
Some elements on convex optimization

Maxime Sangnier

March 24, 2020



2



Contents

1 Basics of convex optimization 5
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Optimization in statistics and data science . . . . . . . . . . . . . . . 6
1.1.2 Canonical optimization problem . . . . . . . . . . . . . . . . . . . . . 9
1.1.3 Numerical optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Convex analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.1 Convex sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.2 Convex functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.3 Properties of minimizers . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.4 Optimality conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2.5 Convex optimization problems . . . . . . . . . . . . . . . . . . . . . . 23

1.3 Legendre-Fenchel transformation and duality . . . . . . . . . . . . . . . . . . 27
1.3.1 The convex conjugate . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3.2 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.3.3 Generalized inequality constraints . . . . . . . . . . . . . . . . . . . . 33
1.3.4 Tikhonov, Ivanov and Morozov regularizations . . . . . . . . . . . . . 34
1.3.5 A relevant example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2 Optimization algorithms 37
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2 Greedy methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.1 Orthogonal matching pursuit . . . . . . . . . . . . . . . . . . . . . . 38
2.2.2 Compressive sampling matching pursuit . . . . . . . . . . . . . . . . 39

2.3 Linear programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.1 Convex relaxation of compressed sensing and basis pursuit . . . . . . 40
2.3.2 The simplex method . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3.3 Barrier methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4 Primal methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.4.1 Gradient method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.4.2 Quasi-Newton method . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.4.3 Subgradient method . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.4.4 Proximal gradient method . . . . . . . . . . . . . . . . . . . . . . . . 49
2.4.5 Accelerated proximal gradient method . . . . . . . . . . . . . . . . . 53

3



2.4.6 Douglas-Rachford method . . . . . . . . . . . . . . . . . . . . . . . . 53
2.5 Primal-dual methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.5.1 Lagrange multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.5.2 Augmented Lagrange multipliers . . . . . . . . . . . . . . . . . . . . 56
2.5.3 Alternating direction method of multipliers . . . . . . . . . . . . . . . 57

References 61

4



Chapter 1

Basics of convex optimization

1

Contents
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Optimization in statistics and data science . . . . . . . . . . . . . . 6

1.1.2 Canonical optimization problem . . . . . . . . . . . . . . . . . . . . 9

1.1.3 Numerical optimization . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Convex analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.1 Convex sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.2 Convex functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.3 Properties of minimizers . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.4 Optimality conditions . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2.5 Convex optimization problems . . . . . . . . . . . . . . . . . . . . 23

1.3 Legendre-Fenchel transformation and duality . . . . . . . . . . . 27

1.3.1 The convex conjugate . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3.2 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.3.3 Generalized inequality constraints . . . . . . . . . . . . . . . . . . . 33

1.3.4 Tikhonov, Ivanov and Morozov regularizations . . . . . . . . . . . 34

1.3.5 A relevant example . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1This chapter is deeply inspired from P. Bianchi, O. Fercoq and A. Sabourin’s lecture notes on Optimiza-
tion for machine learning (University Paris-Saclay, Télécom ParisTech) [1].

5



1.1 Introduction

1.1.1 Optimization in statistics and data science

In statistics and data science, many estimation procedures rely on minimizing an objective
function. This class of techniques is referred to as M-estimation.

The objective function to minimize may be interpreted as an energy (physics, chemistry),
a cost (finance), or a distance to the estimand. In the three forthcoming examples, we deal
with estimating a finite-dimensional parameter θ‹ P Rd of a probability distribution. It can
be seen that the functions to minimize are respectively a negative likelihood and (penalized)
distances of projection.

Example 1.1 (Maximum likelihood estimator). Let pPθqθPΘ be a statistical model dominated
by a measure ν and denote, for all θ P Θ, gθ “ dPθ

dν
the probability density function of Pθ with

respect to ν. Let θ‹ P Θ. Given an observation X sampled from Pθ‹, a maximum likelihood
estimator of θ‹ is any θ̂ such that:

θ̂ P arg max
θPΘ

gθpXq.

Example 1.2 (Ordinary least squares estimate). Let X P Rnˆd be a design matrix and
Y “ pY1, . . . , Ynq P Rn a sample of real-valued random variables such that:

• rankpXq “ d;

• Dθ‹ P Rd : EY “ Xθ‹;

• Dσ2 P R˚` : VpY q “ σ2In,

where In is the identity matrix of size nˆn. An ordinary least squares estimate of θ‹ is any
θ̂ P Rd such that:

θ̂ P arg min
θPRd

}Y ´Xθ}22.

Example 1.3 (Ridge and Lasso regression). With the same notation as in Example 1.2 and
with hypotheses:

• Dθ‹ P Rd : EY “ Xθ‹;

• Dσ2 P R˚` : VpY q “ σ2In,

a ridge estimate of θ‹ is any θ̂ P Rd such that:

θ̂ P arg min
θPRd

}Y ´Xθ}22 ` λ}θ}
2
2,

for λ P R˚`. Respectively, a lasso estimate verifies:

θ̂ P arg min
θPRd

}Y ´Xθ}22 ` λ}θ}1.
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It is quite important to note that even though optimization is a prevailing topic in modern
statistics, many estimation procedures do not rely on optimization. For instance, the method
of moments does not make use of any minimization technique.

Counterexample 1.4 (Method of moments). Let X be a real-valued random variable such
that there exist a mapping h : RÑ R and a bijective function φ : RÑ R such that:

• ´8 ă ErhpXqs ă `8;

• φpθ‹q “ ErhpXqs.

Let now pX1, . . . , Xnq be an i.i.d. sample drawn from the same distribution as X. Then,
θ̂ “ φ´1p 1

n

řn
i“1 hpXiqq is an estimate of θ‹.

It is tempting to say that expressing an estimate as a minimizer of an energy function is
quite a week characterization, since:

• it provides few information on the behavior of the estimator;

• it does not provide an easy way to compute the estimate.

Thus, resorting to M-estimation conveys the incapability to state something stronger about
the estimand of interest. As we will see, that is often the case for current problems in
statistics and data science.

As a result, a general procedure to estimate a quantity θ‹ P Rd of a distribution is first
to write it as a minimizer of a risk. Given a random variable X drawn from the distribution
of interest, this risk is generally the expectation of a cost function L : Rˆ Rd Ñ R`:

θ‹ P arg min
θPRd

ErLpX, θqs.

Then, we proceed similarly to the method of moments: given and i.i.d. sample of observa-
tions pX1, . . . , Xnq drawn from the same distribution as X, an estimate of θ‹ is any θ̂ P Rd

such that:

θ̂ P arg min
θPRd

1

n

n
ÿ

i“1

LpXi, θq.

If θ P Rd ÞÑ
řn
i“1 LpXi, θq is a convex function, then computing the estimate θ̂ is man-

ageable. However, in general this empirical risk may be non-convex. In this case, computing
θ̂ is hard and one may prefer to solve instead a convex problem. To this end, L may be
convexified to a function ϕ : R ˆ Rd Ñ R such that θ P Rd ÞÑ

řn
i“1 ϕpXi, θq is convex. ϕ is

called a convex surrogate of L.

Remark 1.5. Non-convex optimization is currently a hot research topic. Even though one
may see non-convexity as a pitfall, current advances tend to show that:

• in some practical situations, non-convexity can be overcome (for instance concerning
optimization on manifolds);
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• reaching a global minimum of the empirical risk is not essential to produce a suitable
estimate (for instance with models based on artificial neural networks).

A last step of this procedure is to regularize the empirical risk with a convex function
ψ : Rd Ñ R. This appears useful for assuring numerical stability and statistical guarantees
concerning the deviation between ErϕpX, θqs and 1

n

řn
i“1 ϕpXi, θq. At the end of the day, an

estimate of θ‹ is θ̂ P Rd such that:

θ̂ P arg min
θPRd

1

n

n
ÿ

i“1

ϕpXi, θq ` λψpθq,

for some λ ą 0. This general procedure is often referred to as empirical or regularized risk
minimization.
Remark 1.6. With this procedure, the function to minimize is the sum of two components:

• a finite sum of convex functions;

• a convex regularized.
This special structure may be used to provide efficient algorithms.
Example 1.7 (Linear classification). Let tpXi, YiquiPrns be an i.i.d. sample of couples of
random variables such that @i P rns : Xi P Rd, Yi P t´1, 1u. We aim at estimating the
classification function:

η : x P Rd
ÞÑ sign

ˆ

PpY “ 1|X “ xq

PpY “ ´1|X “ xq
´ 1

˙

,

agreeing that signp0q “ 1. One can note that:

η P arg min
h : RdÑt´1,1u

P pY ‰ hpXqq “ arg min
h : RdÑt´1,1u

E
“

1R´pY hpXqq
‰

.

In this problem, the quantity to estimate is a function from Rd to t´1, 1u. Following a
parametric approach, we consider the linear model tx P Rd ÞÑ signpθJxq : θ P Rdu. Moreover,
we remark that @θ P Rd: 1R´pY signpθJXqq “ 1R´pY pθ

JXqq. Thus, the empirical risk to
minimize for estimating a linear classifier is:

θ P Rd
ÞÑ

1

n

n
ÿ

i“1

1R´pYipθ
JXiqq.

The difficulty we face now is the non-convexity of θ P Rd ÞÑ 1R´pY pθ
JXqq. Yet, this function

may be convexified to ϕ : θ P Rd ÞÑ maxp0, 1 ´ Y pθJXqq. In addition, we consider the usual
squared norm as a regularizer, that is ψ : θ P Rd ÞÑ }θ}22.

Finally, the regularized risk principle states that a linear estimate of the classification
function η is x P Rd ÞÑ signpθ̂Jxq, where:

θ̂ P arg min
θPRd

1

n

n
ÿ

i“1

maxp0, 1´ Y pθJXqq ` λ}θ}22,

where λ ą 0.
This estimate is called linear support vector machine.
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1.1.2 Canonical optimization problem

In this manuscript, we focus on finite-dimensional and single objective problems, which are
the ones mainly encountered in practice. This means that:

• the objective function f is real-valued: rangepfq Ă R;

• the domain of f , denoted X , has finite dimension: X Ă Rd (d P N˚);

• the optimization problem has a finite number of constraints. Especially, it has p P
N inequality constraints, defined by gj : Rd Ñ R (@j P rps), and m P N equality
constraints, defined by hj : Rd Ñ R (@j P rms).

The canonical formulation of an optimization problem is:

minimize
xPX

fpxq

s.t.
"

@j P rps : gjpxq ď 0
@j P rms : hjpxq “ 0.

(P1)

Definition 1.8 (Feasibility). Let C “ tx P X : @j P rps : gjpxq ď 0, @j P rms : hjpxq “ 0u.
C is called the feasible set (or the set of feasible points) of Problem (P1).
Respectively, a point x P X is said feasible to Problem (P1) if x P C.
Finally, Problem (P1) is said feasible if C ‰ H.

Remark 1.9. An optimization problem is defined with the keyword minimize (or similarly
with maximize), emphasizing that solving such a problem consists in determining:

• a minimizer x̂ P arg minxPC fpxq and/or

• the optimal (infimum) objective value infxPC fpxq,

according to the problem of interest. Respectively, we can use the contraction min. (or max.)

Problem (P1) is referred to as:

• a constrained optimization problem if p`m ě 1;

• an unconstrained optimization problem if p`m “ 0.

Definition 1.10 (Characteristic function). Let A be a set and let B be a subset of A. The
characteristic function of B is the function χB : AÑ RY t`8u such that:

@x P A : χBpxq “

"

0 if x P B
8 if x R B.
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Remark 1.11. A constrained optimization problem of the form of Problem (P1) (with
p ` m ě 1) can always be turned into an unconstrained problem. Indeed, agreeing that
fpxq “ 8 when x R X ,

minimize
xPRd

fpxq ` χCpxq

has same minimizers and minimal objective value than Problem (P1) (we may say that both
problems are equivalent, even though the notion of equivalence should be well defined).

This remark highlights that a physical problem can be translated to many different
optimization problems that lead to the same solutions.

1.1.3 Numerical optimization

Often, an optimization problem in the form of Problem (P1) cannot be solved analytically
(that is we cannot exhibit the set of minimizers and the optimal objective value). This
is consistent with the fact that we do not know much about the estimand of interest an
that we decided to express an estimator thanks to an optimization problem and not with a
closed-form formula.

However, numerical strategies can produce approximation solutions of Problem (P1). In
practice, since an estimate is made to be numerically evaluated, approximate solutions of
optimization problems are sufficient. Thus, according to the practitioner’s interest, an ε-
approximation (or ε-solution) to Problem (P1) may be a point x̃ P Rd such that fpx̃q is
ε-close to infxPC fpxq or a value ṽ, that is ε-close to infxPC fpxq (see Definition 1.12). Such an
ε-approximation can be obtained thanks to a programming implementation of an algorithm.

Definition 1.12 (ε-solution). Let ε ą 0.
A point ε-solution to Problem (P1) is a point x̃ P C such that:

fpx̃q ´ inf
xPC

fpxq ď ε.

A value ε-solution to Problem (P1) is a value ṽ P R such that:

ṽ ´ inf
xPC

fpxq ď ε.

For a differentiable function f , a non-convex ε-solution to Problem (P1) is a point x̃ P C
such that:

}∇fpx̃q}2 ď ε.

Definition 1.13 (Algorithm). Let Θ be a set and let θ P Θ be a given parameter. We
consider the optimization problem depending on θ:

minimize
xPRd

fpx, θq

s.t.
"

@j P rps : gjpx, θq ď 0
@j P rms : hjpx, θq “ 0,

where fp¨, θq : Rd Ñ R, gjp¨, θq : Rd Ñ R and hjp¨, θq : Rd Ñ R are some prescribed functions.
An algorithm is a mapping φ : Θ ˆ Rd ˆ R˚` Ñ R2 such that when px̃, ṽq “ φpθ, x0, εq

(where x0 is an initial point), x̃ or ṽ is an ε-solution to the previous optimization problem.
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It is noteworthy to stress that implementations and algorithms are different objects.
There can be different implementations of the same algorithm according to:

• the programming language used (R, Python, C++);

• the base routines (for linear algebra);

• the programming technique (loops, vectorization);

• the potential compiler (GCC, Borland C++, C++ builder, . . . );

• the programmer optimizations (code factorization).

As a consequence, we cannot compare algorithms with numerical simulations (but only
implementations). However, algorithms can be assessed with an oracle complexity. Even
though we will not cover that topic in this manuscript, we give the two basics definitions.

Definition 1.14 (Oracles). Let us consider Problem (P1).
The zeroth-order oracle is O : x P Rd ÞÑ fpxq.
If f is differentiable, the first-order oracle is O : x P Rd ÞÑ pfpxq,∇fpxqq.
If f is twice differentiable, the second-order oracle is O : x P Rd ÞÑ pfpxq,∇fpxq,∇2fpxqq.

Definition 1.15 (Oracle complexity). Given a class of optimization problems defined by:

• a class of objective functions (with prescribed regularity conditions);

• a condition on the initial point x0;

• an oracle O,

the oracle complexity of an algorithm φ is the minimal number of calls to the oracle O it has
to perform in order to produce an ε-solution for any parameters θ from Θ, for all objective
functions and any initial points x0 (this is a worst-case complexity).

Remark 1.16. The computation time of an implementation of an algorithm could be esti-
mated with the arithmetic complexity of the algorithm. This one counts the total number of
arithmetic operations to perform in order to produce an ε-solution, in the worst case. How-
ever, the arithmetic complexity of an algorithm is a biased estimate of the computation time
of an implementation since it does not consider programming optimizations (parallelization,
compiler, . . . ). Moreover, it is much harder to prove bounds on the arithmetic complexity
than on the oracle complexity.

11



1.2 Convex analysis

1.2.1 Convex sets

Definition 1.17 (Convex set). A set K Ă Rd is said convex if:

@px, yq P K2, @t P p0, 1q : tx` p1´ tqy P K.

Example 1.18. Norm balls, vector spaces, affine subspaces, half spaces are convex sets. In
addition, any intersection of convex sets is again a convex set.

Exercise 1.19. Show the previous statements.

Proposition 1.20 (Finite combination for convex sets). A set K Ă Rd is convex if and only
if: @n ě 2, @pxiq1ďiďn P K

n, @ptiq1ďiďn such that ti ě 0, @i P rns and
řn
i“1 ti “ 1,

n
ÿ

i“1

tixi P K.

Proof. By induction, remarking that when
řn
i“1 ti ‰ 0:

n`1
ÿ

i“1

tixi “

˜

n
ÿ

i“1

ti

¸˜

n
ÿ

i“1

ti
řn
i“1 ti

xi

¸

` tn`1xn`1.

Definition 1.21 (Convex hull). The convex hull of a set K Ă Rd, denoted convpKq, is the
smallest convex set containing K.

Theorem 1.22 (Finite combination for convex hull). Let K Ă Rd.

convpKq “

#

n
ÿ

i“1

tixi : n P N, @pxiq1ďiďn P Kn, ti ě 0, @i P rns,
n
ÿ

i“1

ti “ 1

+

Proof. Since convpKq is convex and pxiq1ďiďn P Kn Ă convpKqn, we have Ą.
In addition, the rhs is a convex set containing K. Since convpKq is the smallest, convex

set containing K, we have Ă.

Definition 1.23 (Cone). A set K Ă Rd is a cone if:

@x P K, @t P R` : tx P K.

If K is convex, then K is called a convex cone.
K is said proper if:

1. K is closed;
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2. K is pointed: K X p´Kq “ t0u;

3. K has non-empty interior: intpKq ‰ H.

Proposition 1.24 (Characterization of a convex cone). A set K Ă Rd is a convex cone if
and only if:

@px, yq P K2, @ps, tq P R2
` : sx` ty P K.

Proof. By conicity, 2sx P K and 2ty P K. So, by convexity, 1
2
2sx` 1

2
2ty P K.

Conversely, the property is true for t = 0, and that is the definition of a cone. It is convex
with t “ 1´ s and s ă 1.

Example 1.25. Half spaces and the positive orthant Rd
` are convex cones.

The set of positive semidefinite matrices on Rdˆd is a convex cone.
The second order cone,

 

px, tq P Rd
ˆ R : }x}2 ď t

(

Ă Rd`1,

is a convex cone.

Definition 1.26 (Dual cone). Let K Ă Rd be a cone. Its dual cone K˚ is defined by

K˚
“
 

y P Rd : xJy ě 0, @x P K
(

.

Proposition 1.27. Let K Ă Rd be a cone. Then

• K˚ is a cone;

• K˚ is closed and convex.

Definition 1.28 (Extreme point). Let K Ă Rd be a convex set. A point x P K is called an
extreme point of K if:

@py, zq P K2, @t P p0, 1q : x “ ty ` p1´ tqz ùñ x “ y “ z.

Definition 1.29 (Compact space). A set K Ă Rd is compact if it is closed and bounded
(Heine-Borel theorem).

Theorem 1.30 (Compact convex set). A compact convex subset of Rd is the convex hull of
its extreme points.

Proof. Ă is proved by induction on the dimension with the notion of relative boundary.
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1.2.2 Convex functions

Definition 1.31 (Extended-valued function). A mapping F : Rd Ñ r´8,8s “ RYt´8,8u
is called an extended-valued function on X .

The domain of such a function is defined as:

dompF q “ tx P Rd : F pxq ă 8u.

A function F : Rd Ñ r´8,8s is said proper if dompF q ‰ H and F pxq ą ´8, @x P Rd.
Let X Ă Rd be a set and f : X Ñ R be a function. The canonical extension of f to an

extended-valued function F is:

@x P Rd : F pxq “

"

fpxq if x P X
8 if x R X .

Then, by definition, dompF q “ X .

Definition 1.32 (Epigraph). Let f : Rd Ñ r´8,8s. The epigraph of f is defined as:

epipfq “ tpx, µq P Rd
ˆ R : fpxq ď µu Ă Rd`1.

Remark 1.33. Epigraph and domain of an extended-valued function f are related:

dompfq “ tx P Rd : Dµ P R, px, µq P epipfqu.

Definition 1.34 (Convex function). An extended-valued function is convex if its epigraph
is a convex set of Rd`1.

Respectively, a function is convex if its canonical extension to an extended-valued function
is convex.

Proposition 1.35 (Characterization of a convex function). A function f : Rd Ñ p´8,8s
is convex if and only if

@px, yq P Rd
ˆ Rd, @t P p0, 1q : fptx` p1´ tqyq ď tfpxq ` p1´ tqfpyq.

Proof. First, let us assume that the epigraph of f is convex. For all x, y P Rd and t P p0, 1q,

• if px, yq P dompfq, then fpxq, fpyq ă 8, so px, fpxqq P epipfq and py, fpyqq P epipfq.
Since epipfq is convex, tpx, fpxqq`p1´tqpy, fpyqq “ ptx`p1´tqy, tfpxq`p1´tqfpyqq P
epipfq; in other words, fptx` p1´ tqyq ď tfpxq ` p1´ tqfpyq.

• assume (without loss of generality) that x P dompfq and y R dompfq. Then tfpxq `
p1´ tqfpyq “ 8 (since 1´ t ‰ 0), so fptx` p1´ tqyq ď tfpxq ` p1´ tqfpyq.

Second, let us assume that fptx`p1´tqyq ď tfpxq`p1´tqfpyq, @px, yq P RdˆRd, @t P p0, 1q.
Then for any px, µq and px1, µ1q in the epigraph of f and for any t P p0, 1q, fptx`p1´ tqx1q ď
tfpxq`p1´tqfpyq ď tµ`p1´tqµ1. Thus, tpx, µq`p1´tqpx1, µ1q “ ptx`p1´tqx1, tµ`p1´tqµ1q P
epipfq; that is, epipfq is convex.
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Remark 1.36. If one allows f to have values ´8 (i.e. f : Rd Ñ r´8,8s), then f is convex
if and only if

@px, yq P Rd
ˆ Rd, @t P p0, 1q : fptx` p1´ tqyq ď tα ` p1´ tqβ,

@pα, βq P r´8,8s2 : fpxq ă α, fpyq ă β.

Remark 1.37. A function f : Rd Ñ p´8,8s is said strictly convex if

@px, yq P Rd
ˆ Rd, x ‰ y, @t P p0, 1q : fptx` p1´ tqyq ă tfpxq ` p1´ tqfpyq.

Proposition 1.38 (Elementary properties). We consider two convex functions f1 : Rd Ñ

p´8,8s and f2 : Rd Ñ p´8,8s.

1. The set dompf1q is convex.

2. For any non-negative α and β, αf1 ` βf2 is convex.

3. x ÞÑ maxpf1pxq, f2pxqq is convex.

4. Let pA, bq P Rdˆd1 ˆ Rd, then x P Rd1 ÞÑ fpAx` bq is convex.

5. For any px, yq P dompf1q and t ě 1, denoting zt “ x ` tpy ´ xq, f1pztq ě f1pxq `
tpf1pyq ´ f1pxqq.

6. Let ϕ : RÑ R be convex and nondecreasing and f : Rd Ñ R be a convex function, then
ϕ ˝ f is convex.

7. The perspective function of f1:

g : px, tq P Rd
ˆ R ÞÑ

"

tf1p
1
t
xq if t ą 0

8 otherwise,

is convex.

Exercise 1.39. Show the previous statements.

Proof. For Point 5, let us remark that y “ µx` p1´ µqzt, where µ “ t´1
t
P r0, 1s.

For Point 7, make the coefficients inside f summable to 1.

Theorem 1.40 (Jensen’s inequality (finite form)). A function f : Rd Ñ p´8,8s is convex if
and only if: @n ě 2, @pxiq1ďiďn P pRdqn, @ptiq1ďiďn such that ti ě 0, @i P rns and

řn
i“1 ti “ 1,

f

˜

n
ÿ

i“1

tixi

¸

ď

n
ÿ

i“1

tifpxiq.

Proof. By induction for ùñ and by definition otherwise.
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Theorem 1.41 (Jensen’s inequality (probabilistic form)). If f : Rd Ñ p´8,8s is convex,
then for any random vector X P Rd:

f pEXq ď EfpXq.

Example 1.42 (Convex functions).

1. Every norm } ¨ } on Rd is convex (this comes from the triangle inequality and homo-
geneity).

2. `p-norms for 1 ă p ă 8 are strictly convex and only convex for p “ 1 and p “ 8.

3. For ϕ : RÑ R convex nondecreasing and every norm } ¨ } on Rd, ϕp} ¨ }q is convex. In
particular, } ¨ }p is convex provided that p ě 1.

4. For a positive semidefinite matrix A P Rdˆd, f : x P Rd Ñ xJAx is convex. If A is
positive definite, f is strictly convex.

5. For any convex subset A of Rd, χA is convex.

Exercise 1.43. Show the last statement.

Proposition 1.44 (Coordinate supremum). Let Y Ă Rd1 (potentially nonconvex set) and
F : px, yq P Rd ˆY Ñ p´8,8s be a function convex in x (that is, @y P Y , F p¨, yq is convex).
Then f : x P Rd ÞÑ supyPY F px, yq is convex.

Proof. Remark that epipfq “ XyPY epipF p¨, yqq, which is the intersection of convex sets.

Remark 1.45. With the definitions of the previous proposition, f is sometimes called the
upper hull of the family of convex functions pF p¨, yqqyPY .

Proposition 1.46 (Coordinate infimum). Let F : px, yq P RdˆRd1 Ñ p´8,8s be a (jointly)
convex function. Then f : x P Rd ÞÑ infyPRd1 F px, yq is convex.

Proof.

@px, x1, tq P Rd
ˆ Rf

ˆ p0, 1q :

fptx` p1´ tqx1q “ inf
yPRd1

F ptx` p1´ tqx1, yq

“ inf
yPRd1 ,y1PRd

F ptx` p1´ tqx1, ty ` p1´ tqy1q

ď inf
yPRd1

tF px, yq ` inf
yPRd1

p1´ tqF px1, y1q

“ tfpxq ` p1´ tqfpx1q.

Definition 1.47 (Strong convexity). Let µ P R˚`. A function f : Rd Ñ r´8,8s is µ-strongly
convex if f ´ µ

2
} ¨ }22 is convex.
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Proposition 1.48 (Characterization of a strongly convex function). Let µ P R˚`. A function
f : Rd Ñ p´8,8s is µ-strongly convex if and only if

@px, yq P Rd
ˆ Rd, @t P p0, 1q : fptx` p1´ tqyq ď tfpxq ` p1´ tqfpyq ´

µ

2
tp1´ tq}x´ y}22.

Proposition 1.49 (Relation between convexities). Let f : Rd Ñ p´8,8s be a function.

f strongly convex ùñ f strictly convex ùñ f convex.

Proposition 1.50 (First-order conditions of convexity). Let X Ă Rd be a convex set and
f : X Ñ R be a differentiable function.

f is convex if and only if:

@px, yq P X 2 : fpyq ě fpxq `∇fpxqJpy ´ xq.

f is convex if and only if:

@px, yq P X 2 : p∇fpyq ´∇fpxqqJpy ´ xq ě 0.

f is strictly convex if and only if:

@px, yq P X 2, x ‰ y : fpyq ą fpxq `∇fpxqJpy ´ xq.

Let µ P R˚`. f is µ-strongly convex if and only if:

@px, yq P X 2 : fpyq ě fpxq `∇fpxqJpy ´ xq ` µ

2
}y ´ x}22.

Proof. For the first inequality, if f is convex, then:

∇fpxqJpy ´ xq “ lim
tÑ0

fpx` tpy ´ xqq ´ fpxq

t

“ lim
tÑ0`,tă1

fpp1´ tqx` tyqq ´ fpxq

t

ď lim
tÑ0`,tă1

p1´ tqfpxq ` tfpyq ´ fpxq

t

“ fpyq ´ fpxq.

Conversely, if @px, yq P X 2 : fpyq ě fpxq `∇fpxqJpy ´ xq, then for any t P p0, 1q, denoting
z “ tx` p1´ tqy:

fpyq ě fpzq `∇fpzqJpy ´ zq
and

fpxq ě fpzq `∇fpzqJpx´ zq.
Combining the two inequalities gives:

tfpxq ` p1´ tqfpyq ě fpzq `∇fpzqJptx` p1´ tqy ´ zq “ fpzq,
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which proves convexity.
Concerning the second point, if f is convex, then @px, yq P X 2 : fpyq ě fpxq`∇fpxqJpy´

xq. So, for fixed px, yq, fpyq ě fpxq ` ∇fpxqJpy ´ xq and fpxq ě fpyq ` ∇fpyqJpx ´ yq.
Combining the two gives p∇fpyq´∇fpxqqJpy´xq ě 0. On the other hand, for any px, yq, let
g : t P p0, 1q ÞÑ fpx ` tpy ´ xqq. If ∇f is monotone, then tpg1ptq ´ g1p0qq ě 0, that is g1ptq ě
g1p0q. In addition, fpyq “ gp1q “ gp0q `

ş1

0
g1ptq dt ě gp0q ` g1p0q “ fpxq `∇fpxqJpy ´ xq.

Thus f is convex.
Concerning the third point, if the inequality is satisfied, then f is strictly convex. On

the other hand, if f is strictly convex, then @px, yq P X 2 : fpyq ě fpxq ` ∇fpxqJpy ´ xq.
Moreover, if Dpx, yq P X 2 : fpyq “ fpxq `∇fpxqJpy ´ xq, then @t P p0, 1q

fptx` p1´ tqyq ď tfpxq ` p1´ tqfpyq “ fpxq ` p1´ tq∇fpxqJpy ´ xq.

In addition,

fptx` p1´ tqyq ě fpxq `∇fpxqJptx` p1´ tqy ´ xq “ fpxq ` p1´ tq∇fpxqJpy ´ xq.

So fptx ` p1 ´ tqyq “ fpxq ` p1 ´ tq∇fpxqJpy ´ xq, which is in contradiction with strict
convexity. Thus, @px, yq P X 2 : fpyq ą fpxq `∇fpxqJpy ´ xq.

Remark 1.51. For convex functions,

@px, yq P X 2 : fpyq ě fpxq `∇fpxqJpy ´ xq.

This is perhaps the most important property of convex functions since it shows that from
a local information (∇fpxq), we can derive a global information concerning f (we have a
global underestimator). In particular, if ∇fpxq “ 0, then x is a global minimizer.

Proposition 1.52 (Second-order conditions of convexity). Let X Ă Rd and f : X Ñ R be a
twice differentiable function.

f is convex if and only if:
@x P X : ∇2fpxq ě 0.

f is strictly convex if and only if:

@x P X : ∇2fpxq ą 0.

Let µ P R˚` and Id P Rdˆd be the identity matrix. f is µ-strongly convex if and only if:

@x P X : ∇2fpxq ě µId.

1.2.3 Properties of minimizers

In this section, we consider a proper extended-valued function f : Rd Ñ r´8,8s along with
the optimization problem

minimize
xPRd

fpxq. (P2)
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Definition 1.53 (Minimizers). A point x‹ P Rd is a global minimizer of Problem (P2) if
x‹ P dompfq and

@x P Rd : fpx‹q ď fpxq.

A point x‹ P Rd is a local minimizer of Problem (P2) if there exists a neighborhood N of
x‹ such that x‹ is a global minimizer of Problem (P2) in this neighborhood. In other words,
there exists ε ą 0, N “ tx P Rd : }x‹ ´ x} ď εu (for a given norm } ¨ }) such that x‹ is a
global minimizer of

minimize
xPRd

fpxq ` χN pxq.

Remark 1.54. Global minimizers may not exist, as we can see for:

• fpxq “ 1
x2

(agreeing that fp0q “ 8);

• fpxq “ expp´x2q;

• fpxq “ x` χR˚`pxq.

As we can see, the existence of minimizers of Problem (P2) is not guaranteed, even
though f is proper (that is, there exists at least a point x P Rd such that ´8 ă fpxq ă
8. Consequently, the remaining of this section is devoted to characterize the existence of
minimizers and their properties.

Definition 1.55 (Lower limit). The lower limit (or limit inferior) of a sequence punqnPN,
where un P r´8,8s is

lim inf
nÑ8

un “ lim
nÑ8

inf
kěn

uk.

Let us remark that the sequence pinfkěn ukqnPN is nondecreasing, thus the limit is well defined
in RY t´8,8u and lim infnÑ8 un “ supnPN infkěn uk.

Definition 1.56 (Lower semi-continuity). Let g : Rd Ñ r´8,8s. g is lower semi-continuous
at x P Rd if for every sequence pxnqnPN converging to x,

gpxq ď lim inf
nÑ8

gpxnq.

g is lower semi-continuous if it is lower semi-continuous at every x P Rd.

Example 1.57 (Lower semi-continuous functions).

1. Every continuous function is lower semi-continuous.

2. x P R ÞÑ x2 ´ 1R´pxq is lower semi-continuous.

3. x P R ÞÑ 1R˚` ´ 1R˚´pxq is not lower semi-continuous.

Proposition 1.58 (Epigraphs). A function g : Rd Ñ r´8,8s is lower semi-continuous if
and only if its epigraph is closed.
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Proposition 1.59 (Lower level sets). A function g : Rd Ñ r´8,8s is lower semi-continuous
if and only if for any α P R, the lower level set tx P Rd : gpxq ď αu is closed.

Proposition 1.60 (Lower semi-continuity of upper hulls). Let Y Ă Rd1 (potentially non-
convex set) and G : px, yq P Rd ˆ Y Ñ p´8,8s be a function continuous in x (that is,
@y P Y , Gp¨, yq is continuous). Then g : x P Rd ÞÑ supyPY Gpx, yq is lower semi-continuous.

This last property will be useful for min-max problems, which will appear in duality
theory.

Definition 1.61 (Minimizing sequence). Assume that f is proper. A minimizing sequence
for Problem (P2) is a sequence pxnqnPN, with xn P dompfq, such that

lim
nÑ8

fpxnq “ inf
xPRd

fpxq.

Remark 1.62. By definition of the infimum value of f , there always exists a minimizing
sequence: @n P N˚, the set tx P dompfq : fpxq´infyPdompfq fpyq ď

1
n
u is non-empty (otherwise

infyPdompfq fpyq is not an infimum), so we can set xn to be any element of this set.

With this last definition, we have gathered the necessary components to claim the exis-
tence of a solution of a constrained optimization problem.

Theorem 1.63 (Existence of a solution for constrained problems). Let C Ă Rd be a non-
empty compact set and assume that f is proper, lower semi-continuous and of the form
f “ g ` χC, where g : Rd Ñ r´8,8s. Then Problem (P2) admits a global minimizer.

Proof. We have that dompfq Ă C. Let pxnqn be a minimizing sequence for f . Because C
is closed and bounded, it follows that the sequence pxnqn admits a sub-sequence, say px1nqn,
with x1n P C, converging to some point x‹ P C (from Heine-Borel Theorem). Thus we have:

inf
xPRd

fpxq “ lim
nÑ8

fpxnq “ lim
nÑ8

fpx1nq “ lim inf
nÑ8

fpx1nq ě fpx‹q,

which shows that x‹ is a global minimizer.

Let us highlight the similarity between this theorem and the Weierstrass extreme value
theorem, which states that every continuous function on a compact set attains both a min-
imum and a maximum. Here, because we consider extended-valued functions and we are
interested only in finding a minimum, we relax the assumption of continuity to the one of
lower semi-continuity. Doing so, we lose the existence of a maximizer but provide a broader
result for mathematical optimization.

Now, we state an existence theorem for unconstrained optimization problems. For this
purpose, we introduce another definition first.

Definition 1.64 (Coercivity). A function g : Rd Ñ r´8,8s is coercive if for every sequence
pxnqnPN such that limnÑ8 }xn} “ 8,

lim
nÑ8

gpxnq “ 8.
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Theorem 1.65 (Existence of a solution for unconstrained problems). Assume that f is
proper, coercive and lower semi-continuous. Then Problem (P2) admits a global minimizer.

Proof. The proof is similar to the one of Theorem 1.63, remarking that any minimizing
sequence is necessarily bounded since infxPRd fpxq ă 8 (f proper) and f is coercive.

Knowing that lower semi-continuous functions can attain their minima, let us go back to
convex functions.

Proposition 1.66 (Minimizers of convex functions). Assume that f is convex. Then

a) a local minimizer of f is a global one;

b) the set of minimizers of f is convex;

c) if f is strictly convex, then f has a unique minimizer.

Proof. a) For any point x P Rd and a local minimizer x‹ P Rd, there exists t P p0, 1q such
that z “ tx‹ ` p1 ´ tqx is in the neighborhood. So fpx‹q ď fpzq and by convexity,
fpzq ď tpfpx‹q ` p1´ tqfpxq. It follows that p1´ tqfpx‹q ď p1´ tqfpxq.

b) Trivial.

c) By contradiction.

Remark 1.67. When an estimator is built as a minimizer of an optimization problem,
we are interested in a global minimizer. However, in order to verify that a point x‹ is a
global minimizer, one would have to compare fpx‹q to every other value fpxq, no matter
how far from x‹ x is. The fact that for convex functions, local minimizers are also global
minimizers essentially explains our interest in convex optimization and the availability of
efficient numerical methods. Indeed, local minimizers can be found by greedy approaches.

1.2.4 Optimality conditions

Differentiability plays a key role in optimization. First because it helps characterizing convex-
ity (see Proposition 1.50), second (this is a consequence) because it is inherent in the mainly
used optimality condition (the Fermat’s rule). In this section, we introduce a generalization
of the gradient to nondifferentiable functions.

Definition 1.68 (Subdifferential). Let f : Rd Ñ p´8,8s be a convex function. The subdif-
ferential of f at x P Rd is defined by

Bfpxq “ tv P Rd : @y P Rd, fpyq ě fpxq ` vJpy ´ xqu.

The elements of Bfpxq are called the subgradients of f at x.
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Example 1.69. f : x P R ÞÑ |x| has a subdifferential for all x and

Bfpxq “

$

&

%

t´1u if x ă 0
r´1, 1s if x “ 0
t1u if x ą 0.

Proposition 1.70 (Calculus of subgradients). Let f : Rd Ñ p´8,8s be a convex function
and x P Rd.

a) @α ě 0, Bpαfqpxq “ αBfpxq.

b) If f “
řp
i“1 fi, with fi convex, dompfiq “ Rd, then Bfpxq “

řp
i“1 Bfipxq (Minkowski

sum).

c) If f : y ÞÑ max1ďiďp fipyq, with fi convex, then Bfpxq “ conv
´

Y 1ďiďp
fipxq“fpxq

Bfipxq
¯

.

Example 1.71. Consider f “ } ¨ }1 and remark that @x P Rd : fpxq “ maxtsJx : s P t˘1udu.
Thus, for x P Rd, the max is achieved for s P t˘1ud such that si “ 1 if xi ą 0, si “ ´1 if
xi ă 0 and si “ ˘1 for xi “ 0. As a consequence, Bfpxq is the convex hull of all such points
s, that is:

Bfpxq “ conv
` 

s P t˘1ud : sJx “ }x}1
(˘

“
 

ts` p1´ tqs1 : s, s1 P t˘1ud, sJx “ }x}1, s
1Jx “ }x}1, t P r0, 1s

(

“
 

v P Rd : }v}8 ď 1, vJx “ }x}1
(

.

Proposition 1.72 (Subgradient of differentiable functions). Let f : Rd Ñ R be a convex and
differentiable function at x P Rd. Then Bfpxq “ t∇fpxqu.

Proof. Choose a subgradient v and apply the inequality to y “ x` tpv ´∇fpxqq.

Proposition 1.73 (Subgradient of the sum of two functions). Let f : Rd Ñ R be a convex
and differentiable function at x P Rd and g : Rd Ñ R be a convex function. Then Bpf`gqpxq “
t∇fpxqu ` Bgpxq.

If the subdifferential of a differential function is a singleton, it is not obvious for a sub-
differential (in general) to be non-empty. To analyze this property, we need the notion of
relative interior of a set C, which is the interior of C (the points that are not on the border
of C), relatively to the smallest subspace that contains C (the reader may think of the facet
of a cube, for which the interior is empty but the relative interior is not). Here, we give a
weak definition, restricted to convex sets.

Definition 1.74 (Relative interior). Let C Ă Rd be a convex set. The relative interior of C
is

relintpCq “ tx P C : @y P C, Dλ ą 1 : y ` λpx´ yq P Cu.
In other words, in any direction from x P relintpCq, there is always a point ahead of x which
lies in relintpCq.
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Remark 1.75. The relative interior of a convex set C ‰ H is never empty. If C is a singleton,
then relintpCq “ C.

Proposition 1.76. Let f : Rd Ñ r´8,8s be a convex function and x P relintpdompfqq
(which is well defined since dompfq is convex). Then Bfpxq is non-empty.

Exercise 1.77. Find the subdifferentials of

1. x P R ÞÑ χr0,1spxq everywhere;

2. x P R2 ÞÑ χtyPR2:}y}2ď1upxq at }x}2 “ 1 and }x}2 ă 1;

3. x P Rd ÞÑ }x}2 everywhere;

4. x P R ÞÑ x3 everywhere.

With these elements, we can state the main optimality condition used in convex opti-
mization. This one underlies efficient minimization algorithms such as proximal gradient
descent.

Theorem 1.78 (Fermat’s rule). Let f : Rd Ñ p´8,8s be a convex function. x‹ P Rd is a
global minimizer of f if and only if

0 P Bfpx‹q.

Proof. See the definition of the subdifferential.

1.2.5 Convex optimization problems

In the previous section, convex optimization has been presented with extended-valued func-
tion, and thus as always unconstrained optimization. Even though, extended-valued func-
tions are useful tools to formalize optimization, it is often pleasant for the reader, as well as
necessary for the numerical practitioner, to rewrite a problem into its canonical formulation
(P1). As a reminder, this is

minimize
xPX

fpxq

s.t.
"

@j P rps : gjpxq ď 0
@j P rms : hjpxq “ 0,

where we assume here that f , gj and hj are real-valued functions over X . There is obviously
an ambiguity in this formulation since it is not unique. However, the canonical formulation
assumes that X is as large as possible (it defines the subset of Rd where f can be evaluated)
and that gj and hj are defined according to the physical problem.

This writing underlines the notion of equivalence between two optimization problems.
Without giving a formal definition (that would certainly not be accepted by every one), we
say that two optimization problems are equivalent if from the minimizers of one, the mini-
mizers of the other are readily found, and vice versa. For instance, the following operations
provide equivalent optimization problems:
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• change of variables;

• bijective transformation of objective and constraint functions;

• introduction of slack variables;

• optimizing over some variables;

• turning into the epigraph formulation;

• changing explicit constraints into implicit ones (that is moving constraints in X ), and
vice versa.

Let us remind that the feasible set of Problem (P1) is C “ tx P X : @j P rps : gjpxq ď
0, @j P rms : hjpxq “ 0u.

Definition 1.79 (Convex optimization problem). Problem (P1) is a convex optimization
problem if:

1. f : X Ñ R is convex;

2. pgjqjPrps are convex functions;

3. phjqjPrms are affine functions.

Remark 1.80. Let us denote F the canonical extension of f to an extended-valued function.
Stating that Problem (P1) is a convex optimization problem implies that F `χC is a convex
function. However, the converse is false. This is so because there are many ways to write
a constrained optimization problem, while there is a single way to write an unconstrained
one. Thus, a convex optimization problem cannot reduce to minimizing a convex real-valued
function over a convex set of constraints.

Thus, a canonical convex optimization problem has the form:

minimize
xPX

fpxq

s.t.
"

@j P rps : gjpxq ď 0
Ax “ b,

(P3)

where f and gj are convex, A P Rmˆd and b P Rm.
Local and global minimizers of an optimization problem are defined as the ones of its

extended-valued objective function F ` χC.

Proposition 1.81 (Optimality criterion). Assume that f is differentiable. Then x‹ P C is
a global minimizer of Problem (P3) if and only if

@x P C : ∇fpx‹qJpx´ x‹q ě 0.
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Proof. Since @x P C : fpxq ě fpx‹q `∇fpx‹qpx´ x‹q, if the equality is verified, then x‹ is a
global optimum.

Conversely, if Dx P C : ∇fpx‹qJpx ´ x‹q ă 0, then f decreases strictly in the direction
x´x‹. As a consequence, we can find t P p0, 1q (close to 0) such that fpx‹q ą fptx‹`p1´tqxq
(and tx‹ ` p1´ tqx P C by convexity).

Although quite powerful, this optimality criterion is hardly ever used (it should be verified
for all x). However, the Lagrangian multiplier optimality condition comes from this property
and is the one used in practice.

This section also provides examples of convex canonical optimization problems, that
are easily solvable for medium-sized situations and that one should recognize. We present
informally these special optimization problems, agreeing that all variables other than x are
any vectors or matrices of appropriate dimensions.

Linear programs

A linear program (LP) is of the form:

minimize
xPRd

cJx` d

s.t.
"

Gx ď h
Ax “ b.

Here, the feasible set is a polyhedron.
A linear-fractional program

minimize
xPRd:eJx`fą0

cJx` d

eJx` f

s.t.
"

Gx ď h
Ax “ b

can be turned into a linear program:

minimize
xPRd

cJy ` dJz

s.t.

$

’

’

&

’

’

%

Gy ´ hz ď 0
Ay ´ bz “ 0
eJy ` fJz “ 1
z ě 0.

Quadratic programs

minimize
xPRd

1

2
xJPx` qJx` r

s.t.
"

Gx ď h
Ax “ b,
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where P is a positive semi-definite matrix. If there are quadratic constraints, we face a
quadratically constrained quadratic program (QCQP):

minimize
xPRd

1

2
xJPx` qJx` r

s.t.

#

@j P rps,
1

2
xJPjx` q

J
j x` rj ď 0

Ax “ b,

where Pj are positive semi-definite.
LPs and QCQPs are special cases of second-order cone programs:

minimize
xPRd

fJx

s.t.
"

@j P rps, }Ajx` bj}2 ď cJj x` dj
Fx “ g.

Geometric programs

Definition 1.82 (Posynomials). ϕ : pR˚`qd Ñ R is called a monomial if

Dα P Rd, Dβ ą 0: @x P pR˚`qd, ϕpxq “ β
d
ź

i“1

xαii .

A posynomial is the sum of several monomials.

A geometric program has the form:

minimize
xPX

fpxq

s.t.
"

@j P rps : gjpxq ď 1
@j P rms : hjpxq “ 1,

where f and gj are posynomials and hj are monomials.
Geometric programs are not convex programs but can be turned into convex optimization

programs with a simple change of variable.

Generalized inequality constraints

Let K Ă Rd be a proper cone and denote ďK the relation defined by y ďK x ðñ x´y P K.
A convex optimization problem with generalized inequality constraints is:

minimize
xPRd

fpxq

s.t.
"

@j P rps : gjpxq ďKj 0
Ax “ b,
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where f and gj are convex. As special cases, a conic form problem is:

minimize
xPRd

cJx

s.t.
"

Fx` g ďK 0
Ax “ b,

while a semi-definite program (SDP) is:

minimize
xPRd

cJx

s.t.

$

’

&

’

%

d
ÿ

i“1

xiFi `G ď 0

Ax “ b,

where G and Fi are symmetric matrices.
LPs and SOCPs are special cases of SDPs. Yet, considering a tighter class of programs

makes it possible to design fast numerical algorithms.

1.3 Legendre-Fenchel transformation and duality

1.3.1 The convex conjugate

Definition 1.83 (Legendre-Fenchel transformation). Let f : Rd Ñ r´8,8s. The Legendre-
Fenchel transformation (or convex conjugate) of f is:

f˚ : y P Rd
ÞÑ sup

xPRd

 

yJx´ fpxq
(

.

Remark 1.84. If f : Rd Ñ R, f is differentiable and the supremum is attained in x˚, then
x˚ is such that y “ ∇fpx˚q and f˚pyq “ ´pfpx˚q `∇fpx˚qJp0 ´ x˚qq, which is minus the
linear approximation of f in 0 from fpx˚q.

Proposition 1.85 (Some properties of the convex conjugate). Let f : Rd Ñ r´8,8s.

1. f˚p0q “ ´ infxPRd fpxq.

2. f˚ is convex and lower semi-continuous.

3. If dompfq ‰ H, then @y P Rd : f˚pyq ą ´8.

4. If f is convex and proper, then f˚ is proper.

Proof.

1. Trivial.

2. sup of affine (thus convex) functions.
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3. Trivial.

4. Since f is proper, f˚ is proper except if f “ 8, which is not true (this comes from the
existence of a subgradient of f).

Proposition 1.86 (Fenchel-Young inequality). Let f : Rd Ñ r´8,8s. Then

@px, yq P Rd
ˆ Rd : fpxq ` f˚pyq ě xJy.

Moreover, if f is convex, @px, yq P Rd ˆ Rd:

fpxq ` f˚pyq “ xJy ðñ y P Bfpxq.

Proof. Both statements come from the definition of the convex conjugate and of a subgra-
dient.

Example 1.87 (Remarkable convex conjugates).

1. If f “ 1
2
} ¨ }22, then f˚ “

1
2
} ¨ }22.

2. If f “ exp, then f˚pyq “ yplogpyq ´ 1q if y ą 0, fpyq “ 8 if y ă 0 and fp0q “ 0.

3. Let K Ă Rd. If f “ χK, then f˚ : y P Rd ÞÑ supxPK y
Jx.

Exercise 1.88.

1. Let Q P Rdˆd be a positive definite matrix and f : x P Rd ÞÑ xJQx. Compute f˚.

2. Let f : Rd Ñ r´8,8s. Show that f “ f˚ ðñ f “ 1
2
} ¨ }22.

Definition 1.89 (Dual norm). Let } ¨ } be a norm on Rd. Its dual norm } ¨ }˚ is defined by:

@y P Rd : }y}˚ “ sup
}x}ď1

yJx.

Proposition 1.90. Let } ¨ } be a norm on Rd.

1. } ¨ }˚ is a norm.

2. @px, yq P Rd ˆ Rd : yJx ď }x}}y}˚.

3. The dual norm of a dual norm is the primal norm: p} ¨ }˚q˚ “ } ¨ }.

Example 1.91 (Dual norms).

1. Let p ą 1 and q ą 1 such that 1
p
` 1

q
“ 1. Then } ¨ }p is dual to } ¨ }q. We deduce

Hölder’s inequality: @px, yq P Rd ˆ Rd : yJx ď }x}p}y}q.
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2. Particular cases are: `2 is self-dual, `1 and `8 are dual.

3. For matrices, the Frobenius norm is sefl-dual, the spectral and the trace norms are
dual.

Proposition 1.92 (Convex conjugate of a norm). Let } ¨ } be a norm on Rd. Then, } ¨ }˚ “
χtxPRd:}x}˚ď1u.

In other words, the convex conjugate of a norm is the characteristic function of the dual
norm ball.

Proposition 1.93 (Biconjugate, involution). Let f : Rd Ñ r´8,8s and f˚˚ “ pf˚q˚ the
biconjugate of f . Then

@x P Rd : fpxq ě f˚˚pxq.

In addition, if f is convex, proper and lower semi-continuous, then

f “ f˚˚

and
y P Bfpxq ðñ x P Bf˚pyq.

Proof. The first and last statements come from Fenchel-Young (in)equality. The middle
statement is admitted.

Remark 1.94. The biconjugate f˚˚ is sometimes called the convex relaxation of f .

Exercise 1.95. Compute the convex conjugate of the pseudo-norm `0.

1.3.2 Duality

All along this section, we will consider the canonical convex optimization problem:

minimize
xPRd

fpxq

s.t.
"

gpxq ď 0
hpxq “ 0,

(P4)

where f : Rd Ñ R is convex, g : Rd Ñ Rp is component-wise convex and h : Rd Ñ Rm is affine.
Let us denote χgď0 and χh“0 respectively the characteristic functions of tx P Rd : gpxq ď 0u
and tx P Rd : hpxq “ 0u, as well as the extended-valued function F “ f ` χgď0 ` χh“0. We
remark that F is convex and that Problem (P4) is equivalent to:

minimize
xPRd

F pxq “ fpxq ` χgď0pxq ` χh“0pxq.

Since characterizing the solutions of F may be difficult, it is often useful to consider a
dual problem. This one is deduced from the Lagrangian function.
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Definition 1.96 (Lagrangian function). The Lagrangian function associated to Problem (P4)
is:

L : px, λ, νq P Rd
ˆ Rp

ˆ Rm
ÞÑ fpxq ` λJgpxq ` νJhpxq ´ χRp`pλq.

λ and ν are called Lagrange multipliers.

Proposition 1.97 (Supremum of the Lagrangian function). With the previous notation:

@x P Rd : F pxq “ sup
pλ,νqPRpˆRm

Lpx, λ, νq.

Proof. Immediate.

From this we remark that Problem (P4) is equivalent to the saddle point problem:

minimize
xPRd

sup
pλ,νqPRpˆRm

Lpx, λ, νq,

that has optimal value

inf
xPRd

F pxq “ inf
xPRd

sup
pλ,νqPRpˆRm

Lpx, λ, νq.

As a consequence, it is tempting to exchange inf and sup in order to get another (maximiza-
tion) problem. That is exactly how we proceed (with caution) to get a dual problem.

Definition 1.98 (Dual function and dual problem). The Lagrange dual function of Prob-
lem (P4) is:

G : pλ, νq P Rp
ˆ Rm

ÞÑ inf
xPRd

Lpx, λ, νq.

The dual problem of Problem (P4) is:

maximize
pλ,νqPRpˆRm

Gpλ, νq. (P5)

Example 1.99 (Link with convex conjugates). Assume that we are interested in an opti-
mization problem with linear constraints:

minimize
xPRd

fpxq

s.t.
"

Ax ď b
Cx “ d,

where A, C, b and d are any matrices and vectors. Then

@pλ, νq P Rp
ˆ Rm : Gpλ, νq “ ´pλJb` νJdq ´ f˚p´AJλ´ CJνq ´ χRp`pλq.

Exercise 1.100. Compute the dual functions of the following problems:
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1.
minimize

xPRd
}x}22

s.t. Cx “ d.

2.
minimize

xPRd
cJx

s.t.
"

Cx “ d
x ě 0.

3.
minimize

xPRd
}x}

s.t. Ax ď b.

4.
minimize

xPRd
}x}1

s.t. Cx “ d.

Proposition 1.101. ´G is convex and lower semi-continuous.

Proof. Let q : pλ, νq P RpˆRm ÞÑ infxPRd fpxq`χgďλpxq`χh“νpxq. Then @pλ, νq P RpˆRm : ´
Gpλ, νq “ q˚p´λ,´νq. By convex conjugation, ´G is convex and lower semi-continuous.

Proposition 1.102 (Weak duality). Let p P r´8,8s and d P r´8,8s be respectively the
primal and dual optimal objective values:

p “ inf
xPRd

F pxq “ inf
xPRd

sup
pλ,νqPRpˆRm

Lpx, λ, νq,

d “ sup
pλ,νqPRpˆRm

Gpλ, νq “ sup
pλ,νqPRpˆRm

inf
xPRd

Lpx, λ, νq.

Then
d ď p.

Proof. Remark that

sup
pλ,νqPRpˆRm

inf
xPRd

Lpx, λ, νq ď inf
xPRd

sup
pλ,νqPRpˆRm

Lpx, λ, νq,

by definition of inf and sup.

Remark 1.103. Let px1, λ1, ν 1q P Rd ˆ Rp ˆ Rm. In numerical optimization, the dual gap

F px1q ´Gpλ1, ν 1q ě 0

is a certificate to get an ε-solution. Indeed, since Gpλ1, ν 1q ď d ď p ď F px1q, if F px1q ´
Gpλ1, ν 1q ď ε, then

0 ď F px1q ´ inf
xPRd

F pxq ď F px1q ´Gpλ1, ν 1q ď ε.
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Proposition 1.104 (Saddle point). px‹, λ‹, ν‹q P Rd ˆRp ˆRm is a saddle point of L, that
is

@px, λ, νq P Rd
ˆ Rp

ˆ Rm : Lpx‹, λ, νq ď Lpx‹, λ‹, ν‹q ď Lpx, λ‹, ν‹q,

if and only if

sup
pλ,νqPRpˆRm

inf
xPRd

Lpx, λ, νq “ sup
pλ,νqPRpˆRm

Lpx‹, λ, νq

“ Lpx‹, λ‹, ν‹q

“ inf
xPRd

Lpx, λ‹, ν‹q

“ inf
xPRd

sup
pλ,νqPRpˆRm

Lpx, λ, νq.

Proof. Suppose that px‹, λ‹, ν‹q is a saddle point. Then suppλ,νqPRpˆRm Lpx
‹, λ, νq ď Lpx‹, λ‹, ν‹q

and Lpx‹, λ‹, ν‹q ď infxPRd Lpx, λ
‹, ν‹q. Then

sup
pλ,νqPRpˆRm

inf
xPRd

Lpx, λ, νq ď inf
xPRd

sup
pλ,νqPRpˆRm

Lpx, λ, νq

ď sup
pλ,νqPRpˆRm

Lpx‹, λ, νq

ď Lpx‹, λ‹, ν‹q

ď inf
xPRd

Lpx, λ‹, ν‹q

ď sup
pλ,νqPRpˆRm

inf
xPRd

Lpx, λ, νq.

Thus, all inequalities are in fact equalities. In addition, the converse is straightforward.

Theorem 1.105 (Strong duality). If Problem (P4) is strictly feasible (Slater’s constraint
qualification):

Dx P Rd : gpxq ă 0 and hpxq “ 0,

where ă means component-wise strict inequality, then (with the same notation as previously):

1. infxPRd F pxq ă 8 (the problem is feasible);

2. d “ p (zero duality gap);

3. Dpλ‹, ν‹q P Rp
` ˆ Rm : d “ Gpλ‹, ν‹q (dual is attained).

Proof. Admitted.

Remark 1.106. If we assume that the domains of f , g and h are not Rd, constraint quali-
fication is:

1. 0 P relintphpdom fqq;

2. Dx P dom f : gpxq ă 0.
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Theorem 1.107 (Karush-Kuhn-Tucker conditions). Assume that f , g and h are differen-
tiable functions and that Slater’s qualification holds for Problem (P4). Then, px‹, λ‹, ν‹q P
Rd ˆ Rp ˆ Rm is a saddle point of L if and only if:

1. primal feasibility: gpx‹q ď 0 and hpx‹q “ 0;

2. dual feasibility: λ‹ ě 0;

3. complementary slackness: @j P rps, λ‹jgjpx‹q “ 0;

4. stationarity: ∇xLpx
‹, λ‹, ν‹q “ 0.

Remark 1.108. Lagrange multipliers λ and ν give strong information about the sensitivity
of the optimal value with respect to perturbations to the constraints. To illustrate this, let
pu, vq P Rp ˆ Rm and a perturbed problem be defined by:

minimize
xPRd

fpxq

s.t.
"

gpxq ď u
hpxq “ v.

Let q : pu, vq P Rp ˆ Rm ÞÑ infxPRd fpxq ` χgďupxq ` χh“vpxq be the optimal value of the
perturbed problem and remark that qp0, 0q “ infxPRd F pxq (the optimal value of the original
problem).

The dual of the perturbed problem is:

maximize
pλ,νqPRpˆRm

Gpλ, νq ´ uJλ´ vJν.

Let pλ‹, ν‹q P Rp ˆ Rm be a solution of the dual original problem and assume that
strong duality holds for this problem. Then we have (weak duality applied to the perturbed
problem):

qpu, vq ´ qp0, 0q “ qpu, vq ´Gpλ‹, ν‹q ě ´puJλ‹ ` vJν‹q.

As a consequence, if q is differentiable in p0, 0q, we get:

∇uqp0, 0q “ ´λ and ∇vqp0, 0q “ ´ν.

1.3.3 Generalized inequality constraints

In Problem (P4), we remark that the inequality constraint gpxq ď 0 can be interpreted as
´gpxq P K, where K “ Rp

` is the positive orthant, which is a cone. Thus, the inequality
constraint is equivalent to gpxq ďK 0. This motivates the extension of duality to generalized
inequality constraints.

As a consequence, let us consider

minimize
xPRd

fpxq

s.t.
"

gpxq ďK 0
hpxq “ 0,
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where K Ă Rp is any proper convex cone.
Similarly to usual convex problems, the Lagrangian function can be defined by:

L : px, λ, νq P Rd
ˆ Rp

ˆ Rm
ÞÑ fpxq ` λJgpxq ` νJhpxq ´ χK˚pλq,

where the dual cone K˚ appeared. Let us remark that this is consistent with the previous
definition of the Lagrangian since Rp

` is a self-dual cone.
Then, the dual function is defined similarly as before. Weak duality follows from these

definitions, as well as strong duality with Slater’s constraint qualification:

Dx P Rd : gpxq ăK 0 and hpxq “ 0,

where gpxq ăK 0 means that ´gpxq P intpKq.
Finally, KKT optimality conditions and the perturbation analysis are readily extended

to generalized inequality constraints.

1.3.4 Tikhonov, Ivanov and Morozov regularizations

For many reasons (including numerical stability and sparsity), we often encounter optimiza-
tion problems of the form:

minimize
xPRd

fpxq ` λ}x}pp.

where f : Rd Ñ R is convex (it embodies a data fitting term), p ě 1 and λ ą 0. The
additional term on the right hand side is often referred to as Tikhonov regularization. His-
torically, Tikhonov regularization came out because of ill-posed problems.

It has to be known that this formulation is equivalent to two others. The first one is
Ivanov regularization (or quasi-solution method):

minimize
xPRd

fpxq

s.t. }x}p ď τ,

where τ ą 0, and the second is Morozov regularization (or residual method):

minimize
xPRd

}x}p

s.t. fpxq ď δ,

where δ ą 0. These last two formulations can respectively be interpreted as fitting the data
with not too rough parameter x, and finding x with minimal norm that fits the data up to
a δ accuracy.

The following theorem makes the equivalence clear.

Theorem 1.109 (Equivalence between regularizations). Let ϕ : Rd Ñ R and ψ : Rd Ñ R be
to convex functions such that ψ ě 0 and 0 P ψpRdq.

Let λ ě 0. If x‹ P Rd is a minimizer of:

minimize
xPRd

ϕpxq ` λψpxq, (P6)
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then there exists τ ě 0 such that x‹ is a minimizer of

minimize
xPRd

ϕpxq

s.t. ψpxq ď τ.
(P7)

Conversely, for τ ą 0, if x‹ P Rd is a minimizer of Problem (P7), then there exists λ ě 0
such that x‹ is a minimizer of Problem (P6).

Proof. Let λ ě 0 and x‹ P Rd be a minimizer of Problem (P6). Let τ “ ψpx‹q ě 0. Then
ψpx‹q ď τ and @x P Rd : ψpxq ď τ ,

ϕpx‹q “ ϕpx‹q ` λψpx‹q ´ λτ ď ϕpxq ` λψpxq ´ λτ ď ϕpxq,

so x‹ is a minimizer of Problem (P7).
Conversely, let τ ą 0 and x‹ P Rd be a minimizer of Problem (P7). Since 0 P ψpRdq and

τ ą 0, Slater’s constraint qualification hold and there is strong duality. Consequently, the
dual is attained:

Dλ P R` : ϕpx‹q ` λpψpx‹q ´ τq “ sup
λ1PR`

ϕpx‹q ` λ1pψpx‹q ´ τq.

Therefore, px‹, λq is a saddle point of the Lagrangian. Hence, @x P Rd:

ϕpx‹q ` λψpx‹q “ ϕpx‹q ` λpψpx‹q ´ τq ` λτ ď ϕpxq ` λpψpxq ´ τq ` λτ “ ϕpxq ` λψpxq.

Thus, x‹ is a minimizer of Problem (P6).

1.3.5 A relevant example

Let us consider the optimization problem:

minimize
xPRd

fpxq ` gpAxq, (P8)

where f : Rd Ñ p´8,8s, g : Rp Ñ p´8,8s are proper convex and A P Rpˆd. This problem
is equivalent to

minimize
xPRd,yPRp

fpxq ` gpyq

s.t. Ax “ y.

The dual function to this last problem is:

@ν P Rp : Gpνq “ inf
xPRd,yPRp

 

fpxq ` gpyq ` νJAx´ νJy
(

“ ´ sup
yPRp

 

νJy ´ gpyq
(

´ sup
xPRd

 

´νJAx´ fpxq
(

“ ´g˚pνq ´ f˚p´AJνq.

Therefore, the dual problem of interest is:

maximize
νPRp

´g˚pνq ´ f˚p´AJνq. (P9)
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Constraint Set C Conjugate
Equality Ax “ b t0u 0
Ball }Ax´ b} ď 1 unit } ¨ }-ball } ¨ }˚

Conic inequality Ax ďK b ´K χK˚

Table 1.1 – Examples of constraints.

Theorem 1.110. Let f : Rd Ñ p´8,8s, g : Rp Ñ p´8,8s be proper convex functions and
A P Rpˆd. Assume that either dompfq “ Rp or dompgq “ Rd and that Dx P Rd : Ax P dompgq.
If the optima are attained in Problem (P8) and Problem (P9), then strong duality holds:

min
xPRd

fpxq ` gpAxq “ max
νPRp

´g˚pνq ´ f˚p´AJνq.

Moreover, a primal-dual optimum is a solution to the saddle-point problem:

minimize
xPRd

maximize
νPRp

fpxq ` νJAx´ g˚pνq.

The forthcoming paragraphs provide examples of such problems.

Set constraint

Here, we are in the case where g “ χC, where C Ă Rd is a convex set, and we aim at solving:

minimize
xPRd

fpxq ` χCpAx´ bq,

whose dual is
maximize

νPRp
´bJν ´ χ˚Cpνq ´ f

˚
p´AJνq.

Table 1.1 provide some examples of sets of constraint, where K Ă Rp is a proper convex
cone.

Norm regularization

In this case, gpyq “ }y ´ b} and we want to minimize fpxq ` }Ax ´ b}. Since, g˚pνq “
bJν ` χBpνq, where B “ ty P Rp : }y}˚ ď 1u, the dual reads:

maximize
νPRp

´bJν ´ f˚p´AJνq

s.t. }ν}˚ ď 1.
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2.1 Introduction
In this chapter, we aim at providing several concrete methods to produce a sequence pxkqkPN
that minimizes a function f : Rd Ñ r´8,8s, that is such that limkÑ8 xk exists in Rd and
limkÑ8 fpxkq “ infxPRd fpxq.

2.2 Greedy methods

2.2.1 Orthogonal matching pursuit

The problem of interest in compressed sensing is to find x P Rd such that Ax “ y, where
A P Rpˆd is a sensing matrix and y P Rp the vector of measurements. Compressed sensing
promotes two special features:

1. the number of measurements is much smaller than the dimension of the signal (p ! d),
so the problem of finding x such that y “ Ax is under-determined;

2. the signal to recover is supposed s-sparse (s P N˚).

Thus, compressed sensing can be summed up in the following manner: given a sensing
matrix A P Rpˆd and a vector of measurements y P Rp, solve the optimization problem

minimize
xPRd

}x}0

s.t. Ax “ y.

A roughly equivalent formulation to the compressed sensing problem is:

minimize
xPRd

fpxq

s.t. }x}0 ď s,

where f : x P Rd ÞÑ }Ax ´ y}2 and s P N is a prescribed sparsity level. Let us remark that
if the signal to recover x‹ P Rd is s-sparse, then it is a solution the previous optimization
problem and fpx‹q “ 0.

Starting with an initial point x0 “ 0 P Rd and S0 “ supppx0q “ H its support, the
orthogonal matching pursuit algorithm reads as follow and aims at providing a local solution
to the previous optimization problem.

Algorithm 1 Orthogonal matching pursuit

pjk, αkq P arg min
jPrds,αPR

fpxk ` αejq

Sk`1 “ Sk Y tjku

xk`1 P arg min
xPRd:supppxqĂSk`1

fpxq,
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where ej is the jth canonical basis vector of Rd.
We note that:

• When the columns of A norm to 1, Step 1 boils down to finding j P rds, that maximizes
|pAjq

JpAx´yq|, where Aj is the jth column of A. In other words, we look for the atom
of the dictionary A, that is the most correlated to the residue Ax´ y.

• Step 2 potentially increments the sparsity of the current iteration xk`1: }xk`1}0 ď k`1,
at each iteration k.

• Step 3 is an orthogonal projection, hence the name orthogonal matching pursuit.

Remark 2.1. Under some conditions, the orthogonal matching pursuit can recover any s-
sparse signal x‹ with at most s iterations. However, the weakness of orthogonal matching
pursuit is that, once an incorrect index j has been selected, it remains in the support of the
proposed solution. In this case, s iterations are not enough to recover an s-sparse signal.

2.2.2 Compressive sampling matching pursuit

The compressive sampling matching pursuit algorithm proposes a strategy to overcome the
weaknesses of orthogonal matching pursuit. To describe it, let Ls : Rd Ñ rds be such that
Lspxq is the index set of s largest absolute entries of x, and Hs : Rd Ñ Rd be the hard-
thresholding operator of order s. Hs is such that Hspxq has support Lspxq and equals x on
its support (the other entries are 0).

Starting with an initial point x0 “ 0 P Rd, the Compressive sampling matching pursuit
algorithm is defined by

Algorithm 2 Compressive sampling matching pursuit

Sk`1 “ supppxkq Y L2spA
J
pAxk ´ yqq

uk`1 P arg min
uPRd:supppuqĂSk`1

}Au´ y}2

xk`1 “ Hspuk`1q.

Remark 2.2. Orthogonal and compressive sampling matching pursuits require to estimate
the sparsity of the signal x‹ to recover. This is not an easy task.
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2.3 Linear programming

2.3.1 Convex relaxation of compressed sensing and basis pursuit

Given a sensing matrix A P Rpˆd and a vector of measurements y P Rp, compressed sensing
aims at solving the optimization problem

minimize
xPRd

}x}0

s.t. Ax “ y.

Since this problem is non-convex and even NP-hard in general, we would like to convexify
it. For this purpose, let us remark that } ¨ }0 is relatively well approximated by } ¨ }qq when
q Ñ 0`. Yet } ¨ }qq is not convex for 0 ď q ă 1. The smallest value of q for which } ¨ }qq
is convex is q “ 1. As a consequence, we can legitimately replace the original compressed
sensing optimization problem by:

minimize
xPRd

}x}1

s.t. Ax “ y.
(P10)

This problem is often referred to as Basis pursuit.

Proposition 2.3 (Sparsity of basis pursuit). Assume that Problem (P10) has a minimizer
x‹ P Rd. Then }x‹}0 ď p.

Proof. By contradiction, assume that }x‹}0 ą p and let S be its support. Consider the set
of p-dimensional vectors, columns of A index by S. This set is linearly dependent, that is
Du P Rd, u ‰ 0, with same support as x‹, such that Au “ 0. Now, let t ą 0 such that
t ă miniPS

|x‹i |

}u}8
and z “ x‹ ´ t sign p

ř

iPS signpx‹i quiqu. Then we have Az “ y and

}z}1 “
ÿ

iPS

|zi|

“
ÿ

iPS

signpziqzi

“
ÿ

iPS

signpx‹i qzi (t is small enough)

“
ÿ

iPS

signpx‹i qx
‹
i ´ t sign

˜

ÿ

iPS

signpx‹i qui

¸

ÿ

iPS

signpx‹i qui

ă }x‹}1,

where the last inequality comes from the fact that u ‰ 0, so sign p
ř

iPS signpx‹i quiq
ř

iPS signpx‹i qui ą
0. Finally, }z}1 ă }x‹}1 is a contradiction.

Next, we remark that the objective function of Problem (P10) is not differentiable, which
makes its numerical solving difficult. As a consequence, one may propose to reformulate
Problem (P10) to an “easier” problem.
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Proposition 2.4 (Variational `1-norm).

@x P Rd : }x}1 “ min

#

d
ÿ

i“1

ξ`i ` ξ
´
i : x “ ξ` ´ ξ´, pξ`, ξ´q P pRd

`q
2

+

.

Proof. Let x P Rd and let us exhibit a minimizer of the set considered in the proposition.
Let pξ`, ξ´q P pRd

`q
2 be such that ξ`i “ maxp0, xiq and ξ´i “ maxp0,´xiq (@i P rds). Then,

x “ ξ` ´ ξ´, so pξ`, ξ´q is feasible, and we claim that pξ`, ξ´q is a minimizer of the set
considered in the proposition.

To show that, let us observe that @i P rds, if xi “ 0 then ξ`i “ 0 and ξ´i “ 0, if xi ą 0
then ξ`i ą 0 and ξ´i “ 0, and if xi ă 0 then ξ`i “ 0 and ξ´i ą 0. Consequently, |xj| “ ξ`j `ξ

´
j .

Now, let pz`, z´q P pRd
`q

2 be a feasible point (that is such that x “ z` ´ z´). Then,
@j P rds: z`j ` z´j “ z`j ´ z´j ` 2z´j ě z`j ´ z´j . Conversely, z`j ` z´j ě z´j ´ z`j , thus
z`j ` z

´
j ě |z

`
j ´ z

´
j | “ |xj| “ ξ`j ` ξ

´
j . As a consequence,

řd
i“1 z

`
i ` z

´
i ě

řd
i“1 ξ

`
i ` ξ

´
i and

pξ`, ξ´q is a minimizer.
To conclude, we remark that }x}1 “

řd
i“1 ξ

`
i ` ξ

´
i .

As a consequence of the previous proposition, Problem (P10) can be reformulated in:

minimize
xPRd

min
pξ`,ξ´qPpRdq2

d
ÿ

i“1

ξ`i ` ξ
´
i

s.t.

$

&

%

x “ ξ` ´ ξ´

ξ` ě 0
ξ´ ě 0,

s.t. Ax “ y,

which, combining minimization procedures and deleting the variable x, that appears to be
totally free (so useless), becomes:

minimize
pξ`,ξ´qPpRdq

d
ÿ

i“1

ξ`i ` ξ
´
i

s.t.

$

&

%

Apξ` ´ ξ´q “ y
ξ` ě 0
ξ´ ě 0.

(P11)

In the forthcoming sections, we focus on algorithms for solving such a linear program.

2.3.2 The simplex method

We focus on an optimization problem of the form:

minimize
xPRd

cJx

s.t.
"

Ax “ b
x ě 0,

(P12)
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where c P Rd, A P Rpˆd and b P Rp are any matrices.

Remark 2.5. A linear program can always be written in the form of Problem (P12).

The feasibility set of Problem (P12) reads C “ tx P Rd : x ě 0, Ax “ bu. It is the
intersection between the positive orthant and the affine space tx P Rd : Ax “ bu. As a
consequence, it is either:

1. empty, so Problem (P12) is not feasible;

2. not compact;

3. or the convex hull of a finite number of points.

In Situation 3, C is called a polytope or a simplex. This is the case of interest.

Proposition 2.6 (Solution of a linear program). Let us assume that C is non-empty and
compact. Then, Problem (P12) has a solution, which is an extreme point of C.

Proof. Any point x P C is a convex combination of the extreme points of C, denoted tκi :
i P rnsu. In other words, x “

řn
i“1 tiκi for some ti ě 0 such that

řn
i“1 ti “ 1. Then we have

cJx “
řn
i“1 tiκ

J
i c ě κJi‹c, where i‹ P arg miniPrns κ

J
i c. But κi‹ P C, so it is a minimizer.

Exploring all extreme points of C would be very expensive. Therefore, the simplex algo-
rithm finds a path in the set of extreme points of C such that the objective function does
not increase at each iteration.

Generally, the simplex algorithms converges linearly in the number of constraints. How-
ever, the worst-case complexity is very bad. On the so-called Klee-Minty cube, the simplex
algorithm exhibits poor performance (it visits all 2p corners of the cube, where p is the
number of constraints).

2.3.3 Barrier methods

Here, we focus on the optimization problem:

minimize
xPRd

fpxq

s.t.
"

@j P rps : gjpxq ď 0
Ax “ b,

where A P Rmˆd is a rank m matrix, f and gj are twice differentiable. We present barrier
methods, also called interior point methods. They are particularly useful when f and gj are
linear functions.

The starting point of barrier methods is to rewrite the previous optimization problem
in:

minimize
xPRd

fpxq `
m
ÿ

j“1

χR´pgjpxqq

s.t. Ax “ b,
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and to remark that χR´ can be approximated by a smooth barrier function. For instance,
we consider here the logarithmic barrier

φ : x P Rd
ÞÑ

"

´
řm
j“1 logp´gjpxqq if gjpxq ă 0, @j P rms

8 otherwise.

For t ą 0, the function x P Rd ÞÑ 1
t
φpxq approximate χRd´ and the approximation improves

as tÑ 8.

Proposition 2.7. The barrier φ is convex and twice differentiable.

Therefore, for t ą 0, the problem of interest becomes:

minimize
xPRd

tfpxq ` φpxq

s.t. Ax “ b,
(P13)

Proposition 2.8. Assume that strong duality holds for Problem (P13) and let x‹ptq be a
minimizer Problem (P13) for t ą 0. Then

0 ď fpx‹ptqq ´ p˚ ď
m

t
,

where p˚ “ infxPRd fpxq `
řm
j“1 χR´pgjpxqq ` χbpAxq is the infimum of the original problem.

Proof. This comes from KKT conditions.

Starting with a strictly feasible initial point x0 P Rd, t0 ą 0 and µ ą 1, a barrier (or
interior point method) method is given by:

Algorithm 3 Barrier (or interior point) method.

xk`1 P arg min
xPRd:Ax“b

tkfpxq ` φpxq,

tk`1 “ µtk.

As a stopping criterion, one can use m
tk
ď ε since this ratio bounds the difference fpxk`1q´

p˚.

Remark 2.9.

1. The first step of a barrier algorithm is generally performed thanks to Newton method.

2. xk is used to initialize the algorithm for solving Step 1 (warm start). This makes the
all story faster and explains why only several iterations are needed in barrier methods.

Interior point methods are very reliable on small scale problems but are not workable for
very large problems. First order methods seem to be the only option.
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2.4 Primal methods

2.4.1 Gradient method

In this section, we consider a function f : Rd Ñ R, that is differentiable and convex, and we
tackle the problem:

minimize
xPRd

fpxq.

The gradient descent is a simple algorithm to reach a minimizer of f . Suppose we are
provided with an initial point x0 P Rd. Then the gradient descent algorithm is:

Algorithm 4 Gradient descent.

xk`1 “ xk ´ γk∇fpxkq,

where γk ą 0 is a step size to be tuned.
The interpretation of the gradient descent method is minimizing a local quadratic ap-

proximation of f :

@x P Rd : fpxq « fpxkq `∇fpxkqJpx´ xkq `
1

2γk
}x´ xk}

2
2,

where γk is unknown a priori. However, there are several manners to choose the step size γk.
The first one is to consider it constant. In this case, we require f to be gradient Lipschitz in
order to ensure convergence.

Theorem 2.10 (Convergence of gradient descent). Assume that f has a minimizer x‹ P Rd

and that the gradient of f is Lipschitz continuous with Lipschitz constant L ą 0:

@px, yq P pRd
q
2 : }∇fpxq ´∇fpyq} ď L}x´ y}.

For a constant step size γk “ 1
L
(@k P N):

fpxkq ´ fpx
‹
q ď

L

2k
}x0 ´ x

‹
}

2
2.

Proof. The proof relies on the fact that Lipschitz continuity of ∇f implies convexity of
L
2
} ¨ }22 ´ f , which implies a quadratic upper bound:

@px, yq P pRd
q
2 : fpyq ď fpxq `∇fpxqJpy ´ xq ` L

2
}y ´ x}22.
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Remark 2.11. The convergence analysis shows that there is a progress at each iteration.
In other words, the gradient method is a descent method.

In addition, if f is strongly convex, convergence of gradient descent is faster.

Theorem 2.12 (Convergence of gradient descent (strong convexity)). Assume that f has
a minimizer x‹ P Rd, is µ-strongly convex (µ ą 0) and that the gradient of f is Lipschitz
continuous with Lipschitz constant L ą 0. For a constant step size γk “ 2

µ`L
(@k P N):

fpxkq ´ fpx
‹
q ď ck

L

2
}x0 ´ x

‹
}

2
2

and
}xk ´ x

‹
}

2
ď ck}x0 ´ x

‹
}

2
2,

where c “
´

L{µ´1
L{µ`1

¯2

P p0, 1q.

Proof. The proof relies on the definition of strong convexity, which implies a quadratic lower
bound:

@px, yq P Rd
q
2 : fpyq ě fpxq `∇fpxqJpy ´ xq ` µ

2
}y ´ x}22.

Remark 2.13. The convergence rate of the gradient descent is not optimal: fast gradient
methods have better convergence rates.

Another way to choose the step size is to perform an adaptive and local computation,
called a line search.

Backtracking line search

Backtracking line search is also know as Armijo’s rule:

Algorithm 5 Armijo’s rule
Choose γ0 ą 0, α P p0, 1q and β P p0, 1q. Set γ “ γ0 and update γ with γ Ð βγ until

fpxk ´ γ∇fpxkqq ă fpxkq ´ αγ}∇fpxkq}22.

For simplicity, we often take α “ 1
2
.

Theorem 2.14 (Convergence of gradient descent (backtracking)). Assume that f has a
minimizer x‹ P Rd and that the gradient of f is Lipschitz continuous with Lipschitz constant
L ą 0. For a backtracking line search with same γ0 ą 0 and α “ 1

2
:

fpxkq ´ fpx
‹
q ď

1

2kminpγ0, β{Lq
}x0 ´ x

‹
}

2.
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Exact line search

Algorithm 6 Exact line search
Choose γk such that

γk P arg min
γě0

fpxk ´ γ∇fpxkqq.

Advantages and drawbacks

Advantages of gradient descent are:

1. every iteration is inexpensive;

2. it does not require second order information (Hessian of f).

However, gradient descent

1. is often slow (oscillation);

2. does not handle nondifferentiable functions.

Other first-order methods address one or both disadvantages.
Methods with improved convergence:

• quasi-Newton methods;

• conjugate gradient method;

• accelerated gradient method

Methods for nondifferentiable or constrained problems:

• subgradient method;

• proximal gradient method;

• smoothing methods;

• cutting-plane methods.

46



2.4.2 Quasi-Newton method

This section deals with including second order information in gradient descent. For this
purpose, let us assume that f is twice differentiable.

Algorithm 7 Newton method.

xk`1 “ xk ´ p∇2fpxkqq
´1∇fpxkq.

The Newton method comes from minimizing a second-order approximation of f around
xk:

fpyq « fpxkq `∇fpxkqJpy ´ xkq `
1

2
py ´ xkq

J∇2fpxkqpy ´ xkq.

If the Newton method demonstrates fast convergence, it has the disadvantage to be
expensive for large scale applications. To overcome that, the Hessian can be approximated
by a metric H P Rdˆd, that is symmetric positive definite.

Algorithm 8 Quasi-Newton method.
Given an initial point x0 P Rd and an initial metric H0 P Rdˆd, that is symmetric positive
definite, iterate

xk`1 “ xk ´ γkH
´1
k ∇fpxkq,

set Hk`1 based on Hk,

where γk ą 0 are step sizes, which can be chosen by line search. The second step of a
quasi-Newton method can be done in several manners.

Newton method

Setting Hk “ ∇2fpxkq makes the last algorithm boiling down to a Newton method with
adaptive step size.

Broyden-Fletcher-Goldfarb-Shanno (BFGS)

Setting ∆x “ xk`1 ´ xk and ∆y “ ∇fpxk`1q ´∇fpxkq, the BFGS update rule is:

Hk`1 “ Hk `
1

∆J
x∆y

∆y∆
J
y ´

1

∆J
xHk∆x

Hk∆x∆
J
xHk.

Let us remark can the inverse can be computed efficiently:

H´1
k`1 “

ˆ

Id ´
1

∆J
x∆y

∆x∆
J
y

˙

H´1
k

ˆ

Id ´
1

∆J
x∆y

∆J
y ∆x

˙

`
1

∆J
x∆y

∆J
x∆x,

where Id is the identity matrix of size dˆ d.
BFGS method converges for strongly convex functions (in that case ∆J

x∆y ą 0).
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Square root BFGS

Same as previously but with Hk “ LkL
J
k (Cholesky decomposition). The updates rule is:

Lk`1 “ Lk

ˆ

Id `
1

∆̃J
x ∆̃x

pα∆̃y ´ ∆̃xq∆̃
J
x

˙

,

where ∆̃x “ Lk∆x, ∆̃y “ L´1
k ∆y and α “ ∆̃Jx ∆̃x

∆Jx∆y
.

Limited-memory BFGS (L-BFGS)

Leveraging the recursive formula of H´1
k , we can compute a direction of descent H´1

k ∇fpxkq
with only recursive updates of vectors. L-BFGS goes beyond this remark by truncating the
recursion to the last m (often m « 30) iterations. This requires nevertheless to store the m
last values of ∆x and ∆y.

2.4.3 Subgradient method

From now on, we no longer require f to be differentiable (but f is still convex). Subgradient
method is certainly the simplest method for minimizing f . It is similar to gradient descent
but replacing gradients by subgradients:

Algorithm 9 Subradient descent.

xk`1 “ xk ´ γkvk,

where vk P Bfpxkq and γk ą 0 is a step size.

Remark 2.15. Contrarily to a negative gradient ´∇fpxkq, a negative subgradient ´v (v P
Bfpxkq) is not a direction of descent in general. This means that the subgradient method is
not a descent method (fpxk`1q ą fpxkq can occur).

Akin to gradient descent, several step size rules coexist:

• fixed step: γk is constant;

• fixed length: γk}vk}2 “ }xk ´ xk´1}2;

• diminishing step: γk Ñ 0, with
ř8

k“1 γk “ 8.

For fixed step sizes and fixed length, the subgradient method does not converge. However,
two cases are of interest: diminishing step sizes and fixed length for a given number of steps.

Remark 2.16. The convergence rate of subgradient descent is optimal (we can construct
an optimization problem for which convergence is in Op1{

?
kq.
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Theorem 2.17 (Convergence of subgradient method). Assume that f has a minimizer
x‹ P Rd and that f is Lipschitz continuous with Lipschitz constant L ą 0. For a diminishing
step sizes γk Ñ 0, with

ř8

k“1 γk “ 8:

min
0ď`ďk

fpx`q ´ fpx
‹
q ď

}x0 ´ x
‹}22 ` L

2
řk
`“1 γ

2
`

2
řk
`“1 γ`

.

Proof. The proof relies on the fact that subgradients are bounded by L.

Since
řk
`“1 γ

2
`

2
řk
`“1 γ`

Ñ 0, min0ď`ďk fpx`q converges to fpx‹q.

Theorem 2.18 (Convergence of subgradient method (fixed number of iterations)). Assume
that f has a minimizer x‹ P Rd and that f is Lipschitz continuous with Lipschitz constant
L ą 0. Let x0 P Rd be an initial point close to a minimizer: }x0 ´ x

‹}2 ď R, for R ą 0. For
a fixed step length: γk}vk´1}2 “

R?
k
:

min
0ď`ďk

fpx`q ´ fpx
‹
q ď

LR
?
k
.

In addition, any other step length increases the bound.

Remark 2.19. This convergence rate is optimal (it cannot be improved).

To sum up, subgradient descent:

1. handles nondifferentiable convex problems;

2. is an algorithm as simple as gradient descent;

3. has slow convergence;

4. does not provide easy stopping criterion.

2.4.4 Proximal gradient method

We have seen at the beginning of this class that optimization problems in machine learning
are often of the form:

minimize
xPRd

fpxq ` gpxq, (P14)

where f : Rd Ñ R is a differentiable and convex function and g : Rd Ñ p´8,8s is a convex
function. In this section, we leverage the special structure of this problem to introduce fast
algorithms (compared to subgradient methods) even though the global function f ` g is not
differentiable.
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Definition 2.20 (Proximal operator). Let h : Rd Ñ r´8,8s be a proper, lower semi-
continuous convex function. The proximal operator of h is defined by:

@x P Rd : proxhpxq “ arg min
uPRd

hpuq `
1

2
}u´ x}22.

(By strong convexity, the arg min exists and is a singleton, so proxg is well defined.)

Example 2.21.

• For h “ 0, proxhpxq “ x, @x P Rd.

• Let C Ă Rd be a closed convex set and h “ χC. Then proxh is the orthogonal projector
on C.

• For h “ } ¨ }1, proxh is the soft-thresholding operator:

@x P Rd, @i P rds : proxhpxqi “

$

&

%

xi ´ 1 if xi ě 1
0 if |xi| ď 1
xi ` 1 if xi ď ´1.

Proposition 2.22. Let h : Rd Ñ r´8,8s be a proper, lower semi-continuous convex func-
tion. Let px, yq P Rd ˆ Rd. Then,

y “ proxhpxq ðñ x´ y P Bhpyq.

Proof.

y “ proxhpxq ðñ y P arg min
uPRd

hpuq `
1

2
}u´ x}22

ðñ 0 P Bhpyq ` py ´ xq

ðñ x´ y P Bhpyq.

Theorem 2.23 (Moreau decomposition). Let h : Rd Ñ r´8,8s be a proper, lower semi-
continuous convex function. Then

@x P Rd : x “ proxhpxq ` proxh˚pxq.

Proof. For any x, let u “ proxhpxq. By definition, x ´ u P Bhpuq, thus u P Bh˚px ´ uq, that
is x´ px´ uq P Bh˚px´ uq, which means that x´ u “ proxh˚pxq.

The Moreau decomposition generalizes the decomposition by orthogonal projection on
subspaces.
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Proposition 2.24 (Nonexpansiveness of the proximal operator). Let h : Rd Ñ r´8,8s be
a proper, lower semi-continuous convex function. Then proxh is firmly nonexpansive:

@px, yq P pRd
q
2 : pproxhpyq ´ proxhpxqq

J
py ´ xq ě } proxhpyq ´ proxhpxq}

2
2.

In addition, proxh is Lipschitz-continuous with parameter 1:

@px, yq P pRd
q
2 : } proxhpyq ´ proxhpxq}2 ď }y ´ x}.

Proof. For u “ proxhpxq and v “ proxhpyq, we have x´ u P Bhpuq and y ´ v P Bhpvq. Then,
from the subdifferential definition, we have px´u´y`vqJpu´vq ě 0. The second property
comes from Cauchy-Schwarz inequality.

The following algorithm is workable in the setting described previously, that is when:

1. f : Rd Ñ R is convex and differentiable;

2. g : Rd Ñ p´8,8s is convex with an easy-to-compute proximal operator.

Algorithm 10 Proximal gradient method.

xk`1 “ proxγkg pxk ´ γk∇fpxkqq ,

where γk ą 0 is a step size.

The interpretation of the proximal gradient method is very similar to the one of the
gradient descent. It consists in minimizing a local quadratic approximation of f plus the
original non-differentiable function g:

@x P Rd : fpxq ` gpxq « fpxkq `∇fpxkqJpx´ xkq `
1

2γk
}x´ xk}

2
2 ` gpxq

“ gpxq `
1

2γk
}x´ pxk ´ γk∇fpxkqq}22 ´

γk
2
}∇fpxkq}22,

where γk is unknown a priori.

Example 2.25 (Soft-thresholding). When g “ }¨}1, we obtain the soft-thresholding method,
where we first perform a gradient step x` “ xk ´ γk∇fpxkq, and then a soft-thresholding:

@i P rds : pxk`1qi “

$

&

%

x`i ´ γk if xi ě γk
0 if ´ γk ď xi ď γk
x`i ` γk if xi ď ´γk.

Theorem 2.26 (Convergence of the proximal method). Consider Problem (P14) with f : Rd Ñ

R being differentiable with L-Lipschitz gradient (L ą 0), and g : Rd Ñ p´8,8s being proper,

51



lower-semicontinuous and convex. Let us assume that F “ f ` g has a minimizer x‹ P Rd.
For a constant step size γk “ 1

L
(@k P N):

F pxkq ´ F px
‹
q ď

L

2k
}x0 ´ x

‹
}

2
2.

In addition, if f is µ-strongly convex (µ ą 0), then:

}xk ´ x
‹
}

2
2 ď ck}x0 ´ x

‹
}

2
2,

where c “ 1´ m
L
P p0, 1q.

Proof. The analysis is similar to the one of gradient descent, considering instead the direction
of descent dk “ 1

γk
pxk´proxγkgpxk´γk∇fpxkqqq, that is xk´γkdk “ proxγkgpxk´γk∇fpxkqq.

In addition, let us remark that

dk “ 0 ðñ 0 “
1

γk
pxk ´ proxγkgpxk ´ γk∇fpxkqqq

ðñ xk “ proxγkgpxk ´ γk∇fpxkqq
ðñ pxk ´ γk∇fpxkqq ´ xk P ∇pγkgqpxkq
ðñ ´γk∇fpxkq P γk∇gpxkq
ðñ 0 P ∇fpxkq ` Bgpxkq
ðñ 0 P BF pxkq.

In other words, xk is a minimizer of F if and only if dk “ 0.

Remark 2.27. The convergence analysis shows that each proximal gradient iteration is a
descent step. As a consequence, the proximal gradient method is a descent method.

Algorithm 11 Backtracking line search
Choose γ0 ą 0 and β P p0, 1q. Set γ “ γ0 and update γ with γ Ð βγ until

fpxk ´ γdγq ď fpxkq ´ γ∇fpxkqJdγ `
γ

2
}dγ}

2
2,

where dγ “ 1
γ
pxk ´ proxγgpxk ´ γ∇fpxkqqq is the direction of descent.

Theorem 2.28 (Convergence of the proximal method (backtracking)). For a backtracking
line search with same γ0 ą 0, the previous theorem holds replacing 1

L
by minpγ0, β{Lq in the

convergence rates.

We can derive three special cases of the proximal gradient method:

1. when g “ 0, the proximal gradient method is a gradient descent;

2. when g “ χC for a set C Ă Rd, the proximal method is a projected gradient descent;

3. when f “ 0, we get the proximal point method.
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2.4.5 Accelerated proximal gradient method

In this section, we analyze a method, called Nesterov’s method, to accelerate the proximal
gradient descent. The main trick of this method is to add a momentum term.

Starting with an initial λ0 “ 0 and initial points x0 “ y0 P Rd, the accelerated proximal
gradient method is:

Algorithm 12 Accelerated proximal gradient method.

xk`1 “ proxγkgpyk ´ γk∇fpykqq

λk`1 “
1`

a

1` 4λ2
k

2

yk`1 “ xk`1 `
λk ´ 1

λk`1

pxk`1 ´ xkq,

where γk ą 0 is a step size.

Remark 2.29. In image processing and compressed sensing, this method is often called
FISTA, for fast iterative shrinkage-thresholding algorithm.

As always, the step size may be set to 1
L
or chosen by line search. Moreover, yk is an

extrapolated point where the proximal gradient step is performed.

Theorem 2.30 (Convergence of the accelerated proximal method). Consider Problem (P14)
with f : Rd Ñ R being differentiable with L-Lipschitz gradient (L ą 0), and g : Rd Ñ p´8,8s
being proper, lower-semicontinuous and convex. Let us assume that F “ f ` g has a mini-
mizer x‹ P Rd. For a constant step size γk “ 1

L
(@k P N):

F pxkq ´ F px
‹
q ď

2L

k2
}x0 ´ x

‹
}

2
2.

2.4.6 Douglas-Rachford method

Here, we focus on the optimization problem:

minimize
xPRd

fpxq ` gpxq, (P15)

where f : Rd Ñ p´8,8s and g : Rd Ñ p´8,8s are two convex functions. Contrarily to the
proximal gradient method, the Douglas-Rachford does not require f to be differentiable.

Starting from an initial point y0 P Rd, the Douglas-Rachford algorithm reads:
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Algorithm 13 Douglas-Rachford method.

xk “ proxγkf pykq

yk`1 “ yk ` µk
`

proxγkg p2xk ´ ykq ´ xk
˘

,

where γk ą 0 is a step size (without restriction) and µk P p0, 2q.

Remark 2.31. Douglas-Rachford iteration can be written as fixed-point iteration:

yk`1 “ yk ` µk
`

proxγkg
`

2 proxγkf pykq ´ yk
˘

´ proxγkf pykq
˘

.

Defining the auxiliary mapping x P Rd ÞÑ rproxhpxq “ 2 proxhpxq ´ x for any proximable
function h : Rd Ñ p´8,8s, the fixed-point iteration also reads:

yk`1 “

´

1´
µk
2

¯

yk `
µk
2

rproxγkg
`

rproxγkf pykq
˘

.

The case where µk “ 1 (@k P N) is the usual Douglas-Rachford algorithm. When µk ą 1,
it is an over-relaxation while when µk ă 1, we talk about under-relaxation. In practice, we
usually consider µk “ γk “ 1 (@k P N).

Theorem 2.32 (Convergence of Douglas-Rachford method). Consider Problem (P15) with
f : Rd Ñ p´8,8s and g : Rd Ñ p´8,8s being two proper, lower semi-continuous and convex
functions. Let us assume that f ` g has a minimizer in Rd.

For a fixed step size γk “ γ ą 0 and relaxation parameter µk P rµ, µs (@k P N), where
0 ă µ ď µ ă 2, the sequence pxkqkPN generated by the Douglas-Rachford method converges to
a minimizer of f ` g.

2.5 Primal-dual methods
We have seen previously that the proximal gradient method, used for minimizing a composite
objective function, reduces to:

1. the gradient method when g “ 0;

2. the proximal point method when f “ 0.

In this section, we exploit these tow simple algorithms with the dual problem (P9) to devise
primal-dual methods.

2.5.1 Lagrange multipliers

We consider Problem (P8) and its dual Problem (P9) when g “ χtbu (b P Rp), which boils
down to the following primal:

minimize
xPRd

fpxq

s.t. Ax “ b,
(P16)
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and dual:
minimize

νPRp
bJν ` f˚p´AJνq. (P17)

Starting with an initial primal-dual point px0, ν0q P Rd ˆ Rp, the method of Lagrange
multipliers is:

Algorithm 14 Method of Lagrange multipliers.

xk`1 P arg min
xPRd

Lpx, νkq

νk`1 “ νk ` γkpAxk`1 ´ bq.

where γk ą 0 is a step size (without restriction).

Proposition 2.33. Let h : Rd Ñ p´8,8s be a convex, proper and lower semi-continuous
function and µ ą 0. Then f is µ-strongly convex if and only if f˚ is differentiable and ∇f˚
is µ´1-Lipschitz continuous.

Theorem 2.34 (Method of Lagrange multipliers). If f is µ-strongly convex (µ ą 0), proper
and lower semi-continuous, then the method of Lagrange multipliers for Problem (P16) is
the gradient method applied to Problem (P17).

In addition, if the Lagrangian of Problem (P16) has a saddle point and if γk ď µ
σ2
A
, where

σA ą 0 is the largest singular value of A, then ppxk, νkqqkPN converges to a saddle point of
the Lagrangian.

Proof. By the previous proposition, f˚ is differentiable. The gradient method is:

νk`1 “ νk ` γkA∇f˚p´AJνkq ´ γkb
ðñ Dxk`1 P Rd : xk`1 “ ∇f˚p´AJνkq, νk`1 “ νk ` γkpAxk`1 ´ bq

ðñ Dxk`1 P Rd : ´AJνk P Bfpxk`1q, νk`1 “ νk ` γkpAxk`1 ´ bq

ðñ Dxk`1 P Rd : 0 P Bfpxk`1q ` A
Jνk, νk`1 “ νk ` γkpAxk`1 ´ bq

ðñ Dxk`1 P arg min
xPRd

fpxq ` νJk pAx´ bq, νk`1 “ νk ` γkpAxk`1 ´ bq

ðñ Dxk`1 P arg min
xPRd

Lpx, νkq, νk`1 “ νk ` γkpAxk`1 ´ bq,

where L is the Lagrangian of Problem (P16).
In addition, f˚ is µ´1-gradient Lipschitz, so ν ÞÑ bJν`f˚p´AJνq is σ2

A

µ
-gradient Lipschitz,

where σA is the largest singular value of A. Therefore, the gradient descent with γk ď
µ
σ2
A

converges to a dual solution ν‹. Then, by continuity of ∇f˚, pxkqkPN converges to x‹ “
∇f˚p´AJν‹q, that is x‹ P arg minxPRd Lpx, ν

‹q. Thus x‹ is a primal solution and x‹, ν‹q a
saddle point.
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2.5.2 Augmented Lagrange multipliers

The proximal point method is obtained from the proximal gradient descent with f “ 0. In a
general context, the proximal point method is defined for minimizing a proper convex lower
semi-continuous function h : Rd Ñ p´8,8s:

Algorithm 15 Proximal point method.

xk`1 “ proxγkh pxkq ,

where γk ą 0 is a step size (without restriction).

It is mainly a conceptual algorithm. Let us remark that the step size γk affects both the
number of iterations to reach an ε-solution and the cost of prox-evaluations.

Definition 2.35 (Augmented Lagrangian function). Let γ ą 0 be a parameter. The aug-
mented Lagrangian function associated to Problem (P16) is:

Lγ : px, νq P Rd
ˆ Rp

ÞÑ fpxq ` νJpAx´ bq `
γ

2
}Ax´ b}22.

Starting with an initial primal-dual point px0, ν0q P Rd ˆ Rp, the augmented Lagrangian
method is:

Algorithm 16 Augmented Lagrangian method.

xk`1 P arg min
xPRd

Lγkpx, νkq

νk`1 “ νk ` γkpAxk`1 ´ bq,

where γk ą 0 is a step size (without restriction).

Theorem 2.36 (Augmented Lagrangian method). If f is convex, proper and lower semi-
continuous, then the augmented Lagrangian method for Problem (P16) is the proximal point
method applied to Problem (P17).

As a consequence, pνkqkPN converges to a dual solution.
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Proof. Defining h : ν P Rp ÞÑ bJν ` f˚p´AJνq, the proximal point method reduces to:

νk`1 “ proxγkhpνkq

ðñ νk`1 “ arg min
νPRp

γkhpνq `
1

2
}ν ´ νk}

2
2

ðñ 0 P γkBhpνk`1q ` νk`1 ´ νk

ðñ 0 P ´γkABf
˚
p´AJνk`1q ` γkb` νk`1 ´ νk

ðñ Dxk`1 P Bf
˚
p´AJνk`1q : νk`1 “ νk ` γkpAxk`1 ´ bq

ðñ Dxk`1 P Rd : ´AJνk`1 P Bfpxk`1q, νk`1 “ νk ` γkpAxk`1 ´ bq

ðñ Dxk`1 P Rd : 0 P Bfpxk`1q ` A
Jνk`1, νk`1 “ νk ` γkpAxk`1 ´ bq

ðñ Dxk`1 P Rd : 0 P Bfpxk`1q ` A
Jνk ` γkA

J
pAxk`1 ´ bq, νk`1 “ νk ` γkpAxk`1 ´ bq

ðñ Dxk`1 P arg min
xPRd

fpxq ` νJk pAx´ bq `
γk
2
}Ax´ b}22 : νk`1 “ νk ` γkpAxk`1 ´ bq

ðñ Dxk`1 P arg min
xPRd

Lγkpx, νkq : νk`1 “ νk ` γkpAxk`1 ´ bq.

The assumption that f is convex, proper and lower semi-continuous is necessary to state
that xk`1 P Bf

˚p´AJνk`1q ðñ ´AJνk`1 P Bfpxk`1q.

2.5.3 Alternating direction method of multipliers

We consider Problem (P8) and its dual Problem (P9) when f and g are only proximable
functions, which leads to primal:

minimize
xPRd,yPRp

fpxq ` gpyq

s.t. Ax “ y.
(P18)

and dual:
maximize

νPRp
´g˚pνq ´ f˚p´AJνq. (P19)

As a reminder, the augmented Lagrangian for Problem (P18) is:

Lγpx, y, νq “ fpxq ` gpyq ` νJpAx´ yq `
γ

2
}Ax´ y}22.

Starting with an initial primal-dual point px0, y0, ν0q P Rd ˆ Rp ˆ Rp, the alternating
direction method of multipliers is:
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Algorithm 17 Alternating direction method of multipliers.

xk`1 P arg min
xPRd

Lγkpx, yk, νkq “ arg min
xPRd

´

fpxq ` νJk Ax`
γ

2
}Ax´ yk}

2
2

¯

yk`1 P arg min
yPRp

Lγkpxk`1, y, νkq “ arg min
yPRp

´

gpyq ´ νJk y `
γ

2
}Axk`1 ´ y}

2
2

¯

νk`1 “ νk ` γkpAxk`1 ´ yk`1q,

where γk ą 0 is a step size (without restriction).

Theorem 2.37 (Alternating direction method of multipliers). If f and g are convex, proper
and lower semi-continuous, then the alternating direction method of multipliers for Prob-
lem (P18) is the Douglas-Rachford method applied to Problem (P19).

As a consequence, pνkqkPN converges to a dual solution.

Proof. Let F : ν P Rp ÞÑ g˚pνq and G : ν P Rp ÞÑ f˚p´AJνq. The Douglas-Rachford method
with µk “ 1 and γk “ γ ą 0 applied to F `G reads:

1. νk`1 “ proxγF pλkq;

2. δk`1 “ proxγGp2νk`1 ´ λkq;

3. λk`1 “ λk ` δk`1 ´ νk`1.

Using the properties:

1. x “ proxf pyq ðñ y ´ x P Bfpxq;

2. x P Bf˚pyq ðñ y P Bfpxq (f is convex, proper and lower semi-continuous, this is also
true for g);

3. y P Bfpx‹q ðñ x‹ P arg minx fpxq ´ y
Jx,

we get:

1. Dyk`1 P arg minyPRp gpyq ´ λ
J
k y `

γ
2
}y}22 : νk`1 “ λk ´ γyk`1;

2. Dxk`1 P arg minx fpxq ` ν
J
k`1Ax`

γ
2
}Ax´ yk`1}

2
2 : δk`1 “ νk`1 ` γpAxk`1 ´ yk`1q;

3. λk`1 “ νk`1 ` γAxk`1.

Combining 1. and 3., we get

1. Dyk`1 P arg minyPRp gpyq ´ ν
J
k y `

γ
2
}Axk ´ y}

2
2 : νk`1 “ νk ` γpAxk ´ yk`1q;

2. xk`1 P arg minx fpxq ` ν
J
k`1Ax`

γ
2
}Ax´ yk`1}

2
2 (no change).

Therefore, the iteration becomes:
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1. yk`1 P arg minyPRp gpyq ´ ν
J
k y `

γ
2
}Axk ´ y}

2
2;

2. νk`1 “ νk ` γpAxk ´ yk`1q;

3. xk`1 P arg minx fpxq ` ν
J
k`1Ax`

γ
2
}Ax´ yk`1}

2
2.

Defining ỹk “ yk`1 and ν̃k “ νk`1, we obtain:

1. xk`1 P arg minx fpxq ` ν̃
J
k Ax`

γ
2
}Ax´ ỹk}

2
2;

2. ỹk`1 P arg minyPRp gpyq ´ ν̃
J
k y `

γ
2
}Axk`1 ´ y}

2
2;

3. ν̃k`1 “ ν̃k ` γpAxk`1 ´ ỹk`1q.
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