
General considerations on the spectrum of the transition
matrix P

We assume in this paragraph that E is finite, #E = n. Note that
any ordering of E allows to express the transition kernel P of X as
a n × n stochastic matrix.

Lemma (3.a)

(i) If λ is an eigenvalue of P then |λ| ≤ 1.

(ii) If P is irreducible then ker(P − Id) = Vect




1
1
...
1




(iii) If P is irreducible and aperiodic then −1 is not an eigenvalue
of P.
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General considerations on the spectrum of the transition
matrix P

Proof of Lemma (3.a) (i) : Let f : E → R, we have

|Pf (x)| =

∣∣∣∣∣∣
∑
y∈E

P(x , y)f (y)

∣∣∣∣∣∣ ≤ ||f ||∞
∑
y∈E

P(x , y) = ||f ||∞,

thus ||Pf ||∞ ≤ ||f ||∞. If λ is an eigenvalue of P associated with
eigenvalue f we have ||Pf ||∞ = |λ|||f ||∞, and thus |λ| ≤ 1.
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General considerations on the spectrum of the transition
matrix P

Proof of Lemma (3.a) (ii) : An eigenfunction f associated with
eigenvalue 1 is simply a function f that is harmonic on the whole
of E . By the maximum principle for harmonic functions Theorem
(2.8) we conclude that f must be constant on E .
Note that this result also implies unicity of invariant distribution :
it is indeed the case that
dim(ker(P − Id)) = 1⇒ dim(ker(PT − Id)) = 1.
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General considerations on the spectrum of the transition
matrix P

Proof of Lemma (3.a) (iii) : By exercise I.11.2 since P is
irreducible, aperiodic and E is finite there must exists r ∈ N∗ such
that for any k ≥ r , Pk(x , y) > 0 for any x , y ∈ E . Now assume f
is an eigenfunction associated with eigenvalue −1, it must exist
x ∈ E such that f (x) 6= 0. Without loss of generality (even if it
means taking −f instead of f ) we may assume f (x) > 0. Then
P2r f (x) =

∑
y∈E P2r (x , y)f (y) implies, since P2r is stochastic,

that f has to be positive on the whole of E . But then
P2r+1f (x) = −f (x) brings a contradiction.
Note : We could also have used Perron-Frobenius theorem to
prove the three assertions of the Lemma.
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Spectral decomposition for reversible chain

Theorem (3.b)

Assume P is irreducible, reversible with respect to its unique
invariant probability π.

(i) The prehilbertian space (RE , 〈·, ·〉π) possesses an orthonormal
basis of real-valued eigenfunctions (fj , 1 ≤ j ≤ n) associated
with real eigenvalues 1 = λ1 > λ2 ≥ ... ≥ λn ≥ −1.

(ii) For any t ∈ N, (x , y) ∈ E 2,

Pt(x , y)

π(y)
=

n∑
j=1

fj(x)fj(y)λtj = 1 +
n∑

j=2

fj(x)fj(y)λtj .
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Spectral decomposition for reversible chain

Proof of Theorem (3.b) (i) : Since π(x) > 0, x ∈ E it is
straightforward that 〈f , g〉π :=

∑
x∈E π(x)f (x)g(x) defines a

scalar product on RE . Now if X is reversible with respect to π,

A(x , y) :=

√
π(x)

π(y)
P(x , y), (x , y) ∈ E 2

defines a symmetric operator on RE (in other words, any ordering
of E makes A a n × n symmetric matrix). By well-known linear
algebra results for symmetric matrices, eigenvalues of A are real
and there exists {φj , j = 1, ..., n} an orthonormal basis (for the
usual scalar product) of real-valued eigenfunctions associated with
these eigenvalues sorted in decreasing order. Now setting

fj(x) :=
φj (x)√
π(x)

, x ∈ E , we find

〈fi , fj〉π =
∑
x∈E

π(x)fi (x)fj(x) =
∑
x∈E

φi (x)φj(x) = δij ,

so {fj , 1 ≤ j ≤ n} is orthonormal for 〈·, ·〉π.
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Spectral decomposition for reversible chain

It remains to check that

Pfj(x) =
∑
y∈E

P(x , y)fj(y)

=
∑
y∈E

√
π(y)

π(x)
A(x , y)

φj(y)√
π(y)

=

√
1

π(x)
Aφj(x)

=

√
1

π(x)
λjφj(x) = λj fj(x),

as we wished. Now by Lemma (3.a) it must be that
λ1 = 1 > λ2 ≥ · · · ≥ λn ≥ −1. Note in addition that if X is
aperiodic, we can moreover deduce that λn > −1.
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Spectral decomposition for reversible chain

Proof of Theorem (3.b) (ii) : Writing the decomposition of 1{y}
along the orthonormal basis (fj , 1 ≤ j ≤ n), we have

1{y}(·) =
n∑

j=1

〈f , fj〉πfj(·) =
n∑

j=1

fj(y)π(y)fj(·).

Now

Pt(x , y) = Pt1{y}(x) =
n∑

j=1

fj(y)π(y)Pt fj(x)

=
n∑

j=1

λtj fj(y)π(y)fj(x)

Now by Lemma (3.a) f1(x) = 1 for any x ∈ E , so the first term in
the sum above is π(y), yielding the desired result.
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Bounding tmix(ε) using spectral decomposition

Theorem

Assume that the chain X is irreducible, reversible, aperiodic.
We define |λ∗| = max{|λi |, i ≥ 2}, and the (absolute) spectral gap
γ∗ := 1− |λ∗|, which is > 0 in this setting by Lemma 4.a.
We also define the relaxation time trelax = 1

γ∗ . and let
πmin = minx∈E π(x).
Then

|λ∗|t ≤ 2d(t) ≤ |λ
∗|t

πmin
,

and

(trelax − 1) log

(
1

2ε

)
≤ tmix(ε) ≤ log

(
1

2επmin

)
trelax.
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Proof of upper bound for tmix(ε) using spectral
decomposition

We start by observing that

||Pt(x , ·)− π||TV =
1

2

∑
y∈E

π(y)

∣∣∣∣Pt(x , y)

π(y)
− 1

∣∣∣∣
≤ 1

2
max
y∈E

∣∣∣∣Pt(x , y)

π(y)
− 1

∣∣∣∣ .
By spectral decomposition, then Cauchy-Schwarz we have∣∣∣∣Pt(x , y)

π(y)
− 1

∣∣∣∣ =

∣∣∣∣∣∣
n∑

j=2

λtj fj(x)fj(y)

∣∣∣∣∣∣
≤ max

j≥2
|λj |t

 n∑
j=2

f 2
j (x)

1/2 n∑
j=2

f 2
j (x)

1/2
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Proof of upper bound for tmix(ε) using spectral
decomposition

It remains to bound above
(∑n

j=2 f
2
j (x)

)1/2
. For that, use

orthonormality of the basis {fj}1≤j≤n to get

π(x) = 〈1x ,1x〉π

= 〈
n∑

j=1

π(x)fj(x)fj ,
n∑

j=1

π(x)fj(x)fj〉π

=
n∑

j=1

π2(x)f 2
j (x),

so that
(∑n

j=2 f
2
j (x)

)1/2
≤ 1√

π(x)
In the end, we have proven that

d(t) ≤ |λ
∗|t

πmin
, as required. The upper bound for tmix(ε) then follows

from its definition and the fact that maxj≥2 |λj |t ≤ exp(−γ∗t).
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Proof of lower bound for tmix(ε) using spectral
decomposition

The starting point is that if f : E → R, then

|Pt(x , ·)f − πf | =
∑
y∈E
|Pt(x , y)− π(y)||f (y)| ≤ 2||f ||∞d(t).

Now a good choice is to take f = f2 or f = fn the eigenfunction
associated to the eigenvalue λ such that |λ| = maxj≥2 |λj | (the one
realizing the spectral gap). In that case, not only Pt f = λt f , but
moreover πf = 0 because f is orthogonal to the first (constant)
eigenvector. Choosing x such that |f (x)| = ||f ||∞, we get, as
required,

|λ|t = (1− γ∗)t ≤ 2d(t).

The lower bound for tmix(ε) then follows from its definition and
elementary considerations, using in particular that
log(|λ|−1) ≥ |λ|−1 − 1.
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