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Basics of convex optimization

1
Contents
1.1 Imtroduction . ... ... ... ... i e 6
1.1.1  Optimization in statistics and data science . . . . . . . ... .. .. 6
1.1.2  Canonical optimization problem . . . . . . .. ... ... ... ... 9
1.1.3 Numerical optimization . . . ... ... . ... ... ... ..... 10
1.2 Convex analysis . . . . . v v v v v i v i it e e e e e e 12
1.21 Convex sets . . . . . . o v e 12
1.2.2  Convex functions . . . . . . . ... 14
1.2.3  Properties of minimizers . . . . . .. .. ... L. 18
1.2.4  Optimality conditions . . . . . . .. .. ... .. .. ... 21
1.2.5 Convex optimization problems . . . .. .. ... ... ... .... 23
1.3 Legendre-Fenchel transformation and duality . . . . .. ... .. 27
1.3.1 The convex conjugate . . . . . . .. .. ... 27
1.3.2 Duality . . . . . . 29
1.3.3  Generalized inequality constraints . . . . . . . . .. ... ... ... 33
1.3.4 Tikhonov, Ivanov and Morozov regularizations . . . . .. ... .. 34
1.3.5 Avrelevant example . . . . . ... L L L 35

!This chapter is deeply inspired from P. Bianchi, O. Fercoq and A. Sabourin’s lecture notes on Optimiza-
tion for machine learning (University Paris-Saclay, Télécom ParisTech) [1].



1.1 Introduction

1.1.1 Optimization in statistics and data science

In statistics and data science, many estimation procedures rely on minimizing an objective
function. This class of techniques is referred to as M-estimation.

The objective function to minimize may be interpreted as an energy (physics, chemistry),
a cost (finance), or a distance to the estimand. In the three forthcoming examples, we deal
with estimating a finite-dimensional parameter §* € R? of a probability distribution. It can
be seen that the functions to minimize are respectively a negative likelihood and (penalized)
distances of projection.

Example 1.1 (Maximum likelihood estimator). Let (FPy)geo be a statistical model dominated
by a measure v and denote, for all 6 € ©, gy = % the probability density function of Py with
respect to v. Let 0* € ©. Given an observation X sampled from Py«, a maximum likelihood
estimator of 0* is any 0 such that:

0 € arg max go(X).
0cO

Example 1.2 (Ordinary least squares estimate). Let X € R™? be a design matriz and
Y =(Y1,...,Y,) € R" a sample of real-valued random variables such that:

e rank(X) = d;
e 10 e RY:EY = X6*;
o Jo?eR* : V(YY) = 0?1,

where I, is the identity matriz of size n x n. An ordinary least squares estimate of 0* is any
0 € RY such that:

0 € argmin |Y — X0)2.
OeRd

Example 1.3 (Ridge and Lasso regression). With the same notation as in Example 1.2 and
with hypotheses:

e 30> e RY: EY = X0*;
e o2 eR* : V(YY) = 0?1,
a ridge estimate of 6* is any 6 € R? such that:

0 € argmin ||Y — X602 + )02,

feRd

for A e R%. Respectively, a lasso estimate verifies:

0 € argmin ||Y — X602 + X|0];.

feRd



It is quite important to note that even though optimization is a prevailing topic in modern
statistics, many estimation procedures do not rely on optimization. For instance, the method
of moments does not make use of any minimization technique.

Counterexample 1.4 (Method of moments). Let X be a real-valued random variable such
that there exist a mapping h: R — R and a bijective function ¢: R — R such that:

o —0 < E[h(X)] < 400,
* ¢(67) = E[r(X)].

Let now (X1,...,X,) be an i.i.d. sample drawn from the same distribution as X. Then,
0 =¢ (£ 2 h(X;)) is an estimate of 0*.

It is tempting to say that expressing an estimate as a minimizer of an energy function is
quite a week characterization, since:

e it provides few information on the behavior of the estimator;
e it does not provide an easy way to compute the estimate.

Thus, resorting to M-estimation conveys the incapability to state something stronger about
the estimand of interest. As we will see, that is often the case for current problems in
statistics and data science.

As a result, a general procedure to estimate a quantity * € R? of a distribution is first
to write it as a minimizer of a risk. Given a random variable X drawn from the distribution
of interest, this risk is generally the expectation of a cost function L: R x R — R,

0" € argmin E[L(X, 6)].
OeRd
Then, we proceed similarly to the method of moments: given and i.i.d. sample of observa-
tions (X1,...,X,) drawn from the same distribution as X, an estimate of 6* is any 6 € R?
such that:
R 1&
0 € argmin — » L(X;,0).
gecrd TV 121
If 0 e R — 37" | L(X;,0) is a convex function, then computing the estimate 0 is man-
ageable. However, in general this empirical risk may be non-convex. In this case, computing
0 is hard and one may prefer to solve instead a convex problem. To this end, L may be
converified to a function p: R x R — R such that § € R — Y | (X;,0) is convex. ¢ is
called a convex surrogate of L.

Remark 1.5. Non-convex optimization is currently a hot research topic. Even though one
may see non-convexity as a pitfall, current advances tend to show that:

e in some practical situations, non-convexity can be overcome (for instance concerning
optimization on manifolds);



e reaching a global minimum of the empirical risk is not essential to produce a suitable
estimate (for instance with models based on artificial neural networks).

A last step of this procedure is to reqularize the empirical risk with a convex function
1: RY — R. This appears useful for assuring numerical stability and statistical guarantees
concerning the deviation between E[p (X, 6)] and %Z?:l ©(X;, 0). At the end of the day, an

estimate of 6* is § € R? such that:
. R
0 € arg min — Z ©(X;,0) + \(0),
AeRd n i=1
for some A > (0. This general procedure is often referred to as empirical or regularized risk
minimization.
Remark 1.6. With this procedure, the function to minimize is the sum of two components:

e a finite sum of convex functions;

e a convex regularized.
This special structure may be used to provide efficient algorithms.

Example 1.7 (Linear classification). Let {(X;,Y;)}icn) be an i.i.d. sample of couples of
random variables such that Vi € [n]: X; € RLY; € {—1,1}. We aim at estimating the
classification function:

[ P(Y =1X =2)
: R? — —1
n:xe Slgn(IP’(Yz—l\Xzzv) ),
agreeing that sign(0) = 1. One can note that:
ne argmin P(Y # h(X)) = argmin E|[Ig_ (YA(X))].

h:RI—{-1,1} h: Ré—{-1,1}

In this problem, the quantity to estimate is a function from R? to {—1,1}. Following a
parametric approach, we consider the linear model {x € R% — sign(0Tx) : € R}. Moreover,
we remark that Y0 € R?: 1g_(Ysign(0' X)) = 1g_(Y(0TX)). Thus, the empirical risk to
minimize for estimating a linear classifier is:

a 1v T
feR!— — ; 1e_ (Y;(0TX7)).
The difficulty we face now is the non-convezity of 0 € R — 1x_(Y (0T X)). Yet, this function
may be convezified to ¢: 6 € RY — max(0,1 — Y (0T X)). In addition, we consider the usual
squared norm as a reqularizer, that is ¢: 0 € RY — |0|3.
Finally, the reqularized risk principle states that a linear estimate of the classification
function 1 is © € RY — sign(z), where:

R 1<
f € argmin — » max(0,1 - Y (67 X)) + A|6]3,
R4 n i=1
where A > 0.
This estimate is called linear support vector machine.

8



1.1.2 Canonical optimization problem

In this manuscript, we focus on finite-dimensional and single objective problems, which are
the ones mainly encountered in practice. This means that:

e the objective function f is real-valued: range(f) c R;
e the domain of f, denoted X, has finite dimension: X = R? (d € N*¥);

e the optimization problem has a finite number of constraints. Especially, it has p €
N inequality constraints, defined by g;: R? — R (Vj € [p]), and m € N equality
constraints, defined by h;: R? — R (Vj € [m]).

The canonical formulation of an optimization problem is:

minimize f(x)
TeX

» { Vj e [p]: gj(z) <O (P1)
o Vj e [m]: hj(xz) = 0.

Definition 1.8 (Feasibility). Let C = {z € X : Vj € [p]: gj(x) < 0,Vj € [m]: h;(x) = 0}.
C is called the feasible set (or the set of feasible points) of Problem (P1).
Respectively, a point x € X is said feasible to Problem (P1) if x € C.

Finally, Problem (P1) is said feasible if C # .

Remark 1.9. An optimization problem is defined with the keyword minimize (or similarly
with maximize), emphasizing that solving such a problem consists in determining:

e a minimizer € arg min, . f(z) and/or
e the optimal (infimum) objective value inf,ec f(z),
according to the problem of interest. Respectively, we can use the contraction min. (or max.)
Problem (P1) is referred to as:
e a constrained optimization problem if p + m > 1;
e an unconstrained optimization problem if p +m = 0.

Definition 1.10 (Characteristic function). Let A be a set and let B be a subset of A. The
characteristic function of B is the function xg: A — R U {+w0} such that:

Ve e A: xg(z) :{ 20 gi;g

9



Remark 1.11. A constrained optimization problem of the form of Problem (P1) (with
p+m = 1) can always be turned into an unconstrained problem. Indeed, agreeing that
f(z) = oo when z ¢ X,

minimize f(x) + xc(x)
xeR4

has same minimizers and minimal objective value than Problem (P1) (we may say that both
problems are equivalent, even though the notion of equivalence should be well defined).

This remark highlights that a physical problem can be translated to many different
optimization problems that lead to the same solutions.

1.1.3 Numerical optimization

Often, an optimization problem in the form of Problem (P1) cannot be solved analytically
(that is we cannot exhibit the set of minimizers and the optimal objective value). This
is consistent with the fact that we do not know much about the estimand of interest an
that we decided to express an estimator thanks to an optimization problem and not with a
closed-form formula.

However, numerical strategies can produce approximation solutions of Problem (P1). In
practice, since an estimate is made to be numerically evaluated, approximate solutions of
optimization problems are sufficient. Thus, according to the practitioner’s interest, an e-
approximation (or e-solution) to Problem (P1) may be a point € R? such that f(Z) is
e-close to inf,c¢ f(z) or a value 0, that is e-close to inf,cc f(x) (see Definition 1.12). Such an
e-approximation can be obtained thanks to a programming implementation of an algorithm.

Definition 1.12 (e-solution). Let € > 0.
A point e-solution to Problem (P1) is a point & € C such that:

f(Z) —inf f(z) <e.
zeC
A value e-solution to Problem (P1) is a value © € R such that:
0 —inf f(z) <e.
xeC

For a differentiable function f, a non-convex e-solution to Problem (P1) is a point & € C
such that:
V@)l < e
Definition 1.13 (Algorithm). Let © be a set and let 8 € © be a given parameter. We

consider the optimization problem depending on 6:

minimize f(z,6
nimise J (7,6)

s.t {WE[P]igj(x,Q)go
L. Vje [m] hj(l',e) =0,

where f(-,0): RY > R, g;(-,0): R > R and h;(-,0): R? — R are some prescribed functions.
An algorithm is a mapping ¢: © x R? x R* — R? such that when (&,0) = ¢(0, xo, €)
(where o is an initial point), T or ¥ is an e-solution to the previous optimization problem.

10



It is noteworthy to stress that implementations and algorithms are different objects.
There can be different implementations of the same algorithm according to:

e the programming language used (R, Python, C++);

the base routines (for linear algebra);

the programming technique (loops, vectorization);

the potential compiler (GCC, Borland C++, C++ builder, ...);

the programmer optimizations (code factorization).

As a consequence, we cannot compare algorithms with numerical simulations (but only
implementations). However, algorithms can be assessed with an oracle complexity. Even
though we will not cover that topic in this manuscript, we give the two basics definitions.

Definition 1.14 (Oracles). Let us consider Problem (P1).
The zeroth-order oracle is O: x € R — f(x).
If f is differentiable, the first-order oracle is O: x € R — (f(z), Vf(z)).
If f is twice differentiable, the second-order oracle is O: x € R — (f(z), Vf(z), V2f(z)).

Definition 1.15 (Oracle complexity). Given a class of optimization problems defined by:
e a class of objective functions (with prescribed regularity conditions);
e a condition on the initial point xq;
e an oracle O,

the oracle complezity of an algorithm ¢ is the minimal number of calls to the oracle O it has
to perform in order to produce an e-solution for any parameters 8 from ©, for all objective
functions and any initial points xy (this is a worst-case complezity).

Remark 1.16. The computation time of an implementation of an algorithm could be esti-
mated with the arithmetic complexity of the algorithm. This one counts the total number of
arithmetic operations to perform in order to produce an e-solution, in the worst case. How-
ever, the arithmetic complexity of an algorithm is a biased estimate of the computation time
of an implementation since it does not consider programming optimizations (parallelization,
compiler, ...). Moreover, it is much harder to prove bounds on the arithmetic complexity
than on the oracle complexity.

11



1.2 Convex analysis

1.2.1 Convex sets

Definition 1.17 (Convex set). A set K < R? is said conver if:
V(z,y)e K*Vte (0,1): to + (1 —t)y e K.

Example 1.18. Norm balls, vector spaces, affine subspaces, half spaces are convex sets. In
addition, any intersection of convex sets is again a convex set.

Exercise 1.19. Show the previous statements.

Proposition 1.20 (Finite combination for convex sets). A set K = R? is convex if and only
Zf Yn > 2,V(xi)1si<n S Kn’ v(ti)1$i<n such that t, = O,VZ € [n] and Z?:l t;, = 1,

=1

Proof. By induction, remarking that when > | ¢; # 0:

n+1 n n ]
Z tZJZz = (Z t2> (Z Zfz t.],‘l) + tn+1xn+1.
i=1 i=1 =1 "1

=1

]

Definition 1.21 (Convex hull). The convex hull of a set K = R?, denoted conv(K), is the
smallest convex set containing K.

Theorem 1.22 (Finite combination for convex hull). Let K < R,
COHV(K) = {Ztlxl tne N7V(£Ci)1gi<n e Kn’tz = O, Vi e [n], ZtZ = 1}
i=1 i=1

Proof. Since conv(K) is convex and (x;)1<i<n € K™ < conv(K)"™, we have D.
In addition, the rhs is a convex set containing K. Since conv(K) is the smallest, convex
set containing K, we have c. O]

Definition 1.23 (Cone). A set K = R? is a cone if:
Vre K,VteR,: tre K.

If K is convex, then K is called a convex cone.
K s said proper if:

1. K 1s closed;

12



2. K is pointed: K n (—K) = {0};
3. K has non-empty interior: int(K) # .
Proposition 1.24 (Characterization of a convex cone). A set K = R? is a convex cone if
and only if:
V(r,y) e K*V(s,t) e R2: sz +ty e K.
Proof. By conicity, 2sx € K and 2ty € K. So, by convexity, %23% + %Qty e K.
Conversely, the property is true for t = 0, and that is the definition of a cone. It is convex

witht =1 —s and s < 1. O

Example 1.25. Half spaces and the positive orthant R‘i are CONveT Cones.
The set of positive semidefinite matrices on R¥? is a convex cone.
The second order cone,

{(z,t) e R x R : 2o <t} = R,
1S 4 CONVeT cone.
Definition 1.26 (Dual cone). Let K < R be a cone. Its dual cone K* is defined by
K*={yeR:2'y>0,Voe K}.
Proposition 1.27. Let K < R? be a cone. Then
o K* is a cone;
o K* is closed and convex.

Definition 1.28 (Extreme point). Let K < R be a convex set. A point x € K is called an
extreme point of K if:

V(y,2)e K2, ¥te (0,1): ax=ty+(1—t)z = z=y= =z

Definition 1.29 (Compact space). A set K < R? is compact if it is closed and bounded
(Heine-Borel theorem).

Theorem 1.30 (Compact convex set). A compact convex subset of R? is the convex hull of
its extreme points.

Proof. < is proved by induction on the dimension with the notion of relative boundary. [

13



1.2.2 Convex functions

Definition 1.31 (Extended-valued function). A mapping F: R? — [0, 0] = Ru{—00, 0}
1s called an extended-valued function on X .
The domain of such a function is defined as:

dom(F) = {r e R*: F(x) < owo}.

A function F: R — [—o0, 0] is said proper if dom(F) # & and F(x) > —o0,Vr € R4,
Let X < RY be a set and f: X — R be a function. The canonical extension of f to an
extended-valued function F' is:

VreRY: F(x) = { fém) Z:i;ﬁ

Then, by definition, dom(F) = X.
Definition 1.32 (Epigraph). Let f: R? — [—o0,00]. The epigraph of f is defined as:
epi(f) = {(z,pn) eR! x R : f(z) < p} = R
Remark 1.33. Epigraph and domain of an extended-valued function f are related:
dom(f) = {reR?:3pue R, (z,pu) € epi(f)}.

Definition 1.34 (Convex function). An extended-valued function is convex if its epigraph
is a convex set of R+

Respectively, a function is convex if its canonical extension to an extended-valued function
18 CONVEL.

Proposition 1.35 (Characterization of a convex function). A function f: R? — (—o0, ]
is convex if and only if

V(z,y) e R x RE Ve (0,1):  f(to + (1 —t)y) < tf(z)+ (1 —t)f(y).
Proof. First, let us assume that the epigraph of f is convex. For all z,5y € R? and ¢ € (0, 1),

)

o if (z,y) € dom(f), then f(x), f(y) < %0, so (z, f(z)) € epi(f) and (y, f(y)) € epi(f).

Since epi( f) is convex, t(x, f(z))+(1—1t)(y, f(y)) = (tr+ (1 —=t)y, tf(z)+(1—1)f(y)) €
epi(f); in other words, f(tz + (1 —t)y) <tf(z) + (1 —1t)f(y).

e assume (without loss of generality) that x € dom(f) and y ¢ dom(f). Then tf(x) +
(1—1t)f(y) = o0 (since 1 —t # 0), so f(tz + (1 —t)y) < tf(z)+ (1 —1t)f(y).

Second, let us assume that f(tz+(1—t)y) < tf(z)+(1—-t)f(y), V(z,y) € R xR Vt € (0,1).
Then for any (z, ) and (2, ¢') in the epigraph of f and for any ¢ € (0, 1), f(tz + (1 t)x')
/

tf(2)+(1=t)f(y) < tp+(1=)p'. Thus, t(z, p)+(1-t)(2", 1) = (ta+(1-t)2’, tu+(1-t)u')
epi(f); that is, epi(f) is convex.

14



Remark 1.36. If one allows f to have values —oo (i.e. f: R? — [—o0,0]), then f is convex
if and only if

V(z,y) e R x RY Ve (0,1):  f(tr + (1 —1t)y) < ta+ (1 —1)5,
V(, B) € [-o0, 0] : f(z) < o, f(y) < B.
Remark 1.37. A function f: R? — (—o0, 00] is said strictly convex if
V(z,y) e REx Rz # y,Vte (0,1):  f(tx + (1 —1t)y) <tf(z)+ (1 —1t)f(y).

Proposition 1.38 (Elementary properties). We consider two convex functions f,: R¢ —
(—o0,0] and fo: R — (—o0,0].

1. The set dom(f;) is convex.
For any non-negative o and 3, af| + B fs is convewx.
x — max(fi(x), fa(x)) is conver.

Let (A,b) e R x R?, then x € RY — f(Ax + b) is convex.

SR N

For any (z,y) € dom(f1) and t = 1, denoting zx = = + t(y — x), fi(z) = fi(x) +
t(f1(y) = fi(2)).

6. Let o: R — R be convex and nondecreasing and f: R — R be a convex function, then
wo f is convex.

7. The perspective function of fi:

, d o thzz) ft>0
g: (x,1) eRT xR { o0 otherwise,
18 convez.

Exercise 1.39. Show the previous statements.

Proof. For Point 5, let us remark that y = pz + (1 — p)z, where p = =% € [0,1].
For Point 7, make the coefficients inside f summable to 1. n

Theorem 1.40 (Jensen’s inequality (finite form)). A function f: R? — (—o0, 0] is convez if
and only if: Vn = 2,¥(;)1<i<n € (RY)™,V(ti)1<icn such that t; = 0,Yi € [n] and 3 t; =1,

Proof. By induction for = and by definition otherwise. O

15



Theorem 1.41 (Jensen’s inequality (probabilistic form)). If f: R? — (—o0, 0] is conver,
then for any random vector X € R%:

f(EX) <Ef(X).
Example 1.42 (Convex functions).

1. Bvery norm | - | on R? is convex (this comes from the triangle inequality and homo-
geneity).

2. l,-norms for 1 < p < oo are strictly convex and only convexr for p =1 and p = .

3. For p: R — R convex nondecreasing and every norm || - | on R, o(|| - |) is convex. In
particular, | - ||P is convex provided that p = 1.

4. For a positive semidefinite matriz A € R4, f: 2z e R* — 2T Az is conver. If A is
positive definite, f is strictly convew.

5. For any convez subset A of R, x4 is convez.
Exercise 1.43. Show the last statement.

Proposition 1.44 (Coordinate supremum). Let Y < RY (potentially nonconver set) and
F:(z,y) e R x Y — (—c0, 0] be a function convex in x (that is, Yy € Y, F(-,y) is convex).
Then f: x € RY — sup,y F(x,y) is conves.

Proof. Remark that epi(f) = nyey epi(#(-,y)), which is the intersection of convex sets. [

Remark 1.45. With the definitions of the previous proposition, f is sometimes called the
upper hull of the family of convex functions (F(-,y))yey-

Proposition 1.46 (Coordinate infimum). Let F: (z,y) € R? x RY — (—o0, 0] be a (jointly)
convex function. Then f: xz e R? — inf, g F(z,y) is conver.

Proof.

V(z,2',t) e R x RY x (0,1):
fltx+ (1 —t)2") = inf F(tz+ (1—1t)2',y)

yeRd’

= inf Fltzx+ (1 -t ty+ (1-1)y)
yeRd 4/cRd

< inf tF(z,y) + inf (1 —¢)F(2,y)
yeRd’ yeR

= tf(z) + (1 =) f ().
[l

Definition 1.47 (Strong convexity). Let € R*. A function f: R — [—c0, 0] is p-strongly
convex if f — 4| - |3 is convea.

16



Proposition 1.48 (Characterization of a strongly convex function). Let € R* . A function
f:RY — (—o0, 0] is p-strongly convex if and only if

V(z,y) e R x RVt e (0,1):  f(to + (1 —t)y) <tf(x) + (1 —1)f(y) — gt(l —t)|z — ylf5.

Proposition 1.49 (Relation between convexities). Let f: R? — (—o0, o] be a function.
f strongly conver = f strictly convex = f convex.

Proposition 1.50 (First-order conditions of convexity). Let X = R¢ be a conver set and
f: X = R be a differentiable function.
f is convex if and only if:

V(z,y) e X% fy) = f(2) + V() (y — ).
f is convex if and only if:
V(w,y)e X*: (Vf(y) = V() (y—2) > 0.
f s strictly convex if and only if:
V(w,y)e X% x#y: fly)> flo) + V(@) (y - 2).
Let pe R, f is p-strongly convex if and only if:
2. T H 2
V(z,y) e X% fly) = fo) + V@) (y —2) + Sy — =l
Proof. For the first inequality, if f is convex, then:

V(@) (y — 2) = lim L& = 7)) = f@)

t—0 t

o S0 ty) - f()
t—0, ,t<1 t

= fy) — fl=).

Conversely, if V(z,y) € X%: f(y) = f(z) + Vf(x)"(y — x), then for any ¢ € (0,1), denoting
z=tr+ (1-t)y:

Fy) = f(2) + V() (y —2)
and

f@) = f(2) + Vf(2) (z = 2).

Combining the two inequalities gives:
tf(x) + (1= )f(y) = f(2) + V() (tw + (1= t)y — 2) = f(2),
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which proves convexity.
Concerning the second point, if f is convex, then V(z,y) € X2: f(y) = f(x)+Vf(z)" (y—

z). So, for fixed (z,y), f(y) = f( ) + Vf(@)'(y - 2) and f(x) = fy) + VI(y) (& —y).
Combining the two gives (V f(y) —V f(x)) " (y—z) = 0. On the other hand, for any (z,y), let
g:te(0,1) — f(z+t(y —x)). If Vf is monotone, then ¢(¢'(t) — ¢'(0)) = 0, that is ¢'(¢) =

g(0). In addition, f(y) = g(1) = g(0) + §; ¢'(t) dt > g(0) + ¢'(0) = f(z) + Vf()"(y — ).
Thus f is convex.

Concerning the third point, if the inequality is satisfied, then f is strictly convex. On
the other hand, if f is strictly convex, then V(x,y) € X2: f(y) = f(z) + Vf(z) (y — ).
Moreover, if 3(z,y) € X%: f(y) = f(z) + Vf(z)"(y — z), then Vt € (0,1)

fltz+ (L =t)y) <tf(x) + (L= 1) f(y) = flo) + L =)V f(2) (y - 2).

In addition,

fltz+ (1 —t)y) = f@) + Vi) tz+ (1 -ty —z) = f(2) + (1 =)V f(2) (y — 2).

So f(tx + (1 —t)y) = f(z) + (1 — )V f(x)"(y — x), which is in contradiction with strict
convexity. Thus, V(x,y) € X%: f(y) > f(z) + Vf(z) (y — z). O

Remark 1.51. For convex functions,

V(z,y) e X% fly) = f(x) + V() (y— ).

This is perhaps the most important property of convex functions since it shows that from
a local information (Vf(z)), we can derive a global information concerning f (we have a
global underestimator). In particular, if Vf(x) = 0, then z is a global minimizer.

Proposition 1.52 (Second-order conditions of convexity). Let X < R? and f: X — R be a
twice differentiable function.
f s convex if and only if:

Vre X: Vif(z)>0.

f s strictly convex if and only if:
Vre X: Vif(z)>0.
Let pe R* and I; € R¥? be the identity matriz. f is p-strongly convex if and only if:

VoeX: Vif(x)> uly

1.2.3 Properties of minimizers

In this section, we consider a proper extended-valued function f: R — [—o0, 0] along with
the optimization problem

minimize f(x). (P2)

zeRd
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Definition 1.53 (Minimizers). A point 2* € R is a global minimizer of Problem (P2) if
x* € dom(f) and
Vo e RY: f(z*) < f(w).

A point * € R? is a local minimizer of Problem (P2) if there exists a neighborhood N of
x* such that x* is a global minimizer of Problem (P2) in this neighborhood. In other words,
there exists € > 0, N = {x e R?: |z* — | < €} (for a given norm | - |) such that z* is a
global minimizer of
minimize f(z) + xn(2).

xeR4

Remark 1.54. Global minimizers may not exist, as we can see for:
e f(x) = % (agreeing that f(0) = 0);
o f(z) = exp(—a?);
o f(z) =z + xux(2).

As we can see, the existence of minimizers of Problem (P2) is not guaranteed, even
though f is proper (that is, there exists at least a point z € R? such that —oo < f(x) <
o0. Consequently, the remaining of this section is devoted to characterize the existence of
minimizers and their properties.

Definition 1.55 (Lower limit). The lower limit (or limit inferior) of a sequence (up)nen,
where u, € [—00, 0] is

liminf u,, = lim inf ;.
n—00 n—o k=n

Let us remark that the sequence (infys,, ug)nen is nondecreasing, thus the limit is well defined
in Ry {—00,0} and liminf, ., u, = sup,y infg=, vx.

Definition 1.56 (Lower semi-continuity). Let g: R? — [—c0, 00]. g is lower semi-continuous
at x € RY if for every sequence (z,)nen converging to x,

g(x) < liminf g(x,).

n—aoo
g is lower semi-continuous if it is lower semi-continuous at every x € RY.
Example 1.57 (Lower semi-continuous functions).
1. Fvery continuous function is lower semi-continuous.
2. x € R 2? — 1x_(x) is lower semi-continuous.

5. x € R — Lgx — Lpx(x) is not lower semi-continuous.

Proposition 1.58 (Epigraphs). A function g: R? — [—o0, 0] is lower semi-continuous if
and only if its epigraph is closed.
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Proposition 1.59 (Lower level sets). A function g: RY — [—o0, 0] is lower semi-continuous
if and only if for any a € R, the lower level set {x € RY : g(x) < a} is closed.

Proposition 1.60 (Lower semi-continuity of upper hulls). Let Y < R? (potentially non-
conver set) and G: (z,y) € RY x Y — (—ow0, 0] be a function continuous in x (that is,
Yy e Y, G(,y) is continuous). Then g: x € R — sup,y, G(x,y) is lower semi-continuous.

This last property will be useful for min-max problems, which will appear in duality
theory.

Definition 1.61 (Minimizing sequence). Assume that f is proper. A minimizing sequence
for Problem (P2) is a sequence (xy)nen, with x, € dom(f), such that

Jim f(z,) = inf f(z).
Remark 1.62. By definition of the infimum value of f, there always exists a minimizing

sequence: Vn € N*, the set {x € dom(f) : f(2)—infyeqom(s) f(y) < =} is non-empty (otherwise
infyedom(s) f(y) is not an infimum), so we can set x, to be any element of this set.

With this last definition, we have gathered the necessary components to claim the exis-
tence of a solution of a constrained optimization problem.

Theorem 1.63 (Existence of a solution for constrained problems). Let C = R¢ be a non-
empty compact set and assume that f is proper, lower semi-continuous and of the form
f =g+ xc, where g: R? — [—o0,0]. Then Problem (P2) admits a global minimizer.

Proof. We have that dom(f) < C. Let (z,), be a minimizing sequence for f. Because C
is closed and bounded, it follows that the sequence (x,), admits a sub-sequence, say (),
with 2], € C, converging to some point z* € C (from Heine-Borel Theorem). Thus we have:

inf, f(x) = lim f(z,) = lim (/) = lminf () > ("),

which shows that z* is a global minimizer. O]

Let us highlight the similarity between this theorem and the Weierstrass extreme value
theorem, which states that every continuous function on a compact set attains both a min-
imum and a maximum. Here, because we consider extended-valued functions and we are
interested only in finding a minimum, we relax the assumption of continuity to the one of
lower semi-continuity. Doing so, we lose the existence of a maximizer but provide a broader
result for mathematical optimization.

Now, we state an existence theorem for unconstrained optimization problems. For this
purpose, we introduce another definition first.

Definition 1.64 (Coercivity). A function g: R? — [0, 0] is coercive if for every sequence
(Tn)nen such that lim,, o ||x,| = oo,

lim g(x,) = .

n—0o0
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Theorem 1.65 (Existence of a solution for unconstrained problems). Assume that f is
proper, coercive and lower semi-continuous. Then Problem (P2) admits a global minimizer.

Proof. The proof is similar to the one of Theorem 1.63, remarking that any minimizing
sequence is necessarily bounded since inf,cga f(x) < 0 (f proper) and f is coercive. ]

Knowing that lower semi-continuous functions can attain their minima, let us go back to
convex functions.

Proposition 1.66 (Minimizers of convex functions). Assume that f is convexr. Then
a) a local minimizer of f is a global one;

b) the set of minimizers of f is convex;

c) if [ is strictly convex, then f has a unique minimizer.

Proof. a) For any point x € R? and a local minimizer z* € RY, there exists t € (0,1) such
that z = ta* + (1 — t)x is in the neighborhood. So f(z*) < f(z) and by convexity,
f(z) <t(f(x*) + (1 —t)f(x). It follows that (1 —¢)f(a*) < (1 —1t)f(x).

b) Trivial.

c¢) By contradiction.

]

Remark 1.67. When an estimator is built as a minimizer of an optimization problem,
we are interested in a global minimizer. However, in order to verify that a point z* is a
global minimizer, one would have to compare f(z*) to every other value f(x), no matter
how far from z* z is. The fact that for convex functions, local minimizers are also global
minimizers essentially explains our interest in convex optimization and the availability of
efficient numerical methods. Indeed, local minimizers can be found by greedy approaches.

1.2.4 Optimality conditions

Differentiability plays a key role in optimization. First because it helps characterizing convex-
ity (see Proposition 1.50), second (this is a consequence) because it is inherent in the mainly
used optimality condition (the Fermat’s rule). In this section, we introduce a generalization
of the gradient to nondifferentiable functions.

Definition 1.68 (Subdifferential). Let f: R? — (—o0, 0] be a convex function. The subdif-
ferential of f at x € R? is defined by

Of (x) = {fve R :Vy e R, f(y) = f(z) + v (y — 2)}.

The elements of 0f(z) are called the subgradients of f at x.
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Example 1.69. f: x € R — |x| has a subdifferential for all x and

{-1}  fzx<0
of(x) =< [-1,1] ifz=0
(1} ifz>0.

Proposition 1.70 (Calculus of subgradients). Let f: R? — (—o0, 0] be a convex function
and x € RY.

a) Yo = 0,0(af)(x) = adf(x).
b) If f =P | fi, with f; convex, dom(f;) = R, then 0f(x) = Y& | dfi(x) (Minkowski
sum,).

c) If f:y— maxi<i<, fi(y), with f; convez, then 0f(x) = conv (u ,isi< )8fl-(:v)).

Example 1.71. Consider f = ||-|; and remark that Vx € R?: f(z) = max{s'z : s e {£1}}.
Thus, for v € RY, the maz is achieved for s € {£1}¢ such that s; = 1 if x; > 0, s; = —1 if

x; <0 and s; = 1 for xz; = 0. As a consequence, 0f(x) is the convex hull of all such points
s, that 1s:

of (z) = conv ({s e {+1}*: sTz = |z|:})
={ts+(1—1)s' 15,8 e {£1}", 5" = |z|1,s 2 = |z|1,t € [0,1]}

={veR?: |v]o <l v'a=|z}.

Proposition 1.72 (Subgradient of differentiable functions). Let f: R? — R be a convex and
differentiable function at x € RY. Then of(z) = {V f(z)}.

Proof. Choose a subgradient v and apply the inequality to y = z + t(v — V f(z)). ]

Proposition 1.73 (Subgradient of the sum of two functions). Let f: R — R be a convex
and differentiable function at v € R? and g: R? — R be a convex function. Then o(f+g)(z) =

{Vf(x)} + dg(x).

If the subdifferential of a differential function is a singleton, it is not obvious for a sub-
differential (in general) to be non-empty. To analyze this property, we need the notion of
relative interior of a set C, which is the interior of C (the points that are not on the border
of C), relatively to the smallest subspace that contains C (the reader may think of the facet
of a cube, for which the interior is empty but the relative interior is not). Here, we give a
weak definition, restricted to convex sets.

Definition 1.74 (Relative interior). Let C = R? be a convex set. The relative interior of C
18

relint(C) ={xeC:VYyeC,IA>1:y+ ANz —y) € C}.

In other words, in any direction from x € relint(C), there is always a point ahead of x which
lies in relint(C).
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Remark 1.75. The relative interior of a convex set C # (J is never empty. If C is a singleton,

then relint(C) = C.

Proposition 1.76. Let f: R? — [—o0, 0] be a conver function and x € relint(dom(f))
(which is well defined since dom(f) is convez). Then 0f(z) is non-empty.

Exercise 1.77. Find the subdifferentials of
1. € R— xpoq1)(x) everywhere;
2. x € R? = Xyerz|ylo<1y(®) at |z]2 =1 and |z]> < 1;

3. x e R — |z|y everywhere;

3

4. v € R w— x° everywhere.

With these elements, we can state the main optimality condition used in convex opti-
mization. This one underlies efficient minimization algorithms such as proximal gradient
descent.

Theorem 1.78 (Fermat’s rule). Let f: R? — (—o0, 0] be a convex function. z* € R is a
global minimizer of f if and only if

0€df(z”).
Proof. See the definition of the subdifferential. m

1.2.5 Convex optimization problems

In the previous section, convex optimization has been presented with extended-valued func-
tion, and thus as always unconstrained optimization. Even though, extended-valued func-
tions are useful tools to formalize optimization, it is often pleasant for the reader, as well as
necessary for the numerical practitioner, to rewrite a problem into its canonical formulation
(P1). As a reminder, this is

minimize f(x)
TeX

Tt { vj € [p]: gj(x) <0
o Vje[m]: hj(x) =0,

where we assume here that f, g; and h; are real-valued functions over X'. There is obviously
an ambiguity in this formulation since it is not unique. However, the canonical formulation
assumes that X is as large as possible (it defines the subset of R? where f can be evaluated)
and that g; and h; are defined according to the physical problem.

This writing underlines the notion of equivalence between two optimization problems.
Without giving a formal definition (that would certainly not be accepted by every one), we
say that two optimization problems are equivalent if from the minimizers of one, the mini-
mizers of the other are readily found, and vice versa. For instance, the following operations
provide equivalent optimization problems:
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e change of variables;

e bijective transformation of objective and constraint functions;
e introduction of slack variables;

e optimizing over some variables;

e turning into the epigraph formulation;

e changing explicit constraints into implicit ones (that is moving constraints in X’), and
vice versa.

Let us remind that the feasible set of Problem (P1) is C = {x € X : ¥j € [p]: gj(z) <
0,Vj e [m]: hj(z) = 0}.

Definition 1.79 (Convex optimization problem). Problem (P1) is a convex optimization
problem if:

1. f: X - R is convex;
2. (95)je[p) are convex functions;
3. (hj)jemm) are affine functions.

Remark 1.80. Let us denote F' the canonical extension of f to an extended-valued function.
Stating that Problem (P1) is a convex optimization problem implies that F' + y¢ is a convex
function. However, the converse is false. This is so because there are many ways to write
a constrained optimization problem, while there is a single way to write an unconstrained
one. Thus, a convex optimization problem cannot reduce to minimizing a convex real-valued
function over a convex set of constraints.

Thus, a canonical convex optimization problem has the form:
minimize f(x)
zeX
ot Vj e [p]: gj(z) <0 (P3)
o Ax =b,

where f and g; are convex, A € R™*? and b e R™.
Local and global minimizers of an optimization problem are defined as the ones of its
extended-valued objective function F' + ye.

Proposition 1.81 (Optimality criterion). Assume that f is differentiable. Then x* € C is
a global minimizer of Problem (P3) if and only if

VreC: Vf(z*) (z —2%) = 0.
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Proof. Since Vx € C: f(x) = f(z*) + Vf(2*)(x — x*), if the equality is verified, then z* is a
global optimum.

Conversely, if 3z € C : Vf(x*)T(x — 2*) < 0, then f decreases strictly in the direction
x—x*. As a consequence, we can find ¢t € (0, 1) (close to 0) such that f(z*) > f(tz*+(1—t)x)
(and tz* + (1 — t)z € C by convexity). O

Although quite powerful, this optimality criterion is hardly ever used (it should be verified
for all ). However, the Lagrangian multiplier optimality condition comes from this property
and is the one used in practice.

This section also provides examples of convex canonical optimization problems, that
are easily solvable for medium-sized situations and that one should recognize. We present
informally these special optimization problems, agreeing that all variables other than x are
any vectors or matrices of appropriate dimensions.

Linear programs

A linear program (LP) is of the form:

minimize ¢' z + d

zeRd
ot Gr<h
o Az =b.
Here, the feasible set is a polyhedron.
A linear-fractional program
clz+d

minimize -
zeRbeTgt+f>0 €' x + f

; Gz <h
s.t. A — b

can be turned into a linear program:

minimize ¢'y + d' 2

xeRd
Gy—hz<0
ot Ay—bz=0
o ely+flz=1
z = 0.

Quadratic programs

R |
minimize =z Px 4+ ¢z 4+ 7
zeR4 2

ot Gx<h
o Ax =b,

25



where P is a positive semi-definite matrix. If there are quadratic constraints, we face a
quadratically constrained quadratic program (QCQP):

1
minimize —z'Px + ¢ 'z +r
reR? 2

) 1
ot Vi e [p], §xTij + qux +7; <0
Axr = b,

where P; are positive semi-definite.
LPs and QCQPs are special cases of second-order cone programs:

minimize f'x
xeRd

{Vje[] Az + b2 < ¢ x + d
s.t.
Fzx=g.

Geometric programs

Definition 1.82 (Posynomials). ¢: (R*)? — R is called a monomial if
JoeRY3B >0 Voe Ry o) = B [

A posynomial is the sum of several monomials.
A geometric program has the form:

minimize f(x)
TeEX

Vjelp]: gi(x) <
> {vje[] hy(x) =

where f and g; are posynomials and h; are monomials.
Geometric programs are not convex programs but can be turned into convex optimization
programs with a simple change of variable.

Generalized inequality constraints

Let K < R? be a proper cone and denote <x the relation defined by y <x * <= z—ye K.
A convex optimization problem with generalized inequality constraints is:

minimize f(x)
xeRd
ot Vje[p]: gj(x) <x,; 0
o Ax =b,
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where f and g; are convex. As special cases, a conic form problem is:

T

minimize ¢ @
xeRd
ot Fr+g<x0
o Ax = b,
while a semi-definite program (SDP) is:
minimize ¢ x
zeR
d

i=1
Ax = b,
where G and F; are symmetric matrices.

LPs and SOCPs are special cases of SDPs. Yet, considering a tighter class of programs
makes it possible to design fast numerical algorithms.

1.3 Legendre-Fenchel transformation and duality

1.3.1 The convex conjugate

Definition 1.83 (Legendre-Fenchel transformation). Let f: R? — [—c0,00]. The Legendre-
Fenchel transformation (or convex conjugate) of f is:

f*: yeRY— sup {yTx— f(:z:)}

xeR4

Remark 1.84. If f: R? - R, f is differentiable and the supremum is attained in z*, then
x* is such that y = Vf(z*) and f*(y) = —(f(2*) + Vf(2*)T(0 — z*)), which is minus the
linear approximation of f in 0 from f(z*).

Proposition 1.85 (Some properties of the convex conjugate). Let f: R — [—o0, o0].
1 f#(0) = — infyeg f(2).
2. f* is convexr and lower semi-continuous.
3. If dom(f) # &, then Yy € RY: f*(y) > —o0.
4. If f is convex and proper, then f* is proper.
Proof.
1. Trivial.

2. sup of affine (thus convex) functions.
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3. Trivial.

4. Since f is proper, f* is proper except if f = oo, which is not true (this comes from the
existence of a subgradient of f).

O
Proposition 1.86 (Fenchel-Young inequality). Let f: R? — [—o0,0]. Then
V(w,y) e R xR f(z) + f*(y) > 2"y
Moreover, if f is convez, V(z,y) € R x R?:
fl@)+ f*(y) =a'y = yeif(x).

Proof. Both statements come from the definition of the convex conjugate and of a subgra-
dient. ]

Example 1.87 (Remarkable convex conjugates).
LAf f =] 15, then f* = 3 -[3.
2. If f =exp, then f*(y) = y(log(y) — 1) if y > 0, f(y) = w0 if y <0 and f(0) = 0.
3. Let K< R If f = xx, then f*: ye R — sup,y'x.
Exercise 1.88.
1. Let Q € R¥™? be a positive definite matriz and f: x € R — 2T Qx. Compute f*.
2. Let f: RY — [—o0,0]. Show that f = f* < f=1|-[3
Definition 1.89 (Dual norm). Let || - | be a norm on R%. Its dual norm | - |, is defined by:

vyeR": |yl = sup y'a.

Jzl<1
Proposition 1.90. Let | - || be a norm on R%.
1. | - |l« is a norm.
2. V(z,y) e R xR yTa < ]yl
3. The dual norm of a dual norm is the primal norm: (|- |l+)« = | - |-
Example 1.91 (Dual norms).
1. Let p > 1 and ¢ > 1 such that % + % = 1. Then | - |, is dual to || - |,. We deduce

Hélder’s inequality: V(x,y) € RT x R yTz < x|,y
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2. Particular cases are: ly 1s self-dual, €1 and o, are dual.

3. For matrices, the Frobenius morm is sefi-dual, the spectral and the trace norms are
dual.

Proposition 1.92 (Convex conjugate of a norm). Let | - | be a norm on R Then, | -|* =

X{weRd: |z]5<1} -
In other words, the convex conjugate of a norm is the characteristic function of the dual
norm ball.

Proposition 1.93 (Biconjugate, involution). Let f: R? — [—o0, 0] and f** = (f*)* the
biconjugate of f. Then
Ve RY: f(z) = f**(z).

In addition, if f is convex, proper and lower semi-continuous, then
f — f**

and
yedf(x) <= xedf*(y).

Proof. The first and last statements come from Fenchel-Young (in)equality. The middle
statement is admitted. O

Remark 1.94. The biconjugate f** is sometimes called the convex relaxation of f.

Exercise 1.95. Compute the conver conjugate of the pseudo-norm .

1.3.2 Duality

All along this section, we will consider the canonical convex optimization problem:

imize
minimiz f(z)

P4

s.t. (P4)
where f: R? — Ris convex, g: R? — R? is component-wise convex and h: RY — R™ is affine.
Let us denote x,<o and xu—o respectively the characteristic functions of {x € R? : g(z) < 0}
and {z € R?: h(z) = 0}, as well as the extended-valued function F' = f + x,<0 + Xn=0. We
remark that F'is convex and that Problem (P4) is equivalent to:

minimize F(z) = f(z) + Xg<0(Z) + Xn=o(2).

zeR4

Since characterizing the solutions of F' may be difficult, it is often useful to consider a
dual problem. This one is deduced from the Lagrangian function.
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Definition 1.96 (Lagrangian function). The Lagrangian function associated to Problem (P/)
18!

L: (x,\v) e R x RP x R™ v f(z) + A g(z) + v h(z) — Xz (A).

A and v are called Lagrange multipliers.
Proposition 1.97 (Supremum of the Lagrangian function). With the previous notation:

VreRY: F(z)= sup Lz, \v).
(Av)eRP xR

Proof. Immediate. O
From this we remark that Problem (P4) is equivalent to the saddle point problem:

minimize  sup  L(z, \,v),
zeRT () v)eRPxR™

that has optimal value

inf F(x) = inf su Lz, \,v).
reRd ( ) zeRd (A,V)EREXRWL ( )

As a consequence, it is tempting to exchange inf and sup in order to get another (maximiza-
tion) problem. That is exactly how we proceed (with caution) to get a dual problem.

Definition 1.98 (Dual function and dual problem). The Lagrange dual function of Prob-
lem (P4) is:
G: (A v) e RP x R™ — inf Lz, \,v).

zeR4

The dual problem of Problem (P}) is:

&13))&?;%% G\ v). (P5)

Example 1.99 (Link with convex conjugates). Assume that we are interested in an opti-
mization problem with linear constraints:

minimize f(x
nimize f (z)

; Ax <b
s.t. Cr—d.

where A, C, b and d are any matrices and vectors. Then
Y\ v) eRP xR™: G\, v) = —-A'b+v'd) — f*(-ATA-C"v) - Xer (A)-
Exercise 1.100. Compute the dual functions of the following problems:
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minimize |3
zeR?

s.t. Cz =d.
2.
minimize ¢z
zeRd
Crx=d
s.t.
z = 0.
3.
minimize |z|
zeR4
s.t. Ax < b.
4.

minimize |z|;
zeRd
s.t. Cx =d.

Proposition 1.101. —G s convex and lower semi-continuous.

Proof. Let q: (A, v) € RFxR™ — inf, pa f(2)+Xg<r(T)+Xn=v(z). Then V(\,v) € RFxR™: —
G(\,v) = q¢*(—A, —v). By convex conjugation, —G is convex and lower semi-continuous. []

Proposition 1.102 (Weak duality). Let p € [0, 0] and d € [—o0, 0] be respectively the
primal and dual optimal objective values:

= inf F(z = inf su L(x,\v),
b zeR ( ) zeR ()\’Z,)EREXRWL ( )
d= sup GA\v)= sup inf L(z,\v).
(A,v)eRP xR™ (A,v)eRP xRm T€R?
Then
d<p

Proof. Remark that

sup inf L(z,\,v) < inf sup  L(z,\v),
(Av)eRp xRm z€R? z€R? () 1)eRP xR™

by definition of inf and sup. m
Remark 1.103. Let (2/, N, 7/) € R? x R? x R™. In numerical optimization, the dual gap
F(z')-=GW\N,V) =0

is a certificate to get an e-solution. Indeed, since G(N,V') < d < p < F(2'), if F(2') —
G(N,V') < e, then
0< F(2')— inf F(z) < F(2') — G\, V) <e.

zeR4
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Proposition 1.104 (Saddle point). (z*, \*,1*) € RY x R? x R™ is a saddle point of L, that
18
V(z,\,v) e RE x R x R™:  L(2*, \,v) < L(z*, \*,v*) < L(z, \*, v*),

if and only if

sup inf L(x,\,v) = sup L(z*,\,v)
(\,v)eRP x Rm z€R? (\,v)eRp xR™
= L(z*, \*, V")
= inf L(z, \*,v")
zeRd

= inf sup  L(z,\v).
z€RY () 1)eRP xR™

Proof. Suppose that (z*, \*, ") is a saddle point. Then sup(, ,egexzm L(7*, A, v) < L(z*, A", V")
and L(x*, \*, ") < inf ega L(x, \*,v*). Then

sup inf L(z, A\,v) < inf  sup  L(z, \v)
(A v)eRP xR™ zeR? zeR? (A v)eRP xR™

sup  L(z*, \,v)
(A v)ERP xR™

< L(x*, N, v%)
< infd L(z, \*,v")

A

N

sup  inf L(x, A\, v).
(A,v)eRP xRm z€R?

Thus, all inequalities are in fact equalities. In addition, the converse is straightforward. [J

Theorem 1.105 (Strong duality). If Problem (P}) is strictly feasible (Slater’s constraint
qualification):
Jr e R?: g(x) < 0 and h(z) = 0,

where < means component-wise strict inequality, then (with the same notation as previously):
1. inf,ega F(x) < 0 (the problem is feasible);
2. d=p (zero duality gap);
3. AN v) e RE x R™ 1 d = G(A\*, v*) (dual is attained).

Proof. Admitted. O

Remark 1.106. If we assume that the domains of f, g and h are not R?, constraint quali-
fication is:

1. 0 € relint(h(dom f));
2. 3z edom f : g(x) < 0.
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Theorem 1.107 (Karush-Kuhn-Tucker conditions). Assume that f, g and h are differen-
tiable functions and that Slater’s qualification holds for Problem (P4). Then, (z*, \*,v*) €
R? x RP x R™ is a saddle point of L if and only if:

1. primal feasibility: g(z*) < 0 and h(z*) = 0;

2. dual feasibility: \* > 0;

3. complementary slackness: Vj € [p], Ajg;(z*) = 0;
4. stationarity: V L(z*, \*,v*) = 0.

Remark 1.108. Lagrange multipliers A and v give strong information about the sensitivity
of the optimal value with respect to perturbations to the constraints. To illustrate this, let
(u,v) € RP x R™ and a perturbed problem be defined by:

minimize f(x
nimize f (z)

a {ame

Let ¢: (u,v) € R? x R™ — inf,cpa f(2) + Xg<u(®) + Xn=v(x) be the optimal value of the
perturbed problem and remark that ¢(0,0) = inf cga F'(x) (the optimal value of the original
problem).

The dual of the perturbed problem is:

maximize G(\,v) —u'A —v'v.
(A v)eRP xR™

Let (A\*,v*) € RP x R™ be a solution of the dual original problem and assume that
strong duality holds for this problem. Then we have (weak duality applied to the perturbed
problem):

q(u,v) — q(0,0) = q(u,v) — GO\, v*) = —(u"\* +v'v*).
As a consequence, if ¢ is differentiable in (0,0), we get:

V.q(0,0) = =X and V,q(0,0) = —v.

1.3.3 Generalized inequality constraints

In Problem (P4), we remark that the inequality constraint g(z) < 0 can be interpreted as
—g(x) € K, where K = R% is the positive orthant, which is a cone. Thus, the inequality
constraint is equivalent to g(z) <x 0. This motivates the extension of duality to generalized
inequality constraints.

As a consequence, let us consider

minimize f(x
nimize f (z)

s.t.



where K < RP is any proper convex cone.
Similarly to usual convex problems, the Lagrangian function can be defined by:

L: (z,\v) e R x RP x R™ v f(x) + A g(x) + v h(x) — xrx (N,

where the dual cone K* appeared. Let us remark that this is consistent with the previous
definition of the Lagrangian since R” is a self-dual cone.

Then, the dual function is defined similarly as before. Weak duality follows from these
definitions, as well as strong duality with Slater’s constraint qualification:

Jr e R?: g(x) <k 0 and h(z) = 0,

where g(z) <x 0 means that —g(z) € int(X).
Finally, KKT optimality conditions and the perturbation analysis are readily extended
to generalized inequality constraints.

1.3.4 Tikhonov, Ivanov and Morozov regularizations

For many reasons (including numerical stability and sparsity), we often encounter optimiza-
tion problems of the form:
minimize f(z) + A|z|b.
zeRd

where f: R? — R is convex (it embodies a data fitting term), p > 1 and A > 0. The
additional term on the right hand side is often referred to as Tikhonov regularization. His-
torically, Tikhonov regularization came out because of ill-posed problems.
It has to be known that this formulation is equivalent to two others. The first one is
Ivanov regularization (or quasi-solution method):
minimize f(x)
s.t. |zl <

where 7 > 0, and the second is Morozov regularization (or residual method):
minimize |z,
zeR?
st. f(x) <6,

where 0 > 0. These last two formulations can respectively be interpreted as fitting the data
with not too rough parameter z, and finding x with minimal norm that fits the data up to
a 0 accuracy.

The following theorem makes the equivalence clear.

Theorem 1.109 (Equivalence between regularizations). Let ¢: R? — R and ¢: R? — R be
to convex functions such that ¢ = 0 and 0 € (R?).
Let A = 0. If 2* € R? is a minimizer of:

minimize ¢(x) + \(z), (P6)

zeR4
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then there exists T = 0 such that x* is a minimizer of

minimize o(x
nimize () (P7)
st.  YP(z) < T

Conversely, for T > 0, if 2* € R? is a minimizer of Problem (P7), then there exists X = 0
such that x* is a minimizer of Problem (P6).

Proof. Let A = 0 and 2* € R? be a minimizer of Problem (P6). Let 7 = t(2*) = 0. Then
Y(x*) <7 and Vo e RY : 4(z) < 7,
p(a7) = o(x") + Ap(27) = AT < @(x) + M (2) — A7 < (),

so x* is a minimizer of Problem (P7).

Conversely, let 7 > 0 and 2* € R? be a minimizer of Problem (P7). Since 0 € ¢(R%) and
7 > 0, Slater’s constraint qualification hold and there is strong duality. Consequently, the
dual is attained:

INER, :p(x*) + AN (z*) —7) = sup @(z*) + N(Y(z*) — 7).

NeRy
Therefore, (z*, \) is a saddle point of the Lagrangian. Hence, Vo € R%:
e(@”) + Mp(a") = p(x7) + A (27) = 7) + A7 < p(x) + A(2) = 7) + AT = ¢(x) + Mp(2).

Thus, z* is a minimizer of Problem (P6). O

1.3.5 A relevant example

Let us consider the optimization problem:

minimize f(x) + g(Azx), (P8)

xeR4

where f: RY — (—o0, 0], g: RP — (—o0, 0] are proper convex and A € RP*?. This problem
is equivalent to
minimize f(x) + g(y)

zeRL yeRP

st.  Azx=y.

The dual function to this last problem is:

VveRP: G(v) = inf {f(z)+g(y) + v Az — VTy}

zeR4 yeRP

=~ sup {v'y—9)} = sup {—v' Az — f()}

xzeR4
=—g*(v) - f*(-ATv).
Therefore, the dual problem of interest is:

maximize —g*(v) — f*(—A'v). (P9)

veRP
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CONSTRAINT SET C CONJUGATE

EQUALITY Az =b {0} 0
BALL [Az —b| <1 unit | - [-ball (e
CONIC INEQUALITY Ar <k b -K XrcH

Table 1.1 — Examples of constraints.

Theorem 1.110. Let f: R4 — (—o0, 0], g: R? — (—00, 0] be proper convex functions and
A e RP*. Assume that either dom(f) = R? or dom(g) = R? and that 3z € R? : Az € dom(g).
If the optima are attained in Problem (P§8) and Problem (P9), then strong duality holds:

min f(z) + g(Az) = max—g*(v) = f*(=Av).

Moreover, a primal-dual optimum is a solution to the saddle-point problem:

minimize maximize f(z) 4+ v’ Az — g*(v).
xeRd VERP

The forthcoming paragraphs provide examples of such problems.

Set constraint

Here, we are in the case where g = y¢, where C  R? is a convex set, and we aim at solving:

minimize f(x) + xc(Azx —b),

zeR4

whose dual is
maxiﬂgnize —b'v —xi(v) — fH(—ATv).
VERP

Table 1.1 provide some examples of sets of constraint, where L < RP is a proper convex
cone.
Norm regularization

In this case, g(y) = |ly — b| and we want to minimize f(z) + |Axz — b|. Since, ¢*(v) =
b"v + x5(v), where B = {y € R? : |y|, < 1}, the dual reads:

maximize —b'v — f*(—A'v)
vERP
st. vl <L
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Chapter 2

Optimization algorithms
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2.1 Introduction

In this chapter, we aim at providing several concrete methods to produce a sequence (zy)gen
that minimizes a function f: RY — [—c0, o0], that is such that limy_, 7 exists in R? and

limy o f(2x) = inf epa f(2).

2.2 Greedy methods

2.2.1 Orthogonal matching pursuit

The problem of interest in compressed sensing is to find z € R? such that Az = y, where
A e RP*4 is a sensing matrix and y € RP the vector of measurements. Compressed sensing
promotes two special features:

1. the number of measurements is much smaller than the dimension of the signal (p « d),
so the problem of finding = such that y = Az is under-determined;

2. the signal to recover is supposed s-sparse (s € N*).

Thus, compressed sensing can be summed up in the following manner: given a sensing
matrix A € RP*? and a vector of measurements y € R?, solve the optimization problem

minimize |z
zeR
st.  Ax=uy.

A roughly equivalent formulation to the compressed sensing problem is:

iz
mininiz f(z)
sk, zfo < s

where f: € R? — ||Ax — y|, and s € N is a prescribed sparsity level. Let us remark that
if the signal to recover z* € R? is s-sparse, then it is a solution the previous optimization
problem and f(z*) = 0.

Starting with an initial point 7o = 0 € R? and Sy = supp(zy) = J its support, the
orthogonal matching pursuit algorithm reads as follow and aims at providing a local solution
to the previous optimization problem.

Algorithm 1 Orthogonal matching pursuit

(jk, ag) € argmin f(zy, + ae;j)

jeld],ceR
Sk1 = Sk U {J}
Te+1 € argmin  f(z),

xeR%:supp(z)cSk41
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where e; is the j* canonical basis vector of R?.
We note that:

e When the columns of A norm to 1, Step 1 boils down to finding j € [d], that maximizes
I(A;)T(Az —y)|, where A; is the j™ column of A. In other words, we look for the atom
of the dictionary A, that is the most correlated to the residue Az — y.

e Step 2 potentially increments the sparsity of the current iteration zy,1: ||zxs1/o < k+1,
at each iteration k.

e Step 3 is an orthogonal projection, hence the name orthogonal matching pursuit.

Remark 2.1. Under some conditions, the orthogonal matching pursuit can recover any s-
sparse signal z* with at most s iterations. However, the weakness of orthogonal matching
pursuit is that, once an incorrect index j has been selected, it remains in the support of the
proposed solution. In this case, s iterations are not enough to recover an s-sparse signal.

2.2.2 Compressive sampling matching pursuit

The compressive sampling matching pursuit algorithm proposes a strategy to overcome the
weaknesses of orthogonal matching pursuit. To describe it, let Ly: RY — [d] be such that
L,(z) is the index set of s largest absolute entries of z, and H,: RY — R? be the hard-
thresholding operator of order s. H; is such that H,(z) has support Ls(z) and equals x on
its support (the other entries are 0).

Starting with an initial point 2y = 0 € R?, the Compressive sampling matching pursuit
algorithm is defined by

Algorithm 2 Compressive sampling matching pursuit

Skt1 = supp(wx) U Los (AT (Azy, — y))

U1 € argmin  [|[Au — y|2
ueR®:supp(u)cSk11

Tpy = Hy (Uk+1)~

Remark 2.2. Orthogonal and compressive sampling matching pursuits require to estimate
the sparsity of the signal x* to recover. This is not an easy task.
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2.3 Linear programming

2.3.1 Convex relaxation of compressed sensing and basis pursuit

Given a sensing matrix A € RP*? and a vector of measurements y € RP, compressed sensing
aims at solving the optimization problem

minimize |z
zeR?

s.t.  Ax=y.

Since this problem is non-convex and even NP-hard in general, we would like to convexify
it. For this purpose, let us remark that || - [|o is relatively well approximated by | - || when
q — 0y Yet | - [¢ is not convex for 0 < ¢ < 1. The smallest value of ¢ for which | - |
is convex is ¢ = 1. As a consequence, we can legitimately replace the original compressed
sensing optimization problem by:

minimize |z
xeRd (P].O)
st.  Ax=y.

This problem is often referred to as Basis pursuit.

Proposition 2.3 (Sparsity of basis pursuit). Assume that Problem (P10) has a minimizer
r* e RL Then |2*]o < p.

Proof. By contradiction, assume that |z*[|o > p and let S be its support. Consider the set
of p-dimensional vectors, columns of A index by S. This set is linearly dependent, that is
Ju € RY, u # 0, with same support as z*, such that Au = 0. Now, let t > 0 such that

*

t < min;eg ﬁ and z = o* — tsign (D, ¢ sign(x})u;) u. Then we have Az = y and

EENE

i€S

= 2 sign(z;)z;
€S

= Z sign(x})z; (t is small enough)
€S

= Z sign(x})x; — tsign <Z sign(z:)ui) Z sign(z])u;
i €S €S
<[z,

where the last inequality comes from the fact that u # 0, so sign (3, ¢ sign(z})u;) >, q sign(x])u; >
0. Finally, |z||; < [|=*[); is a contradiction. O

Next, we remark that the objective function of Problem (P10) is not differentiable, which
makes its numerical solving difficult. As a consequence, one may propose to reformulate
Problem (P10) to an “easier” problem.

40



Proposition 2.4 (Variational ¢;-norm).
d
Vo e RY: x1=mm{§kr+grx=§+—§1@teve@ﬂf}-
i—1

Proof. Let x € R? and let us exhibit a minimizer of the set considered in the proposition.
Let (£7,&7) € (R%)? be such that &' = max(0,z;) and & = max(0, —x;) (Vi € [d]). Then,
x =& =&, s0 (£1,£7) is feasible, and we claim that (£7,£7) is a minimizer of the set
considered in the proposition.
To show that, let us observe that Vi € [d], if z; = 0 then £ = 0 and & =0, if z; > 0
then & > 0and & = 0, and if z; < 0 then § = 0 and & > 0. Consequently, |z;| = £ +¢; .
Now, let (27,27) € (R%)? be a feasible point (that is such that x = z* — 27). Then,

Vield: zf +2; =2 —2 +227 = 2 — 2. Converzely, zi + 72 >dZ; — z, thus
Z;_ +z; = |Z;r — 25| = |v;] = €]+ +¢&; . As a consequence, >, zt =20 &+ € and
(£7,€7) is a minimizer.

To conclude, we remark that |z, = 3% &5 + & B

As a consequence of the previous proposition, Problem (P10) can be reformulated in:

minimize min T+
zeRT  (£F,67)e(R%)? ; :

e =gt -
s.t. P >0
£ >0,

s.t. Ar =y,

which, combining minimization procedures and deleting the variable x, that appears to be
totally free (so useless), becomes:

d
minimize Zf;“ +&
(ete)emd) ;74
Algr—¢) =y (P11)
s.t. Y >0
§ > 0.

In the forthcoming sections, we focus on algorithms for solving such a linear program.

2.3.2 The simplex method
We focus on an optimization problem of the form:
minimize ¢’z

xeR4

{ Ax =10 (P12)
s.t.
x> 0,
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where c € R?, A € RP*? and b € R? are any matrices.

Remark 2.5. A linear program can always be written in the form of Problem (P12).

The feasibility set of Problem (P12) reads C = {z € R : x > 0, Az = b}. It is the
intersection between the positive orthant and the affine space {xr € R? : Ax = b}. As a
consequence, it is either:

1. empty, so Problem (P12) is not feasible;

2. not compact;

3. or the convex hull of a finite number of points.

In Situation 3, C is called a polytope or a simplex. This is the case of interest.

Proposition 2.6 (Solution of a linear program). Let us assume that C is non-empty and
compact. Then, Problem (P12) has a solution, which is an extreme point of C.

Proof. Any point z € C is a convex combination of the extreme points of C, denoted {x; :
i € [n]}. In other words, x = ) | t;x; for some ¢; = 0 such that >  ¢; = 1. Then we have
c'w =" tik]c>=klc, where i* € arg MmN p,] Kk, c. But ks € C, so it is a minimizer. O]

i*

Exploring all extreme points of C would be very expensive. Therefore, the simplex algo-
rithm finds a path in the set of extreme points of C such that the objective function does
not increase at each iteration.

Generally, the simplex algorithms converges linearly in the number of constraints. How-
ever, the worst-case complexity is very bad. On the so-called Klee-Minty cube, the simplex
algorithm exhibits poor performance (it visits all 2P corners of the cube, where p is the
number of constraints).

2.3.3 Barrier methods
Here, we focus on the optimization problem:

minimize f(x
nimize f (z)

s.t. { Vje[p]: gi(x) <0

where A € R™*? is a rank m matrix, f and g; are twice differentiable. We present barrier
methods, also called interior point methods. They are particularly useful when f and g; are
linear functions.

The starting point of barrier methods is to rewrite the previous optimization problem
in:

xeR4

minimize f(x) + i xe_(9;(2))

st.  Ax =0,
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and to remark that yg_ can be approximated by a smooth barrier function. For instance,
we consider here the logarithmic barrier

=2 log(=gj(z)) if gj(x) < 0,Vj € [m]
o0 otherwise.

¢: x e R — {
For ¢t > 0, the function z € R? — %¢(m) approximate xps and the approximation improves
as t — 0.
Proposition 2.7. The barrier ¢ is convex and twice differentiable.
Therefore, for ¢ > 0, the problem of interest becomes:
minimize ¢ f(z) + ¢(x)
zeR4

(P13)
s.t. Az =0,

Proposition 2.8. Assume that strong duality holds for Problem (P13) and let z*(t) be a
minimizer Problem (P13) fort > 0. Then
* * m
0< ft ) - p <™
where p* = inf,ega f(2) + 272, xr_(9(%)) + Xo(Az) is the infimum of the original problem.
Proof. This comes from KKT conditions. O

Starting with a strictly feasible initial point 2o € R% t; > 0 and u > 1, a barrier (or
interior point method) method is given by:

Algorithm 3 Barrier (or interior point) method.

Tpyp1 € argmin ¢y f(x) + é(x),
zeRI: Ax=b

tk+1 = Pl

As a stopping criterion, one can use ﬁ < e since this ratio bounds the difference f(zy41)—
*

p*.
Remark 2.9.
1. The first step of a barrier algorithm is generally performed thanks to Newton method.

2. xy is used to initialize the algorithm for solving Step 1 (warm start). This makes the
all story faster and explains why only several iterations are needed in barrier methods.

Interior point methods are very reliable on small scale problems but are not workable for
very large problems. First order methods seem to be the only option.

43



2.4 Primal methods

2.4.1 Gradient method

In this section, we consider a function f: RY — R, that is differentiable and convex, and we
tackle the problem:

minimize f(x).
nimize f (z)

The gradient descent is a simple algorithm to reach a minimizer of f. Suppose we are
provided with an initial point zy € R%. Then the gradient descent algorithm is:

Algorithm 4 Gradient descent.

Tpe1 = Tk — 1V f(2k),

where v, > 0 is a step size to be tuned.
The interpretation of the gradient descent method is minimizing a local quadratic ap-
proximation of f:

Ve e R f(2) ~ flon) + V() (x — m0) + 2—}%@ —

where 7 is unknown a priori. However, there are several manners to choose the step size ;.
The first one is to consider it constant. In this case, we require f to be gradient Lipschitz in
order to ensure convergence.

Theorem 2.10 (Convergence of gradient descent). Assume that f has a minimizer z* € R?
and that the gradient of f is Lipschitz continuous with Lipschitz constant L > 0:

Y(z,y) e R [Vf(z) = V)| < Llz—yl.
For a constant step size v, = 1+ (Vk € N):

Flon) = Fo) < 5leo — 2*13

Proof. The proof relies on the fact that Lipschitz continuity of V f implies convexity of
L|- |3 — f, which implies a quadratic upper bound:

Vi) B fly) < @)+ V) (- 2) + 2yl
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Remark 2.11. The convergence analysis shows that there is a progress at each iteration.
In other words, the gradient method is a descent method.

In addition, if f is strongly convex, convergence of gradient descent is faster.

Theorem 2.12 (Convergence of gradient descent (strong convexity)). Assume that f has
a minimizer z* € R%, is p-strongly convexr (u > 0) and that the gradient of f is Lipschitz
continuous with Lipschitz constant L > 0. For a constant step size v, = ﬁ (Vk e N):

Flox) = Fla*) < 2o — 2* 3

and
|z — 2*|* < Fllwog — 273,

2
where ¢ = (ZZE) € (0,1).

Proof. The proof relies on the definition of strong convexity, which implies a quadratic lower
bound:

V(e,y) e RY: fly) > fl2) + V@) (y— )+ Sly— o3,
[l

Remark 2.13. The convergence rate of the gradient descent is not optimal: fast gradient
methods have better convergence rates.

Another way to choose the step size is to perform an adaptive and local computation,
called a line search.

Backtracking line search

Backtracking line search is also know as Armijo’s rule:

Algorithm 5 Armijo’s rule
Choose 79 > 0, a € (0,1) and B € (0,1). Set v = vy and update v with v « §v until

flag =V flzx)) < flar) — oy V()3

For simplicity, we often take a = %
Theorem 2.14 (Convergence of gradient descent (backtracking)). Assume that f has a
minimizer x* € R? and that the gradient of f is Lipschitz continuous with Lipschitz constant

L > 0. For a backtracking line search with same vy > 0 and o = %

o — 2%,

. 1
flaw) = fla®) < o min (o, 5/L)
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Exact line search

Algorithm 6 Exact line search

Choose v such that
Yk € arg min f(zy — YV f(2x)).

720

Advantages and drawbacks

Advantages of gradient descent are:

1. every iteration is inexpensive;

2. it does not require second order information (Hessian of f).
However, gradient descent

1. is often slow (oscillation);

2. does not handle nondifferentiable functions.

Other first-order methods address one or both disadvantages.
Methods with improved convergence:

e quasi-Newton methods;

e conjugate gradient method;

e accelerated gradient method

Methods for nondifferentiable or constrained problems:
e subgradient method;

e proximal gradient method;

e smoothing methods;

e cutting-plane methods.

46



2.4.2 Quasi-Newton method

This section deals with including second order information in gradient descent. For this
purpose, let us assume that f is twice differentiable.

Algorithm 7 Newton method.
T = 2k — (V2 f (21)) 7'V f ().

The Newton method comes from minimizing a second-order approximation of f around
T

1
Fy) ~ fxr) + V) (y — ax) + 5(9 —x) V2 f (@) (y — w1)-
If the Newton method demonstrates fast convergence, it has the disadvantage to be

expensive for large scale applications. To overcome that, the Hessian can be approximated
by a metric H € R¥4, that is symmetric positive definite.

Algorithm 8 Quasi-Newton method.

Given an initial point zo € R? and an initial metric Hy € R%*?, that is symmetric positive
definite, iterate

Ti1 = T — WHy, YV f (),
set Hy,1 based on Hy,

where v, > 0 are step sizes, which can be chosen by line search. The second step of a
quasi-Newton method can be done in several manners.

Newton method
Setting Hj, = V2f(x)) makes the last algorithm boiling down to a Newton method with
adaptive step size.

Broyden-Fletcher-Goldfarb-Shanno (BFGS)

Setting A, = z41 — 2 and A, = Vf(ka) — V f(xy), the BEGS update rule is:

1
T T
Hipr = Hy + ATA ATa A - mra AN

Let us remark can the inverse can be computed efficiently:

— T -1 T T
H,M:(fd ATAAA)Hk ([d ATAAA) ATAAAx,

where I; is the identity matrix of size d x d.
BFGS method converges for strongly convex functions (in that case Al A, > 0).
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Square root BFGS

Same as previously but with Hy = LyL; (Cholesky decomposition). The updates rule is:

1 ~ L
Ly = Ly (Id + ATAI (CMAy — Ax)A;) ,

x
AIA,

where A, = LA, Ay = L,;lAy and o = ATA,-

Limited-memory BFGS (L-BFGS)

Leveraging the recursive formula of H, ! we can compute a direction of descent H IV ()
with only recursive updates of vectors. L-BFGS goes beyond this remark by truncating the
recursion to the last m (often m » 30) iterations. This requires nevertheless to store the m
last values of A, and A,,.

2.4.3 Subgradient method

From now on, we no longer require f to be differentiable (but f is still convex). Subgradient
method is certainly the simplest method for minimizing f. It is similar to gradient descent
but replacing gradients by subgradients:

Algorithm 9 Subradient descent.

Tk+1 = Tk — VkVk,

where v € 0f(zx) and v, > 0 is a step size.

Remark 2.15. Contrarily to a negative gradient —V f(z}), a negative subgradient —v (v €
Of(zx)) is not a direction of descent in general. This means that the subgradient method is
not a descent method (f(zg41) > f(xx) can occur).

Akin to gradient descent, several step size rules coexist:
e fixed step: 7, is constant;

o fixed length: yifvi|2 = [z — zp—1]2;

e diminishing step: 7, — 0, with >})7 | v = 0.

For fixed step sizes and fixed length, the subgradient method does not converge. However,
two cases are of interest: diminishing step sizes and fixed length for a given number of steps.

Remark 2.16. The convergence rate of subgradient descent is optimal (we can construct
an optimization problem for which convergence is in O(1/vk).
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Theorem 2.17 (Convergence of subgradient method). Assume that f has a minimizer
x* € R? and that f is Lipschitz continuous with Lipschitz constant L > 0. For a diminishing
step sizes v, — 0, with >;. | Y = 00:

i . 2o — 2|2+ L2 A2
min f(fﬂg) i f(i[f ) < ” 0 HQ i 2571 Ve )
0<l<k 25

Proof. The proof relies on the fact that subgradients are bounded by L. m

k 2
217

N 0, ming<s<k f(x¢) converges to f(x*).

Since
Theorem 2.18 (Convergence of subgradient method (fixed number of iterations)). Assume
that f has a minimizer z* € R and that f is Lipschitz continuous with Lipschitz constant
L > 0. Let xg € R? be an initial point close to a minimizer: |xo — z*|2 < R, for R > 0. For
a fized step length: Yi|vi—1]2 = %:

min f(z,) — f(27) <

0</<k

Sl

In addition, any other step length increases the bound.
Remark 2.19. This convergence rate is optimal (it cannot be improved).
To sum up, subgradient descent:
1. handles nondifferentiable convex problems;
2. is an algorithm as simple as gradient descent;
3. has slow convergence;

4. does not provide easy stopping criterion.

2.4.4 Proximal gradient method

We have seen at the beginning of this class that optimization problems in machine learning
are often of the form:

minimize f(z) + g(z), (P14)
where f: RY — R is a differentiable and convex function and g: R? — (—o0, 0] is a convex
function. In this section, we leverage the special structure of this problem to introduce fast
algorithms (compared to subgradient methods) even though the global function f + g is not
differentiable.
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Definition 2.20 (Proximal operator). Let h: R — [—c0,00] be a proper, lower semi-
continuous convex function. The proximal operator of h is defined by:

1
¥z e R? : prox, (r) = argmin h(u) + EHU — z|f5.

ueRd
(By strong converity, the argmin exists and is a singleton, so prox, is well defined.)
Example 2.21.
e For h =0, prox,(z) = z,Vr € R

e Let C = R? be a closed convex set and h = xc. Then prox, is the orthogonal projector
on C.

e For h = ||, prox, is the soft-thresholding operator:

x—1 ifx; > 1
VreRY Vie[d]: prox,(z);=1{ 0 if |z <1
i+ 1 ifx; < —1.

Proposition 2.22. Let h: R? — [—o0, o] be a proper, lower semi-continuous convex func-
tion. Let (z,y) € R x RY. Then,

y = prox,(z) < x —ye€ dh(y).

Proof.

1
y = prox, (z) <= yeargminh(u) + =|u — |3
ueR? 2

<= 0€dh(y) + (y — x)
<= x —y e dh(y).

O

Theorem 2.23 (Moreau decomposition). Let h: RY — [—o0, ] be a proper, lower semi-
continuous convex function. Then

VreRY:  x = prox,(z) + prox,:(z).

Proof. For any x, let u = prox,(x). By definition,  — u € dh(u), thus u € oh*(z — u), that
is x — (x — u) € Oh*(z — u), which means that x — u = prox,:(x). O

The Moreau decomposition generalizes the decomposition by orthogonal projection on
subspaces.
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Proposition 2.24 (Nonexpansiveness of the proximal operator). Let h: R? — [—o0, 0] be
a proper, lower semi-continuous convex function. Then prox, is firmly nonexpansive:

V(w,y) € (RY)?*: (prox,(y) — prox,(z)) " (y — @) = | prox,(y) — prox;,(z)|3.
In addition, prox,, s Lipschitz-continuous with parameter 1:
V(x,y) € (RY)*: | prox,(y) — prox,(2)]2 < [y — =].

Proof. For u = prox,(z) and v = prox,(y), we have x — u € dh(u) and y — v € dh(v). Then,
from the subdifferential definition, we have (z —u—y+v)" (u—wv) = 0. The second property
comes from Cauchy-Schwarz inequality. ]

The following algorithm is workable in the setting described previously, that is when:
1. f: R - R is convex and differentiable;

2. g: R? — (—o0, 0] is convex with an easy-to-compute proximal operator.

Algorithm 10 Proximal gradient method.

Lr+1 = PIrOX,, 4 (xk - ’Vkvf(xk)) )

where v, > 0 is a step size.

The interpretation of the proximal gradient method is very similar to the one of the
gradient descent. It consists in minimizing a local quadratic approximation of f plus the
original non-differentiable function g:

Vee R f(x)+g(x) ~ f(ar) + VF(xe) (@ —ap) + LH% — z[3 + g ()

2%k
1 2k
= 9(2) + o=l = (ze = wV (@) = S IV (@),

Vi 2
where 7, is unknown a priori.
Example 2.25 (Soft-thresholding). When g = | -||1, we obtain the soft-thresholding method,
where we first perform a gradient step v = xp — vV f(xy), and then a soft-thresholding:

) T
Vi e [d] (xk-i-l)i = 0 Zf — Ve S T < Vg

i+ if o < =

Theorem 2.26 (Convergence of the proximal method). Consider Problem (P1/) with f: R —
R being differentiable with L-Lipschitz gradient (L > 0), and g: R — (—o0, ] being proper,
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lower-semicontinuous and convez. Let us assume that F = f + g has a minimizer x* € R,
For a constant step size v, = 1+ (Vk € N):

oo L .
F(w) - Fa*) < o — o[}
In addition, if f is p-strongly convex (> 0), then:
Jox — a3 < o — 273,
where c =1 — 2 € (0,1).

Proof. The analysis is similar to the one of gradient descent, considering instead the direction
of descent dj, = ’Ylk(xk —prox,, ,(zx =7V f(z1))), that is zp —yrdy = prox,, ,(zvx — %V f(z1))-
In addition, let us remark that

dp =0 = 0= %(ask — prox,, ,(tx — %V f(21)))
= 1z = prox,,  (zr — 1V f(z1))
= (z, —nVf(zr) — 2 € V(mg)(z1)
= —%uVf(rr) € V()

In other words, x; is a minimizer of F' if and only if d; = 0. n

Remark 2.27. The convergence analysis shows that each proximal gradient iteration is a
descent step. As a consequence, the proximal gradient method is a descent method.

Algorithm 11 Backtracking line search
Choose 79 > 0 and S € (0,1). Set v = 7y and update vy with v < [~ until

Flor =Ad,) < fle) =7V @) d, + 5,3,

where d, = "ly<xk — prox,,(zr — vV f(x))) is the direction of descent.

Theorem 2.28 (Convergence of the proximal method (backtracking)). For a backtracking
line search with same o > 0, the previous theorem holds replacing % by min(vo, 5/L) in the
convergence rates.

We can derive three special cases of the proximal gradient method:

1. when g = 0, the proximal gradient method is a gradient descent;
2. when g = y¢ for a set C = R?, the proximal method is a projected gradient descent:;

3. when f =0, we get the proximal point method.
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2.4.5 Accelerated proximal gradient method

In this section, we analyze a method, called Nesterov’s method, to accelerate the proximal
gradient descent. The main trick of this method is to add a momentum term.

Starting with an initial Ay = 0 and initial points o = 1o € R?, the accelerated proximal
gradient method is:

Algorithm 12 Accelerated proximal gradient method.

Thp1 = Prox., o (yr — 1wV f(yr))

L4+ 4/1+4X2
2
A — 1

k+1

eyl =

Ykl = T + (Tps1 — k),

where v, > 0 is a step size.

Remark 2.29. In image processing and compressed sensing, this method is often called
FISTA, for fast iterative shrinkage-thresholding algorithm.

As always, the step size may be set to % or chosen by line search. Moreover, y; is an
extrapolated point where the proximal gradient step is performed.

Theorem 2.30 (Convergence of the accelerated proximal method). Consider Problem (P14)
with f: RY — R being differentiable with L-Lipschitz gradient (L > 0), and g: R? — (—o0, 0]
being proper, lower-semicontinuous and convex. Let us assume that F' = f + g has a mini-
mizer z* € R%. For a constant step size v, = 1 (Vk € N):

* 2L *
F(ay) = F@*) < 25 lleo =27

2.4.6 Douglas-Rachford method

Here, we focus on the optimization problem:

minimize f(x) + g(x), (P15)

xeRd

where f: R? — (—o0, 0] and g: R — (—o0, 0] are two convex functions. Contrarily to the
proximal gradient method, the Douglas-Rachford does not require f to be differentiable.
Starting from an initial point 7, € R?, the Douglas-Rachford algorithm reads:
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Algorithm 13 Douglas-Rachford method.

Ty, = prox,, ;(yx)

Yk+1 = Yk + Mk (pI"OXM (271, — yk) — xk) )

where vy, > 0 is a step size (without restriction) and puy € (0, 2).

Remark 2.31. Douglas-Rachford iteration can be written as fixed-point iteration:

Yk+1 = Yk + [ (PFOXM (2 prox., ¢ (Yx) — yk) - pFOX%f(yk)) .

Defining the auxiliary mapping z € R? — rprox,,(z) = 2prox,(x) — x for any proximable
function h: R? — (—o0, 0], the fixed-point iteration also reads:
M

Mk
Yk+1 = (1 - 7) Y + o Iprox,, , (Tproxykf(yk)) .

The case where uy = 1 (Vk € N) is the usual Douglas-Rachford algorithm. When u; > 1,
it is an over-relaxation while when p; < 1, we talk about under-relaxation. In practice, we
usually consider py, = v = 1 (Vk € N).

Theorem 2.32 (Convergence of Douglas-Rachford method). Consider Problem (P15) with
fi R — (—ow0, 0] and g: RY — (—o0, 0] being two proper, lower semi-continuous and convex
functions. Let us assume that f + g has a minimizer in R

For a fized step size y, = v > 0 and relazation parameter ju, € [p, 1] (Vk € N), where

0 < p <u <2, the sequence (1y)ren generated by the Douglas-Rachford method converges to
a minimizer of f + g.

2.5 Primal-dual methods

We have seen previously that the proximal gradient method, used for minimizing a composite
objective function, reduces to:

1. the gradient method when g = 0;

2. the proximal point method when f = 0.

In this section, we exploit these tow simple algorithms with the dual problem (P9) to devise
primal-dual methods.

2.5.1 Lagrange multipliers

We consider Problem (P8) and its dual Problem (P9) when g = x (b € R?), which boils

down to the following primal:
minimize f(x)

zeRd (P].G)
st.  Ax =0,
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and dual:
minimize b'v+ f*(—ATv). (P17)
VERP

Starting with an initial primal-dual point (zg,79) € R? x RP, the method of Lagrange
multipliers is:

Algorithm 14 Method of Lagrange multipliers.

Ty1 € argmin L(z, vy)
zeRd

Ves1 = Vg + Ve(ATpy1 — D).

where v, > 0 is a step size (without restriction).

Proposition 2.33. Let h: R? — (—o, 0] be a convex, proper and lower semi-continuous

function and p > 0. Then f is p-strongly convex if and only if f* is differentiable and V f*
is p~t-Lipschitz continuous.

Theorem 2.34 (Method of Lagrange multipliers). If f is p-strongly convex (1 > 0), proper
and lower semi-continuous, then the method of Lagrange multipliers for Problem (P16) is
the gradient method applied to Problem (P17).

In addition, if the Lagrangian of Problem (P16) has a saddle point and if v, < %, where
A

o4 > 0 is the largest singular value of A, then ((xy, Vk))ken converges to a saddle point of
the Lagrangian.

Proof. By the previous proposition, f* is differentiable. The gradient method is:

Vir1 = Uk + WAV (= AT) — b
= Jwp1 € R 1oy = VI (—ATvg), V1 = v + We(Azpsr — b)
— e R —ATyp € 0f (ps1), Visr = Vi + We(Azppy — D)
— w1 € R0 € 0f (@rs1) + A vk, Vst = Vi + W(Apir — b)

<= g1 € argmin f(z) + vy (Az —b), Vi1 = v + W (Azpin — D)
R4

<= Jxp41 € argmin L(z, 1), Vgy1 = Vg + Ye(Axpy — b),

xeR4

where L is the Lagrangian of Problem (P16).
2
In addition, f* is p~'-gradient Lipschitz, so v — b v+ f*(—ATv) is %‘—gradient Lipschitz,
where o4 is the largest singular value of A. Therefore, the gradient descent with v, <
converges to a dual solution v*. Then, by continuity of V f* (zy)ren converges to z*
Vf*(—ATv*), that is 2* € argmin, s L(x,v*). Thus 2* is a primal solution and z*,v*) a
saddle point. O

o
9a
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2.5.2 Augmented Lagrange multipliers

The proximal point method is obtained from the proximal gradient descent with f = 0. In a
general context, the proximal point method is defined for minimizing a proper convex lower
semi-continuous function h: R? — (—o0, o0]:

Algorithm 15 Proximal point method.

Tk+1 = Prox,, , (k) ,

where 7, > 0 is a step size (without restriction).

It is mainly a conceptual algorithm. Let us remark that the step size v affects both the
number of iterations to reach an e-solution and the cost of prox-evaluations.

Definition 2.35 (Augmented Lagrangian function). Let v > 0 be a parameter. The aug-
mented Lagrangian function associated to Problem (P16) is:

Ly (2,0) eRYx R? — f(z) + v (Ax — b) + %HA;E — 2.

Starting with an initial primal-dual point (z¢, ) € R? x RP, the augmented Lagrangian
method is:

Algorithm 16 Augmented Lagrangian method.

T4 € argmin L, (x, vy)
reRd

Vi1 = Vi + Ye(Axjg1 — b)),

where 7y, > 0 is a step size (without restriction).

Theorem 2.36 (Augmented Lagrangian method). If f is convez, proper and lower semi-
continuous, then the augmented Lagrangian method for Problem (P16) is the proximal point
method applied to Problem (P17).

As a consequence, (Vy)ren converges to a dual solution.
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Proof. Defining h: v € R? — b'v + f*(—=ATv), the proximal point method reduces to:

Vg1 = pfOX%h(Vk)

. 1
= v = argmin h(v) + = |y — 12
veRP 2

= 0 € V0h(Vks1) + Vi1 — Vi

— 0e YA (—A V1) + Wb + Vi1 — i

— a1 € 0f (—ATvpp1) : Visr = U + Ye(AZpyr — )

— 1 eRY: —ATypsy € 0f (Thir), Vbsr = U + Yi(Axpyy — b)

< dxp4 € R?:0€ Of (wps1) + ATVkH, Ves1 = Vg + Ve(ATpi1 — D)

= Jrp1 RV 0€ Of(wpi1) + AT + AT (Azgir — b), g1 = v + i (Axgir — b)

= J23,, € argmin f(z) + v, (Az —b) + %HAx —b[3: ves1 = v + Yu(Azpi — 1)

zeRd

= 3wy € argmin L, (2, 1) : Vg1 = Vg + Ye(Azgr — b).
zeR4

The assumption that f is convex, proper and lower semi-continuous is necessary to state
that 241 € 0f*(—ATvpy1) = —ATvpy1 € 0f (Tp). O

2.5.3 Alternating direction method of multipliers

We consider Problem (P8) and its dual Problem (P9) when f and g are only proximable
functions, which leads to primal:

minimize f(x) + g(y)

R4, yeRP (P18)
st. Az =uy.
and dual:
maximize —g*(v) — f*(—A'v). (P19)
veRP

As a reminder, the augmented Lagrangian for Problem (P18) is:
Y
Ly(w,y,v) = f(z) + g(y) + v (Ax —y) + [ Az —y 3.

Starting with an initial primal-dual point (xg,yo,70) € R? x R? x RP, the alternating
direction method of multipliers is:
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Algorithm 17 Alternating direction method of multipliers.

Tpy1 € argmin L., (x, yg, 1) = arg min (f(x) + V,;rAx + %HAx — kag)

zeR4 zeRd

Yrr1 € argmin L, (Tp41,y, ) = argmin (g(y) — vy + %\\Axm — yH%)

yeRP yeRP

Vir1 = Uk + Me(AZr — Yrr),

where 7, > 0 is a step size (without restriction).

Theorem 2.37 (Alternating direction method of multipliers). If f and g are convex, proper
and lower semi-continuous, then the alternating direction method of multipliers for Prob-

lem (P18) is the Douglas-Rachford method applied to Problem (P19).
As a consequence, (Vy)ren converges to a dual solution.

Proof. Let F: veRP — g*(v) and G: v € R? — f*(—A'v). The Douglas-Rachford method
with pur = 1 and v, = 7 > 0 applied to F' + G reads:

L vy = prOX7F<)‘k);
2. Opy1 = Prox,q(2vks1 — Ap);
3. Mes1 = M + Opg1 — Vi1
Using the properties:
1. v = prox;(y) <= y—xe€df(z);

2. z€df*(y) < yedf(x) (fis convex, proper and lower semi-continuous, this is also
true for g);

3. ye df(x*) < z*€argmin, f(z) —y'z,
we get:
1. Jypy1 € argmingegs 9(y) — Ay + 3Y03 : Ve = M — Yr1s
2. Jwpyy € argming f(2) + v Az + Az — Yl Oki1 = Vi + V(AZki1 — Y1)
30 Akl = Vg1 + VAT
Combining 1. and 3., we get
L. 3y € argmingegy 9(y) — vy + F1Aze = y[3 v = v + Y(Azp — Yrar);
2. Ty € argming, f(z) + vl Az + 2| Az — ypsa[3 (no change).

Therefore, the iteration becomes:
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L. Y1 € argmingeg, g(y) — vy + 3 Azy, — yl3;

2. Vg1 = v + (AT — Ypi);

3. Tps1 € argming f(z) + v, Az + 2| Az — g 3.
Defining 9 = yr4+1 and 7y = v441, we obtain:

1. 2p41 € argmin, f(2) + p] Az + 3| Az — gi]3:

2. Ppe1 € argmingepy g(y) — 7y + 3| Az — y[3;

3. Upy1 = U + Y(ATpi1 — Jrs1)-

29
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