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Abstract. The goal of this work is to find the asymptotics of the hitting probability of

a distant point for the voter model on the integer lattice started from a single 1 at the

origin. In dimensions d = 2 or 3, we obtain the precise asymptotic behaviour of this

probability. We use the scaling limit of the voter model started from a single 1 at the

origin in terms of super-Brownian motion under its excursion measure. This invariance

principle was stated by Bramson, Cox and Le Gall, as a consequence of a theorem of Cox,

Durrett and Perkins. Less precise estimates are derived in dimension d ≥ 4.

1. Introduction, Notation and Statement of result

The voter model is one of the most classical interacting particle systems. This
model is of great interest because it exhibits a range of interesting phenomena and
also because it is dual to a system of coalescing random walks. The voter model
was first introduced in [5], [10], and some of its basic properties were investigated
by Liggett [16], Sawyer [20], Arratia [1], Bramson and Griffeath [3].

More recently, Cox, Durrett and Perkins [4] showed an important invariance
principle, establishing that, after a suitable renormalization, voter models in di-
mension d ≥ 2 converge to super-Brownian motion. Super-Brownian motion is
a continuous measure-valued process which arises as the weak limit of branching
particle systems (see Watanabe [22]). It was discussed by Dawson [6], and studied
extensively in the nineties (see in particular [7], [18], [13]). In the recent years,
it was shown that super-Brownian motion also appears in scaling limits of a wide
range of lattice systems such as lattice trees, contact processes or oriented percola-
tion. The main idea of this work is to exploit known properties of super-Brownian
motion to get asymptotic results for the voter model.

Let us now describe the voter model and state our main result. Let d ≥ 2. At
each site of the integer lattice Zd there is a voter holding an opinion. We will study
here a two-type model, where there are only two possible opinions, say 0 or 1. At
rate 1 exponential times, the voter at x ∈ Zd chooses a neighbor y according to a
given jump kernel p and adopts the opinion of y. The voting times and neighbor
selections are supposed independent. The jump kernel p : Zd × Zd → [0, 1] will
be supposed symmetric, translation invariant, irreducible, centered, isotropic, and
having exponential moments :

• p(x, y) = p(0, y − x), p(x, y) = p(y, x), p(0, 0) = 0,
• ∑y∈Zd yp(0, y) = 0,

• ∑y∈Zd p(0, y)yiyj = σ2δij for some 0 < σ2 <∞,

• there exists a constant C > 0 such that
∑

y∈Zd p(0, y) exp(C|y|) <∞.

If t ≥ 0, we denote by ξt the set of sites where voters hold opinion 1 at time t; (ξt)t≥0

is the two-type voter model. If A ⊂ Zd, we write PA for the probability measure
under which ξ0 = A. Throughout this paper, we will consider the particular case
when ξ0 = {0}. In this case, (ξ0t )t≥0 will denote the two-type voter model started
from a single opinion 1 at the origin, and for simplicity, we will write P for P{0}.
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It is often convenient to work with the associated measure-valued processes

Xt :=
∑

y∈ξt

δy, X0
t :=

∑

y∈ξ0t

δy.

For α > 0 we define the conditional probability

P ∗
α(.) := P (.|ξ0α 6= ∅).

We are interested in estimating the probability that a voter located at a dis-
tance of order c from the origin ever holds opinion 1. If x ∈ Rd, we denote by [x]c
the point in c−1Zd closest to x. If there is more than one such point, we choose the
point closest to the origin. Our goal is to find the asymptotic order as c→ ∞ of

P (∃t ≥ 0 : c[x]c ∈ ξ0t ).

We introduce the notation Tc[x]c = inf{t ≥ 0 : c[x]c ∈ ξ0t } so that the previous
quantity can also be written P (Tc[x]c < ∞). Set β2 = 2π, and for d ≥ 3, let βd
be the probability that a rate 1 continuous time random walk with jump kernel p
started from the origin never returns to it.

Theorem 1. Let x ∈ Rd \ 0 be fixed. Let us define

φd(c) =











c2

2 ln(c) if d = 2,

c2 if d = 3,

cd−2 if d ≥ 5.

Then, if d = 2 or d = 3,

lim
c→∞

φd(c)P (Tc[x]c <∞) =
2σ2

βd

(

2 − d

2

)

|x|−2.

If d ≥ 5, there exist positive constants ad, bd depending on x such that

ad ≤ lim inf
c→∞

φd(c)P (Tc[x]c <∞) ≤ lim sup
c→∞

φd(c)P (Tc[x]c <∞) ≤ bd.

In dimension 4 we obtain less precise results. We will prove the existence
of a positive constant a4 and we conjecture the existence of a positive b4 such
that a statement similar to the one in d ≥ 5 holds for d = 4 with the function
φ4(c) := c2 ln(c). The upper bound in dimension 4 seems more difficult than the
corresponding results in other dimensions. Adapting the proof of the upper bound
for 2 ≤ d ≤ 3 to the case d = 4 only gives lim supc→∞ c2P (Tc[x] <∞) = 0.

Theorem 1 immediately extends to the multitype voter model ξt, which is
described as follows. We assume that the initial opinions are all distinct. The
dynamics of the multitype voter model are the same as those of the two-type voter
model. In this multitype setting, Theorem 1 gives the asymptotics of the probability
that the voter at x ever adopts the initial opinion of y, as |x− y| tends to infinity.

In dimensions 2 and 3, we will let T > 0 and argue under the measure P ∗
c2T .

Motivated by the results of [4], Bramson, Cox and Le Gall [2] proved that for T > 0,
the voter model ξ0 under P ∗

c2T converges as c → ∞ modulo a suitable rescaling to
a nondegenerate limit that can be expressed in terms of the excursion measure N0

of super-Brownian motion (see Theorem 2 below). This invariance principle of [2]
will be our main tool in the proof of Theorem 1 for small dimensions. We will
also need properties of super-Brownian motion under its excursion measure N0.
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The Brownian snake approach of Le Gall [13] gives a good understanding of the
measure N0, and will be used to prove an intermediate result.

As mentioned earlier, the voter model and coalescing random walks are dual
processes. In a coalescing random walk system, particles are assumed to execute
rate 1 random walks with jump kernel p. Particles move independently until they
meet, then coalesce and move together afterwards. The duality property also serves
as a major tool for our results.

In Section 2.1, we introduce super-Brownian motion and its excursion measure
N0. Scaling limits of the voter model (invariance principles) are discussed in Section
2.2. The duality property is explained in Section 2.3, and preliminary results on
rate 1 random walks and system of coalescing random walks are discussed in Section
2.4 and 2.5.

We establish the asymptotic upper bounds on P (Tc[x] <∞) in Section 3. This
requires interesting intermediate results. Lemma 4 expresses that the probability
for the voter model under P ∗

α to escape B(0, A) before time 2α decays exponentially
with A. Lemma 3 informally expresses that for any fixed ε > 0, then, ∪t≥εαξ0t does
not contain any “isolated” point, with arbitrarily high probability under P ∗

α , when
α is taken large enough.

We prove the asymptotic lower bounds in Section 4. Sections 4.1 is devoted
to the case d ≥ 4, and Sections 4.2 and 4.3 to the case d = 2 or 3. Finally, we prove
the results of Sections 2.4 and 2.5 in Section 5.

2. Further notation and preliminary results

Let f and g be two functions from R into (0,∞). We will write f(x) = o(g(x))
as x → ∞, respectively f(x) ∼ g(x) as x → ∞ whenever limx→∞ f(x)(g(x))−1 is
equal to 0, respectively 1.

For x ∈ Rd, r > 0 we denote by B(x, r) the open ball in Rd centered at x with
radius r, and B(x, r)c its complement.

For real numbers x ≤ y, the set {n ∈ Z : x ≤ n ≤ y} of integers between x
and y will be denoted by

[

|x, y|
]

; also, the integer part of x : max{n ∈ Z : n ≤ x}
will be denoted by bxc, while bxc+1 = min{n ∈ Z : n > x} will be denoted by dxe.

2.1. Super-Brownian motion. Let MF (Rd) be the space of all finite measures
on Rd, equipped with the topology of weak convergence. For µ ∈ MF (Rd), f
a function on Rd, the notation µ(f) will stand for

∫

Rd f(x)µ(dx) whenever this

integral is well-defined. We let C(R+,MF (Rd)) be the space of continuous paths
from R+ into MF (Rd), and we let D(R+,MF (Rd)) be the Skorohod space of cadlag
functions from Rd into MF (Rd). We denote by (Yt, t ≥ 0) the canonical process on
either C(R+,MF (Rd)) or D(R+,MF (Rd)).

The law of super-Brownian motion with branching rate γ and diffusion co-

efficient σ2, starting from µ ∈ MF (Rd), is the probability measure Qγ,σ2

µ on

C(R+,MF (Rd)) that solves the following well-posed martingale problem (see [18],
Theorem II.5.1) :

(MP) For any φ ∈ C∞
b (Rd),

Yt(φ) = µ(φ) +Mt(φ) +
1

2

∫ t

0

Ys(σ
2∆φ)ds,
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where Mt(φ) is a Qγ,σ2

µ continuous square integrable martingale such that
M0(φ) = 0 and the quadratic variation of M(φ) is

< M(φ) >t=

∫ t

0

Ys(γφ
2)ds.

One can show (see for example Section II.7 of [18]) that there exists a family

{Rγ,σ
2

t (y, .), y ∈ Rd, t > 0} of finite measures on MF (Rd), called the canoni-
cal measures of super-Brownian motion, which assign zero mass to the 0 mea-

sure and are such that the following holds. The law of Yt under Qγ,σ2

µ is the

same as the law of
∑

i∈I Y
i
t , where

∑

i∈I δY i
t

is a Poisson measure with intensity
∫

MF (Rd)R
γ,σ2

t (y, .)µ(dy). It follows that for any Borel subset Y of MF (Rd) with

0 /∈ Y ,

(1) lim
ε→0

ε−1Qγ,σ2

εδy
(Yt ∈ Y) = Rγ,σ

2

t (y,Y).

It is also well-known (see [18], Theorem II.7.2) that for any y ∈ Rd,

(2) Rγ,σ
2

t (y,MF (Rd)) =
2

γt
.

From [18], Theorem II.7.3 (see also formula (3.10) in [2]), for each y ∈ Rd there
is a σ-finite measure Ny on C(R+,MF (Rd)) called the excursion measure of super-
Brownian motion with branching rate γ and diffusion coefficient σ2 such that the
following holds. For any α > 0 fixed, then for any bounded continuous function F
on C(R+,MF (Rd)), such that F (ω) = 0 for any ω with ω(t) = 0 for all t ≥ α,

(3) lim
ε→0

ε−1Qγ,σ2

εδy
(F ((Yt, t ≥ 0))) = Ny(F ).

The convergence (1) is a particular case of (3). Thus, for any Borel subset Y of
MF (Rd) with 0 /∈ Y , we have

Ny(Yt ∈ Y) = Rγ,σ
2

t (y,Y).

Also, for any T > 0, y ∈ Rd, we get from (2)

(4) Ny(YT 6= 0) =
2

γT
,

and we can define the probability measure N(T )
y := Ny(.|YT 6= 0).

A better understanding of the measures Ny is given by the Brownian snake
approach of Le Gall (see [13], and Section 4.4 below). The Brownian snake approach
corresponds to γ = 4, but scaling properties of super-Brownian motion can then be
used to deal with a general value of γ.

Finally, we will use the following result about hitting probabilities of a single
point. Let Rt denote the topological support of the measure Yt, and R =

⋃

t>0 Rt.
It follows from [13], Section 6.1 that

(5) N0(x ∈ R) =
4σ2

γ

(

2 − d

2

)+

|x|−2.

In particular, in the case d ≥ 4, N0(x ∈ R) = 0, which explains why our results
are less precise. Also, as (5) suggests, the case of dimension 4 is critical, and thus
harder.
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Since N0(YT = 0
∣

∣x ∈ R) → 0 as T goes to 0, we deduce from (4) and (5) that

(6) N(T )
0 (x ∈ R) ∼

T→0
2σ2T

(

2 − d

2

)+

|x|−2.

2.2. Extinction probability, invariance principle. Set pt := P (ξ0t 6= ∅). The
asymptotic rate at which pt converges to 0 was found in [3]. As t→ ∞,

pt ∼
{

log(t)/(β2t) if d = 2

1/(βdt) if d ≥ 3,
(7)

where βd, d ≥ 2 was defined before Theorem 1. Hence, for any d ≥ 2 there exist a
positive κ0 depending only on d such that for any 1/4 < t′ ≤ t,

(8)
pt′

pt
≤ κ0

t

t′

If |C| denote the cardinality of a finite set C, Bramson and Griffeath ([3]) es-
tablished that the law of pt|ξ0t | under P ∗

t converges as t → ∞ to an exponential
distribution with parameter 1.

Bramson and Griffeath [3] also conjectured that ξ0
t would obey a certain as-

ymptotic shape theorem. Such a result was derived in 2001 by Bramson, Cox and Le
Gall [2] using the invariance principle relating the voter model and super-Brownian
motion, which was proved by Cox, Durrett and Perkins in [4]. We rescale the voter

model as follows. For N > 0, the lattice is now SN := Zd/
√
N . Individuals change

opinion at rate N instead of 1, and the jump kernel becomes pN : SN × SN → R+

such that pN (x, y) = p(
√
Nx,

√
Ny). We denote by (ξN,0t )t≥0 the corresponding

process (ξN,0t represents the set of sites having opinion 1 at time t). If we let

mN :=
N

log(N)
if d = 2, mN := N if d ≥ 3,

we can define an associated measure-valued processes :

XN,0
t :=

1

mN

∑

y∈ξN,0
t

δy.

Similarly, when at time 0, opinion 1 is started from a given set ξ0, we may
define for N > 0 a rescaled voter model ξNt and the corresponding measure valued
process XN

t . Theorem 1.2 of [4] states that whenever XN
0 converges to a non-

degenerate measure X0 ∈ MF (Rd), then (XN
t )t≥0 converges to a super-Brownian

motion on Rd with branching rate 2βd and diffusion coefficient σ2, started from X0.

Theorem 2 below states the convergence in law of the process (XN,0
t )t≥0 under

the conditional distribution P (.
∣

∣XN,0
α 6= 0) towards super-Brownian motion under

N(α)
0 . This result, which is taken from [2] (Theorem 4) will be a key ingredient of

the proof of Theorem 1 in dimensions 2 and 3.

Theorem 2. Assume d ≥ 2, and let N0 be the excursion measure of super-Brownian
motion on Rd with branching rate 2βd and diffusion coefficient σ2. Let α > 0, and
let F be a bounded continuous function on D(R+,MF (Rd)). Then

(9) lim
N→∞

E
[

F
(

(XN,0
t )t≥0

)

∣

∣XN,0
α 6= 0

]

= N(α)
0 [F ].

Let us now turn to the well-known relation between the voter model and
coalescing random walks.
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2.3. Dual process to the voter model. Let us introduce further notation in
order to describe the dual process to the voter model. The times at which the
voter at x adopts the opinion of the voter at y are the jump times of a standard
Poisson process with rate p(x, y). We denote by Λ(x, y) this set of times. Then,
{Λ(x, y), x, y ∈ Zd} forms a family of independent Poisson point processes on [0,∞).

We now describe the useful graphical representation of the voter model. Hor-
izontal axis represents Zd, vertical axis represents time. For x, y ∈ Zd we draw a
horizontal arrow from y to x at each time s ∈ Λ(x, y).

For s < t we say there is a path up from (y, s) to (x, t) or equivalently a path
down from (x, t) to (y, s) and we will write

(y, s) ↗ (x, t) ⇔ (x, t) ↘ (y, s)

if there exist times s = s0 < s1 < ... < sn ≤ sn+1 = t and sites y = x0, x1, ..., xn = x
such that

• for 1 ≤ i ≤ n there is an arrow pointing from xi−1 towards xi at time si,
• for 0 ≤ i ≤ n, there is no arrow pointing towards xi in the time interval

(si, si+1).

Clearly for every x ∈ Zd and every choice of 0 ≤ s ≤ t, there is a unique y ∈ Zd

such that (y, s) ↗ (x, t). In such a case, the opinion of (x, t) is ”descended” from
that at (y, s). We will say that x at time t is a ”descendant” of y at time s, or
equivalently that y at time s is an ”ancestor” of x at time t.

We are now in a position to describe the dual process to the voter model. For
t > 0 and x ∈ Zd we define (Zx,ts )0≤s≤t by setting Zx,t0 = x and for 0 < s ≤ t,
Zx,ts = y if and only if (x, t) ↘ (y, t − s). Clearly, (Zx,ts )0≤s≤t is a rate 1 random
walk with jump kernel p starting from x. Moreover, for x ∈ Zd, y ∈ Zd, the two
walks (Zx,ts )0≤s≤t, (Zy,ts )0≤s≤t start respectively from x and y, move independently
until they meet, and move together afterwards. That is, (Zx,ts )0≤s≤t,x∈Zd forms a
coalescing random walk system with jump kernel p. Furthermore

(10) ξ0t = {y ∈ Zd : Zy,tt = 0}.
For t ≥ 0, we denote by ξ̂y,ts the set of descendants at time t+ s of y at time t, that
is

ξ̂y,ts := {z ∈ Zd : (y, t) ↗ (z, t+ s)} = {z ∈ Zd : Zz,t+ss = y}
Notice that (ξ̂y,ts )s≥0 has the same law as (ξ0s + y)s≥0. For u ≤ t we will denote by
Ωtu the set of points having opinion 1 at time u and having descendants at time t,
that is

Ωtu := {y ∈ ξ0u : ξ̂y,ut−u 6= ∅} = ξ0u ∩ {Zz,tt−u, z ∈ Zd}.

The coalescing random walk perspective, combined with the Bramson and
Griffeath results and Theorem 2, gives us a heuristic explanation of our main result

Theorem 1. If c[x]c has opinion 1 at time t, then Z
c[x]c,t
t = 0 so that from well-

known properties of random walks, t should be of order c2. The probability for
the voter model to survive a time of order c2 is of order pc2 , and conditionally on
that event, the rescaled voter model converges to super-Brownian motion under its
excursion measure. Informally, formula (5) is then exactly what we need to conclude
in the case 2 ≤ d ≤ 3. Also, not rigourously, one should expect that for d ≥ 4,
the probability of hitting c[x]c should be of order pc2 × N0(Y hits B(x, 1/c)) ≈
Ad(x) × φd(c)

−1, where Ad(x) is a constant depending only on d and |x| (see [9]).
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In the following paragraph, we present a few well-known properties of random
walks, then some estimates for coalescing random walks. These will prove useful
when using the duality property in the course of the proof of Theorem 1.

2.4. Random walks with jump kernel p. We denote by (Zt, t ≥ 0) a continuous-
time random walk on Zd with jump kernel p and exponential holding times with
parameter 1. For x ∈ Zd, Z starts from x under the probability measure Px. For
x, y ∈ Zd, t ≥ 0 we let

qt(x, y) = qt(y − x) := Px(Zt = y)

be the transition kernel of our random walk. For x, y ∈ Rd and t > 0 let

pt(x, y) = pt(x− y) := (2πσ2t)−d/2 exp

(

−|x− y|2
2σ2t

)

be the transition density of d-dimensional Brownian motion. We denote by Pt the
associated semigroup. For d ≥ 3 and x ∈ Rd \ 0, we also denote by G(x) the Green
function associated with p :

G(x) =

∫ ∞

0

ps(x)ds = cd|x|2−d.

The asymptotic behaviour of qt(y) as t → ∞ is given by standard local limit
theorems (see [21], and [11] for an equivalent statement for discrete random walks).

Theorem 3. If q and p are defined as above,

lim
t→∞

sup
y∈Zd

∣

∣

∣td/2qt(y) − p1(yt
−1/2)

∣

∣

∣ = 0.

We will also need an upper bound on the transition kernel q that is valid for
any t ≥ 1/2 :

Lemma 1. There exist two positive constants κ1, κ2 such that for every t ≥ 1/2,
y ∈ Zd,

qt(y) ≤
κ1

td/2
exp

(

−κ2|y|√
t

)

.

For the reader’s convenience, we provide a short proof of Lemma 1 in Section 5.
For t > 0 and y ∈ Rd let us define

ft(y) :=
κ1

td/2
exp

(

−κ2|y|√
t

)

.

We also set for t > 0 and y ∈ Rd

κ̃1 := 2κ1; κ̃2 := κ2/4; f̃t(y) :=
κ̃1

td/2
exp

(

− κ̃2|y|√
t

)

;

κ̂1 := 4κ1; κ̂2 := κ2/8; f̂t(y) :=
κ̂1

td/2
exp

(

− κ̂2|y|√
t

)

,

so that ft(x) ≤ f̃t(x) ≤ f̂t(x). We need to control integrals of these functions. Note

that, for x 6= 0, the supremum of the function t → f̂t(x) is reached at t0 =
|x|2κ̂2

2

d2 .
Let us introduce for r > 0

ψ2(r) = 2 ln(r ∨ e),
ψd(r) = rd−2 if d ≥ 3.
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We then observe that for T > 0, there exists a constant L0 depending only on d
and T such that for any x ∈ Rd \ 0,

(11)

∫ T

0

ft(x)dt ≤
∫ T

0

f̃t(x)dt ≤
∫ T

0

f̂t(x)dt ≤ L0ψd
(

|x|−1
)

.

Furthermore, whenever |x| ≥ d
√
T

κ̂2
we have

(12)

∫ T

0

f̂t(x)dt ≤ κ̂1T
1−d/2 exp(− κ̂2|x|√

T
).

Finally, when d = 2, the integral
∫ T

0 ft(x)dt diverges when T → ∞, but, when
d ≥ 3, there exist a constant L1 depending only on d such that

(13)

∫ ∞

0

f̂t(x)dt ≤ L1ψd
(

|x|−1
)

= L1|x|2−d.

We also need an exponential bound on the probability for a random walk with
jump kernel p to escape B(0, A

√
t) before time t. As a consequence of Lemma 1

and Doob’s maximal inequality applied to a suitable exponential martingale of the
random walk, there exist positive constants κ3, κ4 such that for any t ≥ 1/2, for
any A > 0,

(14) P0( sup
s∈[0,t]

|Zs| ≥ A
√
t) ≤ κ3 exp(−κ4A).

We may and will assume that the constant κ2 in Lemma 1 is such that κ4 ≥ 4κ2.
We then deduce easy consequences of Theorem 3 and Lemma 1. From Theo-

rem 3, we obtain, for x 6= 0 and s > 0,

(15) cdqc2s(c[x]c) = s−d/2(c2s)d/2qc2s(c[x]c) −→
c→∞

s−d/2p1

(

x√
s

)

= ps(x).

On the other hand, using (14), we get

cd
∫ c−2

0

qc2s(c[x]c)ds ≤ κ3c
d−2 exp (−κ4c[x]c) −→

c→∞
0,

whereas, from Lemma 1, for any s ≥ c−2 we have

(16) cdqc2s(c[x]c) ≤ fs([x]c).

We can use (15) and dominated convergence to deduce that for x 6= 0 and T > 0
we have

cd
∫ T

0

qc2s(c[x]c)ds −→
c→∞

∫ T

0

ps(x)ds.(17)

By a similar argument, we obtain, for any T > 0, y ∈ Zd,
∫ T

0

qc2s(y)ds ≤ c−2κ3 exp(−κ4|y|) + c−d
∫ T

c−2

fs(y/c)ds.

Using (11), (12), it is then easy to establish that there exist constants L2, L
′
2,

depending only on T and d, such that for any c ≥ 1, we have

∫ T

0

qc2s(y)ds ≤















L2c
−dψd(c) if y = 0,

L2c
−dψd

(

c|y|−1
)

if y ∈ Zd \ 0,

L2c
−d exp

(

−L′
2
|y|
c

)

if y ∈ Zd, |y| > c.

(18)
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We now discuss some preliminary results on coalescing random walks.

2.5. Preliminary results on coalescing random walks. Consider two inde-
pendent copies Z1, Z2 of the random walk Z with transition kernel q, starting
respectively at points y1, y2 ∈ Zd under the probability measure Py1,y2 . The time
at which Z1 and Z2 first meet is the stopping time T1 = inf{t ≥ 0 : Z1

t = Z2
t }. We

will need the following result. The first bound below holds in the case d ≥ 3, for
which we recall that ψd(r) = rd−2. The second bound holds in the case d = 2, for
which we recall ψ2(r) = 2 ln(r ∨ e).

Lemma 2. Let d ≥ 2 and T > 0. There exists a positive constant L4 depending
only on T and d such that for any x ∈ Rd \ 0, for any c ≥ 1 ∨ |x|−2 and for any
y ∈ Zd \ 0,

{

if d ≥ 3, cdψd(|y|)
∫ T

0 dtP0,y

[

T1 ≤ c2t, Z1
c2t = c[x]c

]

≤ L4 ψd(|x|−1),

if d = 2, c2 ψ2(|y|)
ψ2(c/|y|)

∫ T

0 dtP0,y

[

T1 ≤ c2t, Z1
c2t = c[x]c

]

≤ L4ψ2(|x|−1).

We postpone the proof of this result to Section 5.

3. Upper bound

In the case d ≥ 5, the upper bound of Theorem 1 follows from the next propo-
sition.

Proposition 1. Let d ≥ 5, x ∈ Rd. For c large enough

P (Tc[x]c <∞) ≤ 2ec2−dG(x).

In the case d ≤ 3, we will argue under P ∗
c2T and use Theorem 2 to establish the

following sharp asymptotic upper bound. This bound also holds when d ≥ 4 but is
not sharp in that case.

Proposition 2. Let d ≥ 2, T > 0, x ∈ Rd \ {0},

(19) lim sup
c→∞

P ∗
c2T (Tc[x]c <∞) ≤ N(T )

0 (x ∈ R).

In the cases d = 2 or d = 3, we will see in Section 3.3 that Proposition 2 implies
the asymptotic upper bound in Theorem 1. Notice that the right-hand side of (19)
is 0 if d ≥ 4. We begin with the proof of Proposition 1, which only requires very
simple arguments.

3.1. The case d ≥ 5. Fix x ∈ Rd \ {0}. Proving Proposition 1 reduces to estab-
lishing the following two results :

(20) E

[∫ ∞

0

ds1{c[x]c∈ξ0s}

]

∼
c→∞

c2−d
∫ ∞

0

dsps(x),

(21) P
(

Tc[x]c <∞
)

≤ eE

[∫ ∞

0

ds1{c[x]c∈ξ0s}

]

.
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Let us fix T > 0, and observe that

E

[

∫ c2T

0

ds1{c[x]c∈ξ0s}

]

= c2E

[

∫ T

0

ds1{c[x]c∈ξ0
c2s

}

]

= c2
∫ T

0

dsP
(

Z
c[x]c,c

2s
c2s = 0

)

= c2
∫ T

0

dsqc2s(c[x]c)

∼
c→∞

c2−d
∫ T

0

ps(x)ds,(22)

where the asymptotics at the last line come from (17). Furthermore, using (16), we
have similarly

E

[∫ ∞

c2T

1{c[x]c∈ξ0s}ds

]

= c2
∫ ∞

T

qc2s(c[x]c)ds

≤ c2−d
∫ ∞

T

fs([x]c)ds,

and since d ≥ 3,
∫∞
T
fs([x]c)ds goes to 0 as c → ∞. Thus from (22), we obtain

(20). Let us now prove (21).
When Tc[x]c <∞, denote by N the numbers of arrows pointing towards c[x]c

in the time interval (Tc[x]c , Tc[x]c + 1]. Under P
(

.
∣

∣Tc[x]c <∞
)

, N is a Poisson
variable with parameter 1. It follows that

P (Tc[x]c <∞) = eP (Tc[x]c <∞, N = 0).

Furthermore, on the event {N = 0} we have c[x]c ∈ ξ0s for every
s ∈ [Tc[x]c , Tc[x]c + 1]. Hence,

E

[∫ ∞

0

ds1{c[x]c∈ξ0s}

]

≥ P (Tc[x]c <∞, N = 0).

This completes the proof of (21), and of Proposition 1. 2

3.2. Proof of Proposition 2. Let d ≥ 2 and fix T > 0, x ∈ Rd \ 0, and η ∈
(0, |x|/2). Recall the notation mN from Section 2.2. We have for any δ > 0, ε > 0 :

P ∗
c2T (Tc[x]c <∞) ≤ P ∗

c2T

[
∫ ∞

0

ds1{X0
s (B(cx,ηc))≥δmc2}

≥ εc2
]

+P ∗
c2T

[∫ ∞

0

ds1{X0
s (B(cx,ηc))≥δmc2}

< εc2, Tc[x]c <∞
]

.(23)

Intuitively, when c tends to infinity, the second term of the sum above should remain
small when ε and δ are small enough, while the first term, using the invariance

principle, should be bounded by a corresponding rescaled quantity under N(T )
0 . Let

us be more precise. Using rescaling, the first term of the sum in the right-hand side
of (23) is equal to

P ∗
c2T

[∫ ∞

0

ds1{Xc2,0
s (B(x,η))≥δ} ≥ ε

]

.

It is easy to see that for any A > 0, the set
{

ω ∈ D(R+,MF (Rd)) :

∫ A

0

ds1{ωs(B(x,η))≥δ} ≥ ε

}
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is closed for the Skorohod J1 topology. Then, Theorem 2 implies that

lim sup
c→∞

P ∗
c2T

[

∫ A

0

ds1{Xc2,0
s (B(x,η))≥δ} ≥ ε

]

≤ N(T )
0

[

∫ A

0

ds1{Ys(B(x,η))≥δ} ≥ ε

]

≤ N(T )
0

[

Y hits B(x, η)
]

.

Furthermore, we have, for A ≥ T ,

P ∗
c2T

[∫ ∞

A

ds1{Xc2,0
s (B(x,η))≥δ} ≥ ε

]

≤ P ∗
c2T (Xc2,0

A 6= 0) =
pc2A
pc2T

,

which goes to 0 as A → ∞. Hence, we obtain for every δ > 0, ε > 0,

(24) lim sup
c→∞

P ∗
c2T

[
∫ ∞

0

ds1{Xc2,0
s (B(x,η))≥δ} ≥ ε

]

≤ N(T )
0

[

Y hits B(x, η)
]

.

To control the second term of the sum in the right-hand side of (23), we will
use the following argument. When c is large and point c[x]c is hit by opinion 1, then
with arbitrarily high probability, a sufficient number (of order mc2) of its neighbors
(at distance less than ηc) should also be hit by opinion 1 during a certain time
interval (with length of order c2).

We will prove a somewhat more general result, which will be valid uniformly
over all points in ξ0t , with the restriction that t should be at least of order c2.

Lemma 3. Let T > 0, ρ > 0, η > 0 be fixed. We can find ε0 > 0 so that for any
ε ∈ (0, ε0], there exists δ > 0 such that for c sufficiently large,

(25) P ∗
c2T

(

∃t ≥ 4εc2 ∃x ∈ ξ0t : inf
s∈[t−3εc2,t−2εc2]

|ξ0s ∩ B(x, ηc)| < δmc2

)

≤ ρ.

We will also need a useful exponential bound on the probability for the voter
model to escape a ball of radius A

√
α before time 2α :

Lemma 4. There exists constants K1 > 0,K2 > 0 such that for any α > 1, for
any A > 0,

(26) P ∗
α

(

sup
t≤2α

sup
x∈ξ0t

|x| > A
√
α

)

≤ K1 exp(−K2A).

Let us postpone the proofs of Lemma 3 and Lemma 4, and finish the proof of
Proposition 2. Recall x, T, η ∈ (0, |x|/2) have been fixed. Notice that, when c is
large enough, B(c[x]c, ηc/2) ⊂ B(cx, ηc). Thus,

P ∗
c2T

[∫ ∞

0

ds1{X0
s (B(cx,ηc))≥δmc2}

< εc2, 4εc2 ≤ Tc[x]c <∞
]

≤ P ∗
c2T

[∫ ∞

0

ds1{X0
s (B(c[x]c,ηc/2))≥δmc2}

< εc2, 4εc2 ≤ Tc[x]c <∞
]

.

Hence, using Lemma 3, for any ρ > 0, we can choose ε0 > 0 such that for any
ε ∈ (0, ε0], there exists δ > 0 such that for c large enough,

P ∗
c2T

[∫ ∞

0

ds1{X0
s(B(c[x]c,ηc/2))≥δmc2}

< εc2, 4εc2 ≤ Tc[x]c <∞
]

≤ ρ.(27)

Furthermore, provided 2ε ≤ T , we have

P ∗
c2T

[

Tc[x]c < 4εc2
]

≤ p2εc2

pc2T
P ∗

2εc2

[

Tc[x]c < 4εc2
]

.
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If c is sufficiently large, we can thus use (8) and the fact that c|[x]c| ≥ c|x|/
√

2,

then Lemma 4 with α = 2εc2 and A = |x|
2
√
ε

to get

P ∗
c2T

[

Tc[x]c < 4εc2
]

≤ κ0
T

2ε
P ∗

2εc2

(

sup
t≤4εc2

sup
y∈ξ0t

|y| > c|x|√
2

)

≤ κ0K1
T

2ε
exp

(

−K2|x|
2
√
ε

)

.

Combining (23), (24), (27) and the last inequality now yields

lim sup
c→∞

P ∗
c2T (Tc[x]c <∞) ≤ N(T )

0

[

Y hits B(x, η)
]

+ ρ+ κ0K1
T

2ε
exp

(

−K2|x|
2
√
ε

)

,

for any ρ > 0 and ε ∈ (0, ε0(η, ρ)]. By letting ε and then ρ go to 0, we get

(28) lim sup
c→∞

P ∗
c2T (Tc[x]c <∞) ≤ N(T )

0

[

Y hits B(x, η)
]

.

Our reasonning is valid for any η ∈ (0, |x|/2). Thus, letting η go to 0 in (28) finishes
the proof of Proposition 2. 2

It remains to prove Lemma 4 and Lemma 3. We start with the proof of Lemma
4, since it will appear to be a key tool in the proof of Lemma 3.

3.2.1. Proof of Lemma 4. Let us first outline the proof and summarize the inter-
mediate results. We need to discretize the time scale. Introduce the integer

N := min{n ∈ N : α2−n < 1} =

⌊

ln(α)

ln(2)

⌋

,

and the time intervals

Bn := [(n− 1)2−N−1α, n2−N−1α], n ∈
[

|1, 2N+2|
]

.

Let us introduce the set of points having, for some odd n ∈
[

|1, 2N+2|
]

, opinion 1 at

a time belonging to Bn, and descendants at time (n+ 1)2−N−1α :

ΞN+1 :=

2N+1
⋃

n=1

n odd

⋃

u∈Bn

Ω(n+1)2−N−1α
u .

Informally, our interest in this set ΞN+1 comes from the fact that if x ∈ ⋃t≤2α ξ
0
t , a

“close” ancestor of x belongs to ΞN+1, and hence, ΞN+1 should not be too far from
⋃

t≤2α ξ
0
t . More precisely, for t < 1, set ut = 0, and for t ∈ [1, 2α], let us choose

ut ∈
[

t− α

2N
, t− α

2N+1

]

⋂

2N+1
⋃

n=1

n odd

Bn.

We have t − ut ≤ α2−N < 1, and, if x ∈ ξ0t for some t ∈ [0, 2α], the ancestor of x
at time ut indeed belongs to ΞN+1.

We will show that, under Pα∗ , ΞN+1 intersects B
(

0, A2
√
α
)

with a probability
which decays exponentially with A.

Lemma 5. There exist positive constants K3,K4 such that for any A > 0, for any
α > 1,

P ∗
α

(

ΞN+1 * B(0,
A

2

√
α)

)

≤ K3 exp(−K4A).(29)
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Then, we will argue that the probability under P ∗
α for

⋃

t≤2α ξ
0
t to escape the

ball B(0, A
√
α) and simultaneously to have ΞN+1 ⊂ B(0, A2

√
α) also decays expo-

nentially with A. This is seen below as a consequence of the following result.

Lemma 6. There exist positive constants K5,K6 such that for any A > 0,

P

(

∃t ∈ [0, 1] ∃x ∈ Zd \B(0, A) ∃y ∈ B(0,
A

2
) : (t, x) ↘ (0, y)

)

≤ K5 exp(−K6A).

Let us postpone the proofs of Lemmas 5 and 6 and show how Lemma 4 is deduced
from these two results. Introduce the event

A :=

{

∃t ≤ 2α ∃x ∈ ξ0t : |x| > A
√
α

}

⋂

{

ΞN+1 ⊂ B(0,
A

2

√
α)

}

.

Clearly, A =
⋃2N+2

n=1 An, where

An :=

{

∃t ∈ Bn ∃x ∈ ξ0t : |x| > A
√
α

}

⋂

{

ΞN+1 ⊂ B(0,
A

2

√
α)

}

.

As we noticed earlier, when x ∈ ξ0t , the ancestor of x at time ut belongs to ΞN+1.
Hence, using the Markov property at time ut, we get, for every n ∈

[

|1, 2N+2|
]

,

P (An) ≤ P

(

∃s∈
[

0,
α

2N

]

∃x∈Zd\B(0, A
√
α) ∃y∈B(0,

A

2

√
α) : (s, x) ↘ (0, y)

)

,

where we used that t− ut ≤ α2−N . Using the fact that α2−N < 1, it then follows
from Lemma 6 that

P (A) ≤ 2N+2K5 exp(−K6A
√
α).

Since 2N+2 ≤ 8α from the definition of N , it follows from the above that
P ∗
α (A) ≤ 8K5α

2 exp(−K6A
√
α). Hence, there exists positive constants K ′

1,K
′
2

such that P ∗
α(A) ≤ K ′

1 exp(−K ′
2A). This fact and Lemma 5 imply Lemma 4. 2

It now remains to prove Lemmas 5 and 6. We first establish Lemma 6.
Proof of Lemma 6 : Fix x ∈ Zd \ B(0, A). There is a Poisson number nx with
parameter 1 of arrows pointing towards x during the time interval [0, 1]. Denote
by 1 ≥ T1 > T2 > ... > Tnx ≥ 0 the times at which these arrows occur and by
z1, z2, ..., znx the respective origins of these arrows. We also set Ti = 0 when i > nx.
For t ∈ [0, 1] and y ∈ B(0, A/2), a path up (0, y) ↗ (x, t) has to “follow” one of the
nx arrows pointing towards x in the time interval [0, 1], say the ith one at time Ti,
in this case we then have (zi, Ti) ↘ (y, 0).

For t ∈ [0, 1], let us define Gt the σ-field which is generated by the random
sets (Λ(x, y) ∩ [1 − t, 1]) for all x, y ∈ Zd.

The times 1 − Ti, i ∈ N are stopping times for the filtration (Gt)t∈[0,1], and
conditionally on {nx = k}, the points zi, 1 ≤ i ≤ k are located independently
according to p(x, .). In particular, using the exponential moments assumption on
p, there exist positive κ̃3, κ̃4 such that for any 1 ≤ i ≤ k,

(30) P

(

zi ∈ B

(

0,
3|x|
4

) ∣

∣

∣

∣

nx = k

)

≤ κ̃3 exp(−κ̃4|x|).

For i ∈
[

|1, k|
]

, let us define (Z̃x,Ti
s )0≤s≤Ti as follows

• for 0 < s ≤ Ti, Z̃
x,Ti
s = Zx,Ti

s

• Z̃x,Ti

0 = zi.



14

For t > 0, conditionally on {Ti = t}, (Z̃x,Ti
s )0≤s≤t is a rate 1 random walk with

jump kernel p started from zi, and is thus distributed as (Zs)0≤s≤t under Pzi .

Furthermore, using (14), we have for any z ∈ Zd \B
(

0, 3|x|
4

)

(31) Pz

(

∃s ∈ [0, 1] : Zs ∈ B

(

0,
|x|
2

))

≤ κ3 exp

(

−κ4
|x|
4

)

.

Combining (30) and (31), we see that there exist positive constants K ′
5,K

′
6 such

that for any x ∈ Zd \B(0, A), for any k ∈ N

P

(

∃i ∈
[

|1, k|
]

: Zx,Ti

Ti
∈ B

(

0,
A

2

) ∣

∣

∣

∣

nx = k

)

≤ K ′
5k exp (−K ′

6|x|) .

We thus get

P

(

∃t ∈ [0, 1] ∃x ∈ Zd \B(0, A) ∃y ∈ B

(

0,
A

2

)

: (t, x) ↘ (0, y)

)

≤
∑

x∈Zd\B(0,A)

∞
∑

k=0

P

(

nx = k , ∃i ∈
[

|1, k|
]

: Zx,Ti

Ti
∈ B(0,

A

2
)

)

≤
∑

x∈Zd\B(0,A)

1

e

∞
∑

k=0

1

(k − 1)!
K ′

5 exp (−K ′
6|x|) .

Lemma 6 follows. 2

To prove Lemma 5, we need the following key result.

Lemma 7. Let t ≥ 0, s > r > 0 and A > A′ ≥ 0.

P





⋃

u∈[0,t]

Ωt+su ⊂ B(0, A′),
⋃

u∈[t,t+r]

Ωt+su * B(0, A)



≤ ps−rκ3 exp

(

−κ4
A−A′
√
r

)

.

Proof of Lemma 7: The event
{

Ωt+st ⊂ B(0, A′),
⋃

u∈[t,t+r]Ω
t+s
u * B(0, A)

}

con-

sidered in Lemma 7 is contained in the event that there exists a point z ∈ ξ0
t+r

having descendants at time t + s, such that the ancestor of z at time t belongs
to B(0, A′), and moreover, z has an ancestor in B(0, A)c at a time belonging to
[t, t + r]. More precisely, using duality over the time interval [0, t + r], and then
decomposing over all possible values of the point z,

P



Ωt+st ⊂ B(0, A′),
⋃

u∈[t,t+r]

Ωt+su * B(0, A)





≤ P

(

∃z ∈ ξ0t+r : ξ̂z,t+rs−r 6= ∅, sup
u∈[0,r]

|Zz,t+ru | > A, |Zz,t+rr | ≤ A′, Zz,t+rt+r = 0

)

≤
∑

z∈Zd

P

(

ξ̂z,t+rs−r 6= ∅, sup
u∈[0,r]

|Zz,t+ru | > A, |Zz,t+rr | ≤ A′, Zz,t+rt+r = 0

)

.(32)
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Using the Markov property at time (t + r), we obtain that the quantity in the
right-hand side of (32) is equal to

ps−r
∑

z∈Zd

Pz

(

sup
u∈[0,r]

|Zu| > A, |Zr| ≤ A′, Zt+r = 0

)

= ps−r
∑

z∈Zd

P0

(

|Zr| ≤ A′, sup
u∈[t,t+r]

|Zu| > A,Zt+r = z

)

≤ ps−rP0

(

|Zr| ≤ A′, sup
u∈[t,t+r]

|Zu| > A

)

,(33)

where, at the second line above, we used a time-reversal argument together with
the symmetry assumption we made on the jump kernel p. From (32), (33) and the
Markov property for the random walk at time t, we now obtain

P



Ωt+st ⊂ B(0, A′),
⋃

u∈[t,t+r]

Ωt+su * B(0, A)





≤ ps−rP0( sup
u∈[0,r]

|Zu| > A−A′),

and we conclude using (14). 2

Proof of Lemma 5: Let us first note that we only need to establish the existence
of positive K ′

3,K
′
4 such that (29) holds for any A ≥ 1 and α > 1. Indeed, Lemma

5 will follow from taking K3 = K ′
3 ∨ exp(K ′

4),K4 := K ′
4. For p ∈

[

|0, N + 1|
]

, let us
introduce the sets

Ξp :=

2p+1
⋃

n=1

n odd

⋃

u∈[(n−1)2−pα,n2−pα]

Ω(n+1)2−pα
u .

For convenience, we also set Ξ−1 := ∅. In the case p = N + 1, this is of course
consistent with our definition of ΞN+1. For p ≥ 0, let Ap := A

14

∑p
i=0 2−i/4 and set

A−1 = 0. so that for any k ∈ N, Ak ≤ A
2 . For p ∈

[

|0, N + 1|
]

, let

Ep :=
{

Ξp−1 ⊂ B(0, Ap−1

√
α),Ξp * B(0, Ap

√
α)
}

.

Note that Ep is a subset of

Fp :=

{

∃n ∈
[

|1, 2p+1|
]

, n odd : Ω
(n+1)2−pα
(n−1)2−pα ⊂ B(0, Ap−1

√
α),

⋃

u∈[(n−1)2−pα,n2−pα]

Ω(n+1)2−pα
u * B(0, Ap

√
α)

}

.

Hence,

(34) P ∗
α

(

ΞN+1 * B(0,
A

2

√
α)

)

≤
N+1
∑

p=0

P ∗
α (Ep) ≤

N+1
∑

p=0

P ∗
α (Fp)
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From Lemma 7, we obtain

P (Fp) ≤
2p+1
∑

n=1

n odd

p2−pα exp
(

−κ42
p/2(Ap −Ap−1)

)

.

Hence, using our definition of the numbers Ap, p ≥ −1, then (8), we get

P ∗
α(Fp) ≤ p−1

α p2−pα exp

(

−κ42
p/4 A

14

)

≤ κ02
2p exp

(

−κ42
p/4 A

14

)

.

From (34) and the last inequality, elementary arguments then give Lemma 5. 2

This completes the proof of Lemma 4. To finish the one of Proposition 2, it
remains to establish Lemma 3.

3.2.2. Proof of Lemma 3. Fix T > 0, ρ > 0, η > 0. Recall K1,K2 are the constants
appearing in the statement of Lemma 4. We can choose ε0 ∈ (0, 1) so that for any
ε ∈ (0, ε0],

K1 exp

(

−K2
η

4
√
ε

)

≤ ρ2ε2

8T 2
.

Let us now fix ε ∈ (0, ε0]. We can then choose δ > 0 small enough so that

N(4ε)
0

[

inf
t∈[ε,3ε]

Yt(1) ≤ δ

]

≤ ρ2ε2

8T 2
.

The reasons for our choices of ε0 and δ will become clear in the following.
We first need to reduce the problem to a finite time interval. Notice that

P ∗
c2T (ξc2 4T

ρ
6= ∅) ≤ p−1

c2T pc2 4T
ρ

which, using (7), is bounded by ρ/2 for c large

enough. Thus, to establish Lemma 3 we only need to prove that provided c is
sufficiently large,
(35)

P ∗
c2T

(

∃t ∈ [4εc2,
4T

ρ
c2] ∃x ∈ ξ0t : inf

s∈[t−3εc2,t−2εc2]
|ξ0s ∩B(x, ηc)| < δmc2

)

≤ ρ

2
,

Set M :=
⌈

4T
ρε

⌉

. Let us discretize the time scale via introducing the levels

Lk := kεc2, k ∈
[

|0,M − 4|
]

.
We are going to establish, using Lemma 4, that with arbitrarily high proba-

bility, when c is large enough, each point holding opinion 1 at such a level Lk and
having descendants at time Lk+4εc2 is close (at a distance less than ηc/2) to all its
descendants during the time interval [Lk,Lk + 5εc2]. Then, using Theorem 2, we
will prove that such a point has more than δmc2 descendants in the time interval
[Lk + εc2,Lk + 3εc2].

Let us be more precise. We shall prove that if c is large enough,

P ∗
c2T

(

∃k ∈
[

|0,M − 4|
]

∃y ∈ Ω
(k+4)εc2

kεc2 :
⋃

s∈[0,5εc2]

ξ̂y,kεc
2

s 6⊂ B(y, ηc/2)

)

≤ ρ

4
,(36)

P ∗
c2T

(

∃k ∈
[

|0,M − 4|
]

∃y ∈ Ω
(k+4)εc2

kεc2 : inf
s∈[εc2,3εc2]

|ξ̂y,kεc2s | < δmc2

)

≤ ρ

4
.(37)
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Let us postpone the proof of these two results and show how (35) follows from (36)
and (37). Consider t ∈ [4εc2,Mεc2] and x ∈ ξ0t . Introduce

kt := sup{n ∈ N : nεc2 ≤ t− 4εc2}; zx := Zx,tt−ktεc2
,

so that zx ∈ Ωtktεc2
⊂ Ω

(kt+4)εc2

ktεc2
(indeed zx is the ancestor of x ∈ ξ0t at time ktεc

2).
Thus,

• using (36), with probability at least 1−ρ/4, for any x ∈ ξ0
t , t ∈ [4εc2,Mεc2],

all descendants of zx until time (kt + 5)εc2 belong to B(x, ηc).
• using (37), with probability at least 1−ρ/4, for any x ∈ ξ0

t , t ∈ [4εc2,Mεc2],
there are more than δm2

c descendants of zx at every time
s ∈ [(kt + 1)εc2, (kt + 3)εc2].

Since [t− 3εc2, t− 2εc2] ⊂ [(kt + 1)εc2, (kt + 3)εc2], we now deduce from the above
that with probability at least 1−ρ/2, for any x ∈ ξ0

t , zx has at least δm2
c descendants

in B(x, ηc) at every time s ∈ [t− 3εc2, t− 2εc2]. Assertion (35) follows.
Let us now prove (36). Let us consider k ∈

[

|0,M − 4|
]

, and c large enough

so that 4εc2 > 1. Using the Markov property at time kεc2 and the fact that

(ξ̂y,kεc
2

s )s≥0 has the same law as (y + ξ0s )s≥0 we get :

P



∃y ∈ Ω
(k+4)εc2

kεc2 :
⋃

s∈[0,5εc2]

ξ̂y,kεc
2

s 6⊂ B(y, ηc/2)





≤
∑

y∈Zd

P (y ∈ ξ0kεc2 )P



ξ04εc2 6= ∅,
⋃

s∈[0,5εc2]

ξ0s 6⊂ B(0, ηc/2)





=
∑

y∈Zd

qkεc2(y)p4εc2P
∗
4εc2

(

sup
s≤5εc2

sup
x∈ξ0s

|x| > ηc

2

)

.

≤ p4εc2K1 exp

(

−K2
η

4
√
ε

)

,(38)

where at the last line we used Lemma 4 with α = 4εc2 > 1 and A = η(4
√
ε)−1,

and the fact that
∑

z∈Zd qkεc2(y) = 1 from the symmetry assumption on p. Since

M − 3 ≤ 4T (ερ)−1, we deduce from the above that

P ∗
c2T



∃k ∈
[

|0,M − 4|
]

∃y ∈ Ω
(k+4)εc2

kεc2 :
⋃

s∈[0,5εc2]

ξ̂y,kεc
2

s 6⊂ B(y, ηc/2)





≤ p−1
c2T

4T

ερ
p4εc2K1 exp

(

−K2
η

4
√
ε

)

.(39)

Provided c is sufficiently large, we then deduce (36) from (39), (7), and our choice
of ε0.
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Let us now prove (37). Fix k ∈
[

|0,M − 4|
]

. Using the same arguments as in
the proof of (36), we obtain

P

(

∃y ∈ Ω
(k+4)εc2

kεc2 : inf
s∈[εc2,3εc2]

|ξ̂y,kεc2s | < δmc2

)

≤
∑

y∈Zd

qkεc2(y)P

(

inf
s∈[εc2,3εc2]

|ξ0s | < δmc2 , ξ
0
4εc2 6= ∅

)

= p4εc2P
∗
4εc2

(

inf
s∈[εc2,3εc2]

|ξ0s | < δmc2

)

.(40)

Furthermore, by rescaling, when c is large enough so that (mc2)
−1mεc2 ≤ 1 (recall

ε < 1 from our choice of ε0), we get

P ∗
4εc2

(

inf
s∈[εc2,3εc2]

|ξ0s | < δmεc2

)

= P ∗
4εc2

(

inf
s∈[ε,3ε]

Xc2,0
s (1) < δ

mεc2

mc2

)

≤ P ∗
4εc2

(

inf
s∈[ε,3ε]

Xc2,0
s (1) ≤ δ

)

.(41)

Since the set {ω ∈ D(R+,MF (Rd)) : infs∈[ε,3ε] ωs(1) ≤ δ} is closed for the Skorohod
J1 topology, Theorem 2 implies

lim sup
c→∞

P ∗
4εc2

(

inf
s∈[ε,3ε]

Xc2,0
s (1) ≤ δ

)

≤ N(4ε)
0

[

inf
t∈[ε,3ε]

Yt(1) ≤ δ

]

≤ ε2ρ2

8T 2
,

by our choice of δ. Assertions (40), (41), and the above now imply

lim sup
c→∞

P ∗
c2T

(

∃y ∈ Ω
(k+4)εc2

kεc2 : inf
s∈[εc2,3εc2]

|ξ̂y,kεc2s | < δmc2

)

≤ lim sup
c→∞

p−1
c2T p4εc2

ε2ρ2

8T 2
=

ερ2

32T
,

where we used (7) at the last line. Hence, using the fact that M−3 ≤ 4T (ρε)−1, we
get (37), provided c is sufficiently large. This ends the proof of Lemma 3. 2

We have thus finished the proof of the asymptotic upper bound on P ∗
c2T (Tc[x]c <

∞) (Proposition 2). However, to complete the proof of the asymptotic upper bound
for d = 2 or 3 in Theorem 1, we need to establish a corresponding result under the
measure P . Let us briefly explain how Lemma 4 allows us to do so.

3.3. Back to non-conditioned results. First, we shall prove a result correspond-
ing to Lemma 4 without conditioning upon survival.

Claim 1. - There exists a positive K0 such that for any α > 1, for any A ≥ 1,

P

(

sup
t≤2α

sup
x∈ξ0t

|x| > A
√
α

)

≤ K0pα exp(−K2A).



19

Proof of Claim 1: For any i ∈
[

|0, N − 1|
]

we have

P

(

sup
t≤21−iα

sup
x∈ξ0t

|x| > A
√
α

)

= p2−iαP
∗
2−iα

(

sup
t≤21−iα

sup
x∈ξ0t

|x| > A
√
α

)

+P

(

sup
t≤2−iα

sup
x∈ξ0t

|x| > A
√
α, ξ02−iα=∅

)

≤ p2−iαK1 exp
(

−K2A2i/2
)

+ P

(

sup
t≤2−iα

sup
x∈ξ0t

|x| > A
√
α, ξ02−iα = ∅

)

,

where we used Lemma 4 at the last line. It easily follows that

P

(

sup
t≤2α

sup
x∈ξ0t

|x| > A
√
α

)

≤
N−1
∑

i=0

p2−iαK1 exp
(

−K2A2i/2
)

+ P

(

sup
t≤21−Nα

sup
x∈ξ0t

|x| > A
√
α

)

.(42)

Furthermore, by an easy application of Lemma 6,

P

(

sup
t≤21−Nα

sup
x∈ξ0t

|x| > A
√
α

)

≤ 2K5 exp
(

−K6A
√
α/2

)

.

Thus, from (42) and (8), we obtain

P

(

sup
t≤2α

sup
x∈ξ0t

|x| > A
√
α

)

≤κ0K1

N−1
∑

i=0

2ipα exp
(

−K2A2i/2
)

+2K5 exp(−K6A
√
α/2),

and Claim 1 follows. 2

Let us now finish the proof of the upper bound in Theorem 1 in dimensions 2
and 3. As before, x ∈ Rd \ 0 is fixed. Simply observe that, for every T > 0,

P (Tc[x]c <∞) = P (ξ0c2T = ∅, Tc[x]c <∞) + pc2TP
∗
c2T (Tc[x]c <∞).(43)

On the one hand

φd(c)P (ξ0c2T = ∅, Tc[x]c <∞) ≤ φd(c)P

(

sup
t≤c2T

sup
y∈ξ0t

|y| ≥ c|[x]c|
)

≤ φd(c)K0pc2T exp

(

−K2
|[x]c|√
T

)

,

where we used Claim 1 at the last line. We can now use (7) to obtain

lim sup
c→∞

φd(c)P (ξ0c2T = ∅, Tc[x]c <∞) ≤ K0

βdT
exp

(

−K2
|x|

2
√
T

)

,

which goes to 0 as T → 0.
On the other hand, using Proposition 2 and (7), we get, for every T > 0,

lim sup
c→∞

φd(c)pc2TP
∗
c2T (Tc[x]c <∞) ≤ 1

Tβd
N(T )

0 (x ∈ R),

and by (6), the right-hand side converges, as T → 0, to

2σ2

βd

(

2 − d

2

)

|x|−2.
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From (43) and the preceeding observations we get

lim sup
c→∞

φd(c)P (Tc[x]c <∞) ≤ 2σ2

βd

(

2 − d

2

)

|x|−2,(44)

which completes the proof of the upper bound in Theorem 1, in the case d = 2 or
3. We already noticed that the case d ≥ 5 follows from Proposition 1. Finally, note
that in the case d = 4, Proposition 2 and a similar proof imply

lim sup
c→∞

c2P (Tc[x]c <∞) = 0,

as we already mentioned in the introduction.

4. Lower bound.

In this section we finish the proof of Theorem 1 by establishing the required
asymptotic lower bounds on P (Tc[x]c < ∞). We also prove a similar result in
dimension 4.

Proposition 3. Fix x ∈ Rd, x 6= 0.

Rough lower bound : Let d ≥ 4. There exists a positive constant ad de-
pending on |x| and d such that

lim inf
c→∞

φd(c)P (∃t ≥ 0 : c[x]c ∈ ξ0t ) ≥ ad,

where we recall that for d ≥ 5, φd(c) = cd−2, and φ4(c) = c2 ln(c).
Sharp lower bound : Let d = 2 or 3. Recall φ2(c) = c2(ln(c))−1 and
φ3(c) = c2. Then

lim inf
c→∞

φd(c)P (∃t ≥ 0 : c[x]c ∈ ξ0t ) ≥
2σ2

βd

(

2 − d

2

)

|x|−2.

4.1. Proof of the rough lower bound, d ≥ 4. For T > 0 let us introduce the
random variable

UT :=

∫ T

0

1{c[x]c∈ξ0
c2s

}ds,

so that c2UT is the occupation time of opinion 1 for the voter at c[x]c in the time
interval [0, c2T ].
We clearly have for any T > 0, P (∃t ≥ 0 : c[x]c ∈ ξ0t ) ≥ P (UT > 0). Using the
Cauchy-Schwarz inequality, we thus obtain

(45) P (∃t ≥ 0 : c[x]c ∈ ξ0t ) ≥
(E[UT ])2

E[(UT )2]
.

Hence, proving the lower bound reduces to establishing the following two estimates

cdE[UT ] −→
c→∞

∫ T

0

dsps(x),(46)

lim sup
c→∞

c2dφd(c)
−1E[(UT )2] ≤ L,(47)

where L is a constant depending only on |x|, d and T .
The first moment of UT is

E[UT ] =

∫ T

0

dsP
(

Z
c[x]c,c

2s
c2s = 0

)

=

∫ T

0

dsqc2s(c[x]c),
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so that (46) is a consequence of (17). Let us now estimate the second moment of
UT . We have

1

2
E[(UT )2] =

∫ T

0

dt

∫ T

t

drP
[

c[x]c ∈ ξ0c2t, c[x]c ∈ ξ0c2r
]

.

Let us fix r and t with 0 < t < r ≤ T . Using duality over the time interval [0, c2r]
and setting s := r− t, we see that P

[

c[x]c ∈ ξ0c2t, c[x]c ∈ ξ0c2r
]

is the probability for

two coalescing random walks starting at point c[x]c respectively at times 0 and c2s,
to be both located at point 0 at time c2r. Using the symmetry properties of p and
the Markov property for the first walk at time c2s, we get

(48)
1

2
E[(UT )2] =

∫ T

0

dt

∫ T−t

0

ds
∑

y∈Zd

qc2s(y)P0,y

[

T1 ≤ c2t, Z1
c2t = c[x]c

]

,

recalling that the notation P0,y was introduced in Section 2.5.
With a slight abuse, in the remaining part of the section we use L to denote

a positive constant that only depends on T, d and |x| and may change from line to
line. We suppose that c ≥ 1 ∨ |x|−2 in order to use Lemma 2. Let us set

I(y) :=

∫ T

0

dt

(

∫ T−t

0

ds qc2s(y)

)

P0,y

[

T1 ≤ c2t, Z1
c2t = c[x]c

]

.

Note that I(y) also depends on d, T and x, although this does not appear in our
notation. From (48), we have E[(UT )2] = 2

∑

y∈Zd I(y). Hence, we need to bound

I(y) over different regions of Zd, in order to control c2d(φd(c))
−1E[(UT )2]. Recall

from Section 2.4 that ψd(c) = cd−2 for d ≥ 4. Using (18) twice in the case y = 0,
and using (18) together with Lemma 2 in the case y 6= 0, we get

• for y = 0,
I(0) ≤ Lc−2dψd(c),

• for y ∈ Zd, y 6= 0,

I(y) ≤ Lc−2dψd(c/|y|)ψd(|y|)−1,

• for y ∈ Zd, |y| > c2,

I(y) ≤ Lc−d−2 exp(−L′
2

√

|y|)ψd(|y|)−1.

Since φd(c) ≥ ψd(c) when d ≥ 4, we then obtain

(49) c2d(φd(c))
−1I(0) ≤ L.

Furthermore, if y ∈ Zd \ 0, d ≥ 4, we have ψd(c/|y|) = ψd(c)(ψd(|y|))−1. Hence,

c2d(φd(c))
−1

∑

y∈Zd,0<|y|≤c2
I(y) ≤ L(φd(c))

−1ψd(c)
∑

y∈Zd,0<|y|≤c2
|y|4−2d

≤ L(φd(c))
−1ψd(c)

c2
∑

k=1

kd−1k4−2d ≤ L,(50)

Finally,

(51) c2d(φd(c))
−1
∑

y∈Zd,|y|>c2
I(y) ≤ Lcd−2(φd(c))

−1
∑

|y|>c2
|y|−d+2 exp(−L′

2

√

|y|) −→
c→∞

0.

Since E[(UT )2] = 2
∑

y∈Zd I(y), the desired result (47) follows from (49), (50) and

(51). This finishes the proof of the lower bound for d ≥ 4. 2
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A similar proof in the case d = 2 or 3 would give us a rough lower bound, but we
need to get sharper estimates.

4.2. Outline of the proof of the sharp lower bound, d = 2 or 3.
Fix x ∈ Rd \ {0}. For any T > 0, c > 0, we have

φd(c)P (Tc[x]c <∞) ≥ φd(c)pc2TP
∗
c2T (Tc[x]c <∞).

We deduce from (7) that for any T > 0, limc→∞ φd(c)pc2T = (βdT )−1 so that

(52) lim inf
c→∞

φd(c)P (Tc[x]c <∞) ≥ (βdT )−1 lim inf
c→∞

P ∗
c2T (Tc[x]c <∞).

Claim 2. - For any ρ > 0, if T > 0 is sufficiently small,

lim inf
c→∞

P ∗
c2T (Tc[x]c <∞) ≥ (1 − ρ)N(T )

0 (x ∈ R).

The desired lower bound follows from (52), the above claim and (6) by letting T
go to 0. Let us now outline the proof of Claim 2.

For z ∈ Rd, ε′ > ε > 0, let

C(z, ε, ε′) =
{

y ∈ Rd : ε < |y − z| < ε′
}

, h(ε) := ε2 ln(ln(ε−1)).

We also set for r ∈ (0, 1)

gd(r) =

{

2−( ln(r)
ln(2) )

4

if d = 2,

r16 if d = 3.

For α > 0, T > 0 and ε0 ∈ (0, 1) we consider the events

E(c)
ε0 =

{

∃s ≥ 0 ∃ε ∈ (gd(ε0), ε0) : X0
s

(

C
(

c[x]c,
cε

4
, 2cε

))

≥ αh(ε)φd(c)
}

,

F (c)
ε0 =

{

∃s ≥ 0 ∃ε ∈ (gd(ε0), ε0) : X0
s

(

C
(

cx,
cε

2
, cε
))

> αh(ε)φd(c)
}

.

For c large enough, we have F (c)
ε0 ⊂ E(c)

ε0 , hence

(53) P ∗
c2T (Tc[x]c <∞) ≥ P ∗

c2T

(

F (c)
ε0

)

× P ∗
c2T

(

Tc[x]c <∞
∣

∣

∣

∣

E(c)
ε0

)

.

The idea of the proof of Claim 2 is the following. Rescaling and using Theorem 2, we

will show that for c large, the first term of the product in (53), namely P ∗
c2T (F (c)

ε0 ),

is bounded below by a corresponding rescaled quantity under N(T )
0 . For α small

enough, this quantity will then be bounded from below by a quantity arbitrarily

close to N(T )
0 (x ∈ R) (see assertions (55) and (56) below). To finish the proof of

Claim 2 we shall then establish that if we take T, ε0 small enough, the second term

of the product in (53), namely P ∗
c2T

(

Tc[x]c <∞
∣

∣E(c)
ε0

)

, is, for c large, arbitrarily

close to 1 (see Lemma 9 below).
Let us reformulate the preceeding discussion in more precise terms. Using

rescaling we have

(54) P ∗
c2T

(

F (c)
ε0

)

= P ∗
c2T

(

∃s ≥ 0 ∃ε ∈ (gd(ε0), ε0) : Xc2,0
s

(

C(x,
ε

2
, ε)
)

> αh(ε)
)

.

It is easy to see that the set
{

ω ∈ D(R+,MF (Rd)) : ∃s ≥ 0 ∃ε ∈ (gd(ε0), ε0), ωs

(

C(x,
ε

2
, ε)
)

> αh(ε)
}
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is open for the Skorohod J1 topology. Theorem 2 thus implies that

(55) lim inf
c→∞

P ∗
c2T

(

F (c)
ε0

)

≥ N(T )
0 (∃s ≥ 0 ∃ε ∈ (gd(ε0), ε0) : Ys(C(x,

ε

2
, ε)) > αh(ε)).

Lemma 8. Let d = 2 or 3. We can choose α > 0 so that, for any δ > 0, there

exists ε1 ∈
(

0, 1 ∧ |x|
2

)

such that for any ε0 ∈ (0, ε1),

N0

[

∃s ≥ 0 ∃ ε ∈ (gd(ε0), ε0) : Ys

(

C
(

x,
ε

2
, ε
))

> αh(ε)

∣

∣

∣

∣

x ∈ R
]

≥ 1 − δ.

In the following, we fix α as in Lemma 8. The following lemma estimates the
second term of the product in the right-hand side of (53).

Lemma 9. For any fixed γ > 0, there exists ε2 ∈ (0, 1) such that for any ε0 ∈
(0, ε2), we have

(a) lim inf
c→∞

P
(

Tc[x]c <∞
∣

∣ E(c)
ε0

)

≥ 1 − γ,

(b) lim inf
T→0

(

lim inf
c→∞

P ∗
c2T

(

Tc[x]c <∞
∣

∣E(c)
ε0

))

≥ 1 − γ.

Let us now fix δ ∈ (0, 1), γ > 0 and let ε1 and ε2 be as in Lemma 8 and 9
respectively. Since

N0

({

sup{|y| : y ∈ R} > |x|
2

}

∩
{

YT = 0

})

−→
T→0

0,

we deduce from Lemma 8 that for any ε0 ∈ (0, ε1), for T > 0 sufficiently small,
(56)

N(T )
0

[

∃s ≥ 0 ∃ε ∈ (gd(ε0), ε0) : Ys

(

C
(

x,
ε

2
, ε
))

> αh(ε)
]

≥ (1 − 2δ)N(T )
0 (x ∈ R).

From (55) and (56), we have for T sufficiently small

(57) lim inf
c→∞

P ∗
c2T (F (c)

ε0 ) ≥ (1 − 2δ)N(T )
0 (x ∈ R).

Now use (53) and Lemma 9 (b) to get for T small,

lim inf
c→∞

P ∗
c2T (Tc[x]c <∞) ≥ (1 − 2δ)(1 − 2γ)N(T )

0 (x ∈ R),

which gives Claim 2, hence Proposition 3.
To complete our proof of the lower bound Proposition 3, we still need to

establish Lemma 8 and Lemma 9. Establishing that part (b) of Lemma 9 follows
from part (a) requires a result which is a consequence of Lemma 8. However, we
first give the proof of Lemma 9 (Section 4.3 below), because it is more closely
related to our results. We then provide a proof of Lemma 8 in Section 4.4. In these
two sections, we will assume for simplicity that σ = 1. Adapting the proofs to a
general σ is easy.

4.3. Proof of Lemma 9. We assume in this section that Lemma 8 has been
proved, and in particular that (57) holds. Let us first explain how to derive part
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(b) from part (a). We have

P ∗
c2T

(

Tc[x]c <∞
∣

∣

∣

∣

E(c)
ε0

)

=
P
(

{Tc[x]c <∞} ∩ E(c)
ε0

)

P
(

E(c)
ε0 ∩ {ξ0c2T 6= ∅}

) −
P
(

{Tc[x]c <∞} ∩ E(c)
ε0 ∩ {ξc2T = ∅}

)

P
(

E(c)
ε0 ∩ {ξ0c2T 6= ∅}

)

≥ P

(

Tc[x]c <∞
∣

∣

∣

∣

E(c)
ε0

)

− P
(

{Tc[x]c <∞} ∩ {ξc2T = ∅}
)

pc2TP
∗
c2T (E(c)

ε0 )
.(58)

Take δ = 1/2 in Lemma 8, and choose ε1 so that the conclusion of this lemma holds.

From the fact that F (c)
ε0 ⊂ E(c)

ε0 , and then from (57), we get that for ε0 ∈ (0, ε1), for
T > 0 small,

(59) lim inf
c→∞

T−1P ∗
c2T (E(c)

ε0 ) ≥ 1

2T
N(T )

0 (x ∈ R) ≥ 1

2βd

(

2 − d

2

)

|x|−2,

using (6). Since |[x]c| > |x|/2 for c large enough, we have

P
(

{Tc[x]c <∞} ∩ {ξ0c2T = ∅}
)

≤ P

(

sup
t≤c2T

sup
y∈ξ0t

|y| > c|x|/2
)

.

For T small enough so that |x|√
2T

≥ 1, and c large enough so that c2T
2 > 1, we can

use Claim 1 to deduce that

P
(

{Tc[x]c <∞} ∩ {ξc2T = ∅}
)

≤ pc2TK0 exp

(

−K2
|x|√
2T

)

.

Combining (59) and this last inequality, we obtain that for any ε0 ∈ (0, ε1)

lim sup
T→0

lim sup
c→∞

P
(

{Tc[x]c <∞} ∩ {ξc2T = ∅}
)

pc2TP
∗
c2T

(

E(c)
ε0

) = 0.

It is now clear from (58) and the above that part (b) of Lemma 9 follows from part
(a). 2

Proving part (a) of Lemma 9 requires the following intermediate result. Recall
that for A ⊂ Zd the voter model ξ starts from ξ0 = A under PA.

Lemma 10. For any γ > 0, there exists M > 0 and U > 0 such that for every
u ≥ U and every subset A of Zd ∩ C(0, u4 , 2u) with |A| ≥Mφd(u), one has

PA(∃t ≥ 0 : 0 ∈ ξt) ≥ 1− γ.

Let us postpone the proof of Lemma 10 and proceed to the proof of Lemma
9 (a).

Let us fix γ > 0. Let us choose M > 0 and U > 0 such that the conclusion of
Lemma 10 holds. We can then choose ε2 > 0 small enough so that

α

2
ln

(

ln

(

1

ε2

))

≥M.

Let us fix ε0 ∈ (0, ε2). Let c > 0 be large enough so that

cgd(ε0) ≥ U, and 2 ln(cgd(ε0)) ≥ ln(c).
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We then set

T (c)
ε0 := inf

{

t ≥ 0 : X0
t

(

C
(

c[x]c,
cε

4
, 2cε

))

≥αh(ε)φd(c) for some ε ∈ (gd(ε0), ε0)
}

.

Clearly T
(c)
ε0 is a stopping time of the filtration generated by the voter model, and

E(c)
ε0 = {T (c)

ε0 <∞}.
From the definition of T

(c)
ε0 , on the event E(c)

ε0 we can choose a random
ε ∈ (gd(ε0), ε0) such that

X0

T
(c)
ε0

(

C
(

c[x]c,
cε

4
, 2cε

))

≥ αh(ε)φd(c).

On the event E(c)
ε0 , we can consider the set

A(c)
ε :=

(

ξ0
T

(c)
ε0

∩ C
(

c[x]c,
cε

4
, 2cε

))

− c[x]c,

where, for A ⊂ Zd, z ∈ Zd, A− z = {y ∈ Zd : y + z ∈ A}. The random set A(c)
ε is

a subset of Zd ∩ C(0, cε4 , 2cε), and has cardinality |A(c)
ε | = dαh(ε)φd(c)e.

Let us argue on E(c)
ε0 and set u(ε, c) = cε. Note that u(ε, c) ≥ cgd(ε0) ≥ U .

When d = 3, we have

|A(c)
ε | ≥ αh(ε)c2 ≥ α ln

(

ln

(

1

ε2

))

ε2c2 ≥Mφd(u(ε, c)).

When d = 2, noticing that 2 ln(cε) ≥ 2 ln(cgd(ε0)) ≥ ln(c), we also have

|A(c)
ε | ≥ αh(ε)

c2

ln(c)
≥ α ln

(

ln

(

1

ε2

))

c2ε2

2 ln(cε)
≥Mφd(u(ε, c)).

From Lemma 10, we deduce that, on the event E (c)
ε0 ,

PA(c)
ε

(∃t ≥ 0 : 0 ∈ ξt) ≥ 1 − γ.

Using the strong Markov property for ξ0 at time T
(c)
ε0 , then the fact that

A(c)
ε + c[x]c ⊂ ξ0

T
(c)
ε0

, we obtain

P
(

E(c)
ε0 ∩ {Tc[x]c <∞}

)

≥ E

(

1{T (c)
ε0
<∞}Pξ0

T
(c)
ε0

(∃t ≥ 0 : c[x]c ∈ ξt)

)

≥ E
(

1{T (c)
ε0
<∞}PA(c)

ε
(∃t ≥ 0 : 0 ∈ ξt)

)

≥ (1 − γ)P (E(c)
ε0 ),

which gives part (a) of Lemma 9. 2

Let us now fix γ > 0 and establish Lemma 10. First, notice that the function
A → PA(∃t ≥ 0 : 0 ∈ ξt) is increasing. It thus suffices to find M > 0 and U > 0
such that for u ≥ U ,

(60) inf
{

PA(∃t ≥ 0 : 0 ∈ ξt) : A ⊂ Zd ∩ C
(

0,
u

4
, 2u
)

, |A| = dMφd(u)e
}

≥ 1 − γ.

For M > 0, u > 0 let us introduce

A(M)
u :=

{

A ⊂ Zd ∩ C
(

0,
u

4
, 2u
)

: |A| = dMφd(u)e
}

.
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We then use a similar method as for establishing the rough lower bound. Let us

set VT =
∫ T

0 1{0∈ξu2t}dt. As in Section 4.1, we use the Cauchy-Schwarz inequality

to get for any u > 0, A ∈ A
(M)
u

(61) PA(∃t ≥ 0 : 0 ∈ ξt) ≥
(EA[VT ])2

EA[(VT )2]
.

We will verify that for any fixed M > 0, there exists a constant U(M) such that if

u ≥ U , then for any A ∈ A
(M)
u , we have

(62) EA[VT ] ≥ M

2
(ψd(u))

−1

∫ T

T/2

1

(2πs)d/2
exp

(

−2

s

)

ds,

(63) EA[(VT )2] ≤ (EA[VT ])2 + L′M (ψd(u))
−2 ,

where L′ is a constant depending only on d and T . Let us postpone the proof of
these two assertions and finish the proof of Lemma 10. We can choose M > 0
sufficiently large so that

L′M ≤ γ
M2

4

(

∫ T

T/2

ds
1

(2πs)d/2
exp

(

−2

s

)

)2

.

From (62) and (63), we then deduce that for u ≥ U(M), for any A ∈ A
(M)
u , we have

EA[(VT )2] ≤ (1 + γ) (EA[VT ])
2
.

Lemma 10 now follows from (61).

Proof of (62): Let us now fix M > 0 and establish that (62) is valid for u

sufficiently large, and for any A ∈ A
(M)
u . Note that for any A ∈ A

(M)
u , u−1A is

a subset of u−1Zd ∩ C(0, 1/4, 2) and has cardinality dMφd(u)e. For any u > 0,

A ∈ A
(M)
u , duality gives

(64)

EA[VT ] =

∫ T

0

P0(Zu2t ∈ A)dt =
∑

y∈u−1A

∫ T

0

qu2t(uy)dt ≥
∑

y∈u−1A

∫ T

T/2

qu2t(uy)dt.

It is easy to deduce from Theorem 3 that uniformly in t ∈ [T/2, T ],

lim
u→∞

sup
y∈u−1Zd

|udqu2t(uy) − pt(y)| = 0.

Thus, if u is sufficiently large, for any y ∈ u−1Zd with |y| ≤ 2,

udqu2t(uy) ≥
1

2
pt(y) ≥

1

2
(2πt)−d/2 exp

(

−2

t

)

.

We deduce from the above and (64) that for u large enough, and for any A ∈ A
(M)
u ,

we have

EA[VT ] ≥ 1

2
u−d|A|

∫ T

T/2

(2πs)−d/2 exp

(

−2

s

)

dt.

(62) now follows from the fact that u−dφd(u) = (ψd(u))
−1.
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Proof of (63): Let us now estimate the second moment of VT and prove (63).
Using the same arguments as in the proof of the rough estimate, we obtain for any

u > 0, A ∈ A
(M)
u ,

EA[(VT )2] = 2

∫ T

0

dt

∫ T−t

0

ds
∑

z′∈Zd

qu2s(z
′)E0,z′ [Z

1
u2t ∈ A,Z2

u2t ∈ A].

It follows that

(65) EA[(VT )2] = 2

∫ T

0

dt

∫ T−t

0

ds
∑

z′∈Zd

qu2s(z
′)(H1,u(t, z

′) +H2,u(t, z
′)),

where

H1,u(t, z
′) :=

∑

y∈A
P0,z′ [T1 ≤ u2t, Z1

u2t = y],

H2,u(t, z
′) :=

∑

y∈A

∑

y′∈A
P0,z′ [T1 > u2t, Z1

u2t = y, Z2
u2t = y′].

Since two coalescing walks behave independently before they meet, we can bound
P0,z′ [T1 > u2t, Z1

u2t = y, Z2
u2t = y′] by qu2t(y)qu2t(z

′ − y′) so we obtain

2

∫ T

0

dt

∫ T−t

0

ds
∑

z′∈Zd

qu2s(z
′)H2,u(t, z

′)

≤ 2

∫ T

0

dt

∫ T−t

0

ds
∑

z′∈Zd

qu2s(z
′)
∑

y∈A

∑

y′∈A
qu2t(y)qu2t(z

′ − y′)

= 2

∫ T

0

dt

∫ T−t

0

ds
∑

y∈A

∑

y′∈A
qu2t(y)qu2(t+s)(y

′)

=





∫ T

0

dt
∑

y∈A
qu2t(y)





2

= (EA[VT ])2(66)

With a slight abuse of notation, in the remaining part of the section we use L to
denote a constant depending only on d and T and which may change from line to
line.

Using (18), we obtain
∫ T

0

dt

∫ T−t

0

ds
∑

z′∈Zd

qu2s(z
′)H1,u(t, z

′)

≤ L2u
−d
[

L2ψd(u)u
−d
∑

y∈A
ψd(|y|−1u) +

∑

z′∈Zd,0<|z′|≤u
ψd

(

u

|z′|

)∫ T

0

H1,u(t, z
′)

+
∑

z′∈Zd,|z′|>u
exp

(

−L′
2

|z′|
u

)∫ T

0

H1,u(t, z
′)

]

.(67)

Note that we used (18) a second time to bound
∫ T

0
dtH1,u(t, 0) and get the first term

in the sum above. Then, Lemma 2 is exactly what we need to bound
∫ T

0
H1,u(t, z

′)
when z′ 6= 0. However, the cases d = 2 and d = 3 are slightly different.
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When d = 3, for any u > 0, for any A ∈ A
(M)
u , and any z′ 6= 0, we obtain from

Lemma 2 that

∫ T

0

dtH1,u(t, z
′) ≤ L4u

−3 (ψ3(|z′| ∨ 1))
−1

∑

y∈u−1A

ψ3

(

1

|y|

)

(68)

From the fact that miny∈u−1A |y| > 1/4 and |A| = dMφ3(u)e = dMu2e, we obtain
that

∑

y∈u−1A

ψ3

(

1

|y|

)

≤ 4dMu2e.

Hence, from (67) and (68), we deduce that, when d = 3, for u sufficiently large,

and for any A ∈ A
(M)
u ,

∫ T

0

dt

∫ T−t

0

ds
∑

z′∈Zd

qu2s(z
′)H1,u(t, z

′)

≤ Lu−6Mu2



M +
∑

z′∈Z3,0<|z′|≤u
|z′|−2 +

∑

z′∈Z3,|z′|≥u
|z′|−1 exp

(

−L′
2

|z′|
u

)





≤ Lu−6Mu4 = LM(ψ3(u))
−2,

where we used that
∑

z′∈Z3,|z′|≥u |z′|−1 exp
(

−L′
2
|z′|
u

)

≤ L
∫∞
u ρ exp(−L′

2ρ/u)dρ.

Similarly, when d = 2, for any u > 1, for any A ∈ A
(M)
u , and any z′ 6= 0, we

get from Lemma 2 that

∫ T

0

dtH1,u(t, z
′) ≤ L4u

−2ψ2(u/|z′|)
ψ2(|z′|)

∑

y∈u−1A

ln(|y|−1)

≤ ln(4)L4u
−2dM u2

ln(u)
eψ2(u/|z′|)
ψ2(|z′|)

,(69)

Furthermore, we have miny∈u−1A |y| > 1/4 and |A| = dMφ2(u)e = dMu2/(2 ln(u))e,
so that

∑

y∈u−1A

ψ2

(

1

|y|

)

≤ 4dMu2/2(ln(u))e.
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Hence, from (67) and (69), we deduce that for any u sufficiently large, for any

A ∈ A
(M)
u ,

∫ T

0

dt

∫ T−t

0

ds
∑

z′∈Zd

qu2s(z
′)H1,u(t, z

′)

≤ Lu−4M
u2

2 ln(u)

[

ln(u) +
∑

z′∈Z3,0<|z′|≤u
ln

(

u

|z′| ∨ e
)2

× 1

ln(|z′| ∨ e)

+
∑

z′∈Z3,|z′|≥u

1

ln(|z′|) exp

(

−L′
2

|z′|
u

)]

≤ Lu−4M
u2

2 ln(u)

[

ln(u) +

∫ u

√
2

ρ
(ln(u/ρ))2

ln(ρ)
dρ+

∫ ∞

u

ρ

ln(ρ)
exp(−L′

2ρ/u)dρ

]

≤ Lu−2(ln(u))−1M
u2

2 ln(u)
= 2LM(ψ2(u))

−2.

To get to the last line above, we have used elementary computations to check that
for u large, one has

∫ u

√
2

ρ
(ln(u/ρ))2

ln(ρ)
dρ ≤ 1

2

u2

ln(u)
,

∫ ∞

u

ρ

ln(ρ)
exp(−L′

2ρ/u)dρ ≤ L
u2

ln(u)
.

In both d = 2 and d = 3, we have thus obtained that for any u sufficiently large,

for any A ∈ A
(M)
u ,

∫ T

0

dt

∫ T−t

0

ds
∑

z′∈Zd

qu2s(z
′)H1,u(t, z

′) ≤ L′M(ψd(u))
−2,

where L′ is a constant depending on d and T . From (65), (66) and the above, we
deduce (63). As explained earlier, this completes the proof of Lemma 10. 2

4.4. Proof of Lemma 8. The proof of Lemma 8 is somewhat lengthy. It is inspired
by the first part of [15], where an upper bound for the Hausdorff measure of the
support of two-dimensional super-Brownian motion is established. In particular, we
use the Brownian snake as a main tool. The Brownian snake gives an alternative
construction of super-Brownian motion under its excursion measure. Moreover,
this object introduces time dynamics in the analysis of super-Brownian motion
which prove to be critical for our arguments to work. We briefly introduce the
Brownian snake and related notation in paragraph 4.4.1, then discuss the link
between Brownian snake and super-Brownian motion.

For convenience, we work in this section with super-Brownian motion with
branching rate 4 and diffusion coefficient 1 under its excursion measure. Simple
scaling arguments then give the general case.

We only give a detailed proof of Lemma 8 in the three-dimensional case (para-
graph 4.4.4), after having summarized the basic idea (paragraph 4.4.2), and pre-
sented three intermediate lemmas (paragraph 4.4.3). Using the results of the first
part of [15], the case d = 2 easily adapts. In fact, we even establish a stronger
result in the plane (see Lemma 14 below), which we discuss in paragraph 4.4.5.
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4.4.1. Brownian snake. For a precise definition of the Brownian snake, we refer to
[13], Chapter IV. Let W be the set of continuous finite paths from R+ into Rd.
For w ∈ W , we denote by ζw the lifetime of w, and by ŵ the terminal point of the
path w, that is w(ζw). The trivial path y is the path with initial point y ∈ Rd and
lifetime 0. The space W is Polish when equipped with the distance

d(w,w′) = |ζw − ζw′ | + sup
r≥0

|w(r ∧ ζw) − w′(r ∧ ζw′)|.

We then consider Ω = C(R+,W), the space of continuous paths from R+ into
W with the topology of uniform convergence on compact sets, and F = B(Ω) the
Borel σ-field on Ω. The canonical process on this space is denoted (Ws, s ≥ 0), and
we define for s ≥ 0, ζs := ζ(Ws), and σ(ζ) := inf{s > 0 : ζs = 0}. We also let
(Ft)t≥0 be the canonical filtration on Ω.

For w ∈ W , we let Πw be the law on (Ω,F) of the Brownian snake starting
from the path w. Under Πw, (Ws, s ≥ 0) is a W-valued diffusion and (ζs, s ≥ 0) is a
one-dimensional reflecting Brownian motion. Informally, when ζs “increases”, the
path Ws grows like a d-dimensional Brownian motion, whereas it is erased when ζs
“decreases” (see [13], Chapter IV for more precisions).

For y ∈ Rd, the measure Ny is the excursion measure of W away from the
trivial path y. We abuse the notation by using the same notation Ny for the
excursion measure of the Brownian snake away from y and for the excursion measure
of super-Brownian motion (cf Section 2.1). This abuse will be justified below when
we construct the excursion measure of super-Brownian motion from the Brownian
snake under Ny. Under Ny, the law of ζ is the Itô measure of positive Brownian
excursions and σ(ζ) is the length of this excursion.

Denote by Π∗
w the law under Πw of (Ws∧σζs

, s ≥ 0), that is the law of the
Brownian snake stopped when its lifetime process hits 0. The strong Markov prop-
erty of W under Ny can be expressed in the following way. Let θt denotes the usual
shift operator on Ω. If T is a (Ft)t≥0-stopping time such that T > 0 Ny-a.e., then,
for any nonnegative FT -measurable F , for any nonnegative F-measurable G,

(70) Ny
(

1{T<∞}F ×G ◦ θT
)

= Ny
(

1{T<∞}F × Π∗
WT

(G)
)

.

The link between Brownian snake and super-Brownian motion can be ex-
pressed as follows. Let Lts denote the local time of ζ at time s and level t. Since
the law of (ζs, s ≥ 0) under Ny is the Itô measure of positive Brownian excur-
sions, (Lts, s ≥ 0) is, for any t ≥ 0, well-defined, increasing and continuous, Ny-a.s.
We denote by dsL

t
s the measure associated with the function u → Ltu and we let

(Yt(W ), t ≥ 0) be the measure-valued process defined by the formula

Yt(W )(.) =

∫ σ(ζ)

0

dsL
t
s1{Ŵs∈.}.

Then, the law of (Yt(W ), t ≥ 0) under Ny is the excursion measure of super-
Brownian motion with branching rate 4 and diffusion coefficient 1∗.

∗Moreover, if we let µ ∈ MF (Rd) and
P

i∈I δyi,Wi
be a Poisson measure with intensity

µ(dy)Ny(dW ), then a super-Brownian motion (Y t, t ≥ 0) starting from µ can be obtained by
setting

Y t =
X

i∈I

Yt(Wi).
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4.4.2. Outline of the proof of Lemma 8. Using a symmetry argument, we can inter-
change the roles of 0 and x, and we will thus work under the probability measure
Nx(.

∣

∣0 ∈ R) = Nx(.
∣

∣T0 < ∞), where T0 = inf{t ≥ 0 : Ŵt = 0}. It is possible to
precise the law of (|WT0 |)t≤ζT0

under Nx(.|0 ∈ R) (see Lemma 11 below).

For j ∈ N, let us introduce rj = exp(−j2). To n1 ∈ N we associate ε1 := r2n1 ,
and for ε0 > 0, we set n0 := min{p ∈ N∗ : r2p ≤ ε0}. Note that we have

rj ∈ (gd(ε0), ε0) ∀j ∈
[

|2n0 , 2n0+1 − 1|
]

.

Claim 3. - One can choose α > 0 such that, for any δ > 0, there exists n1 ∈ N
such that for any n0 ≥ n1, one has

Nx
(

∀j ∈
[

|2n0 , 2n0+1 − 1|
]

: YζT0
(C(0, rj/2, rj)) < αh(rj)

∣

∣ T0 <∞
)

≤ δ.

From our preceeding remarks, Lemma 8 follows from Claim 3 (even if it means
changing α to loosen the inequality).

The idea of the proof of Claim 3 is the following. For given w ∈ W , n0 ∈
N and j ∈

[

|2n0 , 2n0+1 − 1|
]

, we will express further the contribution Yw(rj) to
Yζw(C(0, rj/2, rj)) of particules which split off the path w in the time interval [ζw−
r2j ln(1/rj), ζw − r2j ] (see (76) below). We will observe that for large enough n, the

contributions Yw(rj), j ∈
[

|2n, 2n+1|
]

are independent. Using estimates on these
contributions (see Lemma 13 below), this independence will lead us to a bound on
the probability that for any j ∈

[

|2n, 2n+1−1|
]

, Yw(rj) remains smaller than αh(rj)
(see (82) below).

For a well-choosen α > 0, we will deduce from this bound and the knowledge
of the law of the path |WT0 | the existence of integers N0, N , and of a family of sets
of “good paths” (Wn, n ≥ N0) such that, with a probability arbitrarily close to 1
when N is large enough,

• (|WT0 |)t≤ζT0
belongs to Wn for any n ≥ N .

• for any w ∈ Wn, n ≥ N , there exists j ∈
[

|2n, 2n+1 − 1|
]

such that

r2jZw(rj) > αh(rj).

The desired claim will follow (see assertions (77), (80) and (81) below).
We now present three intermediate lemmas.

4.4.3. Preliminary results. Let us start by investigating the law of the path |WT0 |
under Nx[.|0 ∈ R].

Lemma 11. Under Nx[.|0 ∈ R], |WT0(t)|t∈[0,ζT0 ] has the law of a Bessel process

with index −5/2 started from |x| and stopped when it first hits 0.

Proof of Lemma 11. Introduce a d-dimensional Brownian motion (Bt)t≥0 and
the function u(y) := Ny(T0 <∞) = (2 − d/2) |y|−2. Let us denote by Q the law of
the solution of the stochastic differential equation

dYt = dBt +
∇u
u

(Yt), Y0 = x,

stopped when it hits 0.
We know from [8], Proposition 1.4, that for any nonnegative continuous func-

tion F on W ,

(71) Nx
[

1{T0<∞}F (WT0)
]

=

∫

π0,x(dW )F (W ),

where π0,x :=
(

2 − d
2

)

|x|−2Q.
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For t ∈ [0, ζT0 ] let us set Rt := |WT0 (t)|. From (71) we deduce that under
the probability measure Nx[.|T0 <∞], (Rt)0≤t≤ζT0

solves the stochastic differential
equation

dRt = dβt −
2

Rt
dt,

where (βt)t≥0 is a linear Brownian motion. Thus, (|WT0 |(t))0≤t≤ζT0
has under

Nx(.
∣

∣{T0 < ∞}) the law of a Bessel process with index −5/2 started from |x| and
stopped when it first hits 0. We have completed the proof of Lemma 11. 2

For x ∈ Rd, p ∈ N∗, ε > 0 and t > 0, we will need a lower bound on

ψ(t, x, ε, p) := Nx [Yt (C(0, ε/2, ε))p] .

Recall Pt denotes the semigroup of d-dimensional Brownian motion. We know (see
[15], Proposition 3.2) that we have

ψ(t, x, ε, 1) = Pt1C(0,ε/2,ε)(x),

and the following recursion relation for p ≥ 2

ψ(t, x, ε, p) = 2

p−1
∑

j=1

(

p

j

)
∫ t

0

Pt−s (ψ(s, ., ε, j)ψ(s, ., ε, p− j)) (x)ds.(72)

Fix c1 > 1 and let c2 = 1 − 1
2c1

. Note that 1/2 < c2 < 1. First observe that
there exists a positive c3 such that

ψ(t, x, ε, 1) = Pt1C(0,ε/2,ε)(x) ≥ c3ε
3 exp

(

−|x|2
2t

)

t−3/21{t≥ε2}.(73)

Lemma 12. For d = 3, there exists a positive constant c4 so that for any p ∈ N∗,
t > 0, x ∈ R3 and ε ≥ 0,

(Hp) ψ(t, x, ε, p) ≥ cp4p!
ε2p+1

t3/2
exp

(

−c1|x|
2

t

)

1{t≥c−2
2 ε2}.

Corollary 3.3 of [15] is the corresponding result for the two-dimensional case.
Proof of Lemma 12. Note that there exists a constant c5 ≥ 1 such that for any
p ≥ 2,

p−1
∑

j=1

(j(p− j))3/2 ≥ 1

c5
p4.

Let us set c6 := c3c
−1
5 (πc1)

−3/2. We first verify that for any p ∈ N∗,

(H̃p) ψ(t, x, ε, p) ≥ π3/2c5c
p
6p!ε

3ppt/2pc1(x)

(

1

ε
− 1√

t

)p−1

1{t≥ε2}.

We use induction on p to establish (H̃p). If p = 1, using (73) and our definition of
c6, we obtain

ψ(t, x, ε, 1) ≥ (πc1)
3/2c5c6ε

3t−3/2 exp

(

−|x|2
2t

)

1{t≥ε2}.

Since c1 > 1, (H̃1) follows.
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Let p ≥ 2 and assume that the result holds for all p′ < p. Using (72) and the
induction assumption we get for t ≥ ε2

ψ(t, x, ε, p) ≥ 2π3c25c
p
6p!ε

3p

×
p−1
∑

j=1

∫ t

ε2
ds

∫

R3

dy pt−s(x− y)ps/2jc1(y)ps/2(p−j)c1(y)

(

1

ε
− 1√

s

)p−2

.

For any j ∈
[

|1, p− 1|
]

, s > 0 and y ∈ R3 we have

ps/2jc1(y)ps/2(p−j)c1 (y) =

(

c1j(p− j)

πps

)3/2

ps/2pc1(y)

From the last two displays, the choice of c5 and the fact that
pt−s ∗ ps/2pc1 = pt−s+(s/2pc1) we obtain

(74) ψ(t, x, ε, p) ≥ 2π3/2c5c
p
6p!ε

3pp5/2c
3/2
1

∫ t

ε2

ds

s3/2
pt−s+s/2pc1(x)

(

1

ε
− 1√

s

)p−2

.

Since c1 > 1 the function s→ t−s+s/2pc1 is decreasing, so that for any s ∈ [ε2, t],
we have t ≥ t− s+ s

2pc1
≥ t

2pc1
. Thus,

(2pc1)
3/2pt−s+ s

2pc1
(x) ≥ p t

2pc1
(x).

It follows that

ψ(t, x, ε, p) ≥ 2−1/2π3/2c5c
p
6p.p!ε

3pp t
2pc1

(x)

∫ t

ε2

ds

s3/2

(

1

ε
− 1√

s

)p−2

= 21/2π3/2c5c
p
6p!ε

3pp t
2pc1

(x)

(

1

ε
− 1√

t

)p−1

,

which finishes the proof of (H̃p). We have established (H̃p) for any p ∈ N∗. Note
in particular that (74) holds for any p ∈ N∗.

Let us now complete the proof of Lemma 12. We set c4 := (1 − c
1/2
2 )c6. The

case p = 1 follows from (73) since c3 ≥ c4.
Let us now suppose p ≥ 2 and t ≥ c−2

2 ε2. Since c2 = 1 − 1
2c1

≤ 2c1−1
2c1−1/p , we

get, for any s ≤ c2t, t− s+ s/2pc1 ≥ t/2c1, so that

pt−s+ s
2pc1

(x) ≥ (2πt)−3/2 exp

(

−c1|x|
2

t

)

.

Hence, it follows from (74) that for any p ≥ 2,

ψ(t, x, ε, p)≥2−1/2c5c
p
6p

5/2p!ε3pt−3/2 exp

(

−c1|x|
2

t

)
∫ c2t

ε2

ds

s3/2

(

1

ε
− 1√

s

)p−2

≥21/2c5c
p
6p

3/2p!ε3pt−3/2 exp

(

−c1|x|
2

t

)(

1

ε
− 1√

c2t

)p−1

.

Since t ≥ c−2
2 ε2, we have

(

1
ε − 1√

c2t

)p−1

≥ ε−p+1(1 − c2)
p−1. Moreover, c5 ≥ 1,

hence, (Hp) follows for p ≥ 2, which completes the proof of Lemma 12. 2

As explained briefly in paragraph 4.4.2, we will need to estimate, for a fixed
w ∈ W , the contribution under Πw to Yζw (C(0, ε/2, ε)) of particules which split off
the path w shortly before ζw. For a given t > 0, Lemma V.5 of [13] allows one to
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decompose Yt under Π∗
w as the sum of independent contributions corresponding to

the decomposition of the path ζ into its excursions above its minimum-to-date. Let
us state this more precisely.

Fix w ∈ W with ζw > 0. Under Π∗
w we can construct a Poisson point measure

Λ on [0, ζw] × Ω with intensity 2dtNw(t)(dW ) such that

(75) Yζw =

∫

[0,ζw]×Ω

Yζw−t(W )Λ(dt, dW ), Π∗
w − a.s.

Hence, when w ∈ W satisfies ζw ≥ ε2 ln(1/ε), the contribution to Yζw (C(0, ε/2, ε))
of particules which split off the path w in the time interval [ζw− ε2 ln(1/ε), ζw− ε2]
can be written

(76) Yw(ε) :=

∫ ζw−ε2

ζw−ε2 ln(1/ε)

∫

Ω

Yζw−t(C(0, ε/2, ε))Λ(dt, dW ).

For ε > 0, w ∈ W , we also introduce Zw(ε) := ε−2Yw(ε) and we then estimate the
moments of Zw(ε) under Π∗

w.

Lemma 13. For w ∈ W and ε > 0 such that ζw ≥ ε ln(1/ε), let us set

Iw(ε) := ε

∫ ε2 ln(1/ε)

ε2
exp

(

−c1
|w(ζw − s)|2

s

)

s−3/21{s≥ε2c−2
2 }ds.

There exist positive constants c7, c8, c9 such that for any w ∈ W, ε2 ∈ (0, 1/e) such
that ζw ≥ ε22 ln(1/ε2), the following holds.

(a): For any ε ∈ (0, ε2) and for any p ∈ N

cp7p
p ≥ Π∗

w(Zw(ε)p) ≥ cp8p
pIw(ε).

(b): For any A > 0, let p = d2A/c6e. Then, for any ε ∈ (0, ε2)

Π∗
w(Zw(ε) ≥ A) ≥ exp(−c9A)

(

(2pIw(ε) − 1)+
)2
.

The lower bounds on Π∗
w(Zw(ε)p), p ∈ N in Lemma 13 (a) are a direct conse-

quence of Lemma 12. Furthermore, the proof of the upper bound in Lemma 13 (a)
easily adapts from the one of Lemma 3.4 in [15]. Then, part (b) of Lemma 13 is
deduced from part (a) in the exact same manner as, in [15], Lemma 3.5 is deduced
from Lemma 3.4. We leave details to the reader. 2

4.4.4. Let us now complete the proof of Lemma 8 by establishing Claim 3. We let
α = 1/(4c9) and fix δ > 0. Note that T0 is a stopping time of the filtration (Ft)t≥0.
Using the strong Markov property (70) at time T0, we have, for n0 > 0,

Nx
[

∀j ∈
[

|2n0 , 2n0+1 − 1|
]

: YζT0
(C(0, rj/2, rj)) < αh(rj), T0 <∞

]

(77)

≤ Nx

[

Π∗
WT0

(

∀j ∈
[

|2n0 , 2n0+1 − 1|
]

: Yr(C(0, rj/2, rj)) < αh(rj)

)

r=ζT0

, T0 <∞
]

.

Notice that (77) is an inequality and not an equality, because we used that

Yr (C(0, rj/2, rj)) =

∫ σ(ζ)

0

dsL
r
s1C(0,rj/2,rj)(Ŵs) ≥

∫ σ(ζ)

T0

dsL
r
s1C(0,rj/2,rj)(Ŵs),

on the event {T0 <∞}.
Introduce the sequence uj := r22j ln(1/r2j ), and choose n2 large enough so that

r2n2 ≤ e−4 and Nx
[

ζT0 ≥ sn2

∣

∣T0 <∞
]

≤ δ/4.
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Let us set

W := {w ∈ W : w(0) = x, ŵ = 0, ζw ≥ sn2} .
Our choice of n2 ensures that

(78) Nx[WT0 ∈ W|T0 <∞] ≥ 1 − δ/4.

Since c2 > 1/2, it also guarantees that for any w ∈ W, j ≥ 2n2 , 2r2j c
−2
2 ≤ ζw. We

can then define, for B > 0, j ≥ 2n2 ,

WB,j :=







w ∈ W : sup
s≤2r2j c

−2
2

|w(ζ(w) − s)| > Brjc
−1
2







.

For w ∈ W, n ≥ n2, we then introduce

Fn,B(w) := 2−n
2n+1−1
∑

j=2n

1{w∈WB,j},

and for n ≥ n2, we finally let

Wn := {w ∈ W : ∀p ≥ n Fp,B(w) < 1/2} .
From (78), it follows that

Nx

[

WT0 /∈ Wn

∣

∣

∣

∣

T0 <∞
]

≤ δ

4
+
∑

p≥n
Nx

[

WT0 ∈ W, Fp,B(WT0 ) ≥ 1/2

∣

∣

∣

∣

T0 <∞
]

.

Using Lemma 11 and following the arguments of the proof of Lemma 1 in [14], one
can easily establish that there exist constants B > 0, C > 0 such that

Nx [WT0 ∈ W, Fp,B(WT0 ) ≥ 1/2|T0 <∞] ≤ Ce−n.

Hence, there exists n3 ≥ n2 large enough so that for any n ≥ n3,

(79) Nx

[

WT0 /∈ Wn

∣

∣

∣

∣

T0 <∞
]

≤ δ/2,

which yields

Nx

[

Π∗
WT0

(

∀j ∈
[

|2n, 2n+1 − 1|
]

: Yr(C(0, rj/2, rj)) < αh(rj)

)

r=ζT0

∣

∣

∣

∣

T0 <∞
]

≤ δ/2 + sup
w∈Wn

{

Π∗
w

[

∀j ∈
[

|2n, 2n+1 − 1|
]

: Yζw (C(0, rj/2, rj)) < αh(rj)
]

}

.(80)

Let n ≥ n3 and w ∈ Wn. Since r2j ≥ r2j+1 ln(1/rj+1) for 2n ≤ j ≤ 2n+1 − 1,
the independence properties of Poisson measures imply that for any n ∈ N, the
variables Zw(rj), 2

n ≤ j ≤ 2n+1 − 1 are independent under Π∗
w. Using (75) and the

definition of Zw(ε), we then get

Π∗
w

[

∀j ∈
[

|2n, 2n+1 − 1|
]

: YζT0
(C(0, rj/2, rj)) < αh(rj)

]

(81)

≤ Π∗
w

[

Zw(rj) < αθ(rj) ∀j ∈
[

|2n, 2n+1 − 1|
]

]

=

2n0+1−1
∏

j=2no

Π∗
w

(

Zw(rj) < αθ(rj)

)

,
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where we set, for r > 0, θ(r) := r−2h(r). Furthermore, Lemma 13 (b) leads to

2n0+1−1
∏

j=2n0

Π∗
w

(

Zw(rj) < αθ(rj)

)

≤
2n0+1−1
∏

j=2n0

(

1 − e−c9αθ(rj)
(

(2pj Iw(rj) − 1)+
)2
)

≤ exp







−
2n+1−1
∑

j=2n

j−2c9α
(

(2pj Iw(rj) − 1)+
)2







.(82)

We then note that, if j ≥ 2n2 and w ∈ W \WB,j , an easy computation provides

Iw(rj) ≥ c2 exp
(

−c1B2
)

=: K(B).

Hence, from our choice of α, there exists n4 ≥ n3 so that for any w ∈ Wn, n ≥ n4,
one has

2n+1−1
∑

j=2n

j−2c9α
(

(2pj Iw(rj) − 1)
+
)2

≥ 2n+1/2.

We finally choose n0 > n1 ≥ n4 ≥ n3 ≥ n2 large enough so that exp(−2n+1/2) ≤
δ/2, and combine (77), (80), (81) and (82) with the above inequality to obtain
Claim 3. As explained in paragraph 4.4.2, Lemma 8 follows. 2

4.4.5. The case d = 2. We know from [18], Section III.3 that for any t > 0, h is
for d = 3 the correct Hausdorff measure function of Rt. On the other hand, when
d = 2, the correct Hausdorff measure function of Rt, is, as it is proven in [15], the
function

h2(ε) = ε2 ln(ε−1) ln(ln(ln(ε−1))).

Not surprinsingly, when d = 2, one can in fact establish a stronger result than
Lemma 8.

Lemma 14. We can choose α > 0 so that, for any δ > 0, there exists ε1 ∈
(

0, 1 ∧ |x|
2

)

such that for any ε0 ∈ (0, ε1),

N0

[

∃s ≥ 0 ∃ ε ∈ (gd(ε0), ε0) : Ys

(

C
(

x,
ε

2
, ε
))

> αh2(ε)

∣

∣

∣

∣

x ∈ R
]

≥ 1 − δ.

Lemma 14 clearly implies the two-dimensional case of Lemma 8. The proof is
similar to that of Lemma 8 in the three-dimensional case. Let us only point out
the main differences, and leave details to the reader.

Obviously, one should work with h2 instead of h, g2 instead of g and the
function θ2 such that θ2(r) := ln ln ln(1/r) instead of θ. Moreover, the sequence rj

is to be replaced with r
(2)
j = 2−2j

, so that r
(2)
2n+1−1 ≥ g2(r

(2)
2n ). We already noted

that Lemma 12 for the three-dimensional case corresponds to Corollary 3.3 of [15] in

the plane. In particular, note that c1, c2, c4 should be replaced with c
(2)
1 > 1/2, c2 =

(4c
(2)
1 − 2)/(4c

(2)
1 − 1), c

(2)
4 = c

(2)
3 (2c

(2)
1 )−1. We also already remarked that Lemma

13 (a) and (b) are to be respectively related with Lemma 3.4, respectively Lemma
3.5 of [15]. Lemma 13 remains valid in the plane when one replaces Zw(ε) with

Z(2)
w (ε) :=

(

ε2 ln(ε−1))−1

∫ ζw−ε2

ζw−ε2 ln(1/ε)

Yζw−t(C(0, ε/2, ε))Λ(dt, dW ),
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then Iw(ε) with

I(2)
w (ε, p) := p

(

log(ε−1)
)−p

×
∫ ε2 ln(1/ε)

ε2
exp

(

−c(2)1

|w(ζw − s)|2
s

)

(

log+
(

s(c
(2)
2 )pε−2

))p−1

s−1ds.

Is is then straightforward to check that, once all these changes have been made,
the exact same proof as in paragraph 4.4.4 leads to assertions similar to (77), (78),
(79), (80), (81), (82) and Claim 3.

5. Results on coalescing random walks

In this section, we prove† Lemmas 1 and 2, which we used in the proof of Theorem

1. First, let us introduce further notation. We write P(2)
x for a probability measure

under which (Zt, t ≥ 0) is a continuous time random walk with rate 2 (instead of
rate 1 for Px) and jump kernel p, starting from x. Let us also denote

Ht(x) := Px(Z hits 0 before t); Gt(x) := Ex

[∫ t

0

1{Zs=0}ds

]

;

and H
(2)
t (x), G

(2)
t (x) the corresponding quantities under P(2)

x . It is well-known that
when d = 2,

(83) G
(2)
c2t(0) ∼

c→∞
G

(2)
c2ε(0) ∼

c→∞
1

2π
ln(c).

When d = 3, from the definition of kd, we have

(84) G
(2)
c2t(0) −→

c→∞
k−1
d .

In dimension d = 2, an easy adaptation of [11], Theorem 1.6.1, to the continuous
time setting, ensures the existence of

a(x) := lim
t→∞

[Gt(0) −Gt(x)], a(2)(x) := lim
t→∞

[G
(2)
t (0) −G

(2)
t (x)].

An easy consequence of the proof of Theorem 1.6.2 in [11] is the existence of a
constant κ5 depending only on d such that for any t ≥ 1,

(85) Gt(0) −Gt(x) ≤ κ5a(x), G
(2)
t (0) −G

(2)
t (x) ≤ κ5a

(2)(x).

Furthermore, from Theorem 1.6.2 of [11], both a(x) and a(2)(x) are O(ln |x|).

†Some of the ideas involved in the results below are borrowed from [12], such as in particular,
the case d ≥ 3 of Lemma 15. The proof of Lemma 1 is also borrowed from this unpublished
manuscript. Moreover, it is interesting to note that it would be possible to get precise asymptotics
on the quantities we are bounding below. In particular, for α > 0 and φ ∈ Cb(R

d), it is possible

to get the exact asymptotics of quantities such as E0,y

h

T1 ≤ |y|αt, φ(XT1
1

/|y|
i

, as |y| → ∞. Such

asymptotics were computed in [12] in the case d ≥ 3, α = 2, and it is possible to extend the
results to a general α > 0 and to the case d = 2. For d ≥ 4, these exact estimates would allow
one to get a more precise upper bound on E[(UT )2] than the one obtained in Section 4.1, and

therefore improve the constants ad, d ≥ 4 appearing in the statement of Proposition 3 (however,
this would not be enough to get precise asymptotics on the hitting probability of a far point for
d ≥ 5). We chose not to present these asymptotics here, as they only had this minor impact on
our main result.
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5.1. Proof of Lemma 1. This proof was taken from [12]. In the following, we
denote by Ci, i ≥ 0 positive constants depending only on d. Let us denote by
(Sn, n ∈ N) a discrete time random walk with jump kernel p, starting from x under
the probability measure Qx. By combining the well-known bound Qx[Sn = y] ≤
Kn−d/2 and the martingale inequality of Ledoux and Talagrand ([17], Lemma 1.5),
we get for any n ≥ 1, y ∈ Zd,

Qx[Sn = y] ≤ C1

nd/2
exp

(

−C2|y − x|2
n

)

.

Let (Nt, t ≥ 0) be a standard Poisson process. Then

Q0[Zt = y] =
∞
∑

n=0

P [Nt = n]Q0[Sn = y]

≤ exp(−t)1{y=0} +

∞
∑

n=1

P [Nt = n]
C1

nd/2
exp

(

−C2|y|2
n

)

.(86)

We also have for any t ≥ 0,

∞
∑

n=1

1

nd/2
P [Nt = n] ≤ C3t

−d/2.

It follows from the above that

(87)

b2tc
∑

n=1

P [Nt = n]
C1

nd/2
exp

(

−C2|y|2
n

)

≤ C1C3

td/2
exp

(

−C2|y|2
2t

)

.

For values of n greater then 2t, a simple large deviation estimate gives for every
t > 0,m ≥ 1,

P [Nt ≥ 2mt] ≤ C4 exp(−C52
mt).

Hence,

∑

n>2t

P [Nt = n]n−d/2 exp

(

−C2|y|2
n

)

≤
∞
∑

m=1

C4 exp(−C52
mt)(2mt)−d/2 exp

(

−C2|y|2
2m+1t

)

= C4t
−d/2

∞
∑

m=1

2−md/2 exp

(

−C52
mt− C2|y|2

2m+1t

)

.

Setting C6 =
√

2C2C5 we now obtain from the above

∑

n>2t

P [Nt = n]n−d/2 exp

(

−C2|y|2
n

)

≤ C7t
−d/2 exp(−C6|y|).

Combining (86), (87) and the above now gives

qt(y) ≤ exp(−t)1{y=0} +
C1C3

td/2
exp

(

−C2|y|2
2t

)

+
C7

td/2
exp(−C6|y|),

which clearly implies Lemma 1. 2
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5.2. Proof of Lemma 2. In the following, we use K,K ′ to denote positive con-
stants depending only on d, T and which may change from line to line. We consider
only the case when c and x are such that cx ∈ Zd. The general case immediately
follows.

We are first going to rule out small values of t. We deal with the integral over
the interval [0, c−2]. Note that

P0,y

[

T1 ≤ c2t, Z1
c2t = cx

]

≤ min {qc2t(0, cx), qc2t(y, cx)} .

Considering separately the cases |y| ≤ 2c|x| and |y| > 2c|x| and using (14), we
easily obtain

cdψd(|y|)
∫ c−2

0

dtP0,y

[

T1 ≤ c2t, Z1
c2t = cx

]

≤ κ3c
d−2 exp(−κ4c|x|/2) × ψd(|y|) exp(−κ4(|y|/4))

≤ K|x|2−d ≤ Kψd(|x|−1).

Let us now deal with small values of T1. In a similar way as in the previous
computation, one gets

cdψd(|y|)
∫ c−2

0

dtP0,y

[

T1 ≤ 1, Z1
c2t = cx

]

≤ κ3c
d exp(−κ4c|x|/2) × ψd(|y|) exp(−κ4(|y|/4

√
2))

≤ K|x|2−d ≤ Kψd(|x|−1).

Note that to obtain the last line above, we used the assumption c ≥ |x|−2.
Let us then deal with large values of T1. For t ≥ c−2, we have

cdψd(|y|)P0,y

[

c2t− 1 ≤ T1 ≤ c2t, Z1
c2t = cx

]

≤ ecdψd(|y|)P0,y

[

c2t− 1 ≤ T1 ≤ c2t, Z1
c2t = Z1

T1
= cx

]

≤ ecdψd(|y|)P0,y

[

Z1
c2t = Z2

c2t = cx
]

≤ ec−dψd(|y|)ft(x)ft(x− y/c),

where we used Lemma 1 at the last line above. Hence, from (11), we get that

cdψd(|y|)
∫ T

c−2

dtP0,y

[

c2t− 1 ≤ T1 ≤ c2t, Z1
c2t = cx

]

≤ Kc−dψd(|y|)
(

|x|2−2d ∧
( |y|
c

)2−2d
)

≤ K|x|2−d ≤ Kψd(|x|−1).

Note that, at the last line above, we used the assumption c ≥ |x|−2.
We can now suppose 1 ≤ c2t− 1, that is t ≥ 2c−2, and restrict our attention

to estimating
∫ T

2c−2

dtP0,y

[

1 ≤ T1 ≤ c2t− 1, Z1
c2t = cx

]

.
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Using the Markov property at time T1, then Lemma 1, we obtain
∫ T

2c−2

dt P0,y

[

1 ≤ T1 ≤ c2t− 1, Z1
c2t = cx

]

=

∫ T

2c−2

dt E0,y

[

1{1≤T1≤c2t−1}
∑

z∈Zd

1{Z1
T1

=z}qc2t−T1
(z − cx)

]

≤ Kc−d
∫ T

2c−2

dt
∑

z∈Zd

E0,y

[

1{1≤T1≤c2t−1,Z1
T1

=z}ft−T1
c2

(z

c
− x
)]

.(88)

In order to bound the above quantity, we need the following intermediate result.

Lemma 15. Let d ≥ 2. There exists a positive constant L5 depending only on d
such that for any c ≥ 1, z ∈ Zd, t ≥ 2c−2, y ∈ Zd \0 and every measurable function
φ : R+ × Zd → R+,

|y|dψd(|y|)E0,y

[

1{1≤T1≤c2t−1,Z1
T1

=z}φ

(

T1

|y|2 , Z
1
T1

)]

≤ L5

∫ tc2

|y|2
− 1

2|y|2

|y|−2

du Φ (u, z) f̃u

(

z

|y|

)

f̃u

(

z − y

|y|

)

,

where Φ(u, z) = sup“

u− 1
2|y|2

”+
≤r≤u

φ(r, z), and f̃u was defined in Section 2.4.

Proof of lemma 15. In this proof, we use L to denote a constant depending only
on d and which may change from line to line. Obviously,

φ(r, z) ≤ 2|y|2
∫ r+ 1

2|y|2

r

Φ(u, z)du.

It follows that

|y|dψd(|y|)E0,y

[

1{1≤T1≤c2t−1,Z1
T1

=z}φ

(

T1

|y|2 , Z
1
T1

)]

≤ 2|y|d+2ψd(|y|)E0,y

[

1{1≤T1≤c2t−1,Z1
T1

=z}

×
∫ tc2

|y|2
− 1

2|y|2

|y|−2

duΦ(u, z)1{ T1
|y|2

≤u≤ T1
|y|2

+ 1
2|y|2

}

]

= 2|y|d+2ψd(|y|)
∫ tc2

|y|2
− 1

2|y|2

|y|−2

duΦ(u, z)(89)

×P0,y

[

1 ≤ T1 ≤ u|y|2 ≤ T1 +
1

2
≤ c2t− 1

2
, Z1

T1
= z

]

.

where we use the Fubini theorem at the last line. Hence, proving Lemma 15 reduces
to establishing the following claim

Claim 4. - If u > |y|−2,

2|y|d+2ψd(|y|)P0,y

[

1 ≤ T1 ≤ u|y|2 ≤ T1 +
1

2
≤ c2t− 1

2
, Z1

T1
= z

]

≤ L5f̃u

(

z

|y|

)

f̃u

(

z − y

|y|

)

.
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Let us first rule out the easy cases of Claim 4.
First note that the case d ≥ 3 is simple, because

P0,y

[

T1 ≤ |y|2u ≤ T1 +
1

2
, Z1

T1
= z

]

≤ eq|y|2u(z)q|y|2u(y − z),

and we can use Lemma 1 to conclude.
In the case d = 2, using the same argument as in the case d ≥ 3 only gives

|y|4 ln(|y| ∨ e)P0,y

[

1 ≤ T1 ≤ |y|2u ≤ T1 +
1

2
, Z1

T1
= z

]

≤ e ln(|y| ∨ e)fu
(

z

|y|

)

fu

(

z − y

|y|

)

.

However, in the particular cases when |y| ≤ A for some fixed constant A ≥ 1, or
when |y|−2 ≤ u ≤ |y|−1, we have

ln(|y| ∨ e) exp

(

− κ2|z|
2|y|√u

)

exp

(

−κ2|z − y|
2|y|√u

)

≤ L.

This easily leads to the desired claim in these particular cases.

We now suppose d = 2, |y| ≥ A := 68, and u ≥ |y|−1 and outline of the proof of
Claim 4. We have

P0,y

[

1 ≤ T1 ≤ |y|2u ≤ T1 +
1

2
, Z1

T1
= z

]

≤ eP0,y

[

1 ≤ T1 ≤ |y|2u ≤ T1 +
1

2
, Z1

|y|2u = Z2
|y|2u = z

]

≤ ePz,z
[

Z1
s 6= Z2

s ∀s ∈ [1, |y|2u], Z1
|y|2u = 0, Z2

|y|2u = y
]

,(90)

where we used a time-reversal argument in the last line.
We are going to use (90) and argue under Pz,z. On the one hand, with

high probability, both Z1
|y|3/2(u∧1)

and Z2
|y|3/2(u∧1)

should remain close to z. More

precisely, if we set

Bz,y := B

(

z, |y|7/8
( |z|

3|y| ∨ 1

))

, t(u, y) := |y|2u− |y|3/2(u ∧ 1),

we will establish that

ln(|y|)|y|4Pz,z

[

Z1
|y|3/2(u∧1) /∈ Bz,y or Z2

|y|3/2(u∧1) /∈ Bz,y, Z
1
|y|2u = 0, Z2

|y|2u = y

]

≤ Lf̃u

(

z

|y|

)

f̃u

(

z − y

|y|

)

.(91)

On the other hand, when both Z1
|y|3/2(u∧1)

, Z2
|y|3/2(u∧1)

are close to z, we obtain

from the Markov property for the walks Z1, Z2 at time |y|3/2(u ∧ 1) that

Pz,z

[

Z1
s 6= Z2

s ∀s ∈ [1, |y|3/2(u ∧ 1)], Z1
|y|2u = 0, Z2

|y|2u = y,

Z1
|y|3/2(u∧1) ∈ Bz,y, Z

2
|y|3/2(u∧1) ∈ Bz,y

]

≤ Pz,z

[

Z1
s 6= Z2

s ∀s ∈ [1, |y|3/2(u ∧ 1)]

]

sup
(x1,x2)∈B2

z,y

qt(u,y)(x1)qt(u,y)(x2 − y).(92)
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We will then establish, using Lemma 1, that

(93) sup
(x1,x2)∈B2

z,y

|y|4qt(u,y)(x1)qt(u,y)(x2 − y) ≤ f̃u

(

z

|y|

)

f̃u

(

z − y

|y|

)

.

Moreover, we will finally prove that the probability for (Z1, Z2) to avoid each other
in the time interval [1, |y|3/2(u ∧ 1)] is of order ln(|y| ∨ e)−1 :

(94) ln(|y| ∨ e)Pz,z
[

Z1
s 6= Z2

s ∀s ∈ [1, |y|3/2(u ∧ 1)]

]

≤ L.

Combining (91) (92), (93) and (94), we obtain

ln(|y|)|y|4Pz,z
[

Z1
s 6= Z2

s ∀s ∈ [1, |y|2u], Z1
|y|2u = 0, Z2

|y|2u = y
]

≤ Lf̃u

(

z

|y|

)

f̃u

(

z − y

|y|

)

.

Claim 4 then follows from (90) and the above. To complete the proof of Claim 4,
hence the one of Lemma 15, it remains to establish (91), (93) and (94).

Proof of (91) : As a consequence of (14),

ln(|y|)Pz,z
[

Z1
|y|3/2(u∧1) /∈ Bz,y or Z2

|y|3/2(u∧1) /∈ Bz,y

]

≤ 2κ3 ln(|y|) exp

(

−κ4
|y|1/8√
u ∧ 1

( |z|
3|y| ∨ 1

))

≤ L exp

(

−κ4
|y|1/8

2
√
u ∧ 1

( |z|
3|y| ∨ 1

))

,(95)

where at the last line, we used the bound ln(|y|) exp
(

−κ4|y|1/8/2
)

≤ L. By study-
ing separately the cases |z| ≥ 3|y|, |z| ≤ 3|y|, and using the fact that κ4/4 ≥ κ2, we
get

exp

(

−κ4
|y|1/8

2
√
u ∧ 1

( |z|
3|y| ∨ 1

))

≤ exp

(

−κ2
|z|

4|y|√u

)

exp

(

−κ2
|z − y|
4|y|√u

)

,

Furthermore, since t(u, y) ≥ |y|2u/2, we get from Lemma 1 that

sup{|y|2qt(u,y)(x, x′), x ∈ Zd, x′ ∈ Zd} ≤ Lu−1

Hence, (91) follows from using the Markov property for the walks Z1, Z2 at time
|y|3/2(u ∧ 1) and combining the above remarks.

Proof of (93) : Lemma 1 implies that
(96)

sup
(x1,x2)∈Bz,y

qt(u,y)(x1)qt(u,y)(x2 − y) ≤ 4|y|−4 sup
(x1,x2)∈B2

z,y

fu

(

x1

|y|

)

fu

(

x2 − y

|y|

)

.

The bound (93) in the case |z| ≥ 3|y| easily follows from (96) and the fact that for
x1, x2 both in Bz,y, we have |x1| ≥ 2|z|/3, |x2 − y| ≥ |z|/3 ≥ |z − y|/4.

Let us now suppose |z| ≤ 3|y|, and recall that we assumed |y| ≥ 68, so that
the balls B(0, 3|y|7/8) and B(y, 3|y|7/8) are disjoint. Now, if z ∈ B(0, 2|y|7/8) we
easily see that for any x2 ∈ B(z, |y|7/8), we have |x2 − y| ≥ |z − y|/2 ≥ |z|/2. It
follows that

exp

(

−κ2|x2 − y|
|y|√u

)

≤ exp

(

−κ2|z − y|
4|y|√u

)

exp

(

− κ2|z|
4|y|√u

)

.
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Assertion (96) and the above imply (93) in the case z ∈ B(0, 2|y|7/8). We can
use a similar argument to conclude in the case z ∈ B(y, 2|y|7/8). At last, if z
satisfies |z| ≤ 3|y| but is not in any of the two aforementioned balls, then, for any
x1, x2 ∈ B(z, |y|7/8) we have |x1| ≥ |z|/2, |x2 − y| ≥ |z − y|/2, and (93) easily
follows from (96).

Proof of (94) : First note that under Pz,z, Z1 − Z2 has law P(2)
0 . Recall that

the notation a(2)(x), G
(2)
x , H

(2)
t (x) have been introduced at the beginning of the

section. From the simple bound H
(2)
t (x) ≥ G

(2)
t (0)−1G

(2)
t (x), then (85), we get

(97) 1 −H
(2)
|y| (x) ≤

G
(2)
|y| (0) −G

(2)
|y| (x)

G
(2)
|y| (0)

≤ κ5a
(2)(x)

ln(|y|) .

From the Markov property for Z1 − Z2 at time 1, we have

Pz,z
[

Z1
s 6= Z2

s ∀s ∈ [1, |y|3/2(u ∧ 1)]
]

= Ez,z





∑

x∈Zd

1{Z1
1−Z2

1=x}1{Z1
s−Z2

s 6=0 ∀s∈[1,|y|3/2(u∧1)]}





=
∑

x∈Zd

q2(x)
(

1 − P(2)
x

(

Z hits 0 before time |y|3/2(u ∧ 1)
))

≤
∑

x6=0

q2(x)
κ5a

(2)(x)

ln
(

|y|3/2(u ∧ 1)
)

where we used (97) at the last line. Since u ≥ |y|−1, we have ln
(

|y|3/2(u ∧ 1)
)

≥
ln(|y|)/2. Hence, using Lemma 1 and the fact that a(2)(x) = O(ln(|x|)), we get
(94).

As explained earlier on, this completes the proof of Claim 4, hence the one of
Lemma 15. 2

Let us now complete the proof of Lemma 2. We will apply Lemma 15 to bound
the right-hand side of (88). Fix t ∈ [2c−2, T ]. Let us consider the nonnegative

functions Φc(u, z) = f
t−u|y|2

c2

(

z
c − x

)

. For u ∈ [ 1
|y|2 ,

2tc2−1
2|y|2 ] we have

Φc(u, z) := sup
u−(2|y|2)−1≤r≤u

φc(r, z) ≤ f̃
t−u|y|2

c2

(z

c
− x
)

.

Thus, from (88) and Lemma 15, it follows that

cdψd(|y|)
∫ T

2c−2

dtP0,y

[

1 ≤ T1 ≤ c2t− 1, Z1
c2t = cx

]

(98)

≤ K|y|−d
∫ T

2c−2

dt
∑

z∈Zd

∫ tc2

|y|2
− 1

2|y|2

|y|−2

duf̃
t−u|y|2

c2

(z

c
− x
)

f̃u

(

z

|y|

)

f̃u

(

z − y

|y|

)

≤ K|y|−d
∫ T

2c−2

dt
∑

z∈Zd

∫ tc2

2|y|2

|y|−2

duf̂t

(z

c
− x
)

f̃u

(

z

|y|

)

f̃u

(

z − y

|y|

)

+K|y|−d
∫ T

2c−2

dt
∑

z∈Zd

∫ tc2

|y|2
− 1

2|y|2

tc2

2|y|2

duf̃
t−u|y|2

c2

(z

c
− x
)

f̂ tc2

|y|2

(

z

|y|

)

f̂ tc2

|y|2

(

z − y

|y|

)

.
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For convenience, let us define, for z ∈ Zd, y ∈ Zd\0, x ∈ c−1Zd\0 and c ≥ |x|−1∨1,

F1(c, x, y, z) :=

∫ T

2c−2

dt

∫ tc2

2|y|2

|y|−2

duf̂t

(z

c
− x
)

f̃u

(

z

|y|

)

f̃u

(

z − y

|y|

)

F2(c, x, y, z) :=

∫ T c2

|y|2

2|y|−2

dt′
∫ t

2

1
2|c|2

du′f̃u′

(z

c
− x
)

f̂t′

(

z

|y|

)

f̂t′

(

z − y

|y|

)

.

so that (98) can be rewritten

cdψd(|y|)
∫ T

2c−2

dtP0,y

[

1 ≤ T1 ≤ c2t− 1, Z1
c2t = cx

]

(99)

≤ K|y|−d
∑

z∈Zd

F1(c, x, y, z) +K|y|−d
∑

z∈Zd

F2(c, x, y, z).

Thus, completing the proof of Lemma 2, in the case d = 2, reduces to verify the
bounds

(100) |y|−2 ln

(

c

|y| ∨ e
)−1

∑

z∈Z2

F1(c, x, y, z) ≤ K ln(|x|−1 ∨ e),

(101) |y|−2 ln

(

c

|y| ∨ e
)−1

∑

z∈Z2

F2(c, x, y, z) ≤ K ln(|x|−1 ∨ e).

Similarly, in the case d = 3, in order to complete the proof of Lemma 2, we need
to establish that

(102) |y|−3
∑

z∈Z3

F1(c, x, y, z) ≤ K(|x|−1 ∨ 1),

(103) |y|−3
∑

z∈Z3

F2(c, x, y, z) ≤ K(|x|−1 ∨ 1).

We first deal with the first term of the sum in the right-hand side of (99).
Proof of (100), (102): From (13), we obtain

∫ tc2

2|y|2

|y|−2

duf̃u

(

z

|y|

)

f̃u

(

z − y

|y|

)

≤ K

( |z|
|y| ∨ 1

)2−2d

.(104)

Then, from (11) and (12), we easily get

∫ T

2c−2

dtf̂t(
z

c
− x) ≤















Kψd(c) if z = cx,

Kψd

(

∣

∣

z
c − x

∣

∣

−1
)

if z 6= cx,

K exp
(

−K ′ ∣
∣

z
c − x

∣

∣

)

if
∣

∣

z
c − x

∣

∣ ≥
√
T .

(105)

We then split Zd into the following subsets

D0 := {cx}, D1 :=
(

Zd ∩ B(cx, c|x|/2)
)

\D0, D2 :=
(

Zd ∩ B(0, |y| ∧ 2c2T )
)

\D1,

D3 :=
(

Zd ∩B(0, |y| ∨ 2c2T )
)

\ (D2 ∪D1), D4 := Zd \ (D1 ∪D3).
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We now combine the displays (104), (105), in order to obtain bounds on F1(c, x, y, z)
over the regions Di, 0 ≤ i ≤ 4. We also use that, for z ∈ D1, |z| ≥ Kc|x|, while,

for z /∈ D1, ψd

(

∣

∣

z
c − x

∣

∣

−1
)

≤ Kψd(|x|−1). We have

(106) F1(c, x, y, z) ≤ K ×











































ψd(c)
(

c|x|
|y| ∨ 1

)2−2d

if z = cx,

ψd

(

∣

∣

z
c − x

∣

∣

−1
)(

c|x|
|y| ∨ 1

)2−2d

if z ∈ D1,

ψd(|x|−1) if z ∈ D2,

ψd(|x|−1)
(

|z|
|y| ∨ 1

)2−2d

if z ∈ D3 ∪D4,

exp
(

−K ′ |z|
c

)

|z|2−2d|y|2d−2 if z ∈ D4.

Then, observe that
∑

z∈D1

ψd

(

∣

∣

∣

z

c
− x
∣

∣

∣

−1
)

≤ Kcd−2(c|x|)2,

|D2| ≤ K(|y| ∧ c2)d,
|D3| ≤ K(|y| ∨ c2)d,
if d = 3,

∑

z∈D3∪D4

|z|−4 ≤ K(|y| ∧ c2)−1(107)

if d = 2,







∑

z∈D3
|z|−2 ≤ K ln

(

c
|y| ∨ e

)

,
∑

z∈D4
|z|−2 exp

(

−K ′ |z|
c

)

≤ K.

Combining the bounds (106) and (107), and doing some elementary computations
then leads to (100), (102).

Proof of (101), (103): From (11) and (12), we obtain

∫ t
2

1
2c2

du′f̃u′

(z

c
− x
)

≤















Kψd(c) if z = cx,

Kψd

(

∣

∣

z
c − x

∣

∣

−1
)

if z 6= cx,

K exp
(

−K ′ ∣
∣

z
c − x

∣

∣

)

if
∣

∣

z
c − x

∣

∣ ≥
√
T .

(108)

Also, from (13),

∫ T c2

|y|2

2|y|−2

dt′f̂t′

(

z

|y|

)

f̂t′

(

z − y

|y|

)

≤ K

( |z|
|y| ∨ 1

)2−2d

.(109)

Thus, the bounds in (106) remain true when replacing F1 with F2, and (101), (103)
follow. This completes the proof of Lemma 2. 2
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