
Communication classes, irreductibility

Communication classes are exactly that of the corresponding jump
chain. In particular the chain is irreducible iff the associated jump
chain is irreducible.
Note however in the continuous-time setting that if x leads to y ,
then Pxy (t) > 0 ∀t > 0.
In particular if the chain is irreducible then
Pxy (t) > 0 ∀t > 0, ∀(x , y) ∈ E 2.

General continuous-time chains : properties



Transience/recurrence

Let T+
x = inf{t ≥ J1 : Xt = x}.

Theorem (4.10)

(i) If qx = 0 or if Px(T+
x <∞) = 1 then x is said

recurrent, moreover
∫∞
0 Pxx(t)dt = +∞ and finally x

is also recurrent for the jump chain.

(ii) If Px(T+
x <∞) < 1 then x is said transient,

moreover
∫∞
0 Pxx(t)dt <∞ and finally x is also

transient for the jump chain.
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Transience/recurrence : proof

Denote PX for the law of the continuous-time chain and PY for
the law of the corresponding jump chain.
Proof of Theorem (4.10) : If qx = 0 then Pxx(t) = 1 and the jump
chain never leaves x so everything in (i) is obvious.
Otherwise PX

x (T+
x <∞) = PY (T+

x <∞), and

∫ ∞
0

Pxx(t)dt = Ex

∑
n≥0

Sn+11{Yn=x}

 =
1

qx

∑
n≥0

Π
(n)
xx .

Now use the recurrence criterion for the jump chain to conclude.
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Transience/recurrence : proof

Theorem (4.11)

For h > 0 fixed set Zh
n = Xnh. Then x is recurrent for X iff x is

recurrent for Z .

Proof : Assume x is recurrent for Z . Then a.s. the number of
returns at x for Z is infinite, this implies the number of returns at
x for X is infinite a.s., at each return X spends an exponential
random time with fixed parameter qx , so the mean total holding
time

∫∞
0 Pxx(t)dt = +∞.

Reciprocally, assume
∫∞
0 Pxx(t)dt = +∞. However

Pxx(nh + h) ≥ exp(−qxh)Pxx(t) for any nh ≤ t ≤ (n + 1)h, and
thus

+∞ =

∫ ∞
0

Pxx(t)dt ≤ exp(qxh)h
∑
n≥1

Pxx(nh),

so the expected number of returns at x for Z is infinite, which
leads to the desired conclusion.
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Invariant measures and probabilities

Definition

The measure λ is invariant iff λQ = 0.

Theorem (4.12)

The measure λ is invariant iff µΠ = µ where
µ(x) = qxλ(x), x ∈ E .

Proof : For any y ∈ E ,

µΠ(y) = µ(y)1qy=0 +
∑

x∈E ,x 6=y ,qx 6=0

µ(x)
qxy
qx

=
∑

x∈E ,x 6=y ,qx 6=0

λ(x)qxy

= (λQ)(y) + qyλ(y) = (λQ)(y) + µ(y)

Thus µΠ = λQ + µ, yielding the desired result.
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Invariant measures and probabilities

Corollary

If X is irreducible recurrent then any two nondegenerate invariant
measures of X are proportional.

Proof : Fix x0 ∈ E . By the preceding results the jump chain Y is
irreducible and recurrent since X is, thus all invariant measures for
Y are proportional to the unique one which attributes mass one at
x0. But because of irreducibility qx > 0 for all x ∈ E , so by
Theorem 4.12 there is a one-to-one correspondence between
invariant measures for X and invariant measures of the jump chain.
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Invariant measures and probabilities

In fact the above corollary can be established directly by an
argument similar to the discrete-time setting when the chain is
recurrent, by looking at excursion away from x and averaging the
time spent at each vertex.
Beware, however, that things can get counter-intuitive in case the
chain is explosive : we may then be able to build in a similar
fashion an invariant probability for the chain even though because
it is explosive, it must be transient.
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Invariant measures and probabilities

Theorem (4.13)

Assume X is irreducible. The chain X is positive recurrent iff X is
non explosive and has an invariant probability. In that case, this
invariant probability is unique, and can be written

λ(y) =
1

Ex [T+
x ]

Ex

[∫ T+
x

0
1{Xs=y}ds

]
, y ∈ E
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Invariant measures and probabilities

Proof of Theorem (4.13) : Since X is irreducible qy > 0 for any
y ∈ E , and at each visit y , it spends an average of 1/qy there
before it jumps. Thus for any y ∈ E

Λ(y) := Ex

[∫ ζ∧T+
x

0
1{Xs=y}ds

]

=
1

qy
EY
x

T+
x −1∑
k=0

1{Xk=y}

 =
1

qy
νx(y),

so by theorem (4.12), and the corresponding result for discrete-time
chains (the jump chain is recurrent since the continuous-time chain
is), we get that Λ is invariant, and that it is the unique invariant
measure giving mass 1/qx to state x , and total mass Ex [T+

x ].
Of course when the chain is positive recurrent, i.e. Ex [T+

x ] <∞,
we deduce a unique invariant probability λ = Λ/Ex [T+

x ].
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Invariant measures and probabilities

Conversely when X is non explosive and has an invariant

probability λ0, then we may set ν(y) =
λ0(y)qy
λ0(x)qx

, y ∈ E , for some x

such that λ0(x) > 0.
By Theorem (4.12) ν is an invariant measure for the jump chain,
and gives mass 1 to x , so we must have, following the proof of the
discrete-time result, ν(y) ≥ νx(y), y ∈ E . But then, because the
chain is non-explosive,

EX
x [T+

x ] = Ex [T+
x ∧ ζ] = Λ(E ) =

∑
y∈E

νx(y)

qy

≤
∑
y∈E

ν(y)

qy

=
∑
y∈E

λ0(y)

λ0(x)qx
=

1

λ0(x)qx
<∞
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Invariant measures and probabilities

Theorem (4.14)

Assume X irreducible, recurrent. TFAAE

(i) λQ = 0

(ii) λP(t) = λ for any t ≥ 0

(iii) ∃h > 0 : λP(h) = λ.
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Invariant measures and probabilities

Assume (i). We may as well work with Λ of the previous proof
(other invariant measures are proportional). By Markov at T+

x ,

Ex

[∫ t

0
1{Xs=y}ds

]
= Ex

[∫ T+
x +t

T+
x

1{Xs=y}ds

]
,

so that

Λ(y) = Ex

[∫ t+T+
x

t
1{Xs=y}ds

]

= Ex

[∫ t+T+
x

t

∑
z∈E

1{Xs−t=z1{Xs=y}ds

]

= Ex

[∫ T+
x

0

∑
z∈E

1{Xu=z1{Xu+t=y}du

]
=

∑
z∈E

Λ(z)Pzy (t) = (ΛP(t))(y)

where we used Markov at time u to get the before-to-last equality.
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Invariant measures and probabilities

Now (ii)⇒ (iii) is obvious. Finally assume (iii), this means λ is an
invariant measure for Zh, which is recurrent by Theorem (4.11),
and since (i)⇒ (ii), any invariant measure for X has to be
invariant for Zh, so Λ is. Now λ and Λ have to be proportional
because of the result for discrete-time chains, and we conclude
that λ has to be invariant for X .
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Convergence theorem

Theorem (4.15)

Assume X is irreducible, positive recurrent, λ its unique invariant
probability. Then

Pxy (t) −→
t→∞

λ(y), ∀(x , y) ∈ E 2
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Convergence theorem

For any h > 0, Zh is irreducible and recurrent positive since λ is an
invariant probability for Zh by Theorem (4.14). It is of course
aperiodic since Pxx(h) > 0 for any x ∈ E . By the convergence
theorem for discrete-time chains, Pxy (nh)→ λ(y) as n→∞.
Now, fix ε > 0. We have

|Pxy (t)− λ(y)|

≤
∣∣∣Pxy (t)− Pxy

(
bn
h
ch
)∣∣∣+

∣∣∣Pxy

(
bn
h
ch
)
− λ(y)

∣∣∣
The first term of the sum is bounded above by the probability that
there is a jump for X in the time interval [0, bnhch − t], because if
there isn’t, one can always couple X with a version which may only
start to move after that time, and hence will have the law of Zh

n at
time t. Thus this first term is bounded above by 1− exp(−qxh).
Now take h small enough that this is less than ε/2. Then take
t ≥ t0(h) so that the second term also is bounded by ε/2, and we
are done.
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Ergodic theorem

Theorem (4.16)

Assume X is irreducible. Then 1
t

∫ t
0 1{Xs=x}ds

a.s−→
t→∞

1
qxEx [T

+
x ]

.

Moreover if X is assumed recurrent, and µ is an invariant measure
for X , f : E → R, g : E → R+ such that∑

x∈E |f (x)|µ(x) <∞, 0 <
∑

x∈E g(x)µ(x) <∞,∫ t
0 f (Xs)ds∫ t
0 g(Xs)ds

a.s−→
t→∞

∑
x∈E f (x)µ(x)∑
x∈E g(x)µ(x)

.

In particular if X is positive recurrent with invariant probability λ,
f : E → R such that

∑
x∈E |f (x)|µ(x) <∞,

1

t

∫ t

0
f (Xs)ds

a.s−→
t→∞

∑
x∈E

f (x)µ(x).
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Ergodic theorem

The claim is obvious in the transient case, so we assume the chain
to be recurrent and prove the second assertion when it is started at

x . Then the variables

(
Zr (f ) :=

∫ T
(r+1)
x

T
(r)
x

f (Xs)ds, r ≥ 0

)
are i.i.d,

where of course T
(0)
x = 0, and T

(r)
x denotes the rth return time at

x . Obviously rt := max{r ≥ 0 : T
(r)
x ≤ t} almost surely goes to

+∞ if the chain is recurrent. But then

1

rt

rt−1∑
k=0

Zk(f ) ≤ 1

rt

∫ t

0
f (Xs)ds ≤ 1

rt

rt∑
k=0

Zk(f ),

and by SLLN, both left and right hand sides converge a.s. to

Ex [Z1(f )] =
∑

y∈E Λ(y)f (y) =
∑

y∈E µ(y)f (y)

µ(x)qx
. By the same

reasoning for g we conclude.
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Reversibility

Definition

We say λ and Q satisfy detailed balance iff

λ(x)qxy = λ(y)qyx , ∀(x , y) ∈ E 2.

If λ and Q satisfy detailed balance and X is non explosive we say
that X is reversible.

Of course, if λ and Q satisfy detailed balance then λQ = 0. Also,
the corresponding jump chain remains reversible, since

λ(x)qxΠxy = λ(y)qyΠyx ,

and ν(x) = λ(x)qx indeed is invariant measure for Π.
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Reversibility

Of course, the jump chain corresponds to a conductance model
(with, e.g., c(x , y) = ν(x)Πxy = λ(x)qxy ), however, the
conductance function, if it allows to recover the jump kernel Π, is
not enough to recover the generator Q (one is missing the
information on the parameters of holding times at each site). In
other words, to one reversible jump chain correspond many
different reversible continuous-time chains.
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Reversibility : mean commute time

Assume X is a continuous-time irreducible, reversible, positive
recurrent chain. Then, for T = inf{t geTy : Xt = x}, the measure

µ(z) := Ex

[∫ T

0
1{Xs=z}ds

]
is invariant, it has total mass the mean commute-time
Ex [Ty ] + Ey [Tx ], and its mass at x is given by the average holding
time at x times the mean number of returns at x before it reaches
y , so

µ(x) =
1

qx
Px(Ty < T+

x )−1.

Now the quantity Px(Ty < T+
x ) is exactly the same for the (also

reversible) jump chain, and we have seen it equals c(x)R(x ↔ y)
for the corresponding conductance model.
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Reversibility : mean commute time

On the other hand, if λ is the invariant probability of X , it has total
mass 1, and its mass at x is λ(x) = 1

qxEx [T
+
x ]

by ergodic theorem.

By matching the ratios for total mass and mass at x we obtain

Ex [Ty ] + Ey [Tx ] =
c(x)

λ(x)qx
R(x ↔ y).

Note that if we choose the conductance function to be
c(x , y) = π(x)P(x , y), and c(x) = λ(x)qx , x ∈ E , we find
Ex [Ty ] + Ey [Tx ] = R(x ↔ y).
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SRW on a graph

A simple reversible, continuous-time chain on a graph is the
continuous-time SRW. When at a given site, start an
exponential(1) clock along each neighbouring edge, and jump
along the edge whose clock rings first, at the time it rings. In other
words qx = deg(x), and the jump kernel is that of the
discrete-time SRW on the same graph.
The uniform measure is clearly invariant, so that continuous-time
SRW on a graph is positive recurrent iff the graph is finite. In that
case, and if #E = n, we get λ(x) = 1

n for any x ∈ E . In particular
the mean commute-time becomes

Ex [Ty ] + Ey [Tx ] = nR(x ↔ y),

where here, R(x ↔ y) is computed for the conductance function
c(x , y) = 1 ∀(x , y) ∈ E 2 (so c(x) = qx = deg(x)).
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