General considerations on the spectrum of the transition

matrix P

We assume in this paragraph that E is finite, #E = n. Note that
any ordering of E allows to express the transition kernel P of X as
a n X n stochastic matrix.

Lemma (3.a)

(i) If X is an eigenvalue of P then |A| < 1.
1
1
(ii) If P is irreducible then ker(P — Id) = Vect
1
(i) If P is irreducible and aperiodic then —1 is not an eigenvalue
of P.
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General considerations on the spectrum of the transition

matrix P

Proof of Lemma (3.a) (i) : Let f : E — R, we have

PECOL = D PO y)F()| < [Ifllse Y P(x,y) = [Iflloc,

y€E y€eE

thus ||Pf|loo < ||f]loo- If A is an eigenvalue of P associated with
eigenvalue f we have ||Pf||oc = |A|||f||co, and thus |A| < 1.
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General considerations on the spectrum of the transition

matrix P

Proof of Lemma (3.a) (ii) : An eigenfunction f associated with
eigenvalue 1 is simply a function f that is harmonic on the whole
of E. By the maximum principle for harmonic functions Theorem
(2.8) we conclude that f must be constant on E.

Note that this result also implies unicity of invariant distribution :
it is indeed the case that

dim(ker(P — Id)) = 1 = dim(ker(P" — Id)) = 1.
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General considerations on the spectrum of the transition

matrix P

Proof of Lemma (3.a) (iii) : By exercise 1.11.2 since P is
irreducible, aperiodic and E is finite there must exists r € N* such
that for any k > r, PX(x,y) > 0 for any x,y € E. Now assume f
is an eigenfunction associated with eigenvalue —1, it must exist
x € E such that f(x) # 0. Without loss of generality (even if it
means taking —f instead of f) we may assume f(x) > 0. Then
P f(x) =Y g P?"(x,y)f(y) implies, since P’ is stochastic,
that f has to be positive on the whole of E. But then

P2rt1f(x) = —f(x) brings a contradiction.

Note : We could also have used Perron-Frobenius theorem to
prove the three assertions of the Lemma.
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Spectral decomposition for reversible chain

Theorem (3.b)
Assume P is irreducible, reversible with respect to its unique
invariant probability .

(i) The prehilbertian space (RE, (-,-),) possesses an orthonormal
basis of real-valued eigenfunctions (f;,1 < j < n) associated
with real eigenvalues 1 = 1 > X > ... >\ > —

(i) ForanyteN,(x,y) € E?,

S

X Y) (x)F t
—e Zf =14 D 50

-
||
N
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Spectral decomposition for reversible chain

Proof of Theorem (3.b) (i) : Since m(x) > 0,x € E it'is
straightforward that (f, g)r 1= > g 7(x)f(x)g(x) defines a
scalar product on RE. Now if X is reversible with respect to T,

A(.) = | P(x,y), (1) € E2

™(y)

defines a symmetric operator on RE (in other words, any ordering
of E makes A a n x n symmetric matrix). By well-known linear
algebra results for symmetric matrices, eigenvalues of A are real
and there exists {¢;,j = 1, ..., n} an orthonormal basis (for the
usual scalar product) of real-valued eigenfunctions associated with
these eigenvalues sorted in decreasing order. Now setting

fi(x) = 409 ,x € E, we find

w(x

(fi, i) = D mO))G(X) = D di(x)g;(x) = 6,

xeE xeE

3

so {f;,1 < j < nl is orthonormal for {-,-),
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Spectral decomposition for reversible chain

It remains to check that

Phi(x) = Y P(y)f(y)

yeE

W) Aty ) )
yzg:E 00 A00)

m(y)
= 7T(IX)A%'(X)

1
@)‘j@(x) = Ajfi(x),
as we wished. Now by Lemma (3.a) it must be that
AM=1>X>---> )\, > —1. Note in addition that if X is
aperiodic, we can moreover deduce that A, > —1.
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Spectral decomposition for reversible chain

Proof of Theorem (3.b) (ii) : Writing the decomposition of 1y,
along the orthonormal basis (f;,1 < j < n), we have

Ly () =Y (Fh)efi() = Z fi(y)m()h(-)-

j=1

Now

Pi(x,y) = P'lyy(x) = ) fiy)n(y)Pfi(x)

Now by Lemma (3.a) fi(x) =1 for any x € E, so the first term in
the sum above is 7(y), yielding the desired result.
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Bounding tix(g) using spectral decomposition

Theorem

Assume that the chain X is irreducible, reversible, aperiodic.
We define |\*| = max{|A;|,i > 2}, and the (absolute) spectral gap
~v* :=1—|X*|, which is > 0 in this setting by Lemma 4.a.

We also define the relaxation time t..x = 7% and let
Tmin = Mingeg 7(X).
Then
* |t ‘)‘*|t
A < 2d(t) < 2
Tmin
and

1 1
( relax — 1) IOg <2€> < tmix(s) < |Og <257Tmin> trelax-
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Proof of upper bound for t.,;x(¢) using spectral

decomposition

We start by observing that

Pt(x,y)
m(y)
1 Pt(x,y)

< -ma
= 20EF 7(y)

1P, ) —7llry = = W(y)’ _1'
_1’.

By spectral decomposition, then Cauchy-Schwarz we have

'Pt(xvy)_l' Z £ECOR(y

m(y)

1/2 1/2
n / n /

t 2 2
< max|Alt | 2 () > ()
Jj=2 Jj=2
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Proof of upper bound for t.,;x(¢) using spectral

decomposition

1/2
It remains to bound above (Zf:z 62(X)> . For that, use

orthonormality of the basis {f;}1<j<n to get

m(x) = (Ix,1)r

1/2
so that (Zf:z 62(x)> < —L_ In the end, we have proven that

t V()
d(t) < ‘?—' as required. The upper bound for tyix(¢) then follows

from its definition and the fact that max;>2 |Aj|* < exp(—7*t).
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Proof of lower bound for t;(¢) using spectral

decomposition

The starting point is that if f : E — R, then

P (x, ) = 7f| =D [P (x,y) = m(IIF ()] < 2/[Fllood(2).
yeE

Now a good choice is to take f = £, or f = f,, the eigenfunction
associated to the eigenvalue X such that |A\| = max;>2|A;| (the one
realizing the spectral gap). In that case, not only P'f = A'f, but
moreover mf = 0 because f is orthogonal to the first (constant)
eigenvector. Choosing x such that |f(x)| = ||f]|, we get, as

required,
IA[f = (1 —77)" < 2d(1).

The lower bound for tyix(¢) then follows from its definition and

elementary considerations, using in particular that
log (A1) > A7t — 1.
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