we have

$$\mathbb{1}_{\{y\}}(\cdot) = \sum_{j=1}^n \langle f, f_j \rangle_{\pi} f_j(\cdot) = \sum_{j=1}^n f_j(y) \pi(y) f_j(\cdot).$$

Now

$$P^{t}(x, y) = P^{t} \mathbb{1}_{\{y\}}(x) = \sum_{j=1}^{n} f_{j}(y) \pi(y) P^{t} f_{j}(x)$$
$$= \sum_{j=1}^{n} \lambda_{j}^{t} f_{j}(y) \pi(y) f_{j}(x)$$

Now by Lemma (3.a) $f_1(x) = 1$ for any $x \in E$, so the first term in the sum above is $\pi(y)$, yielding the desired result.

Theorem

Assume that the chain X is irreducible, reversible, aperiodic. We define $|\lambda^*| = \max\{|\lambda_i|, i \ge 2\}$, and the (absolute) spectral gap $\gamma^* := 1 - |\lambda^*|$, which is > 0 in this setting by Lemma 4.a. We also define the relaxation time $t_{relax} = \frac{1}{\gamma^*}$. and let $\pi_{\min} = \min_{x \in E} \pi(x)$. Then

$$|\lambda^*|^t \leq 2d(t) \leq \frac{|\lambda^*|^t}{\pi_{\min}},$$

and

$$(t_{ ext{relax}}-1)\log\left(rac{1}{2arepsilon}
ight) \leq t_{ ext{mix}}(arepsilon) \leq \log\left(rac{1}{2arepsilon\pi_{ ext{min}}}
ight)t_{ ext{relax}}.$$

Proof of upper bound for $t_{mix}(\varepsilon)$ using spectral decomposition

We start by observing that

$$||P^{t}(x, \cdot) - \pi||_{TV} = \frac{1}{2} \sum_{y \in E} \pi(y) \left| \frac{P^{t}(x, y)}{\pi(y)} - 1 \right|$$

$$\leq \frac{1}{2} \max_{y \in E} \left| \frac{P^{t}(x, y)}{\pi(y)} - 1 \right|.$$

By spectral decomposition, then Cauchy-Schwarz we have

$$\begin{aligned} \left| \frac{P^t(x,y)}{\pi(y)} - 1 \right| &= \left| \sum_{j=2}^n \lambda_j^t f_j(x) f_j(y) \right| \\ &\leq \max_{j \ge 2} |\lambda_j|^t \left(\sum_{j=2}^n f_j^2(x) \right)^{1/2} \left(\sum_{j=2}^n f_j^2(x) \right)^{1/2} \end{aligned}$$

Reversible finite-state chain and spectral decomposition

Proof of upper bound for $t_{\min}(\varepsilon)$ using spectral decomposition

It remains to bound above $\left(\sum_{j=2}^{n} f_j^2(x)\right)^{1/2}$. For that, use orthonormality of the basis $\{f_j\}_{1 \le j \le n}$ to get

$$\begin{aligned} \pi(x) &= \langle \mathbb{1}_x, \mathbb{1}_x \rangle_\pi \\ &= \langle \sum_{j=1}^n \pi(x) f_j(x) f_j, \sum_{j=1}^n \pi(x) f_j(x) f_j \rangle_\pi \\ &= \sum_{j=1}^n \pi^2(x) f_j^2(x), \end{aligned}$$

so that $\left(\sum_{j=2}^{n} f_{j}^{2}(x)\right)^{1/2} \leq \frac{1}{\sqrt{\pi(x)}}$ In the end, we have proven that $d(t) \leq \frac{|\lambda^{*}|^{t}}{\pi_{\min}}$, as required. The upper bound for $t_{\min}(\varepsilon)$ then follows from its definition and the fact that $\max_{j\geq 2} |\lambda_{j}|^{t} \leq \exp(-\gamma^{*}t)$.

Proof of lower bound for $t_{\min}(\varepsilon)$ using spectral decomposition

The starting point is that if $f : E \to \mathbb{R}$, then

$$|P^t(x,\cdot)f - \pi f| = \sum_{y \in E} |P^t(x,y) - \pi(y)||f(y)| \le 2||f||_{\infty} d(t).$$

Now a good choice is to take $f = f_2$ or $f = f_n$ the eigenfunction associated to the eigenvalue λ such that $|\lambda| = \max_{j\geq 2} |\lambda_j|$ (the one realizing the spectral gap). In that case, not only $P^t f = \lambda^t f$, but moreover $\pi f = 0$ because f is orthogonal to the first (constant) eigenvector. Choosing x such that $|f(x)| = ||f||_{\infty}$, we get, as required,

$$|\lambda|^t = (1 - \gamma^*)^t \le 2d(t).$$

The lower bound for $t_{\min}(\varepsilon)$ then follows from its definition and elementary considerations, using in particular that $\log(|\lambda|^{-1}) \ge |\lambda|^{-1} - 1$.