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Introduction

This course comes as a complement to Pr Biau's course on statistical learning, and this in two directions:

1. it tackles both supervised (Chapter 1) and unsupervised learning (Chapters 2 and 3);
2. it presents an algorithmic point of view and comes with practical homeworks.

This explains why some major methods, like k-nearest neighbors, decision trees and random forests are
only skimmed over.

These lectures notes are organized in three chapters:

Chapter 1: a few classification methods are introduced in details and we bridge quickly the gap between
classification an regression:
¢ linear and quadratic discriminant analysis (LDA, QDA);
o Fisher discriminant analysis (FDA);
o kernel Fisher discriminant analysis (KFDA);
o multiclass linear discriminant analysis;
o logistic regression;
¢ Adaboost and gradient boosting;
o support vector machines (SVM) for classification (SVC) and regression (SVR).
Chapter 2: we consider the problem of unobserved labels and present some methods to produce a partition of
the input space:
o expectation-maximization for Gaussian mixtures (soft k-means);
¢ k-means algorithm;
o spectral clustering;
o hierarchical agglomerative clustering;
o density-based spatial clustering of applications with noise (DBSCAN).
Chapter 3: the curse of dimensionality is quickly addressed and some dimensionality reduction techniques
(linear or not) are presented:
o principal component analysis (PCA);
< random projections;
o kernel principal component analysis (KPCA);
< multidimensional scaling (MDS).

In all chapters, we start from a generative (or statistical modeling) point of view and gently slide to the
discriminative angle, keeping in mind Vapnik's principle: avoiding a more general (and potentially more
difficult) task than that we aim at.



Moreover, many methods are explained with a probabilistic point of view (namely, we consider a random
variable X or a pair of random variables (X, Y), respectively for unsupervised and supervised learn-
ing) but in practice, we assume that people are provided with a sample {X;, ..., Xy} (respectively
{x ), ..., (X,, Y)}) and all formulas can be transformed to an empirical twin by considering the
empirical distribution %ZL Orx} (respectively %ZL 0y(x,.v)}), where 0 represents the Dirac measure.



Chapter 1

Classification

Classification focuses on a pair of random variables (X, ¥) € R¥x[C], where C is a positive integer, and ¥
is a label characterizing the class of X. The bracket notation is for indexing integers: [C] = {1,2, ..., C}
I there is no ambiguity, with a slight abuse, we may consider that [2] = {—1, +1} = {£1} (this appears
for binary classification). The aim of classification is to predict ¥ given X with minimal error (i.e. finding
g : RY — [C] such that P(Y # ¢(X)) is minimal), based on a sample {(X;, ¥))},...,. This is the most
pleasant situation of statistical learning since we observe both X and Y, and Y is discrete.

In this chapter, we describe several methods of classification, from a statistical modeling point of view to
a discriminative one. We propose to make, at the end of this chapter, a detour to regression. Regression
is very similar to classification, but Y is continuous (¥ & R) instead of being discrete. In practice, this
boils down to changing the loss function appearing in variational formulations used to build estimators.

1.1 Discriminant analysis

1.1.1  The multivariate normal distribution
The first elements of machine learning rely on Gaussian vectors. To address them, let us first remind
their definition and their usual estimators.

Definition 1.1.1. A random vector X having values in R? is a Gaussian vector if

| a univariate Gaussian random variable, or
YVaeR? a"Xis
constant almost surely.

Property 1. /f X is a Gaussian vector, then it is squared integrable. In addition, denoting 1 = E X
and L = V(X), L is a positive semi-definite (PSD) matrix and the distribution of X, noted N (i, L),
is entirely characterized by y and L.

Moreover, if ¥ is non-singular, then the distribution of X has a probability density function with



respect to the Lebesque measure on R? which is

x € RY s [27T|F e b0 E ) _ 1 o)

@m? |z
where |L| is the determinant of L.

Proposition 2 (Maximum likelihood estimators). Let y* € RY, £* be a positive definite (PD) matrix
and {X, ..., Xy} be a sample independent and identically distributed (iid) according to N (u*, L*).

Then,
,I n
. X
o= Z

is a maximum likelihood estimator (MLE) of y* and as soon as n > d,

is a MLE of L*.

The proof is a good exercise.

Proposition 3 (Unbiased estimators). For @  positive  integer  C, let
{(X{ ..... X,{/.)} be C independent samples such that each sample (X{ ..... X,{/) (for all

1<j<C
j €1C)) is iid according to N (y;, E), where y; € R? and ¥ is a PSD matrix of size d.

Then for each | € [C:

is an unbiased estimate of L.

The proof is a good exercise.

1.1.2 Bayes classifier for multivariate normal distributions

Let C be a positive integer and (X, Y) € RY x [C] be a random pair of variables, where Y is a label
characterizing the class of X. We are interested in computing a Bayes classifier when each class i € [C]



is normally distributed: there exists a PD matrix £; and a vector y; € RY such that
XY =i~Ny, L)
More formally, we assume that (X, Y) is distributed such that:

Vie[C]: XY =i~N(@u,L)
Y ~ D(n),

where 7 €0, 1[€ such that 5_C, 7, = 1 and D(x1) = Z/.C=1 7;0; is the discrete distribution supported

by [C] and such that D(n)({j}) = P(Y = j) = m; for all j € [C].

As a reminder, a Bayes classifier for classifying X is defined by:

vx e R g(x) € argmaxc o P(Y = (| X = x).

Proposition 4. Let us assume that each class is normally distributed and let 1; = P(Y = i) be class
prior probabilities, for all i € [C] Then, a Bayes classifier g* is defined by:

[N

* , _ 1
Vx eR?: g*(x) € arg min;gc) Z(X — ) TE (e — ) + 5 log |Z;| — log(7m;).

The proof will be done during the class.

Remark 1.1.1. When my = --- = ¢ and &y = - - - = L¢ = |y, the Bayes classifier g* boils down
to be the minimum distance to center classifier.

Let us now assume that we have only two classes (C = 2) and let us analyze a Bayes classifier for
multivariate normal distributions. As a reminder, we have

. T P =1|X=x)>PY=-1|X=x)
: d

g xER— { —1 otherwise.

Before stating the first result regarding discriminant analysis, let

1 ifx>0

gn : R :
sign =X & H{ —1 otherwise,

be the sign function.

Proposition 5 (Linear discriminant analysis (LDA)). Let us assume that C = 2 and that each class is
normally distributed with equal and non-singular covariance matrix, denoted L. Let m; = P(Y = i)
be class prior probabilities, for all i € [2]. Then, a Bayes classifier is

g x € R? — sign(wx + b),



where
W = Z_1(u1 — U_1)
b= Yy + )T g — )+ log (2.

The proof is a good exercise.

Remark 1.1.2. Under the LDA assumptions and when my = m_4, we have:
g =1 = (v —m) T 0 — ) < (= pg) TE(x — p),

te. if and only if x is closer to i than u_y with respect to the Mahalanobis distance ruled by ¥.
This is similar to whitening the data with Y7 and considering the Euclidean distance.

Using such a metric makes sens, as shown on Figure 1.1.

Figure 1.1: Here, the point X; is closer to 15 in the Euclidean distance while it appears naturally that it
belongs to the group of data centered in p. The Mahalanobis distance makes it possible to rectify this

misbhehavior.

From a practical point of view, the Bayes classifier exhibited in Proposition 5 is estimated by plug-in:
let {(Xi, Y})}1<icn be iid copies of (X, Y). Then, an estimator of g* as defined in Proposition 5 is:

§: x € R? — sign(W'x + B)

where A

Wo=2""(fh — fiq)

b= Yo + ) "E (s — ) + log )
and -

A 1 ‘
th = card({X;:YVi=1,1<i<n}) Zwyﬁff Xl

D 1

H=1 = Gaxv=—11<izan Zkﬁg{ Xi

7 2 — 1 . n N
L=15 ey Z%fjv (X — )X — )"

o o= card({Xi:Yi=1,1<i<n})

n
# | = card({ Xi:Yi=—1,1<i<n})

- n

=1-—r.

C

10



Let us remark that other estimators of ¥ worth considering. For instance, since

L=VX[Y=1)=VX|Y=-"D)=mVX[Y=1)+1, VX[V =-1),

where V(X' | V) =E [(X —EX|Y)X-EX|Y)" | Y], we may consider

- 1

& _ 4 S 0% = B0%— )"
" card ({X;: vV, =1,1<i<n}) w<,<n( ) )
=

1
/\7 Xl_/\ )(I—AT
oy = T =y &N )

:—ZZ —)'"

1<L<I7
=/

1<i<n
Yi=—1

In Proposition 5, it appears that the class proportions 7y and 7_q translate the separating hyperplane to
the left or to the right. If one chooses to ignore class proportions (because of a known imbalance of the
sample), it is then enough to estimate V(X) rather than L. This is formalized in the following property.

Property 6. Assume that assumptions of Proposition 5 are granted and that m = m_y. Then, with
the same notation as for Proposition 5:

{rer:wixtb—0} —{xer:wx+b-0},
where w = V(X)~"(ty — p_1) and b = 1j(,u,1 + ) TVX) T (g — ).
The proof will be done during the class.

Proposition 7 (Quadratic discriminant analysis (QDA)). Let us assume that C = 2 and that each
class is normally distributed. Let m; = P(Y = i) be class prior probabilities, for all i € [2], and let

us denote

1
h:x € R EXT(Zj D P P (7D ST N I

1

b=~ Iy — T o (B g (1)
2(“*1 TR ey 09(|z1| + log T

Then, a Bayes classifier is

1 ifh(x) +b>0
* . d
gox el = { —1 otherwise.

The proof is a good exercise.

N



LDA exhibits that for Gaussian data with same covariance matrix, the optimal classifier is linear. The
same kind of result can be obtained for least squares regression, as exemplified by Proposition 8.

@ Class1 @ Class1 @ Class1
10 ® Class-1 8 ® Class-1 ® Class-1

75
50
25

0.0

-4

-2 0 2 4 6 8 -2 0 2 4 3 -2 0 2 4 3 8

® Cass1 100 e Class1

® Class-1 ® Class-1

-5

5.0

-2 0 2 4 6 8 10 12 -2 0 2 4 6 8

Figure 1.2: Comparison of LDA and QDA on different simulated datasets (Gaussian classes with poten-
tially different covariance matrices).

Proposition 8 (Linear regression). Let (X, Y) be a pair of random variables with values in R? x R

suchthat% (H HH),WhereueRdmeRZERdXd?ER"U>O

12



such that %‘% is PD. let w =Y ~'0 and 0> = g> — ¢7L 0. Then,

Vx € RY, VX =x]~N(m+w'(x—up),d?),
and in particular, E[Y | X = x| =m + w' (x — p).

The proof will be done during the class.

1.1.3 Fisher discriminant analysis

Fisher discriminant analysis explores linear classification with weaker assumptions on data that linear
discriminant analysis. In practice, it is only assumed that X € [? (such that for all i € [C], E[X| Y = i
and V[X'| Y = {] exist) meaning that the classes are sufficiently concentrated around their means.

Fisher discriminant analysis aims at finding a direction w € R\ {0} such that the projection of X onto

this direction maximizes the variance between classes while minimizing the variances within classes (see
Figure 1.3).

L)
o o o
oo::.‘
' °
o ® e %o
e ®
gee
ced,
e o
® o
o ®
...
'Y
«
Q..'ﬁ
* ® *

Figure 1.3: Subspace with maximal Rayleigh quotient.

More formally, we are interested in minimizing the Rayleigh quotient:

o V(E (w'X[|Y))
maximize r(w), where r(w)=

weRd E(VWwTX|Y) buso (>1)

Denoting 1 = E X and, for each i € [C], gy = E(X|Y =), L; = V(X|Y = i) and m; = P(Y = i), we

remark that:
{Em V)~ Yo,
VX|Y) ~ Y, by,
Thus, Vw = 0:




Let us assume that C = 2. Then, we have y = myy + (1 — my)u—y and the Rayleigh quotient becomes

w (o — i) — )"+ (0= )y — ) — ) ") w

riw) = Wl (mLy + (1 — m)L_ ) w

)T

w (i — py) (i — p) Tw
wTZw '

=7T1(1 —JT1)
where ¥ = JT1Z1 + (1 — ]T1)Z,1.

Proposition 9 (Fisher's linear discriminant). Let us assume that C = 2 with 1y #+ y_4 and ¥ =
mry + (1 — m)X_y non-singular. Then

range (2_1(/11 — 1)) \{0} = arg max,,cps r(w).
The proof will be done during the class.

Remark 1.1.3. When covariance matrices are equal, Fisher's discriminant direction is the same as
that of LDA.

In addition, if the LDA assumption L1 = L_4 is not granted but the LDA estimator is based on the
plugin estimator of ¥ = m V(X|Y = 1)+ (1 — m) V(X|Y = —1), then estimated directions for
LDA and Fisher's discriminant analysis are the same.

Projection of X on the direction w is given by:
h(X)=w'X.

In order to classify, we may apply different rules like assigning to the class of the nearest center or
thresholding based on an intercept. Such an intercept b can be defined by:

b e argmin, g P(Y + ga(X)),

where
go: x € R? — sign(h(x) + a).

Let us remark that, in its empirical version (that is replacing expected values by their means computed
with the sample {(X;, Yi)},.,,), an intercept can be defined by

. 1 &
b € argmin, g - Z Tyitgax)
(=

where ¢ € R +— 1577 1y.0 v is a plecewise constant function, for which the steps are at
{=h(Xy), ..., —h(X,)}. This means that only n values have to be evaluated to determine an empirical
threshold b.

14



1.1.4 Kernel Fisher discriminant analysis

Let {X;}1<icn C RY be iid copies of X and k: RY x RY — R a kernel (see Section 1.4.2) with feature
map ¢: RY — G, where G is an appropriate Hilbert space (of dimension D, potentially infinite). As a
reminder, we have V(x, x') € R? x R?: k(x, x') = (¢(x), p(x'))5-

We aim at applying the kernel trick (see Section 1.4.3) to Fisher's approach. For this purpose, let us
consider the problem of Fisher’s linear discriminant analysis for the random pair (¢(X), Y). Denoting,
for each i € [C], m = P(Y = i), p” = B(¢(X)|Y = i), L = V($(X)|y = i), we have, for w € G,

2
<W,uf’—uf1>g

<W, (me + (1 —ﬂ1)zf1) W>g-

r(w) =m(l —m)

Since G may be infinite-dimensional, the Rayleigh quotient cannot be maximized numerically. How-
ever, in its empirical version, it involves the estimators ﬁf,ﬁﬂ € span ({o(X1), ..., &(X,)}). Thus,
Vw € span({o(Xi), ..., gb(Xn)})L, r(w) = 0 and we can restrict the maximization of r to w in
span ({o(X1), ..., #(X,)}). In other words, we look for solutions w such that there exists @ € R”
with w =3 ", a;¢(Xi). Then, we get

(a (v — v))?
al (7T1LP1 + (1 — 7T1)LP,1) a

r(w) = m(1 —m)

where for each i € {1, 2},

and

o= ((omztor)),)  em

1<1,j<n

Let Z, = {l € [n] : ¥, = i}. Replacing yf and I by their estimates j’ = \%T\Zeez, $(X;) and £7
gives a practical method for nonlinear discriminant analysis: on the first hand, for each i € {1, 2},

\ ! 1
b = (mzk(xﬁﬂ) ----- mzk()(hxﬂ

[eT; €T,

On the other hand, let X be the sample matrix in the feature space G:
X=[pX)] . [¢(X)] € R™P.

Then, the matrix of centered data is

] — 1 ! 1
Z:X—[;;¢(Xe)|~-|;Z¢(Xe)] =X—]l(; o(Xe) | = (I —MX = H,X,




where /, is the identity matrix of size n, M = 11" /n € R™", 1 is the all-ones vector of adequate size
and H, = [, — M.

Let, for all i € {1,2}, X; be the submatrix of X containing only the rows indexed by Z;, and
Z; = Hg X,
the matrix of the centered data from class i. Then,
L0 =277 = X[ Hy X = X[ Hz X..
Moreover, we easily see that W; = XZ?XT, which leads to
B, = XEPXT = XX Hg, X XT = KiHg KT,
where K; = XX € R™ is also defined by Ki = (k(X;, X)) 1< -

1<I<IT|

Similarly to previously, solutions are given by

aoc (mWy+ (1 —m)P_) (0 — 0).

In addition, knowing the direction w = Y7, a;¢(X)), projection of X can be computed by:

BX) = (w, 9(X))g = >_ ak(X, X).
i=1

1.1.5 Multiclass linear discriminant

Let us denote yy = EX, gy = B(X|Y = i) and £, = V(X|Y = i) for each i € [C} and £ = Y ", #L,
Then, the Rayleigh quotient reads:

were M = Z; 7 — p) (i — w) " is @ priori a rank-(C — 1) matrix of size d x d.

It can be shown, similarly to previously, that if w maximizes r, then w is an eigenvector of Z~'"M and
then the Rayleigh quotient equals the corresponding eigenvalue. Since £~ is a rank-d matrix, if M is at
most a rank-(C — 1) matrix, then ="M is a rank-(C — 1) matrix. Thus, the (C — 1) leading eigenvectors
of L'M, denoted (w, ..., we_q) (with non-increasing eigenvalues), concentrate the variability between
features.

At this step, if for C = 2, it is sufficient to find an intercept to separate the data, it is more complicated
for multiclass problems. The idea is thus to apply a simple classifier in the feature space described by
eigenvectors (wy, . . ., we_q): let P € RI¢=)x4 be the row matrix of normalized eigenvectors w;/ HW,'H&.
One can choose the classifier given by:

g(X) € argming HPX — ’D“"H& .

16



1.2 Logistic regression

1.2.1  Model and risk

Since estimators of second order moments are very sensitive (in particular to model misspecification and
outliers), we explore here another way of estimating a linear classifier. For this purpose, we assume the
Bayes classifier to be linear through a particular decision function.

Similarly to LDA, let us consider normally distributed classes with equal variances:
Vie[Cl: X|Y=i~N(@u,I).

Then, for each class i € [C], the log posterior ratio is given by:

P(Y =i|X =x)
VxeR?: | =w, x + b,
X € 09(P(Y=C|X=x)) Wy X +
where
w, =L (1 — pc)
TT; 1 2] [ T ey
b =1 — ] —=1 — —U X — =1 L
Og (JTC) 2 Og (‘ZC|) + 2)UC :UC Znuz ,u

This linear form of the log ratio (also called log-odds or logit transformations) results from Gaussian
assumption but motivates, in a more general framework, to model the log ratio as a linear function of x.
Thus, without any other assumption, logistic regression assumes that, for each class i € [C — 1], there
exists (b7, wf) € R x RY such that:

P(Y = i| X = x)
P(Y = C| X = x)

VxeR?: o = (w")"'x + b
g L L

In particular, for C = 2, it is assumed that there exists (b*, w*) € R x R? such that:

P(Y =1]X = x)
PY = —1]X = x)

¥x € R?:  log ( ) = (W) x + b*.

Remark 1.2.1 (Hypothesis on the Bayes classifier). The point of view adopted here is that, contrarily
to LDA, logistic regression does not directly make an assumption on the data distribution, but on
the Bayes classifier: for two classes (C = 2), the Bayes classifier is assumed to be linear (i.e.

the decision frontier is a hyperplane). By simplicity, the common decision function f - x € RY
log (]PPZ(YYSJ—M) is assumed to be affine. The forthcoming derivation exhibits that this results in
making an assumption on the distribution of Y|X = x.

17



Example 1.2.1. A motivating example is the case where X € R? and X | Y has density x € R?

(—ny)? _ : ) . . o
ﬁe* =2 Lp(x2), Le. the first coordinate of X|Y is Gaussian and the second is independent

from the first and uniform on [0,1]. In this case, it is easy to see that the decision function f is
linear but X | Y is definitely not Gaussian.

Now, optimal parameters w*, b* have to be estimated. For this purpose, we resort to empirical risk
minimization based on the following result.

Theorem 10. Let us consider that C = 2 and that the logit-transformation is affine with parameters
(b*, w*). Let I*: x € R +— (w*)Tx + b*.

Assuming that X € L', then * is a minimizer of the risk functional f — TE[log (1 + exp(—Yf(X)))]
over all affine functions and
g*: x € R? — sign(f*(x))

is a Bayes classifier.

The proof will be done during the class.

Let {(X;, Y)}i<icn C€ R? x {1} be an iid sample distributed as (X, ¥). Theorem 10 illustrates that
parameters of logistic regression can be estimated by minimizing an empirical risk defined by the logistic

loss:
n

1 T
Ry(w. b) = — ) log (14 ¢
it =) g1+
with respect to the hyperplan parameters (w, b) € R? x R. This is a new example of a loss function for

classification, to be compared to the exponential and the hinge functions (see Figure 1.4). Let us remark
that the exponential and logistic losses are especially well suited for classification:

1. they are convex and differentiable, which makes optimization easy;

2. they are tight majorants of the 0 — 1 loss, making it possible to state that P(Y = sign(f(X))) <
E(@(Yf(X))) (the empirical version is also true);

3. they help in reaching a Bayes classifier (see the next result).

Proposition 11 (Suit & tie classification losses). Let (X, Y) be a pair of random variables having
values in R? x {41} and ¢ : R — R be a function such that:

1. ¢ is strictly convex;

2. 0 (s differentiable;

3. ¢ is non-increasing,

4. ¢ is non-negative;

5 ¥x R px)=P(Y =1]X =x) € (0,1).

Then, the risk functional f v+ E[€(Yf(X))] has a minimizer f* and x € RY s sign(*(x)) is a Bayes
classifier.

The proof will be done during the class.
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— 0-1: H(X)=1x<0
Exponential: i{x) =e~*
Logit: fix) =loga(1 + &%)
Hinge: f{x) = max(0, 1 —x)
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Figure 1.4: Example of convex losses.

Let us remark that even though the hinge loss does not satisfies the assumptions of Proposition 11, it
leads to a Bayes classifier (see Exercise 1.5).

Remark 1.2.2 (Regression-like model). Logistic regression can also be seen as a latent-variable
model: consider the latent variable Z = t*(X) + €, where € ~ L(0, 1) (the logistic distribution) is
a random variable independent from X, and set Y = sign(Z). Then, for any x € RY, we have:

(
=P (X)+e>0|X =x)
= P(—e < *(x)) (by independence)
= P(e < *(x)) (by symmetry of L(0, 1))
1 o
k=] (by definition).

As a result, log (%) = f*(x), which is the assumption of logistic regression. Let us remark that

the logistic distribution for the noise has been chosen for computational convenience (with respect
to a normal distribution, which leads to the probit model).

)
A probability density function of L(y, g) (6 > 0) is x € R — ﬁ and its cumulative density function is
o|1+e @
1
T4+e™

xeER—

X—H -
T

Remark 1.2.3 (Generalized linear model). Logistic regression can be introduced as a generalized
linear model in which Y | X ~ B(a((w*)" X)), where 0 : x € R 1+1e,x is a non-linear function
used for computational convenience (any other function from R to (0, 1), such as a cumulative

distribution function, can be chosen).

In other words, Y | X has a Bernoulli distribution and B[Y | X] = ¢~ ((w*)" X)) with the link function
g:x € (0,1)— log (ﬁ) called the logit function.
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Remark 1.2.4 (From LDA to logistic regression). For two classes, it appears that the LDA model:

Y ~R(n)
XY ~ Ny, I)

is equivalent to
X~ N (i, B) + (1 = mN (g, T)
Y|X~R (é)

14e—wTX+b)

(where w and b are given by Proposition 5) that is X has a Gaussian mixture distribution and
Y | X has a Rademacher distribution. In this setting, logistic regression consists in dropping the
first part of the model assumptions, that is X has a Gaussian mixture distribution, and keeping only
the second part.

Remark 1.2.5 (Geometrical interpretation). The proof of Theorem 10 reveals that the logistic regres-
sion assumption is equivalent to

1

V(x, y) e R’ x {£1}: P(Y =y[X=x) = T+ exp(—y (w)Tx+ b))

This probability is illustrated in Figure 1.6. Basically, it tells that when a point is far from the
hyperplane {X cRY: (w)Tx + b*}, its conditional probability is either 1 or 0. Otherwise, when a
point is close to the hyperplane, its conditional probability is almost a linear function of its distance
to the hyperplane.

1.2.2  Maximum likelihood estimation

The use of the logistic loss in the logistic risk R(w, b) = E [log (1 + e‘Y(WTX“’))] is consistent when

thinking to maximum likelthood estimation of (w*, b*). Let fx vy and fx be respectively a joint density of
(X, Y) and a marginal density of X. Since, for all x € RY, Y | X = x has density

. 1
1+ exp(—y(b + w'x))

fyix(x, 7)1y

with respect to a counting measure, the full log-likelihood of any (w, b) € R? x R is:
l0g(fo (X, ¥)) = log(fy x(X, ¥) +log(ix(X)) = —log T+ &' 2] + log(fy(x)),

and the conditional log-likelihood (ie. in the statistical model associated to Y| X) is:

log(P(Y|X)) = — log (1 n e_WxH,)) .

Given our assumption, fx does not depend on the parameters w and b, so maximizing the full log-likelihood
in order to estimate (w*, b*) boils down to maximizing the conditional log-likelthood. Up to the sign, the
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conditional log-likelthood is exactly the term under the expectation in the logistic risk R(w, b). Going
to estimation, it becomes clear that the empirical conditional log-likelihood of any (w, b) € RY x R is
linked to the the empirical logistic risk:

log | [ ]P(Y: | X)
i=1

= — Z log (1 4o ViwTXAE) —nR,(w, b).

i=1

This point is a big difference between LDA and logistic regression: LDA fits the parameters by maximizing
the full log-likelihood

log(fix.n)(X, V) = log(P(Y'| X)) + log(fx (X)),
while logistic regression leaves the marginal density of X aside and maximizes the conditional log-
likelihood. In some sense, the marginal likelihood can be thought of as a reqularizer.

Remark 1.2.6. If the dataset in a two-class logistic regression model is linearly separable, the
maximum likelihood estimates of the parameters are undefined (infinite): let {(X;, Yi)}1<i<n be an
itd sample distributed similarly to (X, Y) and such that:

(wp, bo) € RY x R : Vi & [n], Vi(wy X; + bg) > 0.

Then, ¢: A € R — F(Awg, Abg) = -3, log (1 + e Yiwg Xtboll) s decreasing and converges to

0. In addition, for any (w, b) € RI xR, F(w, b) > w > 0. Since ¢ is decreasing and converges
to 0, we can find A € R such that "2 > @(}) = F(Awg, Abo), so F(w, b) > F(Awp, Abg). We

conclude that there is no solution.

However, the LDA coefficients for the same data will be well defined.

As a result of this remark and in order to enhance the generalization properties of logistic regression, it is
common to estimate (w*, b*) by minimization of a reqularized empirical risk (or negative log-likelihood):

n

1 : A
minimize —~ 5 lo (1 o TR ) 22
weR?, heR N Z 9 2 b

where A > 0 be a reqularization parameter. It is easy to see that the ¢, reqularization on w helps solving
both caveats of vanilla logistic regression.

1.2.3 Logistic regression versus LDA

Besides the maximum likelihood difference enlightened in the previous section, we give here some empirical
conclusions borrowed from [2013].

Power of logistic regression

If in fact the classes are Gaussian, then in the worst case ignoring this marginal part of the likelihood
constitutes a loss of efficiency of about 30% asymptotically in the error rate. Paraphrasing: with 30%
more data, the conditional likelihood will do as well.
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Outliers

Observations far from the decision boundary are down-weighted by logistic regression while they play a

role in estimating the common covariance matrix. It means that LDA is not robust to gross outliers (see
Figure 1.7).

In practice

In practice the normal assumption is never correct, and often some covariates are qualitative. It is
generally felt that logistic regression is a safer, more robust bet than the LDA model, relying on fewer
assumptions (see Figure 1.5).

1z e Class1
Class -1

2 .
0..9
0 o:o :‘:'0
s':,.’
.

s -

Figure 1.6: Illustration of the logistic regression hypothesis with non-Gaussian classes.
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Figure 1.7: Comparison of logistic regression and LDA with a single outlier.

1.3 Boosting
1.3.1 Adaboost

Adaboost (and boosting in a more general way) was designed to expand the expressiveness of linear
predictors by composing them on top of other functions. This can be done in several manners, such
as feature mapping or non-parametric estimation, or by boosting, which came up to answer a novel
theoretical question: that of designing a strong learning algorithm using a weak learning one.

The boosting approach has two important features:

1. the bias-complexity tradeoff: the error of an ERM learner can be decomposed into an approximation
error and an estimation error (see Figure 1.8). The more expressive the hypothesis class the
learner is searching over, the smaller the approximation error is, but the larger the estimation
error becomes. In the boosting paradigm, the learning starts with a basic class (that might have a
large approximation error), and as it progresses, the class that the predictor may belong to grows
richer. This procedures allows to have a smooth control of the tradeoff between approximation and
estimation errors.

2. computational complexity of learning: boosting is very cheap, particularly with decision stumps.

Let C be a symmetric class of {£1}-classifiers: for every g € C, —g € C. The aim of boosting is to

solve

1

tnimize — > £(Y;g(X))),
minirmize n; (Yig(X)

where F = {slgn(z; f),f; e C}. In the forthcoming paragraphs, we describe Adaboost (Algorithm 1)
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arg min, ga_p P(Y # h(X))
@

grg miny, ¢4y — Zlhéh(X)
z:l Y

Est|mm.

arg miny,

‘Approximation error

P(Y # h(X))

Figure 1.8: Types of errors in the empirical risk minimization process.

and its generalization ability.

Algorithm 1 Adaboost.
Input: 7 & N (number of iterations), {(X;, Yi)}1<i<n (training sample).
fo = 0 (null function)
for t =110 I do
(Wi, gi) € argming, gicp, ez 2_pq € VIl (ERM)
fi i1+ wig,
end for
Output: g/ = sign(f7).

Let us first remark that, in Algorithm 1, it is licit to consider w; > 0 since g € C < —g € C, s0
if a pair (w;, g¢) is solution to the empirical risk minimization problem, then (—w;, —g;) is solution too.
Thus, we just focus on the solution with a non-negative weight.

Property 12. Assume that Vg € C, 3i # j € [n] such that Y; = g(X;) and Y; # g(X;). Then, for
each iteration t € [T] of Algorithm 1, it is licit to consider:

. - : 1 1—e¢
ge € argmin, ¢ Z Di(i)Vy1qxy and w; = 3 log ( - t ) ,
i=1

—Yifi—1(X;)

e il
S/ =) and € = Zz 1 Dt Y%gt(X,')-

where for every i € [n], Dy(i) = =
j=1

The proof will be done during the class.

It comes that the iteration of Adaboost can be wrapped up in the following three steps (detailed in
Algorithm 2):

¢ find a classifier g € C with small weighted error;
o weight g; with w; such that f; = f;_1 + w;g; has a small empirical risk;
¢ update the point weights according to how they are recognized by f;.
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Algorithm 2 Adaboost in practice.

Input: 7 & N (number of iterations), {(X;, Yi)}1<i<n (training sample).
for i=1to n do
end for
fo = 0 (null function)
for t =1t 7 do
gr € argmingee d g Di(i)Tvzg0x)
€ < i1 Dili)1y40.0)

Wi € argmin, _p 2 Y1 e M-Hr00) — 1 jog (1;_[@) (ERM)

Zy— Y | Di(i)em "9 = 2. /e,(1 — ¢) (normalization)
for i =1 to n do
Dili) = Difiy o 17
end for
fi = 2;21 W9,
end for
Output: g/ = sign(f7).

Property 13. In Algorithm 2, we have for each iteration t € [T]:

o for all i € [n], Diq(i) = o ViltlX)

N ”|_|j:1Z/'
<& Zf = 2‘\/ (:}(1 — 61‘).
The proof will be done during the class.

Theorem 14. Assume that there exists y > 0 such that ¥t € [T, & < 3 — y almost surely and let
gl X — {1} be the classifier returned by Adaboost. Then,

1 - 2T
=) Vg < e
i=1

The proof will be done during the class.

Definition 1.3.1. Let F be a class of function from R to R and (Z, . . ., Z,) be an iid sample of
random vectors from RY. Let also (o, . . ., g,) be iid Rademacher random variables, independent
from (4, .. ., Zy).

The Rademacher complexity of F is

RAF(Z) =E [sup—|>

fer N
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Let us consider F = {f = Z _wig; - T € NJ(g,..., gr) € C',liwllg, = 1} be the class of
hypotheses and let us denote D, {x "), ..., (X,, Y)} the training set (made of iid copies of
(X, Y)).

Theorem 15. Let y > 0 and 0 € (0,1). Then, with probability at least 1 — 9,

log(1/3)
2n

Vie F. o P(Y + sign(f( Zm S E[R(CW’))H

The proof will be done during the class.

Lemma 16. Assume that there exists y € (0, 1/2) such that ¥t € [T], & < % — y almost surely and
let fr: X — R be the Adaboost classifier at the last iteration. Then,

1< 12\ TP
;;1Y/T(X,v1)<y£ ((1—4)/)(—1_2)/) ) .

The proof is a good exercise.

Theorem 17. Assume that there exists y € (0,1/2) such that ¥t € [T], ¢ < % — y almost surely
and let g!: X — {1} be the classifier returned by Adaboost. Let also & € (0,1). Then, with
probability at least 1 — 0,

4 log(1/0)

. (12T
P #9100 1 D)< (=42 (7550) )+ SERiCcmI+ =%

The proof will be done during the class.

1.3.2 ERM point of view and remarks
ERM

We have seen in Algorithm 2 that for all t € [T], each weight w; is obtained by the rule
w; € argmin, g ! Z o Yi(X 1 wigi(X)+wgi(X)
n f—

Defining ¢: x € RY — (g4(x), .. ., gr(x)) € {#1}', this update rule can be seen as a coordinate
descent for the empirical risk

] — T
= R’ — — e W X))
n Z
=
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Weighted error

0 20 20 &0 B0 100
Base learner

Figure 1.9: Weighted error of each weak learner. As expected, it tends to 0.5 since Adaboost focuses on
hard examples.

In a broader sense, Adaboost can be seen as a procedure alternating two steps:

1. learning the t™ component ¢; of ¢;
2. a descent on the " coordinate of w.

In that, Adaboost both learns a new representation of the data ¢ and performs a coordinate descent on
the convex risk previously defined, thus learning a generalized linear model penalized by the exponential
loss. Using the logistic loss x € R + log (1 4 e™) instead leads to something very close to logistic
regression.

Weak learners

In practice, it is common to use stumps as base classifiers, that is, decision trees of depth one. Thus,
at each iteration, decision stumps quantize the most discriminative coordinate in +1. The coordinate is
then weighted by minimization of the exponential empirical risk.

Noise

It has been shown empirically that noise severely damages the performance of Adaboost. That is the
most serious disadvantage of boosting.

In practice, we observe that the examples that are harder to classify end up dominating the selection of
the base classifiers, which play a detrimental role in the definition of the final classifier.

Multiclass classification

Even though Adaboost with trees has been awarded with the “best off-the-shelf classifier in the world"
title for binary classification problems, its natural extension to multiclass problems (C > 2) turns out to
be very poor.

For this reason, an efficient extension of Adaboost has been proposed for multiclass problems, called
Stagewise Additive Modeling using a Multiclass Exponential loss (SAMME). In accordance with its
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name, SAMME uses a multi-class exponential loss to computes the weights w;:

L
function, each component of which corresponding to a class. At iteration ¢, a weak classifier g;: X —

R is learned, such that g;(x) does have the form of the coding vectors ¥; (that is, components are

either 1 or —611) and f; = 2;21 w;g; is a function from X to RC. The new updates are w;, «

where )7[ has 1 in its Y component and —ﬁ otherwise, and f: X — R is a vector-valued decision

wi ¥ ge(X) . .
@ (log (t—f‘) + log (C — 1)) and Diq(i) = Di(i)e™ “. Let us remark that this update is
consistent with the situation in which C = 2. Besides this difference, weak classifiers are required to

have an error better than random guessing, that is ¢ < % Moreover, the final decision rule becomes

gl(x) = arg max, ;¢ (fr(x)); = argmax,_ ¢ Z; Wi1(g,),=1- This last inequality can be seen by
remarking that for any 1 < j + k < C:

)
(1) = (1), = Y we [{gut), = (g0

where

T+ ﬁ i (g:(x) =1
(geb)y = (gelx)); = 1 = + &5 U (gex), # 1 and (ge(x), # 1

—a5 =1 i (glx), =1

Thus
1 d 1 !

(Fr(x))e — (fr(x)); = (1 + m) Z Wil (g,00),=1 — (1 + m) Z Wil (g0, =1,
t=1 t=1
and

T T
(Fr() = (Fr(), > 0 &= ) wiligup=1 > ) wiligu=1-
t=1 t=1

In addition, SAMME comes with a variant of it, called SAMME.R (R for real), which makes use of class
probability estimates instead of classifiers g;. SAMME.R is generally even more efficient than SAMME
with respect to the classification accuracy.

1.3.3 Gradient boosting

Let F: R” — R be a real-valued function. It is known that under some assumptions (convexity,
differentiability of £ and Lipschitz continuity of V F, coercivity), the sequence defined by any xp € R”
and for all positive integer t by:

Xe = Xi—1 — WV F(x—1),
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where

wy € argmin, g F(x—1 — WV F(xi—1)),

converges to a minimizer of F. This is called gradient descent with exact line search. This procedure
can be wrapped-up in three steps:

weR

1. finding a direction of descent (here, V F(x;_1));
2. computing a step of descent w; (minimizing F(x;—1 — w¥ F(x;_4)) with respect to w € R);
3. updating the optimization variable x; = x;—1 — W,V F (x,_1).

Gradient boosting occurred from the similarity between Adaboost and gradient descent. To observe it, let
us remark that at each step t > 0 of Adaboost,

t
fr = Z w;g; = fi_1 + wigy,

j=1
where

] — , .
W, € arg m-mWGR ; Z e—Yl(fM(Xl)Jngz()ﬂ)) .
i=1

This line search is point-wise in the sense that it only depends on the evaluations of f; 4 and g; at
X, .., Xy} Thus, let

,I n
FixeR"— — e

be the empirical risk minimized in Algorithm 1 and consider the notation
xe = (F(X), ... (X)) € R" and  d; = (—gi(Xi), ..., —g:(X,)) € R".

Then, the line search reads:

Wy € argmin F(x(—1 — wdy),

and at each iteration t, g, (or equivalently d,) is learned so as to minimize the weighted error

n n
; 2 —Yifia(Xi
; D)y o< — > e My L
=

i=1

weR

_ 1= Yigi(X)
_Z Yifoi (X, t
Ze —

—Yifia(Xi)
SR Z( ) o

= F(XH) (VF(x— 1; >

that is so as to maximize (VF(x;_1), dt>€2. In other words, Adaboost learns at each iteration a base
classifier, that is close to the gradient of F (in the correlation sense).’

Consequently, Adaboost

This way to find a direction of descent is related to the Frank—Wolfe algorithm, also known as the conditional gradient
method.
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1. finds a direction of descent (—g;), which is a function;

2. computes a step of descent w; according to a point-wise rule (minimizing F(x;_4 — wd;) with
respect to w € R, where d; = (—g,(X1), ..., —g+(Xa));

3. updates the optimization variable f; = f,_y — w;(—g;), which is a function.

It becomes clear that Adaboost is very similar to a gradient descent with exact line search except that:

¢ the direction is not the gradient of £ at x,_y but d; = (—g:(X1), ..., —g:(X,));
< gradient descent updates a vector x; while Adaboost maintains a functional variable f;.

In a more general setting, we can consider
,] n
F:xeR'— ;Z&(Xi),
=

where £ : R — R is a loss function, which may be, for example:

o the exponential loss (classification): ¢ ) " (similar to Adaboost);

o the logistic loss (classification): &(x) = log (1 + e*”) (similar to logistic regression);
o the squared loss (regression): ( ) ( X)%;

¢ the absolute loss (regression): &;(x ]Y- — x] not differentiable at x = Y)).

This is the first improvement of gradient boostlng (described in Algorithm 3) over Adaboost. As a second
difference, gradient boosting does not build a weak learner g; highly correlated with —\F(x,_4) but
such that for all i € [n],
T,
ge(Xi) = ——&i(fra(Xi)).
Thus, g; is a base regressor picked in a given class R. In practice, we get rid of the constant term %

(this is redundant with the line search), so that g,(X;) =~ —&/(f,—1(X))).

Algorithm 3 Cradient boosting.
Input: 7 & N (number of iterations), v &€ (0, 1] (shrinkage coefficient), {(X;, Yi)}1<i<n (training sample).

- 1
fo € argmin, g

for t =1to 7 do

for i=11to n do
rie «— —U/(fi_1(X)) (pseudo-residuals)

end for
g; < base regressor from R for the training set {(X;, ri¢) }b<icn
wi < argmin, . LY 6lfi1(X) + wgi(X) (line search)
fr = i + vwgy

end for

Output: sign(fy) for classification, fr for regression.

" L(Y:, y) (constant function)

30



Example 1.3.1. Let us consider the case where ¢;(x) = %(Yi — x)2. Then
O(x) =x—Y,

and g.(X;) = Y; — fi_1(Xi). It appears that g,(X;) approximates the quantity (the residual) that is
missing to f,_1(X;) in order to reach Y;. With w; = 1, the update rule becomes

fo(Xi) = fioa(Xi) + wa(Ye = i (X)) = (1 = wi)fia (X)) + we Yo = Vi
To sum up, letfor i € [n], ¢ : R — R be a convex and differentiable loss function (adapted to classification
or regression), R € R’ be a class of real-valued functions and F : x € R” — Ly bx

Then, gradient boosting (Algorithm 3) is an algorithm similar to gradient descent aimed at minimizing
the empirical risk:
F(X)

,l n
A fis F : = — ) O(f(X
- : n; ((

F(Xn)

over the linear combinations of functions in R, denoted span(R). The iteration of this algorithm reads,
for any t > O:

fr = fi_1 + wgy,
where g, € R is a weak learner such that for all i € [n] g/(X) = —10/(f,_1(X))).

n-t

Theorem 18 (Linear convergence). Assume that:

1. F s differentiable with L-Lipschitz continuous gradient NV F (L > 0);
2. F is p-strongly convex (with y > 0);
3. there exists y € [0, 1] such that at each iteration t > 0,

n n 2
Z(g,()()+1€(f[1)( ) 31_)’2( —&(fi—1)(X ) ;
i=1 i=1

4. A has a minimizer in span(R), denoted f*,
5 v=1

Let us denote fr the output of Algorithm 3, then:

Al — Ay < (1= 2) (A — A

The proof is a good exercise.

The importance of the shrinkage coefficient

Given a class of regressors R, the general problem of gradient boosting is to minimize the empirical
risk A: f i 1 LY 7, G(f(X)) over the linear combinations of functions in R, denoted span(R). Gradient
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boosting is a greedy procedure that performs T iterations and outputs a final estimator f7, where T
controls:

< the number of gradient steps performed to minimize the risk A;
o the size of the subspace of span(R) in which lies f7, since f7 is a linear combination of at most
I + 1 functions in R.

Let us remark that, nothing guarantees that f; is a minimizer of A over linear combinations of at most
I + 1 functions in R. We can even be pretty sure of the converse.

That being said, it is now clear that T controls at the same time the convergence of the optimization
algorithm and the complexity of the final estimator. In that, 7 acts as:

¢ an iterative reqularizer (controlling the number of iterations for minimizing the empirical risk A);
© a statistical reqularizer (controlling the complexity of the hypothesis space).

However, it is obvious that these two complex reqularization mechanisms cannot be monitored by a single
parameter. That is why the shrinkage coefficient v € (0, 1] comes into play: by rescaling the contribution
of each gradient step, it impacts the convergence of the optimization algorithm while leaving the size of
the subspace of span(R) in which lies f; unchanged.

To wrap off, gradient boosting benefits from:

¢ an iterative regularization, controlled by the pair (v, T);
¢ a statistical reqularization, controlled by 7.

1.4 Support vector machines

1.41 Large margin classifier

In its empirical version, logistic regression is computed by minimizing a reqularized empirical risk defined
by the logistic loss. Such a loss may be replaced by any convex surrogate of the 0 — 1 loss (Figure 1.4)
and in particular by the hinge loss: (x,x') € R? + max(0, 1 — xx’). Let A > 0 be a reqularization
parameter. This gives rise to a novel classifier g, = sign((w", -), + b*), where the decision function
parameters (w*, b*) are solutions to:

minimize % Iwlly, + 1; ; max(0, 1 — Yi(w' X; + b)), (P2)

weR? beR
where {(X;, V) h<icn C RY x {£1} is an iid sample distributed as (X, Y)). Such a classifier is called
a linear support vector machine (SVM) or soft SVM.

The main interest of trading the logistic loss for the hinge loss is to provide a geometrical interpretation.
To explain it, let us rewrite the previous optimization problem by replacing the hinge loss by a linear
constraint.
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Lemma 19. One has

VxeR: max(0,T—x)= inf
(,(ER+ X>1 E

The proof will be done during the class.

Let C = 1/(An) (C > 0). Then, (P2) can be rewritten equivalently with slack variables (rescaling the
objective function):

minimize = ||W||p2 +C E &

weidﬂgly]eﬂ& (P3)
ot Vze[n]Y( Tx+b)>1—5,
o Vieln], &>0.

In Problem (P3), each slack variable & represents the uncertainty (0 < & < 1) or the error (& > 1) of
the decision (w'X; + b) given the true label ;.

Now, let us assume that the training dataset is linearly separable:
Jw,b) e R x R: Vi [n], Yi(w'X +b)>0.
By rescaling w and b by mini<;<, Yi(w' X; + b), the previous assumption is equivalent to:

Jw,b) eRI xR: Vi n], Yiw X, +b)>1.

Thus, it is quite natural and legitimate to focus only on classifiers able to classify correctly and with
high confidence the training sample (that is with Yi(w'X; + b) > 1 for all i € [n] or equivalently null
slack variables: Vi € [n], & = 0). The new optimization problem of interest is obtained by increasing
C to infinity in (P3) and by remarking that for all ¢ € R’ limc_oo CZ,.”:1 & = xz=o (with convention
0 x oo =0):

1
minimize — ||W||
weR? bR 2 g (P4)

s.t. Yie(n],Yiw' X +b)>1.

The classifier defined by solving (P4) is called hard margin linear SVM or a large margin classifier because
the direction of the decision function achieves the highest margin. The legitimacy of Problem (P4) comes
from the existence of a solution when the training dataset is linearly separable (which is assumed for
now).

Proposition 20. Let (w, b) € R\{0} x R and x € R?. Then ‘WTWXJM (s the distance between the
2
hyperplane {z € R? : w'z + b = 0} and the point x.

The proof is a good exercise.
Let (w, b) € R/\{0} x R. The margin of the hyperplane {z € R : w'z + b = 0} is defined by:

|w'X; + b
12ign Iwlle,

H(w, b) =
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Proposition 21. Let us assume that 3i + j € [n]: Y; # Y, and let (w;, b}) be a solution to (P4).

Then, u(w;, b)) = HW;H(» and (w;, b¥) is solution to
2

maximize  p(w, b)
weRN {0}, beR (P5)
s.t. Vig(n],Yi(w' X+ b) > 0.

The proof will be done during the class.

Thus, SVM is said to maximize the margin, that is the distance between the separating hyperplane and
the nearest training points. The equivalence holds when the dataset is linearly separable. When this is
not true, SVM still maximizes the margin but accepts classification errors embodied by non-zero slack
variables &.

142 RKHS

The aim of this section is to introduce a class of (potentially) nonlinear functions, that may be used as
decision functions in order to build nonlinear classifiers and regressors. The underlying decision functions
will have the form of a kernel estimator Y °°, a;k(-, x;) (where (), (x;); and k will be clarified latter),
well-known in the statistics community.

In the whole section, we consider a non-empty input set X.

Definition 1.4.1 (Kernel). A function k : X x X — R is called a kernel if there exists a Hilbert
space (G, (-, )g) and a map ¢ : X — G such that

VX)X ki x) = (gx), ¢(x'))g -

We call ¢ a feature map and G a feature space.

Example 1.4.1. Let ¢, : x € R? = x and ¢, : x € R? — (x, x5, V2xx). Then ki(x, x') =
o1(X)Td1(x') = xTx" and k(x, x') = ¢a(x) T do(x') = (x"x')* are two kernels.

Remark 1.4.1 (Feature map and feature space are not unique). Let us consider X = R? and the

kernel k(x,x') = x"x". ¢ :x € R — x € R? and ¢ : x — (\/% %) € R?? are two feature

maps, respectively with feature spaces G, = R? and G, = R

Property 22 (Restriction of kernels). Let k be a kernel on X, X be a set and A= X — X. Then
(x, X') € X% k(A(x), A(x')) is a kernel on X,

The proof is a good exercise.
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Property 23 (Sum of kernels). Let ky and k, be two kernels on X and a > 0. Then aky and ki + k;
are kernels.

The proof is a good exercise.

Property 24 (Product of kernels). Let k; and k; be two kernels on X. Then kik, is a kernel.
The proof is a good exercise.

Property 25 (Polynomial kernels). Assume that X C RY and let p : R — R be a polynomial
function with non-negative coefficients. Then (x, x') € X? — p(x"x') is a kernel.

The proof is a good exercise.

Computing the feature map ¢ is merely needed to define and to evaluate a kernel. We now present a
characterization of kernels based on inequalities.

Definition 1.4.2 (Positive definite function). A function k : X x X — R is said positive semi-definite
ifforallneN, a € R" and {x, ..., X, } C X, we have:

Z a[a/-k(xl-,xj) 2 0.

1<i,j<n

Furthermore, k is said positive definite if for all n € N, a € R"\{0} and {x, ..., X, } C X such
that x; = x; == [ = |, we have:

Z a[a/k(xi,xj) > 0

1<i,j<n
Finally, k is said symmetric if for all (x, x') € X2, k(x, x') = k(x', x).

Remark 1.4.2. The definition of a positive semi-definite function k can be trivially linked to positive
semi-definiteness of the kernel matrix K = (k(x;, x;))1<ij<n. In addition, K is often called Gram (or
Gramian) matrix.

Let us remark that we obviously have that kernels are symmetric positive semi-definite functions. The
following theorem states that symmetric positive semi-definite functions are all kernels.

Theorem 26 (Symmetric positive semi-definite functions are kernels). A function k : X x X — R
is a kernel if and only if it is symmetric and positive semi-definite.

The proof will be done during the class.
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Corollary 27 (Limits of kernels). Let (k,),>0 be a sequence of kernels that converges pointwise to
k: X xX —R ie forall (x,x') € X2 lim,_s kn(x, X') = k(x, x'). Then k is a kernel.

Example 1.4.2 (Example of kernels). Let us consider X C RY. The following functions are common
kernels (defined for all (x, x') € X?):

linear : k(x,x') = x"x/;

polynomial : k(x,x)=(1+cx'xX)%, ¢ >0, d € N;
exponential : k(x, x') = "' ¥, y > 0;
Laplacian : k(x, x) = i ”"2, y >0,
-
Gaussian : k(x,x') = e =l > 0,

In particular,

1. for X C R?, ¢(x) = (x7, X3, V2xx)) is a feature map for k(x,x') = (x"x')* (with (., g
being the Euclidean inner product);
2 for X C R, ¢(x) =2 (1)”4 e~ 29" s g feature map for k(x, x') = eV with y > 0

J

(with inner product (f, g); = [ fg and G = [*)

Kernels are mainly interesting because they define a function space, called a reproducing kernel Hilbert
space (RKHS).

Definition 1.4.3 (RKHS). Let H C R* be a Hilbert space and k a kernel. 'H is an RKHS with
kernel k (or k is a reproducing kernel of H) if for all x € X:

o k(- x) €H,
o YVt &€ H :(f k(- x))y = f(x) (reproducing property).

Example 1.4.3 (Linear functions). H = {7 : x € RY — w'x € R, w € R?}, with the inner product

(f,g),, =w'B, where f : x — w'x and g : x — B"x, is an RKHS with kernel k : (x, x') — x"x'.

Remark 1.4.3. Let f € 'H. Intuitively, f can be described by the infinite dimensional vector of its
evaluations (f(x)ccx), the coordinates of which are f(x) = (f, k(-, x)),,. Even though {k(-, x),x €
X} may not be an orthonormal basis of H, the reproducing property suggests that we aim at
describing f by its expansion on {k(-,x),x € X} f =)  _»ak(-,x) for some (a,)vex to be
defined.

xeX

Proposition 28. Let ‘H be an RKHS with kernel k. Then, for all x € X, the evaluation function
E,:f € H s f(x) is continuous.

The proof will be done during the class.

In particular, this proposition leads to a remarkable property of RKHSs: norm convergence implies
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pointwise convergence. Formally, let H be an RKHS, f € H and (f,), C H such that ||f — f,||,, — 0
for n — oco. Then, for all x € X, by continuity of E,, f,(x) = E,(f) — f(x) for n — oco. Obviously this

is not always the case: f, : x €[0, 1]+ x" converges to 0 in L' (f[UJJ |£,(x)| dx = -~ —— 0) but not

n+1
pointwise since f,(1) = 1.

We have just seen that we can build an RKHS with a kernel. We now answer the two questions: given
a kernel, is the associated RKHS unique? Given an RKHS, is the associated kernel unique?

Theorem 29 (Uniqueness of the reproducing kernel). An RKHS 'H has a unique reproducing kernel.
The proof will be done during the class.

Theorem 30 (Uniqueness of the RKHS, or Moore-Aronszajn theorem). Let k be a kernel. Then,

there exists a uniqgue RKHS 'H associated to k.

Furthermore, let Hy = span {k(-, x), x € X'} associated to the inner product

(Y akt 3 8] = 3 ot
i=1 j=1

1<i<n
HO 1<j<m

for any integers n and m, any points xi, .. ., PP x, C X and any vectors a € R” and
B e R"

Then, H is the closure of Ho for (-, ), Le. H is the set of functions that are pointwise limits of
Cauchy sequences from H:

H = {x e X lim f,(x): (f,)s C Ho Cauchy sequence]» ,
with inner product (lim,_e0 fy, im0 Gn )y = liMp—see (£, 9n>Ho-

As a reminder, (f,), C Ho is a Cauchy sequence if Ve > 0,IN € N:m,n > N = ||f, — f”HHo <e

Example 1.4.4. Assume that k = (-,-),. Then Ho C {¢. W)y W E R} C Ho, so Ho =
{( W), W E Rd} and since Hy is already complete, then H = {( W), W E ]Rd}, Le. H is
the set of linear functions from R? to R.

Corollary 31. Let H be an RKHS with kernel k. Then

Il = {i ak(-, x) i aizk(x,',xi) <00, (X) CX, () C ]R} _
i=1

i=1
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Theorem 32. Let G be a Hilbert space, ¢ : X — G and k the kernel associated to the feature map
¢: for all (x,x') € X2, k(x, x') = ($(x), p(X))g-
Then, the RKHS associated to k is:

H={(w, ¢())g:weG},

equipped with the norm:
[f]l,, = inf {iwlig:w € G, f=(w,¢())g}

In particular, both previous definitions are independent of the feature map ¢.

Remark 1.4.4 (Canonical feature map). Let k be a kernel and H its associated RKHS. The canonical
feature map of k is defined as

¢ xeX— k(,x),
with the canonical feature space G = H. Obviously, (¢(x), d(x'))g = (k(-, x), k(-, xX'))3 = k(x, X))
for all (x, x') € X°.

Definition 1.4.4 (Universal kernel). Assume that X is compact and let us denote C(X) the set of all
continuous and bounded functions on X. A continuous kernel k on X is said universal if its RKHS
'H is dense in C(X).

Example 1.4.5 (Examples of universal kernels). The exponential and the Gaussian kernels are
universal.

1.4.3 Kernel trick and nonlinear SVM

Let k: RY x R — R be a kernel and {(X;, ) }1<icn C R? x {&1} be an iid sample. Let us denote
G and ¢ : RY — G respectively the feature space and the feature map associated to k.

We would like to find the linear SVM (with tradeoff parameter C > 0) for the dataset {(¢(X), Vi) }1 .-
Accordingly to Problem (P3), the parameters of such an SVM are solution to the optimization problem:

minimize = ||W||g + CZ $i

weg beR

ZERN o
st { i & ) Vl{w, 00 + b > 1 & (P6)
ool viehlg>o.

Let now H be the RKHS associated to k. Thanks to Theorem 32, we know that for all w € G,
h=(w, ¢()); € H and HhHH = inf {HW’HQ w e g, f=(w, ¢())g} Therefore, by a change of
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variable, (P6) can be written:

o ) é
minimize 5 lwllg + CZ &

JERM heH i=
Vi € o], Y(AOX) 4+ b) > 1 —
s. 1. Vieln], & >0
h={w, ¢()g.

or, by joint convexity,

ZeRN /7:

o 1

minimize Lnf {§ |W||g]’ —f-CZgﬂ
[
[

that is,
o 2 u
minimize 5 HhHH +C E &

heH,beR

ZeRN i=1 (P7)
t Vien] Yih(X)+b) >1—&
> Vien], &> 0.

(P7) reveals that by transforming the data with the feature map ¢, a linear SVM can be used to estimate
a decision function f = h 4+ b, h € 'H, b € R, which is nonlinear as soon as the kernel k is not the
linear kernel. On the other hand, when k is the linear kernel, ¢ boils down to be the identity and 'H
the set of linear functions (i.e. (P3) and (P7) are strictly the same).

A central question with nonlinear SVM is to compute it in practice. This is not trivial since, on the one
hand, solving (P6) involves computing the feature map ¢ (which is unknown for certain kernels, even
infinite dimensional for some kernels such as the Gaussian kernel). On the other hand, (P7) involves a
nonparametric optimization variable h € 'H.

The next theorem states that solutions to (P7) are supported by the data. It is quite reassuring since it
provides a way to solve (P7): restricting h to be of the form Y 7, a:k(-, X)), for a € R".

Theorem 33 (Representer theorem). Let k: RY x R? — R be a kernel and H the associated RKHS.
Let also : R, — R be a non-decreasing function and ¢: R** — R be any loss function. Given
a training sample {(Xi, Yi)},_.., from (X x R)", if the optimization problem

minimize ¢ (||h]],,) + €V, Yo, BOG) + b, .. B(X,) + b) (P8)

heH, beR

has a solution, then there exists a solution (h*, b*) such that h* has the form

- Z ak(-, X),
i=1

where a € R".
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In addition, if ¢ is an increasing function, then all solutions of (P8) can be written in the form
described above.

The proof will be done during the class.

Remark 1.4.5. Even if ¢ is an increasing function, (P8) may not have a solution. For instance,
let R: (hb) € HxR — HhH?Z1 + e~ X+D) - Then, for any pair (h, b), R(h,b) > 0 and
R(0, b) v 0. So (P8) has no minimizer.

—+00

Another example is R : (h,b) € H x R — HhHi — h(X\)'. Let h, = Ak(-, X;). Then R(h,;,0) =
Ak(X, Xq) — Xk(X, X)) — —0o. So (P8) has no minimizer.

Remark 1.4.6. If ¢ and (h, b) — 0(V;,.. ., Yo, h(X1) +b, ..., h(X,) + b) are strictly convex, then
the pair (h*, b*) is unique but the expansion of h* may not be (it is the case if the kernel matrix
(k(Xi, X))1<ij<n is rank deficient).

In practice, the duality theory of convex optimization is preferred to the representer theorem in order to
solve (P7). It simultaneously exhibit the same result as the representer theorem and a novel optimization
problem to determine the optimal weights a. The next sections are devoted to deriving a dual optimization
problem to (P7).

Let us remark that the forthcoming derivation could also be executed based on (P6), i.e. using only the
feature space notation (w € G and ¢(X;) € G). The final result would be exactly the same: in order to
compute the optimal decision function, we only need to evaluate the kernel k but never to compute the
feature map ¢. This is known as the kernel trick.

1.4.4 SVM in action

< A fancy demo of polynomial kernel.
< An applet for playing with SVM.

1.4.5 Duality in convex optimization
Definition 1.4.5. A function f: R? — R is convex if

V(x,y) e RI x RVt € (0,1):  f(tx + (1 — t)y) < tf(x) + (1 — )f(y).
Lemma 34. Let f: R? — R be a convex and differentiable function. Then

Vix,y) €R xR 0 fy) > f(x) + (VF(x), y —x), .

The proof will be done during the class.
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https://www.youtube.com/watch?v=3liCbRZPrZA
https://www.csie.ntu.edu.tw/~cjlin/libsvm/

Remark 1.4.7 (First order characterization of convex functions). Actually, a differentiable function
f:R? — R is convex if and only if

V(x,y) e RY x R f(y) > f(x) + (VF(x),y — X}, -

This is the first order characterization of convex functions. = is given by Lemma 34, while for <,
it is enough to remark that, for every t € (0,1),

fl) > f(tx + (1= t)y) + VEH{tx+ (1= 0)y)" (1= 0)(x — )
> f(tx + (1= t)y) + Vi(tx + (1= 1)y)" (tly —x)),

S0
ti(x) + (1 — O)f(y) > f(tx + (1 — t)y).
Theorem 35 (Fermat's rule). Let f: RY — R be a convex and differentiable function. Then
X" € argmin, gt f(x) &= VIKx") =0
The proof will be done during the class.
From now on, we consider the optimization problem

mlnlm}ze f(x)

XERt Vie[n]:gilx) <0 (P9)
> b { Vi € [m]: hifx) =0,

where f: R? - R, (g;: RY - R).ic, a d(h R? — R),
[nl. g

1<icm are n+m+1 convex and differentiable
functions. let C = {x € R’ : Vi € x) < 0,Yi & [m], hi(x)

= 0} be the set of constraints.

Definition 1.4.6 (Lagrangian function). The Lagrangian function of (P9) is:

L (x, A v) ER? X R x R" > f(x)+ > hgi(x) + ) vihy(x)

i=1

Property 36. Let us consider (P9) along with its Lagrangian L. Then

f if
Vx € R sup L(X,)t,v)z{ ) ifxec

AER”, vER™ oo otherwise.

In addition, if C # @, then
inf f(x) = inf  sup  L(x, A, v).

xeC XERd /\ER” vERM
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The proof is a good exercise.

Remark 1.4.8 (Variational formulation of the characteristic function). Considering f = 0 leads to
SUPjern vern L(+ A, V) = Xc, where xc is the characteristic function of the set C. In other words,
SUPjer vern L(+ A, V) is no more than a variational formulation of the characteristic function of the
set of constraint C.

Then (in the general case where f = 0), it becomes obvious that (P9) can be reformulated as the
minimization of f + ye, i.e. of

sup Z)\g,—l—Zv, i

AGRQ veRm

Definition 1.4.7 (Dual function). Let us consider (P9) along with its Lagrangian L. The dual function
of (P9) is
D: (A v) € RL x R" — inf L(x, 4, v).

x€R4
Let us remark that D is concave and may take value —oo for some (4, v).

Property 37 (Weak duality).
sup  D(A, v) < inf f(x).
(AV)ERT xR? xeC
The proof will be done during the class.
The optimization problem
maximize D(A, v)

(A,V)GSR‘:[XR’” o (P10)

is called the dual problem to (P9), itself called the primal problem.

Definition 1.4.8 (Convex problem). Problem (P9) is said convex if

1. - RY = R and (g;: RY — R)i<c, are n + 1 convex functions;
2 (hi: RY — R)iocpy are affine functions.

In this case, C is a convex set.

Theorem 38 (Strong duality). Let us assume that (P9) is convex. If (Slater’s constraint qualification)
Ix € RY: Vi € [n], gi(x) < 0 and Yi € [m], hi(x) = 0,

then

1. sup yyery xrn D(A, v) = infyec f(x) (zero duality gap),
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2 3, vr) € RY X R s supy, gy «ge D(A, v) = D(A", v¥) (dual attainment).

Theorem 38 states that the minimal value of f in C can be recovered by maximizing the dual function
D. However, our main interest is more about linking solutions to these two optimization problems, rather
that the optimal values: in practice, the estimator we want to build is solution to the primal problem and
we would like to recover it from a solution to the dual problem. Theorem 39 makes this link explicit.

Theorem 39 (Karush-Kuhn-Tucker (KKT) conditions). Let us assume that (P9) is convex and that

Slater’s constraint qualification hold. x* € R? and (A*, v*) € R" x R™ are respectively solutions
to (P9) and (P10) if and only if

1. primal feasibility: ¥i € [n], gi(x*) < 0 and Yi € [m], hy(x*) = 0;
2. dual feasibility: X* = 0

3. complementary slackness: Vi € [n], A7g;(x*) = 0,

4. stationarity:  L(x*, A", v*) = 0.

The proof will be done during the class.

1.4.6  Dual problem and support vectors

Let O = (k(Xi, X))YiY))1<ij<n be the labeled kernel matrix. The Lagrangian function associated to (P7/)
(s

V(h,b, & a, ) e H xR xR" xR} xR :

Lib. b, &0 B) = 3 0]+ CLTE+ Y a1 — & — V(hX) + b) — B¢

i=1

For all (o, )R, x R, the dual function is:

D(a,B)= inf  L(h b & a B

(h.b,&)EHXRXR?

But H x R x R" is unbounded in all directions and L(-, -, -, @, B) is convex and differentiable. So, either
D(a, B) > —oo and the infimum is attained at a critical point. Or D(a, ) = —oo. By first order
stationarity, we thus get:

—1aT 17 f0<a=<Clandy'a=0
D(a,B)z{ sa Qa+1 a i a and y'a

—00 otherwise.

Consequently, a dual optimization problem to (P7) is:

. 1
maximize —=a' Qa4+ 1"«
acR" 2

. t Vieh:0<a<C (P11)
o y'a=0.

Problem (P11) is generally solved by sequential minimal optimization (SMO), introduced in 1998, for
which a simplified version is described in Algorithm 4.
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Algorithm 4 Sequential minimal optimization.

Input: C > 0 (tradeoff parameter), k: X x X — R (kernel function), {(X;, Vi) }1<i<, (training sample).
Q « (k(Xi, X;)YiY))1<ij<n (labeled kernel matrix)
while not converged do
find ¢; for which KKT conditions are violated
pick a; # a; at random
solve Problem (P11) with respect to (a;, a;) with all other variables fixed
end while
Output: (o, .. ., ay).

Property 40 (KKT conditions for SVM). Let (h}, b}) be an SVM defined accordingly to (P7). Then,
(P11) has a solution, denoted o* & R", and

o by =3 iy afVik(-, Xi);
o forall i € [n],

Yilh'(X) + b)) > 1 = al-* =0
Yih*(X) + b)) <1 = a = C,

o for all i € [n]

of =0 = Y(h(X) + by) > 1
aq=C = Yi(h(X)+b) <1
0<a <C = Yi(h(X)+b;)=1,

© denoting

M={ien:0<a <C}
I={ien]:a =C}
O={iegn]:a =0}

and respectively ., T, O, O_ the intersection of Z and O with {i € [n]: Y; =1} and
{i €[n]: Y= —1}, one has

by < | pay, 0= o0, _pin, = |

o YiEe M, bt =Y, — h(X)

The proof will be done during the class.

Property 40 highlights that solving (P11) makes it possible to solve (P7): given a solution a* & R’ to
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(P11), a solution to (P7) is given buy:

hy =y o Vik(-, Xo);

br =Y, — h*(X) for someie M, f M =+ or

by & [maxiez vo, {Yi — h;(X)} miniez,uo {Yi — h;(X)}] otherwise;
& e RY such that for all i € [n], & = max (0,1 — Yi(h3 (X)) + b})) .

Remark 1.4.9. In practice a good choice of C (with respect to a cross-validation score) makes it
sufficiently large so that many points X; are well classified and out of the margin. In other words,
Z N M is relatively small and

b= 3 vk X) = 3 k. X)
i=1 1<i<n
af>0

is supported only by few vectors X; (i € T N M). The latter are called the support vectors of the
SVM (hz, by).

1.4.7 Statistical perspective

From a statistical perspective, an SVM is not a large margin classifier but an estimator fy = h’ + b,
(where b7 is called an intercept) of the Bayes classifier defined by

n

* LK . 1
(h7, b)) € arg min jer , ~ max(0, 1 — Yif(X)), (1.1)
=1

where F = {f e H: HhHH < c} for ¢ > 0.

The optimization problem of interest possesses a capacity constraint HhHH < ¢, which makes it possible
to derive generalization guarantees.

In fact, Equation (1.1) is equivalent to (P7).

Proposition 41 (Tikhonov reqularization). There exists A > 0 such that the SVM defined by (1.1) is

a minimizer of

/\ 1 n
minimize 5 4]]7, + - 21 max(0, 1 — Y,(h(X) + b)). (P12)

Respectively, let A > 0 and (h*, b*) be solution to (P12). Then, there exists ¢ > 0 such that (h*, b*)
is also a minimizer of Problem (1.1).

The proof will be done during the class.

45



Theorem 42. Let ¢: R — R be an Ly-Lipschitz continuous loss function such that 1,9 < ¢(x), for
every real x, and 1 be defined by:

. . 1 n
fy € argmingy — ) G(Vif(X).
i=1

Assume that there exists B > 0 such that sup;. ¢(Y (X)) < B almost surely and let 0 < (0,1).
Then, with probability at least 1 — o,

P(Y + sign(f(X Z BIYL2(X) + AL E Ry(F(X) + By 2910}

The proof will be done during the class.

Corollary 43 (Generalization bound). Let f; be defined by:
fy e argmin;_z — Zmax 0,1 =Y (X)).

Let us assume that the kernel k is bounded and let k > 0 be an upper bound of it : sup, ., k(x, x) <
K2 letd € (0, 1). Then, with probability at least 1 — 9,

log(1/0)

Y fx(X — Yif(X
P (Y = sign( Zmax iy (X)) + on

+ (1 + c«)

CK
4=

Vit
The proof will be done during the class.

1.5 A detour to nonparametric regression

1.5.1 Least mean squares

Let g: RY — R be a measurable function and let us consider the model:
Y =g(X)+e

where

o X € R? is a random vector;

o € € R is a random variable, such that e € [? and E[e|X] = 0;
o g(X) e 12
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Theorem 44. The function g is a minimizer of the least mean squares risk functional f € F +—
E ((Y — f(X))z) over all measurable functions.

The proof will be done during the class.

Given an RKHS, regression can be performed in the same manner than SVM, which is usually called
kernel ridge regression (KRR):

> (Yi—(h(X) + b)) (P13)

i=1

oA Bl
minimize 3 | hlf;, +

1

n

1.5.2 Least absolute deviations

Let g: RY — R be a measurable function and let us consider the model:
Y = glX)+e

where

o X € R? is a random vector;
¢ € € R is a random variable, such that ¢ € L' and P(e > 0|X) = 15;
o g(X)e L

Theorem 45. The function g is a minimizer of the least absolute deviations risk functional f € F +—
E(|Y — f(X)|) over all measurable functions.

The proof is a good exercise.

1.5.3  Support vector regression

Even though quite natural, regression with support vector machines was originally introduced thanks to
the so called e-insensitive:
b x € R max(0, |x| — €).

The parameter € enforces the notion of support vectors.

The resulting estimator 7 = h7 + b7, is called support vector regression (SVR) and defined by

I

* * H 1 -
(1, b3) € argmin sz — 3 E(Y = 1(X). (12)

beR, f=h+b -
i=1
where ¢ > 0. Numerically, ones solves

T ¢
Té%n;glg > HhH;—G—;Z&(Yi_(h(Xt)‘}'b)): (P14)

where A > 0.

Let us consider F = {f € H : ||f||,, < c} be the class of hypotheses and let T} = {(Xi, V1), . .., (X0, Vo))
denote the training set.
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Theorem 46. Let ¢: R — R be an Ly-Lipschitz continuous loss function and f; be defined by:

* 0 1 .
fy € argmingz — ) @Y —1(X).

i=1

Assume that there exist C > 0 such that | Y| < C almost surely and B > 0 such that sup;_ ¢(Y —
f(X)) < B almost surely and let 0 & (0,1). Then, with probability at least 1 — 0,

E[g(Y — £ (X)IB] - inf, {E(G(Y — F(X))} < 8L,

E R,(F(X") + C 2“’92) 4 28,/ 29010}

The proof will be done during the class.

Corollary 47 (Oracle bound). Let f; be defined by:

fr € argmin,_z % > (Y, — (X)),

i=1

Let us assume that the kernel k is bounded and let k > 0 be an upper bound of it : sup, ., k(x, x) <
Kk?. Assume also that Y is almost surely bounded by B > 0 and let & € (0, 1). Then, with probability
at least 1 — 0,

2log2 log(1/9)

+ 86

E[6.Y — f;(X)B] — inf {E(@(Y — (X))} <8

CK
n

\/_

+ 2(B + ck)

The proof will be done during the class.

Now, we focus on deriving a dual to (P14).

Lemma 48. One has

VxeR:  max(0, |x| —€) = in I+ &
(¢T.&)ERL xRy =& —e<x<&T +e
The proof is a good exercise.

Now, let C = 1/(An) and K = (k(Xi, Xj))1<ij<» be the kernel matrix. Then, (P14) can be rewritten
equivalently with slack variables (rescaling the objective function):

minimize % HhHi{ + C;(ff + &)

heH,beR
LeRN =
Yi— (h(X)+b) < &+ e (P15)
. t. (h(X) +b) = Vi< & +e

Vie[n), & >0,& >0,
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A dual of (P15) is:

—_

maximize —=(a" —a )'K(@"—a )+y'(a" —a)—elT(at +a")
ateR",a~€R” 2

{Vie[n]:OgafgC,oga[—gC (P16)
s. t. 17

(at —a7)=0.

Remark 1.5.1. There are other ways to derive a dual to (P14). For example, remarking that Vx € R:

max(0, |x| — €) = inf ,
{eRL—&E—e<x<&+e

leads to the dual

maximize —1(0f+ —a ) Klat—a)+y'(a"—a)—elT(a" +a)
ateR",a—€R" 2
Vien]: 0< af
. Vien:0< o
' Vien: a"+a <C
1'(at—a)=0

1.6 Other methods

1.6.1 k-nearest neighbors

The principle of the k-nearest neighbor method is to estimate directly the Bayes classifier thanks to
estimations of P(Y = j|X). There are several manners to do so, the simplest one is

: n\/ Zn_ 1Y:'X'EV /l n
P(Y = j|X = x) = - i=1 =LXEV ; 1:“ |
(Y =]l ) S Ao, nV ST Txow ; Yimj XEV,

where V, is a neighborhood of x of volume V. Unfortunately, a usual ball of prescribed radius is
useless since there may be regions of the space where this neighborhood is empty, thus giving an infinite
estimator of the probability.

To circumvent this problem, the neighborhood is chosen as the k-nearest neighbors of x.
There exist of course several other manners to define a suitable neighborhood:

smoothing : the naive choice is to choose for V, an #-ball of radius €. Then, 1xcy, = 1|\X1*X|\g o
,<

where 1., can be approximated by a smooth function: a +— e~ This boils down to use a
kernel method to estimate P(Y = j|X = x) and leads to the weighted version of the k-nearest
neighbor method.

partitioning : V), can be chosen such that U?_,Vx = IR, in other words such that neighborhoods make
a partition of the entire space. This is what is done by decision trees, the cells of which consist
in hypercubes of RY.
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At the end of the day, the k-nearest neighbors rule consists in predicting, for x € RY, the majority vote
(for classification, or the mean for regression) of the k-nearest neighbors of x. Formally, the predicted

class is:
k

g(x) € arg max, cy, Z Ty=y:

i=1
where the ranked labeled { V), ..., Yim} are such that HX“) — XH@ << HX(") — XH&.

For the smoothed (or weighted) version of k-nearest neighbors, the vote of each neighbor is considered
in the prediction, but weighted (generally) by e X" The new classification rule becomes:

k

7yX()fx2
gy(x) € arg max, oy > e T 1y oy
i=1

1.6.2 Decision trees

Decision trees, and in particular classification and regression trees (CART), are supervised estimators
introduced by Leo Breiman et al. The paradigm of a binary decision tree is to recursively split the
space X with simple rules such that: is the explicative variable x; greater than the threshold 7 or not?
Doing so, a decision tree is built, for which each node corresponds to a simple rule (and secondarly to
a partition cell of X). The final result is a partition of X by hypercubes.

At each step of the learning algorithm,

1. consider the partition P = {X};
2. for each cell A of P, define the two-cell partition A = L;; UR,; ., where j € [d] is a feature
index and T € R is a threhold, and

Li.={xeA: x <1}
Ri.={xeA: x>r1}

are the 'left" and 'right’ parts of LA. Then, find the best pair (feature, threhold) for splitting:

R).

on
(', T) € arg mini<j<d : D(/;.,T) +
/ 9 TeR I |.A|

Al

D(R/',T)

where D is a distortion measure for a cell (see below);
3. replace A by £, and R;; in the partition P;
4. go to 2.

Given a cell A, one may define the ratio of observations of A of class y € V:

_Hieh]: Xie A Y, =y}

Then, the distortion of the cell A may be:
o Gint impurity: D(A) =3 oy, py(A)(1 — py(A)) (classification);
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o entropy: D(A) = — )y py(A) log(p,(A)) (classification);

2 _
© mean squared error: D(A) = ﬁ Z&glgf( (Y[ — YA) , with Y, = ‘17‘ Zng/gX Y; (regression).
i i€

Remark 1.6.1 (Gini impurity and random prediction). The Gini impurity corresponds the error ob-
tained when producing a random label according to the empirical distribution of labels in the given

cell A.

Consider a binary classification problem with proportion of labels 1 1 = P(Y = 1|X € A) in the
d
cell A of interest. Let g be a classifier with g(X)|X € A = Z, where Z ~ B(n). Then

P(Y # g(X)|X € A) =P(Y # Z|X € A)
PY=1GZ+1XecA+PY+1a82=1Xec A)
P(Y=1Xe€ APZ+1)+P(Y £1|X € AP(Z =1)
a(l—n)+ (1 —m)n

2n(1 — ).

For regression, Jerome Friedman suggested an improved criterion (in its original paper tackling gradient
boosting), referred to as Friedman's mean squared error:

(j, T) € argmini<j<a M (YL = Yr T)z.
7€R {L/,T‘ + {R/yr‘ ! "

Last be not least, several stopping rules are of interests:

maximal depth of the tree;

minimal number of observations required to split an internal node;
minimal number of observations required to be at a leaf node;
maximal number of leaf nodes.

SO0 0

1.6.3 Bagging

Bagging is a portmanteau word for bootstrap aggregating. The paradigm of bagging is to train inde-
pendently several base classifiers (g, . . ., gr), with g;: R — {1}, and to build a new classifier by
averaging the predictions of the base classifiers:

T
]1x) = sign (%ng) .
t=1

Doing so, the variance of the prediction is reduced and so it is for the global error. The requirements for
such a result are:

¢ base classifiers should be more accurate than chance;
© base classifiers should be estimated independently from each other.
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In practice, base classifiers are trained *quasi-independently” by bootstrapping the training set.

Bagging is also valid for multiclass problems: for C classes, the prediction is:

.
1
QZ(X) = argmaxy ;¢ T Z ge(X)g (0= = arg MaXi<j<c card ({f e[T]: gT(X)1gI(X)=j}) '

t=1
where g;: R? — [C], which corresponds to the majority vote since base classifiers are equally weighted.
Finally, one may also bag regressors g;: R — R by a simple averaging:

T

g =13 gl

1.6.4 Random forests

Random forests are bagged trees: for binary classification, a random forest is

.
1
g1 (x) = sign 7ng(x))
t=1
where the base classifiers (g1, . . ., gr), with g;: R? — {41}, are learned quasi-independently by

bootstrap.

However, in order to enforce the independent learning, each decision tree g; owns an additional ran-
domization step in its learning procedure:

1. at each cell, select a subset of features at random;
2. find the best pair (feature, threshold) for splitting.

1.7 Exercises

1.7.1  Discriminant analysis

Exercise 1.1 (MLE in the Gaussian model (proof of Proposition 2)).

Simple derivation

Let ¥ € R?, £* be a PD matrix and X, X, } be a sample iid according to N (1", Z*). We consider
the problem of estimating (¢, L*) in the statistical model

P ={N(@1), (15 R x S},

where S is the set of PD matrices of shape d x d.

1. Write the log-likelihood 4, : RY x S — R for the model P and show that i = %Z; X: is the
MLE of p*.
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2. Forany B € R™ let f: A€ R™  tr(AB) and ¢ : A € S > log(|A|). We remind that f
and g are differentiable everywhere they are defined with, for all A € R?*? (such that |A| = 0):

VHA =BT, Vg =(A")"
Admitting that

-

S| =

> (X—mxi—n'
=1

is PD and that ¢,(u, -) is concave for every y € R? show that ¥ is the MLE of £*.

Maximization with respect to
Let S € S be a PD matrix of size d x d and

f:Ae S tr(AS) — log(|A|).
1. Show that for all A € S, denoting B = S"?AS"? we have:
f(A) = tr(B) — log(|B]) — log(|S™"]).

2. Let us now consider the eigendecomposition B = UDU" of B, where D is the diagonal matrix

of eigenvalues Ay, ..., Ag. Show that f is maximized for A such that Ay = --- = A, =1, ie. for
A=ST

Positive definiteness of the sample covariance matrix

Let Yy, ..., Y, ﬁ(JjJ\/'(a, Iy), with a € RY, and A= 3" (Y= V,)(Yi = V,)", where ¥, =157 .

1. Show that A= YT PTPY, where

Al 1 (I
Y=|:|eR™ ad P=1[—— :
n

YT 1T ... 1

2. By remarking that P is the orthogonal projector onto range(1)*, write A as:
A=7"7, where Z=U'Y e R" "

with U € R™("=") an orthogonal matrix.

3. Show that the columns of Y are independent random vectors. What is the distribution of the j™
column of Y, denoted ¢; (j € [1, d])? What is that of U'¢;?

4. Deduce that A=Y "~ 22T, where Z,, ..., Z,_ “S N(0, ).
5. Let now p* € RY, I* be a PD matrix, {X;, ..., X,} be a sample iid according to N'(v*, L*) and
Sp=Y 1 (Xi= X)) (Xi — X,)T, where X, = 157" | X.. Show that S, can be written:

n—1
Sp=> ViV,
i=1
where Vi, ..., V,_y < N(0, ).
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6. Let v, ..., Vo_1 € R? Compute
]P(\/] c span{\/z ..... Vn,1} ’ Vo =w, ..., Vi = V,7,1).

7. Assume that n < d + 1. Deduce that P(rank(S,) < n —1) = 0. This shows in particular that
(considering the situation n = d + 1),

d
rank (Z Vv,
i=1

8. Let now n be any positive integer. Show that,
S, is invertible with probability 1 if and only if n > d + 1.
Moreover, if n < d, S, is invertible with probability 0.

P <d| =0

Exercise 1.2 (Unbiased estimators (proof of Proposition 3)). Let us consider the notation and assumptions
of Proposition 3. By setting, for every j € [C] and i € [n;], Z| = X! — p;, show that, for every j € [C]

nj
E{—Y X =mx —m" | =

n.
I i=

nj
Conclude by showing that ¥ is unbiased.

Exercise 1.3 (LDA (proof of Proposition 5)). Consider LDA with means 4 and p_4, covariance denoted
¥ and prior probability 7 = P(Y = 1). Show that g*: x € R? + sign(w' x + b), where

W= 271(L/1 — 1)
b= 3w ey — T ) + log ()

is the Bayes classifier.

Exercise 1.4 (QDA (proof of Proposition 7)). Consider QDA with means p and p_q, covariances L; and
Y1, and prior probability v = P(Y = 1). Show that g*: x € R? > sign(3x" Ox + w'x + b), where

1
= MW I — 5 ) — S log (%) + log (%)

is the Bayes classifier.
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Exercise 1.5. Let (X, Y) be a pair of random variables having values in RY x {41} such that for all
x €RY px) =P (Y =1|X =x) € (0,1). Show that, for a loss function £ : R — R being defined as:

1. 0(x) =e™;
2. 4(x) =log, (1 +e7);
3. f(x) = max (0,1 — x);

the risk functional £ +— E[¢(Yf(X))] has a minimizer f* and x € R — sign(*(x)) is a Bayes classifier.

1.7.2  Boosting

Exercise 1.6 (Adaboost (proof of Lemma 16)). In Adaboost, assume that there exists y & (0, 1/2) such
that Vt € [T] & < % — y almost surely and let f7: X — R be the classifier at the last iteration.

1. Show that:

—Z1 o <27|_| T — )

’kug

2. Analyze the behavior of x € [O, 3] log (x'~ (1 + x)"). Deduce that:

1 = g 14y 172
—21”‘%2) <27 (z—y) (§+y) )
3. Conclude that: )
1; Z 1 K\:TW(HX;:Q < [((1 - 2)’)17V (1+ 2)’)1“)]”2

Exercise 1.7 (Adaboost). In Adaboost, show that the error made by a weak learner at the future iteration

is 3, Le. at each iteration ¢ > 0:
1
Z Der(vizgin) = 5-

Exercise 1.8 (Convergence of gradient boosting (proof of Theorem 18)). Let f : RY — R. We consider
the optimization problem

minimize f(x),
xER?

and the iterative algorithm with iteration:

{d, — P(V(x,))

Xe41 = Xp — Ndy,
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where P : RY — R? is an operator and n > 0 is a step size defined later.
Let us assume that:

(H1) f is differentiable and V'f is [-Lipschitz continuous (L > 0);
(H2) f is p-strongly convex (1 > 0). This implies that

Vx, X e RY: F(X') > f(x) + (V1(x), x' _X>€2 + g HX/ - XHZ;

(H3) f has a minimizer denoted x*;
(H4) there exists y € [0, 1] such that:

veR: ly—Pull <0l

1. Knowing that a differentiable function h : R? — R is convex if and only if

VX eRT (V) = VIK) (x—x) >0,
show that g = 5 11-117 — f is convex.
2. Show that
/ / / L / 2
Vx, X' € RY: FX) < Fx) + (VX)X = x),, + 5 Hx — Xng :
3. Show that
weR ||V, = 2u((x) — 1(x).

4. Show that for each iteration t > 0:

f f f(x Ta— 1|

(1) < ) = 5 [V, = 501 L) [,

5. Choosing n = % and defining Ay, = f(x;) — f(x*), show that:

B < (1= 20) A

6. Conclude on the linear convergence of the iterate:

M) = 16) < (1= 22) (o) — 1057)

1.7.3 SWM

Exercise 1.9 (Distance to a hyperplane (proof of Proposition 20)). Let (w,b) € RY\{0} x R and
H={zeR: w'z+ b =0} Using Lagrange duality, show that the distance between H and any
point x € R? is

lw'x + b

d(H, x) =
(. %) W llg,
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Exercise 1.10 (Kernel trick). Let {(X;, ¥)}1<icn € R? x {£1} be an iid sample and for j € {1},

[y = ﬁ > 1 1y—;Xi be the center of class j. Show that the kernel trick can be applied to the
=1 V=)

classification rule:

Wx € R mm:“r ”‘hfﬁ”@<HX_ﬂﬂu
—1 otherwise.

Exercise 1.11 (Techniques for constructing kernels). Given valid kernels k; and k, on R? x RY, show
that the functions k defined below are still kernels:

1. Vx, X € R?: k(x, x') = cky(x, x'), where ¢ >0

2. x, X' € RY: k(x, x') = ki(x, x'){(x)f(x'), where f € RE

3.Vx, X € RY: k(x, x') = exp (ki(x, x'))

4.9x, X € RY: k(x, x') = ki(x,x') + k(x, x)

5. Vx, X' € RY: k(x, x') = ki(x, X)ka(x, x).

6. Vx,x' € RY: k(x, x') = q(ki(x, X)), where ¢ € R® is a polynomial with nonnegative coefficients.
7.9x, X € R k(x, x') = ki(p(x), p(x')), where ¢ : R — R”.

8. Vx,x € R?: k(x,x') = xTAx’, where A € R7*? is PSD.

9. Vx,x' € RY: k(x, x') = exp (— Hx—x H&).

Exercise 1.12 (Kernelized regression). Let {(X;, Yi) h<icn C R? x R be an iid sample, H be the RKHS
associated to a kernel k on R? x R?. Let us consider the optimization problem:

o 2 2
minimize. 5 ||, + = [I<],
st Yien]: Y. —hX)—&=0,

(P17)

where C > 0.

1. Exhibit the dual problem to (P17).

2. Let (h*, &) and a* be solutions respectively to (P17) and its dual. Justify and exhibit the link
between these quantities.

3. Determine the value of o*.

Now, we focus on the unconstrained version on (P17):

C
minize 5 (|1, + 5 Z (P18)

4. Let h* be a solution to (P18). Justify that there exists B~ € R” such that h* =Y 7, Brk(-, X))

Deduce a parametric version of (P18).
5. Determine the value of B*.
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1.7.4 Regression

Exercise 1.13 (Robust regression (proof of Theorem 45)). Let g: RY — IR be a measurable function and
let us consider the model ¥ = g(X) + ¢, where X € R is a random vector, g(X) € L' and e e R is a
random variable, such that € € L' and P(e > 0]X) = 1. Let also F = {f: R? > R, f(X) € L'}.

1. Show that Vx € R, |x| = (1 — 21,0)x and deduce that for all f € F,
Y = g(X)] = (1 = 2Ty—gpx<0) (F(X) = g(X)) + (1 = 21y—gp<0)(Y — F(x)).
2. Deduce that for all f € F,
Y = FX) =Y = gX)[ = 20V = 1(X)D(1y—gpx<0 = Ty—rx<0) = (1 = 21y —gp<0) (F(X) — g(X)).
3. Show that (Y — F(X))(1y_gp)<0 — Ty—rx)<0) > 0.

4. Deduce that E[|Y — f(X)| — |Y — g(X)||X] > 0 and then that g is a minimizer of f € F
E(|Y — f(X)|) over F.
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Figure 1.10: Example of classification frontier with a nearest neighbors.
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Figure 1.11: Example of classification frontier with a decision tree.
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Figure 1.12: Classification accuracy when bagging independent weak classifiers with same error proba-
bility 1 — p.
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depth=5, n_est=1, err=6.35 depth=5, n_est=5, err=3.50 depth=5, n_est=10, err=2.00 depth=5, n_est=20, err=2.85

Figure 1.13: Example of regression with bagging trees.
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Figure 1.14: Regression accuracy for the diabetes dataset.
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Chapter 2

Clustering

In a way similar to classification, we consider a pair of random variables (X, Y) with values in R? x [k],

where

k is a positive integer, and we wish to predict ¥ given X. As a particularity of clustering, we

observe X but we do not observe Y, which makes the problem ill-posed in several directions:

1.

We do not know beforehand the number of groups (or modalities of Y) k. In practice, this problem
is got around by considering that k is a hyperparameter, that can be chosen given some prior
information, automatically by a low-density assumption, or by model selection techniques (see
after).

Since we do not have access to a paired data (X, Y), the wish to predict ¥ given X is unreal,
except up to a permutation of the modalities of Y. Therefore, clustering is more interested in
partitioning the space R? than predicting a prescribed label. The aim of clustering would thus be
to produce a partition {G, ..., Cx}, such that there exists a permutation o: [k] — [k] for which,
for all j € [k],

G ={x R P(Y = o(j)|]X = x) > P(Y = 0|X = x),V¢ € [k]} .

. It is clear that several distributions of (X, Y) lead to the same distribution of X (see the forthcoming

example). This is true for several number of groups and several meanings of them. Since we only
observe X, it is thus quite impossible (at least in a general setting) to get an information on Y | X
knowing only X. In practice, this is circumvented by choosing specific statistical models.

Example 2.0.1. Consider two pairs of random variables (X, Y) and (X, Y) in [=1,1] x {£1} such

that

X|Y =1~U(0,1) XY =1~uU(-11)
X|Y =—1~U([—1,0] and XY =1 ~uU(-1,-1)
Py =1)=1 Py =1)=3.

Then, it is straightforward that X ~ U(—1,1]) and X ~ U(—1,1)).

As a consequence, it is common (yet vague) to define the aim of clustering as organizing the data in
some meaningful way. This often means creating clusters (or a partition) such that:
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1. points inside a cluster are similar (this corresponds to a mode in the marginal distribution of X);
2. points in separated clusters are dissimilar (this corresponds to the existence of a frontier of low
density).

In this chapter, we describe several methods of clustering, from a statistical modeling point of view to
heuristic approaches.

2.1  Gaussian mixtures

2.1.1  Mixture model

Let {Py =1, -py: A& A} be a parametrized family of distributions on RY, dominated by a measure p.
The distribution of the random pair (X, Y) may be defined by:

XY =j~Pe i €N, jEK]
Y ~ D),

where " is a k-probability vector: 7* € [0, 1] and Z;L 77 = 1. Since only X is observed, we focus
on the distribution of X. By marginalization, it appears that X has density:

k
Vx € RY: m(x) = Z]T/-f,\/*()().
j=1

In other words, X is distributed according to a mixture model, which is define now. The next proposition
explains why mixture models are naturally used for clustering.

Definition 2.1.1 (Mixture model). Let {P, = f, - u: A € A} be a family of distributions dominated
by a measure p, m be a positive integer, (A, . . ., Aw) € N and s be an m-probability vector. Then,
the distribution with density ZL ity with respect to y, denoted ZL 7Py, is called a mixture
model.

Proposition 49 (Latent variable). Let {P, =1, - p: A € A} be a family of distributions dominated
by a measure p, m be a positive integer, (Aq, . . ., An) € N and 7 be an m-probability vector. For
any pair of random variables (X, Y), we have:

X|YNP/\Y —_— XNZ7:17T]'P,{/
Y ~ D(n) Y|X ~ D(),

Whefe ]TX = ( ZTH f)q (X) Tn f)lm (X)

ST, T, m/(x)) is a probability vector.

The proof is a good exercise.

Proposition 49 has two direct benefits: first it explains (by =) how to sample according to a mixture
model (see Algorithm 5 for clarity), second it bridges the gap between mixture models and clustering:
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= clustering, in which clusters are conditional random variables X|Y, is naturally modeled by a
mixture model, which is the distribution of the single observation X;

& conversely, when X' is distributed according to a mixture model with k components, we can build
a latent variable Y|X (taking values in [k]) such that the conditional random variable X|Y defines
a cluster distributed according to the mixture component P, .

Algorithm 5 Sampling of a mixture model.

Input: {P),, ..., P,,} (mixture components) and s (m-probability vector).
z « sample from M(1, nr) (multinomial variable)
y <> i1y j1,=1 (cluster label)
x < sample from P .

Output: x.

Ignoring the permutation problem described above, finding the desired distribution requires to compute
the Bayes rule:

g x €R— arg max ;o P (Y = JIX = x) = arg Max, ]T;f,{/*()().
The partitioning {Gy, .. ., Cr} is then produced by setting iteratively, for all j € [k],
G = {x eR?: g*(x) = /}\ (UQQQ) .

As a consequence, it remains to estimate the parameter 68 = (7", A*) € O in the statistical model
associated to X (i.e. of the marginal distributions):

k
Po=1) mf:0=(1,)€O
j=1
where
O={0=(r, A, 701 1Tr =11 N}.

The forthcoming sections describe a way to compute a MLE of 6*.

2.1.2  Mixture of two Gaussians

In this section, we describe a very simple example of estimation of a mixture model, which highlights the
computing difficulties and motivates the need for a particular algorithm. Let (X, Y) € R x {£1} be a
pair of random variables such that

XY =1~ N(1,1)
XY = —1 ~ N(=1,1)
Y ~D(1).
We assume that we only observe X, which has distribution JA/(1,1) + IA(—1,1). We consider that

variances are known and we aim at estimating the proportion and the means, that is 6* = (% 1,—1 )
For this purpose, we consider the statistical model

Po={aN@n, 1)+ (1 =N (u_1,1): 0= (7, 1n,u4) €O}, ©=1[0,1xRxR.
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It is clear that P, is dominated by the Lebesgue measure on R and that each candidate distribution
with parameter 8 = (i, 111, 1—4) has for density:

mg:x € Ri— wo(x — ) + (1 — m)ex — p_),
where ¢ is the probability density function of N'(0, 1).

Assuming that there exists a sample ((Xi, Y4), ..., (Xy, Y3)), the variables of which are iid copies of
(X, Y), but that we only observe the sample (X, ..., X,), an MLE of 8 can be obtained by maximizing
the log-likelthood associated to P,,:

VO EO: () = Z log(mg(X,

= Z log (e(X; + (1= 7)e(Xi — p1))

X (X
=Zlog me 7 4+ (1 —me 2 +C,
i—1

where C is a constant. It appears that this maximization problem has no closed-form solution. For this
reason, we have to resort to an iterative algorithm in order to estimate 8*. The Newton-Raphson method
is an available option, but we describe here an alternative: the expectation-maximization (EM) algorithm.

To describe this algorithm, we assume being provided with random variables /, . . ., Z, living in {1}
and representing some approximations of the unknown labels Y, ..., Y,. To be consistent with the
unobserved sample, it is assumed that (X, 2), ..., (X,, Z,) are iid. We would like to estimate 8" based
on the previous sample. For this purpose, and remarking that (X, Y) has density:

-1

1, 1,
golr,9) £ 109) € Bx ()0 BOY = gt =) = [ 0t =] St 1]

we design a statistical model for the distribution of (X, Y):
Py ={Gs: 00},
where for 8 = (7, t1y, 1—1), Gy has density:

golx, 4) : (%, y) € R x {£1} = [wgle — )] [(1 = m)px — )]

The joint log-likelihood of any & & © based on the statistical model P, and the sample {(X;, Z})
(s

n

bo(0) = ) log(ga(Xi, Z)

i=1

= > [z-1log(mg(X; — ) + 12=1 log((1 — 7)@(X; — 1-4))]

i=1

= e [fogr) = 50— |+ 212_1[091—@—%%—;11)2 +C
i=1
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where C is a constant.

Defining m =y |, 1,_, maximizing this quantity is straightforward and provides the solutions:

Unfortunately, the approximated labels Z;, .. ., Z, are, as it turns out, an illusion. Consequently, the
random variables 17_4 and 1,__1 are unknown and the quantities g(x,z)q(@). m, 7, i and fi_1 can be
computed. However, if we are provided with a candidate 6y € ©, it is possible to replace 1,4 and
17—_1 by the values that can be legitimately expected given the information included in 6. In other
words, we can replace 1,_4 and 1,1 by E[1,_4|X/] and E[1,__4|X]"], where the distribution of
Zi| X! is chosen as close as possible to that of Y;|X. But Y;| X" has same distribution as Y|X, which is
supported by {£1} such that

A(x,1
P(Y = 1)X = x) = —9;9(1”)
T py; (X)

mg*(X) .

Thus, we can define a statistical model for Y| X:
P,={xeRw— 0y,:0 €0},
where for every 8 = (7, iy, p—1) and x € R, Oy, is characterized by:
Tp(x — ih) TQ(x — th)
QQX({1}) = (Jox = =

me(X) wex — ) + (1 — 1ol — p-)

and choose Qg, x, for the distribution of Z|X{". The novel criterion to maximize, with respect to 6, instead
of g()('z)q is:

Fxo(0) = E [ fx 2 (0)1X7]

_ ;E[1z_1 |X] [log(ﬂ) - %(X[ - u1)2} + ;E[15_1\X1”] [log(1 - %(Xi B /M)z] LC

n

— ; Gop.x, [log(ﬂ) — %(X[ — H1)2] - 2(1—) llogﬂ — ) — %(X[ _ H1)2] LC

i=1

Maximization is easy and leads to the estimator 6 = (7T, [, [1_1) defined by:

A n
n = ; Zl=1 q90rX1

A Dy Xi
/J1 o 27:1 q6y.X;
A il=ggx)X
Ho1r = n—=3_{_1qex

Since this estimator highly depends on 8, (through gg, x), it is legitimate to repeat this operation

replacing 6 by 6. We have just described the iteration of the EM, which can be summarized by the
following iterative process: given an initialization 6 (a function of (Xi, ..., X,)), repeat for t =1,2, ...
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1. Define 2", ..., Z" such that, for all i € [n}, Z|X] = Z|0, X, ~ Oy, .
2. Expectation: compute )
Fxp(616:) = E [Gx 20y (0)|X] .

where the vertical bar in Fy» is a notation to emphasize that fy» is computed given 6.
3. Maximization: set B, € arg MaXgeq FX;(9|@,).

Remark 2.1.1. It is clear that (X, Z, |9, ..... (X, Z |Qt are iid pairs of random variables.

Theorem 53 in the forthcoming section justifies that the EM algorithm builds a reasonable estimator of
0.

2.1.3 Non-decreasingness of the EM algorithm

Let X and ) be two probabilistic spaces and P, = {(Gy : 6 € O} a statistical model over the product
space X x Y. For 8 € O, we call My the first marginal distribution of Gg (ie, if (X, Y) ~ Gg, X ~ M)
and for all x € X, Oy, the conditional distribution given that the first random variable equals x (i.e.
Y|X = x ~ Qg,). We consider the statistical models

Pn={Mg: 00} and P.={xe X+ Qy,:0€06},

and it is assumed that P, is dominated by a product measure 1 x v. The densities of interest are then
denoted:

_ _dGg
9o = d(uxv)

_ dMy
Mg = dy

d Qg x
Gox = —5~ xEX.

Let 8 € © and (X, Y) ~ Gg-. We aim at computing an MLE Buiie of 67 only based on X (V' is assumed
to be unobserved), i.e. maximizing

8 € 0 +— log (mg(X))
thanks to the EM (see Algorithm 6). In the forthcomlng paragraphs, it will be shown that the expected
joint log-likelihood F(0|8;) = [log (ga(X, Z1)) |X] (where Z) is defined in Algorithm 6) is a lower
bound of the marginal log-likelihood log (my(X)) and that EM, for lack of converging to a maximizer of

0 +— log (mg(X)), produces a monotonically increasing sequence. The key tool for showing this is the
Kullback-Leibler divergence.

Remark 2.1.2. In practice, X = (RY)", Y = [k]", and X = (Xi, ..., Xy) and Y = (Y, ..., Y,) are
two random vectors such that (X1, Y1), ..., (X, Y,) are iid.

Definition 2.1.2 (Kullback-Leibler divergence). For any distributions P = p -y and Q = q - p
absolutely continuous with respect to the same measure p, the Kullback-Leibler divergence of P
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Algorithm 6 EM algorithm.
Input: 7 € N (number of iterations), X (observed sample).
@0 <« random initialization
fort=0to I — 1 do
set ZU|X ~ Qp, «
E step: compute F(0]8) = E [log (ga(X, Z")) |X]
M step: set 8,1 € arg MaXyeo F(0]6,)
end for
Output: b;.

with respect to Q is

Dt (P1|0) = | og (%) p(z)u(dz)=E[l09 (%H

Q

where / ~ P.

Property 50 (Kullback-Leibler divergence). For any distributions P and Q, we have
Dki (P]]Q) € Ry U {oo},

and
Dk (P||Q) =0 — P=0.

The proof will be done during the class.

The next result makes use of the entropy of a distribution P = p - p (with density p with respect to a
dominant measure p):

H(P) = — / log(p(2))p(2) u(dz) = —E[log (p(2))].
where Z ~ P.
Lemma 51. Let Q be any distribution on' Y and Z ~ Q. Then, for all x € X and 6 € ©, one has:

log (me(x)) = Eflog (gs(x, 2))] + Dkr (Q]|Qs) + H(Q).

In particular, for any 8 € © and 6" € ©, one has:

log (mg(X)) = F(8|6) + Dk (0]]6) + H(O),
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where, if Z is a random variable such that Z|X ~ Qg x,
F(6]6') = Ellog (ge(X, 2)) [X],

and, with a slight abuse of notation, Di,(6'||0) and H(O') are respectively the Kullback-Liebler
divergence of Qg x with respect to Qg and the entropy of Qy x computed given X.

The proof will be done during the class.
Proposition 52. For any 8 € © and 8" € © (function of X), one has
log (me(X)) > F(6]6') + H(E'),

and

log (me(X)) = F(6]6) + H(6).

The proof will be done during the class.

Proposition 52 tells us that {F(-|8") + H(&'), &' € ©} is a family of minorants of 6 — log(mg(X)).
Therefore, EM can be viewed as the two maximization steps described in Algorithm 7 and illustrated in

Figure 2.1.

Algorithm 7 EM algorithm (maximization-maximization).
Input: 7 & N (number of iterations), X (observed sample).
6y < random initialization

fort=0to I — 1 do ) )
E step: find the best lower bound of 8 + log (my(X)) at 6;, ie. that which is maximal at 6;: set

B, € argmaxg_o F(6;|6) + H(0),

and remark that &/ = 6,
M step: maximize the chosen lower bound F(:|6;) + H(6;): set

Bry1 € arg MaXgeq F(6]0,)

end for
Output: 67.

Theorem 53. Let (8,)150 be the sequence defined by 8y € © and for all integer t,

0,1 € arg MaXgeq F(6]0,).
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LRl + HY)

F(0103) + H(0)_ 77 e

F(9|ét) + H(éf)

O 01410115

Figure 2.1: Illustration of the E step (finding the best lower bound — among blues points) and the M
step (maximizing the lower bound) of the EM algorithm. The values of mg(X) are unknown except for
6;, 611, ... (black points).

Then the sequence (log (m@t(X)) )t>0 (s non-decreasing.

lhe proof will be done during the class.

Remark 2.1.3 (The sampling case). In the setting of Remark 2.1.2, let us denote Gy, the distribution of
(X1, Y1) and Qp. y, the distribution of Y1|Xi. Then Gg- = (Gg.)®" and Qg- x = Qp. y, ® - ® Q. .
In other words, Yi|X;, ..., Y,| X, are independent (but not identically distributed).

Thus, (Z|X) ~ (0; , ® -~ ® Q} ), which means that for all i € [n}, Z"'|Xp = Z|(B:, X)) ~
Qg, x, and 2@, X)), ..., Z\(8;, X,) are independent. It comes that Z\"|6;, . .., Z\"18, are iid.
In addition, denoting gy, the density of Gy, the criterion to maximize becomes:

Fx(6]8) = E [Z log (g%, 2")) IX{’] .

i=1

2.1.4 EM for Gaussian mixtures (soft k-means)

In this section, we apply the EM algorithm to a mixture of k Gaussian distributions on RY. In other
words, we assume that:

XIY = j~ N D), j ek
Y ~D(r"),

where for all j € [k], L7 € S, where S is the set of d x d symmetric definite positive matrices, and 7*
is a d-probability vector. It is clear that the distribution of (X, Y) lies in the statistical model

Py ={Gs: 00},
where the sets of parameters are

O={0=(mN:ne0 1], 1Tr=141€N}, A=R%xS.
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From this statistical model, we derive the two other models for marginal and conditional distributions:
P, Z]T/ (W, L,):0=(m, )0, and P.={xc X+ 0Qg,:0c0}.

Forall 8 € © and x € RY, it is clear that Gg, Mg and Qg,, have densities (with respect to a Lebesque,
a counting or a product measure), which are respectively:

go : (x,y) € R x [k] > 1,0, ()

k k

mg:x € R? ZQ@(XJ) = ZJT/‘Q%(X)
j=1 j=1

gelx,y) 7,95, (X)

me(x) Zf=1 755,(x)

Gox Y € [k]'_)

where for A = (1, L) € A,

1 1 72—1

e — e—j(X—ﬂ)
V21 /|

(x—u)

@ x €ER

is the probability density function of N(u, I).
Let (Xi, Y4), ..., (X, Y,) be n iid copies of (X, Y) and assume that we only observe (X, ..., Xu). We
now detail the two steps of the EM algorithm.

Expectation step

Let B, = (#1, /A\(’)) € O be a current estimate of 8%, and (Z1“) ..... Z,gt)) be a sample such that
T (X, 28, . (X, 240, are did;
2. for each i € [n], Z" X} ~ Oy . Let, for all j € [k]
A,('t)%y)(xf)

Z@ 17Te % (X)

The first step of EM is to compute the conditional expectation of the joint log-likelihood, which is, for
any 6 € ©:

py) = B(Z" = jIXI) = g4 (i) = 21)

Fx(610) = E [Z log ( galX.. 2" |X1"]
- Z Zp,j log JTJ + log ((pA/(X[))] .

i=1 j=1
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Maximization step

Given the computation of FX{7(9|@,), the goal of this second step is to maximize FXF(6’|@,) with respect to
0, that is to solve

» 1 ) 1
maximize ZZPU [09 1) = 50X = ) 57X — 1) — 5 log (|])

D i=1 j=1

k
Y m=1 (P19)
j=1

=
sty vielkl n>0

Hj c Rd

L, € R PD.

Property 54. Solution to Problem (P19) is By = (), A1) where for all j & [k], A+ =

A1) &t
(N,('H}:XEH)) and

J
A([+1) _ Z 1p1/( )X

j > wpu

(t+1) S i [ (m X, r+1) ]
/' ZI} 1 pll r .

The proof is a good exercise.

Algorithm 8 EM for Gaussian mixtures (soft k-means).
Input: {Xi}1<i<, (training sample).
7 « 7, for all j € [k] (initialization)
p; < random point, for all j & [k]
¥, « overall sample covariance, for all j & [k] or identity matrix
while not converged do
Pi 25:1 TPy £g)(Xi)
7« 1577 | py (maximization)
) Z Pt/X
'U/ N > Wpu[ ]
31 P (Xi—my) (Xi—p)
Zj - 21 Pij
end while

~ P(Y; = j| X)) (expectation)

The steps described above are summed up in Algorithm 8. This algorithm (EM for Gaussian mixtures) is
often called soft k-means because of its similarity to the k-means algorithm (Algorithm 9, see Remark 2.2.4).

2.1.5 Model selection

Model selection for clustering generally lies in choosing the number of clusters k. Some empirical
methods will be presented in Section 2.5, nevertheless, we quickly introduce here two criteria specific to
likelihood maximization.
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Figure 2.3: Soft k-means can produce very different results (including unexpected ones) according to the
random (initialization of means.

When computing an MLE, it is possible to increase the likelihood by adding parameters. For instance,
with Gaussian mixtures, considering k = n, 11; = X; for all j € [k] and L= a?l, with a2 — 0 leads to
a likelihood increasing to 1. This situation is typical from overfitting the training sample.

The Bayesian information criterion (BIC) and the Akaike information criterion (AIC) help in choosing the
number of clusters by adding a penalty term growing with the number of free parameters in the model.
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Given and iid sample {Xi, ..., X,} and an MLE 0, BIC and AIC are defined by

and
AlIC = —2log (mé()ﬁ ..... Xn)) + 2m,

where m is the number of free parameters (for Gaussian mixtures, m = (k — 1) + kd + k@). The
number of clusters can be chosen as the one minimizing either BIC or AIC (note that BIC is more

conservative than AIC in that its penalty term is larger than that of AIC as soon as n > 8).

Criteria BIC and AIC come respectively from Bayesian and information theory. It can be shown that,
under different assumptions and for n large, the log-likelihood of a model can be approximated by either
—% or —%. As a consequence, minimizing one of these two criteria, tends to maximize the likelihood

of the model.

2.2 Cost minimization methods

Similarly to what has been seen for supervised learning, clustering can be tackled either under Gaussian
assumptions or by minimization of a cost. Clustering is then a partitioning of minimal cost.

Going back to the “definition” of clustering:

1. gathering similar points;
2. separating dissimilar points;

we have two options: focusing on Item 1. or ltem 2. Besides, there are two possible approaches:

1. using a paired criterion of (dis)similarity (i.e. between two points);
2. using a center-based criterion of (dis)similarity (i.e. between each point and a ‘representing
individual”).

For now, we focus on designing a method of minimal cost that aims at gathering similar points (ltem 1.
of the definition) through a center-based criterion (Approach 2.). As we will see later, Section 2.2.5
addresses the opposite point of view, i.e. Item 2. coupled with Approach 1.

2.2.1 Center-based approach

In order to define a sensible cost, we need a dissimilarity measure d: X x X — R, that is a non-
negative symmetric function d such that d(x,x) = 0. Note that a distance is a dissimilarity measure
with extra properties (separation and triangle inequality). For the sake of simplicity, the method will be

described with d(x, x’) = HX — X/H;Z, leading to the k-means approach.

Let P(X) be the complete set partition of size k of X. For a partition (G, ..., Gk) € P(X), we are
interested in a cost that measures the dissimilarity of all points x € C; in a given cell G (j € [k]) to a
representer (or centroid) of this cell (. Given the previous discussion, such a quantity is logically

B [dX. MO | X € G = e E[dX MG ne ]

X ed)
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where p(()) is the representer of the cell C;. In all rationality, the representer is the individual the “most
similar to all other”,

p(G) € argmin _ E [d(X, m)| X € G] = arg min, v E [d(X, ) Txec ]

Marginalizing of X, we are then interested in minimizing the cost:

My, DG ) (P20)
where
k k
D(Cy, ..., G)=) PXeGE[dX uG)IXEG]=E|)> dX Tyeq
j=1 j=1
which is sometimes called the distortion of the partition (G, ..., Ck)

Remark 2.2.1. Defining the quantizer q: x € X +— Z/ 1 (G wec,, we obtain for D the usual
distortion:
PG - - G) = Elgp(d(X, g(X)))].

This represents the quantification error when discretizing the original space X.

For d(x, x') = HX — X/Hz, it is clear that the centroid of each cell is unique and defined by:
1
G)=E|X|Xe(|=—=EFE|[X1xec|-
4 /) [ | l] P(X C/) [ XEC/]
In addition, moving to estimation based on iid observations X, ..., X,, distortion and representers have

natural counterparts, which are:

DG G =D > d(Xe (G xec,

and
1

W(G) = X1 .
O = e x e o & KM

2.2.2  k-means algorithm

For k-means, we are thus interested in solving the following optimization problem:

k

minimize, Dy(Gr...... ZZ X = wll, 1xeq

(k.- .Uk)EXk =




Compared to (P20), the previous problem has be rewritten in order to make a new set of optimization
variables appear ((i1, ..., L)), along with the corresponding equality constraints.

Indeed, minimizing the k-means objective function turns out to be computationally infeasible at a large
scale (it is NP-hard and even NP-hard to approximate to within some constant). For this reason, we
resort to the alternating procedure:

1. minimization with respect to (Cy, .. ., Cy) for a fixed (uy, ..., 1e);
2. minimization with respect to (1, . . ., ) for a fixed (G, .. ., Ce).

The second part is trivial for it involves equality constraints. It is thus computing y; = MT% > X xec
for all j & [k]. The following property formalizes the first part and Algorithm 9 sums the whole up.

Property 55. Let (C), ..., CY) be a Voronoi partitioning based on fixed centroids (u1, . . ., ):
iteratively for all j € [k] (with convention US_,C) = {):

¢/ ={xex:|x—ull, < llx—wll,.ve e WP U ¢

Then

n

j=1 =1

te. (¢, ..., CY) solves the first part of the alternating procedure described above.

lhe proof will be done during the class.

Algorithm 9 k-means.

Input: 7 € N (number of iterations), {Xi}1<i<, (training sample).
pj «<— random point from X for all j € [k] (initialization)
for t =1t 7 do

compute a Voronoi partitioning (G, . . ., Ck) corresponding to cluster centers (1, . . ., L)
.U/ — WX{EC]H 27:1 Xi1X1€Q' fOI' al.[ j & [k]
end for

Output: (G, .. ., Cy).

Remark 2.2.2. Since clusters are only characterized by their centroids, a Voronoi partitioning is
optimal at each step and k-means thus implicitly assumes that cells are convex (no notion of
shapelvariance). In this sense, k-means is weaker than Gaussian mixtures (see Figure 2.4 versus
Figure 2.2, and Figure 2.5).

Remark 2.2.3. The k-means algorithm is also known as Lloyd's iteration, after Stuart Lloyd, who
proposed the method in 1957 in the context of vector quantization for image compression.
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Figure 2.4: Example of k-means clustering.
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Figure 2.5: Comparison of k-means and soft k-means on non-Gaussian clusters.

Remark 2.2.4 (k-means and soft k-means). Algorithms 8 and 9 share many similarities. Indeed,
when computing a Voronoi partitioning, the k-means algorithm assigns each point X; to a cluster C;
and then updates the cluster centroid y; by averaging the members of the cluster ;.

However, the soft k-means algorithm first estimates the probability that each example X; belongs
to each cluster C; (based on a Mahalanobis distance between X; and y;) and then updates the
centroids with a weighted average over the entire sample {Xi, ..., X, }.

If we fix the covariance matrices L; of Algorithm 8 to 0*ly, then the probability of assigning X; to C;
becomes a monotone function of the Euclidean distance between the data point X; and the centroid
t1;. Moreover, as a? — 0, these probabilities become 0 and 1, and the two algorithms coincide.

Remark 2.2.5 (k-means and weighted k-nearest neighbors). The update of the centers in Algorithm 8

can be rewritten, for all j € [k],
,] n
Hj = n Z wiXi,
i=1

where w; o< p;; o< e , with || - ||z, being a Mahalanobis distance. In other words, the
contribution of each point is considered weighted by an exponential function of the distance, which

X},
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is the same spirit as weighted k-nearest neighbors.

Proposition 56. et ((C{ ,,,,, C,f))t>1 be the sequence of partitions created by Algorithm 9. Then
is monotonically decreasing.

The proof will be done during the class.

Remark 2.2.6. First, we have no guarantee concerning the number of iterations the k-means algorithm
needs in order to reach convergence. In fact, k-means might stop at a point which is not even a
local minimum. This situation can particularly occur for a bad initialization.

Second, there is no nontrivial lower bound on the gap between the value of the k-means objective
for the partition returned by Algorithm 9 and the optimal k-means objective value.

The algorithm named k-means++ is an attempt to answer the first caveat (bad initialization in k-means).
To describe it (see Algorithm 10), let, for all j & [k] j > 1, A; be the dissimilarity defined by:

A:x e X min Hx—/f/gH ,
/ 1<0<j—1 &

and let us denote 9, the Dirac measure in x € X. Then, k-means++- initializes Lloyd's iteration with
values of y; far away from each others (see Algorithm 10).

Algorithm 10 k-means+-+.

Input: 7 € N (number of iterations), {X;}1<i<, (training sample).
[ < random point from {X;}1<i<, (initialization)
for j =2 to k do

fi; < random point from {X;}1<;<, with density )

n Av(-)Z
i=1 ZZ=1/A/(Xé)2 Ox,(-)
end for

Some remarks on k-means follow.

k-means separates dissimilar points

Proposition 57. for any partition (G, . . ., Cy) of X, we have:

The proof is a good exercise.
This proposition is sometimes referred to as “Huygens property”. The three terms are respectively:

1. the total inertia;
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2. the intraclass inertia;
3. the interclass inertia.

The previous proposition highlights that minimizing the intraclass inertia (D(G4, . . ., (x)) also maximizes
the interclass inertia.

Variants of k-means

There are two well-known variants of k-means.

k-medoids objective This is similar to k-means but it requires the cluster centers to be members of the
input set (Xi, ..., X,). Thus, for all j € [k]:

ta(G) = X with t € arg Mingep,) Z HX,- — XgH;z Txec -

i=1

k-median objective This is similar to k-medoids except that d is the Euclidean distance:

p(Cj) = Xi with ¢ € argmin,, Z HX,- — Xgng Txec,

i=1

for all j & [k] and

k
D,,(C1 ,,,,, Ck) = Z HX /Jn j)ng 1)(1€C/

Hierarchy of partitions

In addition the lack of theoretical guarantees concerning k-means, another drawback is that clusters are
not hierarchically built when k increases. A possible strateqy for answering this point is hierarchical
clustering, described later. In addition, when using Ward's cluster linkage, hierarchical clustering tries
effectively to minimize the k-means objective.

2.2.3 Point-based objectives

In this section, we address the point of view opposite to the k-means approach: our aim is to devise a
method that separate dissimilar points thanks to a paired criterion. For a partition (G, ..., () € P(X)
and a similarity function s: X x X — [0, 1], the distortion to minimize is then

k
DG, ..., G) = Zs)( YN xegnvec
=1
Moving to estimation based on iid observations X, ..., X, the previous distortion has a natural coun-
terpart:
k
DG, ..., G ZZ (Xi, Xe)1xeqnxec-
'= 1<i<n
1<0<n



Then, it is often convenient to represent the relationships between training points by a similarity graph, in
which each vertex represents a data point X; and vertices are connected by an edge whose weight is their
similarity. Such a graph can be defined by the similarity (or adjacency) matrix W = (s(X;, Xj))1<ij<n-
Given the partition of the indexes (/;, ..., ly) € P(n]), defined by i € [; <= X; € (, the previous

point-based distortion reads:
k

DG G =) ) Wi

/':1 16//
el

Minimizing D, (G, . . ., Cx) is often referred to as the graph cut problem.

Remark 2.2.7. As we will see dfter, the approach described in this section makes it possible to use
non-Euclidean distance, such as graph distances, which are estimations of the intrinsic geodesic
distance (on the potential manifold supporting the data). An example of such a distance is the length
of the shortest path to go from a point to another in the graph:

d(X, X;) = inf{m eN:{x, ..., xob C LX), Xo} s(xi xip1) >0, = Xi, xp = Xj} —1

(with convention inf @ = oo). With this in mind, spectral clustering is more powerful than k-means.

2.2.4  Similarity graphs

To be a bit more formal, we consider a similarity graph G = (V/, E), for which the vertices V' = (», .. ., Vy)
represent the points (Xi, ..., Xy). Tow vertices v; and v; are connected if the similarity s(X;, Xj) > 0
(or greater than a prescribed threshold) and the edge between these two vertices is weighted by their
similarity s(X;, Xj). The weighted adjacency matrix is W = (s(X, Xj))1<ij<n-

The graph G is assumed undirected, which is equivalent to W being symmetric. In practice, this comes
from considering a symmetric similarity measure s.

Definition 2.2.1. The degree of a vertexvi € V is d; =Y ,_, Wi,.

Given A C V, we call size of A the number of its vertices |A| and volume of Avol(A) = }_ (1,4 d:

A is said connected if any two vertices of A can be joined by a path such that all intermediate
points also lie in A.

A is called a connected component if it is connected and if there are no connections between vertices
in A and V\A.

When constructing a similarity graph, the goal is to model the local relationships between data points.
In the forthcoming paragraphs, we describe four popular similarity graphs based on a given distance
d: X xX —R,.

The e-neighborhood graph  Two points X; and X; are connected if and only if their distance is less than
a positive threshold e: d(X;, X;) < e. If € is small enough, all connected points are roughly at the same
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distance. Therefore, the weights assigned are W;; = 1 (if d(X;, X;) < ¢€) and 0 otherwise. Given this
rule, the e-neighborhood graph is usually considered as an unweighted graph.

k-nearest neighbor graph  Two points X; and X; are connected if and only if X; is among the k-nearest
neighbors of X; or the other way around. Similarly to the e-neighborhood graph, the weights are W;; = 1
if X; and X; are connected and 0 otherwise.

Mutual k-nearest neighbor graph  Two points X; and X; are connected if and only if X; is among the
k-nearest neighbors of X; and X; is among the k-nearest neighbors of X;. The weights are assigned
similarly to the k-nearest neighbor graph.

The fully connected graph Points are connected if they have a positive similarity s(X;, X;) and the
edges are weighted by s(X;, Xj). It is important to note that since a similarity graph is supposed to
reflect the local relationships, the similarity should be defined accordingly. In practice, it is asked to s
to be fulfill s(x,x) =1,¥x € X and s(x, X’) (x' € &) to decrease quickly to O when x and x" get away

71/(x,x/)2
from each other. A popular choice is the Gaussian similarity: s(x,x’) = e~ 2’ , in which ¢ plays a

role similar to € and k for the similarity graphs introduced previously.

2.2.5 Spectral clustering

For k = 2, finding a minimal cut of a graph is a relatively easy problem and can be solved efficiently
(for instance thanks to the Stoer-Wagner algorithm). However, it often results in separating an individual
vertex from the rest of the graph, which is not satisfactory. Several solutions to this problem have been
suggested but the most common ones are to normalize the empirical distortion either by the size of the

clusters: .
RatioCut(Cy, ..., G) =Y ‘)—’ > Wi,
=t
(let us remind that the partition of the indexes (/;, ..., Ik) € P([n)) is defined by i € |, <= X, € ()
or by their volume: )
NormCut(G;, . . ., G) = /Z VOS( m Z Wi

?&I/

These objectives are respectively called Ratio Cut and Normalized Cut. Unfortunately, the balancing
introduced by the cluster importance makes the minimization problem computationally hard to solve.
Therefore, from now on, we describe a relaxation procedure resulting in the so called spectral clustering
algorithm.

To this end, we assume that the similarity measure s: X x X — [0, 1] is such that:

V(x, x) € X% s(x, X') = s(x’, x)
Vx € X s(x, x) > 0.
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Definition 2.2.2 (Unnormalized graph Laplacian). Let W & R"™" be a symmetric matrix. The
diagonal matrix D € R™" such that D;; = 3 _7_y W, Vi € [n] and L = D — W are respectively
called the degree matrix and the Laplacian of the graph defined by W.

Proposition 58. Let W and L be respectively the adjacency matrix and the Laplacian of the similarity
graph of (X, ..., Xu). For any positive integer k and for all partitioning (G, . . ., Cy) of (X4, ..., Xu),
we have

RatioCut(C4, . . ., G = tr(H"LH),

here H = | ——1, .
where (\/W 16//) i

1<j<k

In addition, the columns of H are orthonormal to each other (H"H = I ).
The proof will be done during the class.
Remark 2.2.8. Up to normalization, H represents the one-hot-encoding of the clusters. For example,

for k = 3, if we reorganize the sample (X, ..., X)) such that Cy appears first, then C, and so on,
we get

1
o0 o
-
W?O
OWO
H= z
1
0“—2|?
0 0 &
0o 0 -

Owing to Proposition 58, the Ratio Cut problem

minimize E > Wi
1 ..... Ik EP[I) " ’ ‘

16/
Fé/

is equivalent to
minimize tr(H' LH)

HeRmxk
acRK
[ H'H =1,
1
Vje k|, Vien]: H; e {O, —}
s.t. < Q;

n

viekla =) s
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This optimization problem is an integer programming problem. Unfortunately such problems are known
(or at least were used to be known) to be difficult to solve numerically. Therefore, we relax the problem
by discarding the last two constraints. Unnormalized spectral clustering boils down to solving

minimize tr(H' LH)
HeRnxk (PZ”I )
s.t. H'H=I.

The forthcoming theorem tells that a solution to (P21) can be obtained easily by a spectral decomposition.

Theorem 59. Let C & R’ be a symmetric matrix and let us denote C = 5 ' Avv its
eigendecomposition, where for all i € [d], v, € R and A; € R, with sorted eigenvalues Ay < - - - <
Ag. For any k € [d) let us denote V_ = [vi| ... |v] € R*>* and V, = [vg_xua] ... |va] € RI*K,
respectively the matrices of the minor and major eigenvectors.

Then,
inf tr(UTCU) = tr(VTCV.)
UERka
uT U=
and

sup tr(UTCU) = tr(V,] CV,).
UeRdxk
uT U=y

The proof will be done during the class.

By Theorem 59, (P21) is solved by the matrix H for which the columns are the minor eigenvectors of
L. The resulting algorithm (see Algorithm 11) is called Unnormalized spectral clustering. 1t proceeds by

mapping the data (Xi, ..., X,) to the rows of the k minor eigenvectors of L and then by performing a
vanilla k-means.

Algorithm 11 Unnormalized spectral clustering.
Input: W & R™" (adjacency matrix).
L < Laplacian of W
H « k minor eigenvectors of L as columns
Y, « i row of H (for all i € [n)) (¥; € R¥)
(@1 ..... Q) < output of k-means algorithm based on (V;, ..., Y)

N

Output: (G, ..., Ce).

Proposition 60. Let W and L be respectively the adjacency matrix and the Laplacian of the similarity
graph of (Xi, ..., X,). For any positive integer k and for all partitioning (G, . . ., Ce) of (Xy, ..., Xa),
we have

NormCut(Cy, . . ., C) = tr(HT LH),

— ] .
where H = ( vol(/j)]l’E’f) o

1<j<k
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In addition, the columns of D*H are orthonormal to each other (HTDH = I).

The proof is a good exercise.
Owing to Proposition 60, the Normalized Cut problem
.
(/T.l.,r}:)n;%(ﬁ]) = vol(/)) Z Wit

ie/j
el

is equivalent to
minimize tr(H"LH)

HeRnxk
aERK
[ H'DH = |,
1
Vjielkl,Vien]: H,; {O, —}
s.t. < a;

Vi € [k], 01,-2 = Z dily, >0
i—1

C

and can be relaxed to
minimize tr(H'LH)
HER”X/" (PZZ)
s.t. H'DH=I.

Since D is invertible (by assumptions on s) and (P22) can be reformulated

minimize tr(U" LV)
HeRnxk

- H=D":U
o utu=1I,

where L, = D~2LD~:. Therefore (P22) is solved by the matrix U for which the columns are the minor
eigenvectors of L, which corresponds to H for which the columns are the minor eigenvectors of L, = D~'L
(see below). The resulting algorithm (see Algorithm 12) is called Normalized spectral clustering.

Remark 2.2.9. A € R is eigenvalue of L, with eigenvector u if and only if A and u solve the
generalized eigenvalue problem Lu = ADu.

Algorithm 12 Normalized spectral clustering (with L,,).
Input: W € R™" (adjacency matrix).
L, < Laplacian of W
H <« k minor eigenvectors of L, as columns (similar to the generalized eigenproblem Lu = ADu)
Y, « i"" row of H (for all i € [n]) (V; € R¥)
(é} ..... Q) < output of k-means algorithm based on (Y}, ..., Ya)

A

Output: (G4, .. ., Ce).
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Remark 2.2.10. Comparing Ratio Cut and Normalized Cut leads to a very interesting discovery.
First, let us remark that, as already mentioned, both objective functions encodes the second part of
the intuitive definition of clustering: points separated into different clusters should be dissimilar.

In addition, the balancing introduced takes into account the importance of the clusters, either through
their size or their volume. This is so since minimizing the min cut objectives leads to minimizing the
cuts between the clusters while maximizing their importance. However, Ratio Cut and Normalized
Cut behave differently concerning cluster importance. Indeed, it is easy to see that, for all j € [k]:

> Wi =vol(j) = > Wy
ze//

[6//

?EI/ [éE//

In other words, the intra-cluster similarity is maximized as soon as the volume of the cluster is
maximized and the cut with the rest of the vertices is minimized, which is what is achieved by
Normalized Cut minimization. On the other hand, the size |I;| of a cluster is not necessarily related
to the intra-cluster similarity.

In this sense, Normalized Cut minimization addresses both parts of the clustering definition.

Moreover, it can be shown that, L,, behaves as expected when n — oo and so it is for the resulting
partitioning provided by normalized spectral clustering. On the contrary, L can lead to completely
unreliable results, even for small sample size [ ! !

There exists another popular normalized spectral clustering algorithm (see Algorithm 13) based on the
third Laplacian that popped up during this analysis: L.

Algorithm 13 Normalized spectral clustering (with Lg).
Input: W & R™" (adjacency matrix).
Ls « Laplacian of W
H « k minor eigenvectors of L as columns
Y; « i"" row of H normalized to 1 (for all i € [n)) (V; € R, Z/;(Y[)lz- =1)

(@1 ..... @k) «— output of k-means algorithm based on (V;, ..., Ya)

A

Output: (G, ..., ).

Remark 2.2.11. First, there is no theoretical guarantees concerning the ‘“quality” of these two
relaxations.

Second, there exist many other relaxations. Some of them rely on semidefinite programming.

Last but not least, spectral relaxations are not appealing for the quality of the solutions they provide
but for the simplicity of the problem in which they results (standard linear algebra — eigenvalue —
problems).
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Figure 2.6: Example of spectral clustering (k-nearest neighbor graph).
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Figure 2.7: Example of spectral clustering (fully connected Gaussian graph).

2.2.6 Properties of graph Laplacians

Let us consider W & R*" a symmetric adjacency matrix and D &€ R"*" its degree matrix. So far, we
have seen three Laplacians, summed up in the following definition.

Definition 2.2.3.
Unnormalized Laplacian: L =D — W;

1 1

Nomalized Laplacian 1: [, = D~2[D~2 = [ — D : WD,
Nomalized Laplacian 2: [, =D 'L =/—D'W.

Normalized Laplacians are subscripted by s and w because they are respectively symmetrically normalized
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by D=2 (on left and right) and whitened by D.

Graph Laplacians have many properties. In the next proposition, we recover in particular the two properties
bridging the gap between graph cut and eigenvalue decomposition (ltem 1) and discover that 0 is an
eigenvalue of L and L, with eigenvector 1.

Proposition 61.
1. One has, Yu € R":

1
u'Lu = 5 > Wielui— ug)

1<i,0<n
1 2
u; Uyp
u'lu = 5 > Wi.e S )
1<i,6<n V D v/ Dee

2. 0 is eigenvalue of L and L, with eigenvector 1. 0 is eigenvalue of L with eigenvector D:1.

3. A € Ry is eigenvalue of L, with eigenvector u if and only if A is eigenvalue of L, with
eigenvector D:u.

4. L, Ls and L, are symmetric PSD matrices.

The proof is a good exercise.

Proposition 62. Let G be an undirected graph with non-negative weights. Then, the multiplicities
of the eigenvalue 0 of L, L; and L,, are the same and equal the number k of connected components
(A, .. Ae) in G.

In addition, the eigenspace of O for both L and L,, is spanned by {14,, . . ., 14} and the eigenspace
of 0 for L, is spanned by {D~21,, ..., D214}
We refer to | , , Fig. 1] for an illustration of eigenvector properties.

2.2.7 Practical details

Similarity graph  e-neighborhood cannot handle different scales (different distances between data points)
in different regions of the space. k-nearest neighbor graph can and connects regions of high and low
densities. On the contrary, mutual k-nearest neighbor graph does not connect regions of high and low
densities. It can be used to detect clusters of different densities.

k-nearest neighbor graph is a good starting point.

Connectivity parameter For k-nearest neighbor graph, choose k such that the graph is connected or
has significantly fewer connected components than clusters to detect. Otherwise, spectral clustering will
trivially return connected components as clusters. Some asymptotic connectivity results suggest to choose
k in the order of log(n).
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Very generally, we can observe that the mutual k-nearest neighbor graph has much fewer edges than
the k-nearest neighbor graph for the same parameter k. This suggest to choose k larger for the mutual
k-nearest neighbor graph.

For the e-neighborhood graph, € should be chosen such that the graph is connected. The smallest value
of € for which the graph is connected can be estimated by the length of the longest edge in a minimal
spanning tree covering the fully connected graph of the data. However this method is very sensitive to
outliers and isolated tight clusters.

For a fully connected graph, o can be chose as the mean distance of a point to its k-nearest neighbors,
where k is chosen similarly as above (k of the order log(n)).

Number of clusters The gap heuristic: choose k such that all eigenvalues A, .. ., Ay are very small
and Agyq is relatively large (see Figures 2.8 and 2.9). A justification of this procedure, coming from
perturbation theory, is that in the ideal case of k completely disconnected clusters, the eigenvalue 0 has
multiplicity k and Agq > 0.

NEAREST NEIGHBORS affinity matrix
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05 05
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Figure 2.8: Example of Laplacian eigenvalues (k-nearest neighbor graph).
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Figure 2.9: Example of Laplacian eigenvalues (fully connected Gaussian graph).

Graph Laplacian One may look at the degree distribution of the similarity graph. If most vertices have
approximately the same degree, then all graph Laplacians will perform equally. However, if the degrees
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of the graph are very broadly distributed, then Laplacians differ considerably and we suggest to choose
normalized Laplacians, and particularly L, rather than L.

This choice is justified first by Remark 2.2.10.

2.3 Hierarchical clustering

Hierarchical methods for clustering aim at answering a major drawback of k-means: the lack of hierarchy in
clusters (i.e. decreasing k does not lead to merging clusters). This section introduces very simple methods
based on measuring the similarity (or linkage) between clusters. We focus on agglomerative approaches
(which are based on merging clusters) and put divisive ones aside (based on splitting clusters).

2.3.1 Agglomerative approaches

Linkage-based methods are probably the simplest and most intuitive paradigm of clustering. In their
agglomerative version, they start from the partitioning of the training set (X, ..., X,) in which each
cluster is a unit set {X;} (for i € [n]) and merge successively the closest clusters. Straightforwardly, the
number of clusters decreases at each iteration and clusters are nested: each cluster C* at iteration ¢ is
either the same as at iteration t—1 (Ct Ct- ') or the union of two previous clusters (Ct &1’_1 U&ZM).

Two parameters need to be defined in such a procedure: the (dis)similarity (or linkage) between two
clusters and the merging stopping rule. To make the first point precise, let d: X x X — R, be a
dissimilarity and consider two subsets A and B of (X, ..., X,). We now give common examples of
cluster dissimilarities D: P({X;, ..., X,,})2 — R,.

Single linkage
D(A, B) = min d(x,y).

xeAyeB
Complete linkage
DA, B) = max d(x,y).

xeAyeb

Average linkage

DA, B) = > dixy)
‘ |’ xeAyeb
Ward’s minimum variance
Given the intraclass inertia for a generic subset C C (X, ..., X5)
) = Z d(x, me

89



where m¢e = I%I dec y, the cluster dissimilarity in Ward's method is
D(A, B) = (AU B) — I(A) — I(B),
which is the increase of intraclass inertia when merging A and B. For the Euclidean distance,

AllBI

VA B = T8

[ma = ms[,

Since Ward's method merges clusters by minimizing the increase in the total intraclass inertia, it is very
similar to k-means but approximates a minimizer of the k-means objective with an agglomerative hierarchi-
cal procedure. Indeed, let us remind the distortion used in k-means: for a partition ((;, . . ., G) € P(X),

k n

k
DG G =Y Y X =G 1xeq = HE),
j=1

j=1 =1

where 1,(C;) = HLEMTC/HZL Xyeq and & = G n{X, ..., X,}. At the beginning of the

agglomerative procedure, the empirical partition is (Cy, . . ., C) =X} ..., {X,}) and (with a slight

abuse of notation)

DX} X} = 0.

A

Then, given an empirical partition (&1 ..... Cy), the agglomerative clustering techniques merges the two
clusters C; and @, such that merging two components of the summation bellow produces a minimal
increase:

D,(Cy, ... Co) = NG+ 1C) 4 - + 1(Coa) + 1(Ca).
Consequently, the distortion increases slightly at each iteration a reaches at the end a value of distortion,
which is close to that obtained by k-means (and likely bigger).

Remark 2.3.1. Linkage methods can be used with a variety of distances (or affinities), in particular:

¢ Euclidean distance (or [2),

© Manhattan distance (or Cityblock, or [1);
o cosine distance;

o any precomputed affinity matrix.

If the agglomerative procedure runs until the end, all points share the same large cluster. The resulting
sequence of partitioning can be represented as a tree, called a dendrogram, the root of which is the
unique cluster that gathers all points (the final cluster) and the leaves of which are the unit set clusters
(algorithm initialization).

If one is more interested in a useful partitioning instead of the clustering dendrogram, one needs to
employ a stopping rule, which may be:

¢ a fixed number of clusters;
¢ a distance upper bound D (or alternatively a scaled distance upper bound a & R, such that
D = amaxi<;j<q d(X;, X)) for single, complete and average linkages).
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Figure 2.10: Example of agglomerative clustering (two rectangles).
single complete average ward
050 050 050
‘. . ‘::..0‘ “ee’ 025 ‘et ' ..0~ “es’ 025 ‘ . '.. '..0~ ‘o’ 025 ‘et ': :..o’ ‘o’
LN T ‘I‘ g LI ) ‘-\ LIS T ‘I‘ LW T ‘-\
§ a0 R B ad KEEE sd e 0% el g sate W 0% o0} a0 L W
*e, % Cee ."'..‘ loas| *e, - ~'|'..° lozs | ®e, % T ..'l'..° o5 | e, % Yoq ...l'..°
‘3 P | *: e | “3 e e |, *: o & e
1o -05 oo 05 10 -lo -05 oo 05 10 -lo -05 00 05 1o -lo -05 00 05 10

Figure 2.11: Example of agglomerative clustering (single rectangle).
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Figure 2.12: Example of agglomerative clustering (Gaussian clusters).

2.3.2  Connection with minimum spanning trees

Given a connected edge-weighted undirected graph G = (V, E), with weight function d: V x V — R,
the problem of minimum spanning tree (MST) is to find a subgraph T = (V/, E') that connects all vertices
with minimal sum of weights Z{W}eg d(u, v). It is easy to see that such a subgraph T is necessarily a
tree. Indeed, if there where a cycle in T, we could remove an edge on the cycle to get a new subgraph

connecting all vertices and with fewer sum of weights.

There are several classic techniques for finding an MST: Bortvka's, Kruskal's, Prim's and reverse-delete
In particular, Kruskal's algorithm consists in adding edges in

algorithms. All are greedy methods.

increasing weight (at the initialization, we consider an edge with minimal weight), skipping those whose

addition would create a cycle.

Back to clustering and similarly to spectral methods, let us consider the similarity graph, in which each
vertex represents a data point and vertices X; and X; are all connected by an edge whose weight is
their distance d(X;, Xj). Then, applying Kruskal's algorithm to this graph is exactly performing a single
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linkage agglomerative clustering on the set (X, ..., X,). Indeed, picking edges in increasing weight in
Kruskal's algorithm corresponds to merging the closest clusters in single linkage. In addition, discarding
edges that would create a cycle is exactly saying that we measure distances and merge two different
clusters in single linkage.

To complete the comparison, once an MST T is created, deleting the kK — 1 most expensive edges in T
produces k connected subgraphs, which are exactly the clusters produced by single linkage.

2.4 Density-based clustering

The algorithm called density-based spatial clustering of applications with noise (DBSCAN) assumes that
clusters are dense regions separated by low-density corridors. It is one of the most common clustering
algorithms because of its efficiency and its ability to automatically determine the number of clusters.

Given two parameters, a radius € > 0 and a minimal number of neighbors m, DBSCAN considers three
types of points:

1. core points are points that have at least m neighbors within a distance € (the e-neighborhood),
including themselves (the e-neighborhood is at least a unit set);

2. reachable points are non-core points that fall in the neighborhood of a core point;

3. outliers are other points.

Clusters are formed by core points that fall in the neighborhoods of each other and by their reachable
points.

Remark 2.4.1. With m = 2, DBSCAN performs the same clustering as single linkage for which the
dendrogram has been cut at height €.

Advantages

o DBSCAN makes assumption on cluster density, thus it determines automatically the number of
clusters.

¢ There is no shape restriction for discovered clusters (while k-means requires convex clusters).

o DBSCAN prevents the single-link effect (different clusters being connected by a thin line of points).

o There is a notion of outliers/noise.

o DBSCAN is mostly insensitive to sample ordering.

Drawbacks

o DBSCAN is only deterministic on core and noise points. Border points that are reachable from
several clusters can be part of either cluster, depending on the order the data is processed.

o DBSCAN cannot cluster data sets well with large differences in densities, since the parameters e
and m cannot be chosen appropriately for all clusters.
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Algorithm 14 DBSCAN.
Input: € > 0 (neighborhood radius), m € N (minimal number of neighbors), {Xi} <<, (training sample).

I — {Xi}i<i<n (unlabeled points)
k < 0 (current number of clusters)
while 7 = @ do
pick X in T
N « e-neighborhood of X
if [N| > m then
k «— k+1
initialize a new cluster C; = @
move X from T to Q
S «— (N\{X}H N T (unlabeled neighbors)
while S = @ do
pick Y in' S
move Y from S to Cy (and remove Y from T)
N’ « e-neighborhood of Y
if || > m then
S «— SU(N'NT) (unlabeled neighbors)
end if
end while
end if
end while
Output: (@1 ..... y, T') (k clusters and a set of outliers)

Choice of the parameters

1. Because of the curse of dimensionality, m should be chosen of the order of 2d.
2. The radius € can be chosen at the elbow of the monotonic curve of maximum distances between a
point and its m — 1 nearest neighbors.

DBSCAN in action
1. A fancy demo of DBSCAN.

2.5  Clustering evaluation

When the ground truth is known, several criteria can be used for evaluating a clustering performance:
adjusted rand index, normalized and adjusted mutual informations, V-measure, Fowlkes-Mallows score.
All scores measure the similarity between class labels ignoring permutation. Besides, adjusted indexes
and Fowlkes-Mallows score have chance normalization: random uniform label assignment gets a 0 score.

Now, we briefly present some methods for assessing a clustering performance when the ground truth is
not known. These methods can be used to select the number of clusters k or other parameters.
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https://www.youtube.com/watch?v=h53WMIImUuc

2.5.1 Elbow method

The elbow method is a method of validation of a partitioning based on the intraclass inertia. It is often
used to choose an appropriate number of clusters and is particularly suited for convex clusters (due to
the nature of its criterion).

The elbow method looks at the intraclass inertia (or inversely at the percentage of variance explained,
that is the ratio of the interclass inertia to the total inertia) as a function of the number of clusters (see
Figures 2.13 and 2.14).

The idea of the elbow method is that such a curve has two regimes:

¢ going from 1 to 2 (then 3) clusters will decrease a lot the intraclass inertia since these clusters
help discovering groups;

¢ once we have more clusters than actual groups, there is a very limited gain (in the intraclass
inertia) of adding a new cluster.

Therefore, intuitively, there should be an angle in the graph, separating the two regimes mentioned above.
The point where this angle appears is called an elbow and precisely indicates the number of clusters to
choose. However, in practice this elbow cannot always be unambiguously identified.

Optimal number of clusters

600 -

Total Within Sum of Square

1 | i i i | i 1
1 2 3 4 5 6 7 8 9 10
Number of clusters k

Figure 2.13: The elbow method (in theory). Courtesy of WWW.
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Figure 2.14: The elbow method (in practice).
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2.5.2  Silhouette coefficient
For all i € [d], let &/ be the cluster associated to X; and

a; = |C|_1de Y),

Ye(‘
Y#X

as well as

A:wngelgk a ZdX Y)

i YeC

being respectively the average distance of X; to its companions and to the members of the neighboring
cluster. These values can be interpreted as how well X; is compliant with its cluster and different from
the neighboring cluster. The silhouette value for X; is

b{' — a;

= Dm0 o)
S max(a[,b[)e[ )

The average s; over all data of a cluster m Y i<ico 5; measures how tightly grouped all the data in the

Xieg
cluster are, and how distant from the neighboring cluster they are. In this sense, it is a density-based
index, which is close to 1 when (; is a dense group separated by a low-density corridor from its neighbor

(similarly to the operating of DBSCAN).

The silhouette coefficient is well suited for choosing the number k of clusters: if there are too many or
too few clusters, some of them will typically display much narrower silhouettes than the others, meaning
that they should or should not be split (see for instance this interesting example).

Averaging the silhouette coefficients over all data produces a measure of how appropriate (the higher,
the better) is the partitioning:
,l n
-1y
i=1

2.5.3 Calinski-Harabasz index

Another density-based index is the Calinski-Harabasz coefficient, which boils down to a normalized ratio
of the between-cluster dispersion (or interclass inertia) and the within-cluster dispersion (or intraclass
inertia):

n—kb

k—1w'

S =

where b is the between-cluster dispersion

"

b_iu o
- n :U /J] €2r
j=1

9


http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html#sphx-glr-auto-examples-cluster-plot-kmeans-silhouette-analysis-py

and w is the within-cluster dispersion:

1 )
WZEZZHX—H/

=1 xet

2
o'

where 1/ is the global mean and f; is the mean of the cluster C

Remark 2.5.1. Paradoxically, both previous indexes are generally higher for convex clusters than for
other concepts of clusters, such as those produced by DBSCAN.
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Chapter 3

Dimensionality reduction

Dimensionality reduction is related to the concept of lossy compression in information theory. It consists
in transforming data from a high-dimensional space to new data from a lower-dimensional space, with
as few loss of information as possible.

Dimensionality reduction is motivated by:

< computational challenges;

< poor generalization ability (for example, for nearest neighbors classifiers, the sample complexity
increases exponentially with the dimension);

o interpretability of the data (finding a meaningful structure, displaying the data).

Theorem 63 (| : , Theorems 19.4 and 195)). Let X = [0, 1],
Y= {1}, k e N and (X;, V1), ..., (Xi, Vo), (X, Y) iid. We note g, : X — Y the k-nearest
neighbor classifier based on (X1, Y1), .. ., (Xo, V2), g* : X = Y a Bayes classifier for (X, Y) and
n:X — P(Y =1|X = x) the regression function.

For any distribution on (X, Y) such that n is L-Lipschitz continuous for some L > 0 and for any

k> 10;
B
1 —
ﬂﬂ

Moreover, for all L > 1 and k & N*, there exists a distribution for (X, Y) such that n is L-Lipschitz
continuous,

6Lvd + k
L

N+

P(ga(X) # V) < P(g"(X) # ¥) +

g (X)=Yas. and Vin <

NG

, Plga(X) # Y) >

It is easy to see that for the last term of the generalization bound in Theorem 63 to be smaller than ¢ > 0,

d
6L\ d+k +
€

1
we should have n > ( . That is, the size of the training set should increase exponentially

with the dimension. Besides, the rest of Theorem 63 tells us that this is not just an artifact of our upper
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bound, since there exists distributions for which we need exponentially big training samples to get low
errors. This phenomenon is often referred to as the curse of dimensionality.

Other examples of the curse of dimensionality
Sampling

Sampling evenly a unit hypercube with a lattice that has a spacing of € € (0, 1], requires ¢~ points.
For instance, for ¢ = 1072, 100 points are required to sample the segment [0, 1] while 10%° points are
needed for the 10-dimensional unit hypercube.

Reciprocally, 100 points represent well the segment [0, 1], while they are really insufficient for “covering”
[0, 1]"°.
Distance functions

Given a radius r > 0, the ratio of the volumes of an inscribed hypersphere with radius r (in dimension
d) to a hypercube with edges of length 2r is given by

Zrd]Td/Z d
ardn) 2 ( \/E) 2

2 — 27drdpR)  \ 2 ) drdp

where T is the gamma function and \/7/2 = 0.9. It is easy to see that this quantity goes exponentially
fast to 0 when d grows. As a consequence, we are used to say that “points are concentrated in the
corners” of the hypercube. This assertion is enforced by the fact that the distance between a corner and
the hypercube center is rv/d. In this sens, the major part of the high-dimensional space is far away from
the centre.

The Volume is in a narrow Annulus

The ratio of the volume of a sphere of radius (1 — €)r (¢ € [0,1] r > 0) to the volume of a sphere of
radius r is
2((1—€)r)dﬂd/Z
dr(dp2)
2rd a2
dr(dP)

=(1—¢)

which decreases exponentially fast to 0 as d goes to infinity. In other words, in high dimensions, all of
the volume of the sphere is concentrated in a narrow annulus at the surface.

Going back to dimensionality reduction, this chapter mainly focuses on linear methods, that is, finding a
matrix W & RP*?, where d is the input dimension and p is the desired reduced dimension, that induces
the mapping ¢ : x € RY — Wx € RP. Without supervised information, a natural criterion for choosing
W is that the reduction mapping enables a reasonable recovery of the original data x.

The fondamental hypothesis underlying dimensionality reduction is that data does not fill the entire space
but lives in a manifold of small dimension. Informally, a manifold is a (topological) space, that is locally
homeomorphic to the Euclidean space of dimension p (which is also the dimension of the manifold). The
locally feature means that for any point, there exists a neighborhood (hence the need of the topology),
that is homeomorphic to the Euclidean space.
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There are two points of view in dimensionality reduction:

1. there is a manifold M C RY of dimension p lower than d, in which we aim at “projecting” the
data with few distortion of the geometry;

2. there is a manifold M = f(R?), where f: R — M is a homeomorphism with particular features
such as isometry. Then, we look for a latent variable y &€ R” such that x = f(y).

3.1 Linear methods

3.1.1  Principal component analysis
As explained before, the most straightforward approach of dimensionality reduction is to find

© a compression function ¢ : RY — RP;
¢ a decompression function ¢ : R? — RY,

where p < d is the reduced dimension, such that ¢ enables a reasonable recovery of the original data,
i.e. that (o ¢ has minimal reconstruction error. Given the random variable of interest X € RY (X € [?),
a natural variational formulation, of dimensionality reduction is

minimize E [HX — (Yo <p)(X)H;] .
¢RI RP 2
yRP R

Since we are interested in linear methods, we assume that ¢ ¢ are two linear functions. Then, the
problem boils down to finding a compression matrix W & RP* such that ¢ : x € RY > Wx € R?
and a recovery matrix U € R such that ¢y : y € R? — Uy € R’ Then, the optimization problem
becomes

minimize B |[|X — Uwx]; | (P23)

UeRdxp, WeRp*d

Remark 3.1.1. When ¢ and ¢ are parameterized by neural networks, this approach corresponds to
auto-encoders.

Property 64. If p < d and (P23) admits a solution, then there exists V € R%*P, such that VTV = |,
and the pair (V, V') is also a solution to (P23), ie. the compression ¢ : x € R? +— VTx € RP
and recovery - y € R? s Vy € R? functions are optimal for linear dimensionality reduction.

The proof will be done during the class.

Owing to the preceding lemma, (P23) boils down to minimizing E (HX — UUTXHi) with respect to
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U € R%P such that UTU = I,. In addition, by simple algebra, one has

E (|IX = vUTX|[5) =E (|IX]l;, + XTUUTUUTX = 2XTUUT X
—E (|IX|J}, - xTuuTX) (UTU = 1,)
—E (||x],) —E (X"0U"x)
—E ([IX|I},) ~ E (i (x"UU"X)) (XTUU" X is a scalar)
=E ([|X|l,) —E (rr (U"xx"V)) ()
—E (|IX|I}) — (UTE (Xx7) V),

where we have used that the trace is invariant under cyclic permutations (x). Therefore, once again,
(P23) boils down to

o T T
Ueng&?i(;n[}z&;ﬂ tr (U E (XX ) U) . (P24)

By Theorem 59, it results that a solution to (P24) is U = V., where V, &€ R%*? is the matrix of the
leading eigenvectors of [XXT]. Then, dimensionality reduction mapping is ¢ : x € R +— V] x € RP
and the reconstruction mapping ¢ : y € R? + V,y € R? This approach is called PCA, due to its
relation to eigendecomposition.

Remark 3.1.2. The proof of Theorem 59 tells us that
d d
r(VEXXTI V) = > A<)y 4

where 0 < Ay < -+ < Ay are the sorted eigenvalues of E [XXT]. Since the bound is attained
for p = d (that is, there is no dimensionality reduction), the maximal value tr (\/I]E [XXT] \/+)
serves as an indicator of the “quality” of the approximation made when reducing the dimensionality
of the data.

Let us remark that we can go back to (P23):

tr(XXT)] — tr (;IE [XXT) V]
[EXXT)] — tr (V] E [XXT) V,]

—P
Z)\,.

i=1

E [||x = v VX[l | = [WH]%NWEHFWM]
E [t

=
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It comes then that the relative error of reconstruction is:

E[|X-woally] yora

L

SNA =

In addition, for all x € RY and | € p], (VIX)/. = 27:1(\/+)[/x[. In particular, for all i € [d], (V4);
describes the ‘“influence” of the explicative variable x; to the j™ component. Therefore, if |(V.);] is
large, it likely explains disparities of points in the j™ direction of the reduced space.

3.1.2 Link with variance maximization

Up to now, PCA has been defined as building linear functions for compression and reconstruction (in
other words, as projecting a random vector on a linear subspace with minimal error) but there is no
reason not to consider an affine transformations (that is projecting on an affine subspace) :

L 2
mninize B [[X = {UWX -+ )+ A1 |
yERP, \cRd

It comes trivially that, for (U, W) fixed, the optimal pairs (¢, A) are

u e RP
A=EX—-UWEX — Up.
In particular, we choose = 0, which leads to A =EX — UWE X and to the affine PCA problem:

minimize B [[[(X — EX) - uw(x —EX)[|; |

UeRdxp, WeRpxd

That is why, it is a common practice to center the data before applying PCA, namely considering the
random variable Z = X — E X instead of X. Then, PCA aims at solving

- T T _ T
Uenﬂé?fgsz%Zf:/p tr (UTE[ZZ"|U) =tr (UT V(X)U),

where V(X) = E [(X —EX)(X — ]EX)T] is the covariance matrix of X. If follows that the principal
components (the column vectors of V) are the orthonormal vectors that “maximize the variance of X"

To be more formal, let us describe what we mean by “maximizing” the variance of X. For this purpose,
we define recursively the sequence (uq, .. ., up). Let uy € R be the normalized vector (direction) that
maximizes the unidirectional variance of X, namely a solution to:

maximize V(u'X)
ueR? (P25)
st lully, = 1.
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Then, for all k € [p — 1], given (uy, ..., uy), let ug41 be solution to

maximize V(u'X)
ueR?

Nullg, =1 (P26)
s. 1. . T
Vjelkl:u u =0.

Now, we will show by induction that (u,, ..., uy) corresponds to the principal components, namely the
column vectors of V., which are also the leading eigenvectors of V(X).

First, since V(u"X) = u" V(X)u = tr (u” V(X)u), by Theorem 59, the leading eigenvector of V(X) is
solution to (P25). So we can set uy = v, (with the preceding notation).

Second, for any k € [p — 1] let us assume that (uy, ..., ur) = (Vg—kat, - - -, vg). Since (uy, ..., uy)
are fixed, maximizing V(u'X) = u" V(X)u is the same as maximizing u" V(X)u + Z/; ul V(X)u;.
Therefore, (P26) is similar to

k
- T T _ T
Ueﬂrg]d%tenggtdzxe(kﬂ) Z up VIXjup+u V(X)u =tr (U V(X)U)
j=1 (P27)
.t U=Tlulue| . Jui] = [ulvasal - |va]
o UTU = [
Let us remark that (P27) has a solution since (vVy_xs1, ..., vy) are orthonormal. Now, let us consider

Vi = [Vak[Va—s1] ... |[val Then, by Theorem 59, tr (VI V(X)V,) > tr (UTV(X)U) for all U €
R>*®+1 such that UTU = f.q. In particular, this is also true for all U that fulfill the constraint of
(P27) (said admissible). Since V. is also admissible, this proves that V., along with its first column
U = vy_g, s a maximizer of (P26).

Remark 3.1.3. As explained previously, Zl.d:dfp“ A; measures the quality of the approximation made
d
. : . o : ! i At
by PCA with p components. In view of the variance maximization paradigm, r = Zi"d;”j is often
=17

called the ‘ratio of explained variance” and is a normalized indicator of the quality of approximation.

3.1.3 Link with the Gram matrix

In practice, we are provided with a sample {X;, ..., X,} € RY. Then, considering the empirical twin of
EXX ] which is %ZL X;X.", PCA boils down to finding the p leading eigenvectors of the empirical
(and scaled by n) covariance matrix C =Y ", X;.X." = X"X € R where X € R™ is the matrix
whose rows are the observations X; (i € [n]).

As we are interested in dimensionality reduction, it is quite licit to assume that the dimension d is
very big and that d > n. Therefore, PCA has to diagonalize a (big) d x d matrix, while saving only
the p leading eigenvectors. The forthcoming property tells us that (as long as the reduced dimension
p < n) PCA can be implemented in a cheaper manner by diagonalizing the (small) Gram matrix
K = (X[-TX,-) = XXT e R™".

1<i,j<n
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Property 65. Let us assume that d > n. Then if Ay < --- < A, are the eigenvalues of K with
eigenvectors (v, . . ., v,), then there exists (uq, ..., Ug_p) € RYH" such that 0 < - < 0 <
A < -+ < A, are eigenvalues of C with eigenvectors (uy, . . ., Ugep X0y, o, XTv,).

lhe proof will be done during the class.

Then, in order to built the dimensionality reduction mapping x € R? — V. x € R?, we have to

normalize the leading eigenvectors (v,—p41, .. -, v,) of K to unit vectors:
V, = -—?—1———XTWﬂH4.Hy—ﬁl——xTw c R,
X vopi I, X",

Remark 3.1.4. Then for all i € [p] we have

T 2 T 2
HX anerngz = anpHKaneri = Anfpﬂ Hanerngz - )Lnfpﬂv
In addition, the matrix of reduced representations is

(VIXT)" =xv,

KanpH

L AL
_HX Vn*pHHez

Kv, ]
X,
)tnfpﬂ Vn—p+1

Anvn
Y /\nfp+1 \/)T”]
= _1 /An—p-H Vn—p+1‘ 60 a ‘\/EV/)] o

Remark 3.1.5 (PCA and spectral clustering). Let us go back to spectral clustering: the Gram matrix
K can legitimately be viewed as an adjacency matrix. Moreover, if all points have approximately the
same degree, that is D = yl,, then the minor eigenvectors of the Laplacian L = D — K correspond
to the leading eigenvectors of K. As a result, PCA and spectral clustering boil down to perform
almost the same dimensionality reduction, while their purposes are completely different.

3.1.4 Link with sinqular values

The next theorem gives a more general solution to PCA.

Theorem 66 (singular value decomposition (SVD) | , , Ap-
pendix C4]). Let m and n be two positive integers and A € R"™". Let r = rank(A) be the
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rank of A, then there exist U € R™" D & R™" and V &€ R"*" such that
A= UDVT,

and

o the columns of U are orthonormal: UTU = |.;
o D is diagonal with positive and uniquely defined entries oy, . . ., g, (called singular values),
o the columns of V' are orthonormal: V'V = |I.

Furthermore, denoting U = [uy| ... |u,] and V = [v| ... |v,] one has:

o A=Y, ou
o for all i € [r], u; and v; are left and right singular vectors: Av; = au; and A" u; = gyv;
o for all i €r], u; is an eigenvector of AAT with eigenvalue o7,
o for all i €r], v; is an eigenvector of ATA with eigenvalue a?.

In practice, SVD is a tool from linear algebra, that is more robust than eigendecomposition for solving
PCA. It computes neither XX nor XX'. In addition, PCA is performed even faster by computing the
top p sinqular values, along with the left and right singular vectors of X thanks to a truncated SVD.
Let us remark that for computing the dimensionality reduction mapping, we need the eigenvectors of
C = XX, ie. the right singular vectors, and for the matrix of reduced representations, the eigenvectors
of K = XXT, ie. the left singular vectors.

Algorithm 15 Reduced representation by PCA.

Input: X € R™ (data matrix), p (reduced dimension).
Second order matrix
C«— XX
V'« p leading eigenvectors of C
U« XV
Gram matrix
K« XX'
Moo, A, < p leading eigenvalues
V'« p leading eigenvectors of K
U [Vav].. \/_Vp]
SVD
a, ..., 0, < p leading singular values of X
V'« p leading left singular vectors of X
U lomnl...|ov)]
Output: U € R"™.

3.1.5 Random projection

Although PCA is very appealing by its simplicity and probabilistic interpretation, it requires computing
singular vectors, which can be very expensive for very high-dimensional data, or very big samples. That
is why, we describe in this section a very cheap way of reducing dimension. Here, the criterion of interest
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is not a reasonable recovery of the original data but saving the original placement of the data points
R X, } with respect to each other. In other words, we would like to preserve pairwise distances.

Roughly speaking, Theorem 68 states that if the reduced dimension p is proportional to log(n)/e?, then
a random matrix W € RP* produces a dimensionality reduction mapping ¢ : x € R? > Wx € R?,
that preserves pairwise distances up to an error €.

Lemma 67 (Concentration of a chi-squared variable). Let p € N* and Z/ ~ sz. Then for all
e (0,1):

52
P(‘%—1‘>6) <2efF

The proof is a good exercise.

Theorem 68 (Johnson-Lindenstrauss Lemma). Let S C RY be a finite set of vectors with cardinality
n>2 and W € RP*? be a random matrix such that its entries {Wij}]ﬁ‘ég are iid and distributed
<<

according to N (0, 2—)) For any (e, 8) € (0,1)%, if
p > 166 log (n/\/g) ,
then with probability at least 1 — 0 on the random matrix W,
Vix,x) €8 (1—¢) HX—X ng < HWX— Wx' He < (1+¢) HX—X He
The mapping x € RY +— Wx € R is called an e-isometry on S.

The proof will be done during the class.

Remark 3.1.6. The underlying idea of this approach is that the reduction mapping x € RY
Wx € R? is an exact isometry “in expectation”:

Ve ER:E ([Wally ) = i,

W 2
Indeed, since for all x € R? such that x +0, il XZHPZ ~ XZ, one has
lx1ig, p

2
oy g (e IIWxl, N g
E (HWXHez) = = T A

Let us remark that it is enough for {W; }w<1<p to be independent with E W;; = 0 and V(W,;) = 1;

(for all i € [p| and j € [d]) in order to get an exact isometry ‘in expectation” Indeed, denoting
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X 2
7 = Wx, we have forall i € [p) EZ =0 and V(Z) = Y_¢_, x2 V( W) = : /J‘}Z. Then, it comes:

j=17

E|[wxle] =E[l1Z]3] - : E[Z2] = i [V(Z) + (EZ)] = x113, -

i=1

=

Remark 3.1.7. It is remarkable that the requirement on the reduced dimension p > 16¢~2 log(n/\/0)
does not depend on the original dimension d. This means that we could consider data in infinite-
dimensional Hilbert space.

The forthcoming corollary goes a step further Theorem 68, telling us that we can find very quickly a
linear dimensionality reduction mapping, that is an exact e-isometry on a given dataset. This is done by
sampling a matrix and checking that it provides the expected result.

Corollary 69. Let S C RY be a finite set of vectors with cardinality n > 2. For any € € (0,1), let
p be an integer such that
p > 16 log(n),

then there exists a matrix W € RP*? such that
Vix,x) €S (1—e)|lx— X/sz < ||wx — WX/HZ <(1+e)|x— X/H;Z :

In addition, such a matrix can be found by a randomized algorithm, for which the expected time is
linear in n.

The proof will be done during the class.

Figure 3.1 illustrates Corollary 69 regarding the minimal dimension required to get an e-isometry. We
observe that this is quite huge. Thus, random projection is a workable method only for very high-
dimensional data. Otherwise, PCA should be preferred.

40000
35000

30000

25000

—— Presented bound
= 20000 Dasgupta and Gupta's improved bound

15000
10000

5000

a 100 200 300 400 500
n

Figure 3.1: Curves p = 16¢~?log(n) (presented bound) and p =
improved bound) for € = 0.05.
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vl | tals of rand ices W and a dataset of 50
W or two trials of random matrices W and a dataset o

points uniformly sample on the hypercube [0, 1]'%%_ |t appears that, in practice, a single trial is sufficient
to get a suitable matrix W (which is dramatically faster than linear in n) and even if the first trial does
not work, the e-isometry requirement is violated only for few points. A possible explanation is that the
lower bound of the probability of success of finding a suitable matrix W (1/n) is very loose because of

the union bound used in the proof and of the lack of hypothesis on the data distribution.

Besides, Figure 3.2 depicts the ratio

Wex - )
W

W

Normalized histogram of Normalized histogram of

T

uuuuu

Fi ) . . HWXWWX/H?2
igure 3.2: Analysis of the requirement | ————*

- —1’ < €, which is fulfilled for the left trial and
XXl
violated for the right one. 2

3.1.6  Reconstruction of random projections

When we moved from PCA to random projections, we changed the paradigm of dimensionality reduction
from a reasonable recovery to preserving pairwise distances. It is entirely licit to wonder if one has a
reasonable recovery of the original data when pairwise distances are preserved up to an error €.

An answer comes from the mathematical domain of compressed sensing (see Claire Boyer’s class), which
requires nevertheless to modify our assumptions: from now on, we do not consider being provided with
a finite set of points S any longer, but, given an integer s, we focus on all s-sparse vectors. A vector
x € RY is said s-sparse if its pseudo #-norm is bounded by s:

d
Xl =) Ty <5
i=1

Theorem 70 ([Shalev-Shwartz and Ben-David, 2014, Theorem 239)). Let W € RP*? be a random
matrix such that its entries {M/[/‘}lgfgp are iid and distributed according to N' (0, 2—7) and s € [d]

<j<d

a sparsity level. For any (€, 0) € (0,1)?, if
p > 100se % log(40d/(d¢)),
then with probability at least 1 — 0 on the random matrix W,

Vx R’ :ixlg <5, (1—e)lixlig, < HWfo,2 < (14 €) lIxlly, .
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The matrix W is said to have the (e, s)-restricted isometry property (RIP).

Theorem 70 gives a condition on the reduced dimension p for the dimensionality reduction mapping
x € R+ Wx € RP to be an e-isometry on the set of all s-sparse vectors “in expectation”. It should
be noticed that, contrarily to the Johnson-Lindenstrauss Lemma (Theorem 68), this condition on p depends
on the dimension d of the original data. Figure 3.3 compares both requirements.

22000
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18000
16000
- 14000
12000

10000

—— Presented bound for reconstruction (s=10})
Improved random projection bound {n=1e+05)
6000 Improved random projection bound {n=1e+08)
0.0 0.2 0.4 0.6 03 10
d led

8000

Figure 3.3: Curves p = 100se~?log(40d/(d¢)) (presented bound for reconstruction) and p =
ﬁ log(n) (improved random projection bound) for € = 0.1.

Now, Theorem 71 states that we can recover the original data x € R¢ from its Gaussian random projection
Wx & RP by solving a convex optimization problem. This topic is studied in the minutest detail in Claire
Boyer's class.

Theorem 71 (| , , Theorem 23.7)). Let € € (0,2/5), s € [d] be a
sparsity level and W € RP*? be an (e, 2s)-RIP matrix. Then,

d . o
Vx € Rt lixllg, <5, x €argmin ,cze lUlly, ,
Wu=Wx

where llully, = ZL .

Remark 3.1.8. It is quite natural to wonder which of PCA or random projection is preferable. To
answer this question, one can focus on the recovery property of each method.

On the one hand, PCA guarantees perfect recovery whenever the variable X lies in a linear subspace
of RY, with dimension k less than the number p of selected components. Indeed, if R is the subspace
in which lies X and R, is its orthogonal subspace, the k directions u € RY (llull,, = 1) that
maximize the variance of u' X are necessarily in R (u" X = 0 as soon as u € R ). Thus, if we
are interested in p > k components, then the p directions that maximize the variance contain an
orthornomal basis of R, which guarantees perfect recovery of X from its projection.

On the other hand, Gaussian random projection guarantees perfect recovery whenever the original
data is sparse (in a well chosen basis).
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3.2 Nonlinear methods

3.2.1 Kernel principal component analysis
With the kernel trick

Let {Xi}1<icn C RY be iid copies of X and k: RY x RY — R a kernel with feature map ¢: RY — G,
where G is an appropriate Hilbert space (of dimension D, potentially infinite). As a reminder, we have
Vix,x) € R x R?: k(x,x) = (p(x), ¢(X/)>g.

Similarly to kernel Fisher discriminant analysis (Section 1.1.4), we consider the general method of
applying PCA to the random variable 7 = ¢(X) — E(¢(X)) € G. As shown in Section 3.1.1, this
boils down to diagonalizing E(ZZ ), which may be an infinitely dimensional matrix (as soon as G is of
dimension o), that is a linear operator. From now on, we may use as a notation for all x € R? and

¥ ERY G(x)T P(X) = (d(x), $(X'))g.
Even though it seems quite difficult, we rely on Section 3.1.3, in which we have shown that, in its

empirical version, PCA can be performed by diagonalizing the Gram matrix Ky = (<Z,Z/>g)1 of
<i,j<n
the sample {Z}1<i<n, where for each i € [n], Z; = ¢(X) — 13 ;_, ¢(Xo)-

Then, we can write the sample matrices
X=[pX)|...lpX,)]" €eR™P, Z=[z]...|1Z] €R™",

the rows of which are the sample vectors. Since %ZZ=1 B(Xp) = X" 1/n, it is easy to show that

[ ZM |—Z¢Xe] —X—n( ZM

where M = 117/n € R™". Therefore

= (I, = M)X,

K, = 272" = (I, — M)Kx(l, — M),

where Ky = (<¢(X[), ¢(X/)>g) = (k(XirX/))1gz,/gn'

1<i,j<n
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Remark 3.2.1. More formally, one has, for all (i, j) € [n}:

(Kz); = <ZZ/>Q

— (Kx)y + (MKxM), — (KM); — (MK),
= ((l, — M)Kx(l, — /\//))ij.

Remark 3.2.2. If the data is not centered, that is PCA is applied on the sample {(X:)}<i<,, then
the matrix to diagonalize is Ky instead of K.

Let now (v, .. ., v,) C R” be the leading unit eigenvectors of K7. The dimensionality reduction mapping
isp:x € R?— Vx € RP, where

1 1

Vi=|r==—2"v|.. |;j==—2Z"v,| € RP*.
" HZTWH@ 1 HZT PH& ’
We have, for all i € [p)],
2wl = ko = Al =
In addition, let U & R"*? be the matrix of reduced representations (that is (\/+T [d)(X[) — % ¢(Xg)] )1<l<n

are the rows of U) is

U=(VIZT)T:zv+=[KjE| SZ—”] [\/_w |fvp] (31)

Moreover, given a new point x € R, its reduced representation v € R? is u = ¢ (d)(x) — 1 [ ¢(Xg)) =
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VI (@) — 1375, ¢(X0)), with, for all j € [p]:

._/\1/2 TZ( ——ZCP)Q

" 1 1<
S o =25 g0a) (a2 e
=1 ¢=1 =

A7 S [ K X) ST K X — (K Xe) kX )

1<0,0'<n =1

n

B ,l n
= 52 [ K X) = =) k(X X)
i ’=1

n T ] T
:/\;1/2 Z ((Vj)i_ u) k(X,X[)—i-l Z (% —(V/) ) /((X,,Xg)

1<i,0<n

+ ]m’i ! ik(X Xo) — k{x, X)
n — n L /¢ 1 ]

=1

|

>

1
=) (@l X) =2 ) (a)k(X, Xe),

i=1 1<i,0<n

Ty = (217y) 1) = A" (l, — M)y, € R” for all j € [p].

where a = )t y

This derivation shows that, as expected, we only need the kernel k (and not the — possibly infinite
dimensional — feature mapping ¢) to apply PCA in the feature space G.

Remark 3.2.3 (PCA and spectral clustering). See Remark 3.1.5.

RKHS point of view

For the sake of simplicity, let us assume that the dataset is centered in G: %ZL o(X;) = 0. The
previous derivation boils down to u; =Y 7 ,(a;)ik(x, X)), where a; = A; 1/2\// for all j € [p], ie.

for some h; € H, where H is the RKHS associated to k.

Changing a bit the notation, let us consider the problem of determining a reduction mapping ¢ : x €
R+ (hi(x), ..., h,(x)), where h; € H for all j & [p], and such that the components are orthonormal
with maximal variance:

p
maximize V(h,(X))

hi,.. .hyeH

o [HERnl=1
. {Vi,je[p],[%}{j = <hi'h/>H:0‘
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Remarking that 257 ¢(X) =0 = 135" h(X) = 0,Vh € H, the empirical point of view of the
latter problem is

maximize hi(X)*

hy,..., hpEH

1<j<p
1<i<n

oo el
-t Vi,je[]#/:><hi,hj>H=0,

the maximizers of which being chosen in span {k(X;, -), i € [n]}. Thus, considering h; =Y 7 ,(a/)ik(-, Xi)
for some 0{; € R”, the problem of maximal variance becomes

maximize > c/T K

a,.., LAY

. V/ € [pl, ajfTKXa/f =1
o Viijepli+] = a{TKXa; =0.

1
With the change of variable v/ = Ky a; (assuming K invertible), this boils down to solve

o [Heni,
o Vi, jelp]i %/=>V/T/ 0.

Remembering that K; = Ky, it is clear that the p leading eigenvectors v, .. ., v, of K7 are solution to

1/2

the latter problem, meaning that a/ = =K, zv/ = A, “v; = g; are solutions to the former problem

To sum up, applying kernel PCA with centered data in g is equivalent to building a nonlinear reduction
mapping @(x) = (h(x), ..., hy(x)), where hy, ..., h, € H are such that the empirical variance of h;(X)
s maximal and h4, ..., h, are orthonormal.

Remark 3.2.4. When the data is not centered, it should be considered ¢; = h; — L5~ hy, with

hy = _i(a)ik(-, Xi) for some af € R", which leads for af, . . ., a, to be solution to
T /
maXLleG — a; Ky(l, — M)Kya;
,,,,, iz Z = M)Ksg;

i V/E[], a' Kya) =1
o Vi,jelpli+| = a{TKxa;=0.

1
It can be shown that af = (I, — M)K; *v; = a; is solution to the latter problem, which is consistent
with the initial derivation.
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3.2.2  Classical multidimensional scaling

In Section 3.1.5, we introduced the paradigm of preserving pairwise distances and showed that it was
conceivable with random projections (based on Gaussian matrices). More formally, for any € € (0, 1), we
exhibited a matrix W & RP*9 such that for all pairs of points of interest (x, x') € RY x R?,

(1= ) [lx = [, < W= wxl[ < (1 + ) flx = I

namely
=¥l = (1w = w

<elx =l

The approach, called multidimensional scaling (MDS), goes a step further by building representations, not
necessarily linear, that tend to preserve pairwise distances. Given a training sample {X;}1<i<, C RY,

MDS proceeds by defining a stress function S and minimizing it over the reduced representations
{zihi<i<n

Classical scaling considers that the distance of each pair of points should be preserved, regardless of
how far points are, namely

2 2
\h—*H@—HW*—WXM(Se

Let Z € R be the matrix of which the rows are the reduced representations {z}1<i<,. A natural
variational formulation of the preceding criterion is to minimize the stress function

2
sc@= Y (=Xl - llz—2l2) -

1<is=j<n

Let X & R"*? be the matrix of which the rows are the training points { X; }<i<p, Dx = (HX[ — Xle)
- 1<i,j<n

and D7 = Hz[ — sz be respectively the squared pairwise distances. Then, we have
e 1<i,j<n

Sc(2) = || Dx — Dl

Since minimizing such a function with respect to Z may be difficult, classical scaling introduces the Gram
matrices Ky = XX € R™" and Kz = ZZ" € R"*". This makes the problem simple since as soon as
we know Kz, Z can be obtained by factorization (see below).

It should be noticed that D; and Kz are linked together: let ox = diag(Kx) € R” be the vector of
diagonal items of Kx. Then, one has

Dy = 5)(]1T + 1oy — 2Kx. (32)
X

However, obtaining Kx from Dx (what we need in practice) is not so easy. That is why we make use of
the matrix of centered data:
X' =X—-1X",

where X = %Z; X.. Let now Kxs = X’X’T be the Gram matrix of the centered data.
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Property 72. One has
1
Kx = —=HDxH,

where H = [, — 1117 € R™".
The proof will be done during the class.

Remark 3.2.5. H is the PSD matrix of the orthogonal projection onto the vector space orthogonal
to range(1).

Property 73. One has
15— D], < 201+ VA |5 — Kol

The proof will be done during the class.

Property 73 tells us that minimizing the distance between Ky and Kz makes the squared pairwise
distances closer. Therefore, we now aim at minimizing the stress function

SiZ) = ke —2Z7|F = Y (<X,-—)_(,X/-—)_(>€Z—<z,-,z/->€2)2.

1<i,j<n

Such a problem is a low rank approximation problem. As explained in the forthcoming theorem, it is
solved by the truncation of the smallest singular values of Kx.

Lemma 74. Let A € R™" be a matrix of rank r, with A= UDV'" being its SVD. Then

Al =>_ 0%
i=1

The proof will be done during the class.

Lemma 75 (Weyl's inequality). Let A € R™" and B € R"*" be two matrices and let us denote
g = min(m, n). Let (o1(-), ..., aq(-)) be the set of singular values (of a given matrix) sorted in
decreasing order and completed with O after the rank.

Then, for all (i, j) € [q such that i+ j—1 € [q],

0s1(A+ B) < a(A) + 5,(B).
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Theorem 76 (Eckart-Young-Mirsky theorem). Let A &€ R"*" be a matrix of rank r and let us denote
g = min(m, n). Then, for any p € [q], a solution to

ehiimizS 1A= Blle

isB*=Aifp>randifp<r, B-=UDVT, where

o A= UDVT is the SVD of A with singular values Dy > -~ > D,,
o D' € R™ is such that D}, = Dy; for all i € [p] and O otherwise.

The proof will be done during the class.

From Theorem 76, we obtain that S/ can be minimized by computing a low rank approximation K of Kx
and by factorizing K in ZZ". This is described in Algorithm 16. We can remark that the result obtained
for kernel PCA (or centered linear PCA solved with the Gram matrix) is similar to classical MDS (see
Equation (3.1) and Remark 3.1.4). In fact, kernel PCA (with centered data) can be seen as classical
MDS applied in the feature space G. There is however a big difference: kernel PCA is a predictive (or
inductive) model, while MDS is not (we have to know all points beforehand in order to transform them
— it is a transductive method).

Algorithm 16 Classical multidimensional scaling.

Input: D € R"™" (matrix of squared pairwise distances), p € [n] (reduced dimension).
Kx/ < —%HD)(H
Compute the eigendecomposition Y 7, Avivi" of Kk, with Ay > -+ > A,
7 — [\/ﬂvﬂ L |\/Evp] e R
{z:}1<ich < rows of Z
Output: {z;}1<ich-

Remark 3.2.6. All this derivation is true for Euclidean distance matrices. However, classical MDS
may be performed with simple dissimilarity matrices. One should only take care of negative eigen-
values.

3.2.3 Metric and nonmetric multidimensional scaling

Classical scaling is part of the family of metric scaling, because it tends to preserve pairwise distances.
Two other approaches are included in this family.

Kruskal-Shepard

Kruskal-Shepard scaling is a variant of classical scaling, where squares have been dropped. The stress
function to minimize is

2
Ses@ = 3 (=Xl e —ally)

1<ij<n
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In practice, Kruskal-Shepard scaling is solved by the scaling by majorizing a complicated function
(SMACOF) algorithm. It consists in majorizing Skxs by a convex quadratic function.

Property 77. Let @ € R"" be a symmetric matrix. For any Y & R"*P, with rows denoted
{g[}1§1§n - RP,
Z aj(zi — z) " (y: — y;) = tr(ZTVY),

1<i#j<n

where V. € R"™" and for all i € [n], Vi = Zngfn a; and for all j € [n], such that i + j,
JFi
V[] = —20'[/'.

The proof will be done during the class.

Let, for all i € [n] and j € [n], d; = ||Xi — Xng2 and 0; = ||z — Zngz. Then,

Sks(Z) = Z (di/' - 51/)2

1<isj<n

2 2
Z d,-]--l- Z 5[-]-—2 Z dz/‘(i‘/.
1<igj<n 1<igj<n 1<itj<n

In addition,

Y =Y (a—-2z)(z—z)=t(Z"VZ)

1<ij<n 1<ij<n
where V &€ R"™" has 2(n — 1) on the diagonal and —2 elsewhere, and

d; dj; /
> didy= ) Sagedi= ) Plapla—2z) (@ 2)=t(Z'V'2Z)2)

1<ij<n 1<itj<n Y 1<itj<n Y

/ nxn dij . di;
where V/(Z) € R"™" has (2 Zﬁ%n 5;15”%0)1@@ on the diagonal and (—2;;151]%0)1< elsewhere.

<itj<n

Thus,
Sks(Z)= ) di+1(ZTVZ) =22 V'(2)2).

1<i#j<n
But, for any Y € R"*P,

d.
H(ZTV/(Y)Y) = i
1<§<n Hgi - U/'Hez

d.
< Tl NP zi—z|, |lyi — y;
T el 3l

= Z dijéiﬂllyﬁy/ﬂeﬁo

1<ij<n

< Z dij;,

1<ij<n

1 Hyf—y/}lpz%o(zi - Z/)T(yi —yj)
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by Cauchy-Schwarz and non-negativity of the weights inside the sum. As a consequence, by denoting

McsZY) = dl+1(ZTVZ)— 2t(ZTVI(Y)Y),

1<i#j<n

which is a convex quadratic function in Z, we obtain, for all Y & R"*7,

Sks(Z) < Mks(Z,Y) and  Sks(Z) = Mks(Z,Z).

Given Y € R"*?, the minimum of Mks(-,Y) can be obtained by Fermat's rule:
0=YVzMs(Z,Y)=2VZ-2V(Y)Y,

by symmetry of V. Since V' is not necessarily full rank, it cannot be inverted. That is why we resort to
the Moore-Penrose inverse of V, denoted V*, in order to obtain a minimizer of Mis(-,Y):

Z = VIV(Y)Y.

Algorithm 17 SMACOF.

Input: d € R™" (matrix of pairwise distances), p € [n] (reduced dimension).
V'« matrix from R"*" with 2(n — 1) on the diagonal and —2 elsewhere
V* « Moore-Penrose inverse of V
Z <+ random matrix from R"*? (initialization)
while not converged do

{z:}<icn < rows of Z
0y Hz[ — Zf”gz for all (i, ) € [n]

V/ «— matrix from R"*" with ZZW%Sn %15{/%0 (i on the dlagonal and (—2;—315[/#0) .
elsewhere.
Z—VtVvV7Z
end while
{zihi<icn < rows of Z
Output: {z;}1<ich-

The resulting procedure is described in Algorithm 17. It provides naturally a series of non-increasing
stress values.

Sammon scaling

Sammon scaling goes back to the roots by considering the original criterion for preserving pairwise
distances: for all pairs of points of interest (x, x') € R? x R?,

b= w1, = [[wx = w'[[

A natural variational formulation is to minimize the Sammon mapping with respect to Z:

(1% =X, ~ 12— ]],)
X=x,

Ss(Z) =

1<ij<n
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Nonmetric scaling

In some applications, like wine tasting for instance, pairwise distances are not as important as ranking
of them: if for some (i, /, 7, /') € [n[', || X — X[, > [|Xo — X;||,,, we would like a representation Z
that fulfills ||z — sz[Z > ||z — Zf/Hfz‘ The major interest here is preserving the ordinal properties of
the data. For this reason, nonmetric scaling aims at minimizing the stress function

2
ZK(%/SH ¢ (HX[ _XIH@) - Hzi _Z/Hez)

Z1§i%j§n HZi - Z/’Hi

SvulZ, @) =

over representations Z and monotonically increasing functions ¢.

A naive algorithm in order to approximate a minimizer of Sy is to alternate minimization over Z (for
instance thanks to a subgradient descent) for a fixed ¢, and isotonic regression to approximate ¢ given
Z

3.3 Other methods

3.3.1  Spectral embedding

As explained in Section 2.2.5, spectral clustering boils down to finding a novel representation of the
training data and then performing a k-means. This new representation is in fact a dimensionality
reduction technique, called spectral embedding.

3.3.2 Linear discriminant analysis

Dimensionality reduction can be performed naturally in a supervised manner, taking into consideration the
derivation of multiclass discriminant analysis (Section 1.1.5). It has been shown that the (let us say, p)
leading eigenvectors of Yy 'M (see notation in Section 1.15), denoted (v, .. ., v,) € R”, concentrate the
variability between features. Thus, x € R? +— ] ... |v,]" x € R” defines a dimensionality reduction
mapping. In fact, when p = C — 1 (C being the number of classes), this mapping projects the data onto
the subspace spanned by the class centers, which is enough to discriminate points.

3.4 Exercises

3.41 Random projection

Exercise 3.1 (Concentration of a chi-squared variable). Let k be a positive integer and Z ~ 7. The
moment-generating function of Z is defined for all A < % by:

[

E(e”)=(1-2)"".
1. Show that for all x < %:
1 , ,
< E‘X+2X21X20 + eX+X21x<O-

V1—2x
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Prove that for all € €10, 1]

P(z—12€) <e_k?2
k
Prove that for all € > 0,
/ 2
P(—(I—1) >e) <e kT

Deduce that Ve € [0, 1],
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Examen :
Introduction a ’apprentissage automatique
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Aucun document n’est autorisé.

Les questions peuvent étre traitées de maniere indépendante en admettant les résultats des
questions précédentes.

Le bareme (sur 20 points, auxquels s’ajoutent 2 points bonus) n’est donné qu’a titre indicatif.

Exercice 1 (Questions de cours, 4 points)

1. (1 point) Soient {(zi,y:)}1<i<n € R? x {#1} et C' > 0. Construire un classifieur SVM
revient a déterminer

. . 1 -
(n, by) € arg min,cpd peg 5 ||wH?2 +C Z max (0, 1—yi(w' z; + b)) .
i=1

a) Expliquer le role de chacun des deux termes dans la fonction & minimiser.
b) Quelle est la particularité de ce modele par rapport & celui de régression logistique ?

2. (1 point) Soient {(z;,y:) }1<i<n C RIxR, A > 0 et H est RKHS de noyau k : R xR? — R.
On définit alors

)\ n
Lihe# e o nla+ Y () = villz,
i=1
a) Pour tout h € H, on appelle h la projection de h sur span{k(-,x1),...,k(-,2n)} et
n n 2
hy = h — hj. Montrer que » i, [[h(x;) — yz’”i =>, HhH(:Ui) — yngQ'
b) En déduire que L(h) > L(hy).

3. (2 points) Soient r > 0 et x € R? tel que [z]l,, > 7. On souhaite retrouver la projection

de z sur la boule de rayon r, B, = {y € R4, yllg, < r}, par dualité lagrangienne. Pour ce
faire, on résout
... 2
minimiser |y —x
JCRA ly H@
2 2
s.e. |yl <r”

a) Vérifier que le probleme et convexe et que les conditions de qualification de Slater
s’appliquent.

b) Définir un lagrangien pour ce probléme.
c) Enoncer les conditions KKT.

d) En déduire une expression de la projection de = sur B,.
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Exercice 2 (Algorithme EM, 7Y, points)
Soient {(Xj;,Yi)}1<i<n des paires indépendantes de variables aléatoires & valeurs dans R x
{b1,b2}, avec {b1,ba} C R, telles que pour tout i € [1,n] :

Pi=b)=ayp et X;|Vi~N (o] o+ Yi0f),

o (g, Bo,08) €]0,1[xR?% x R* est un jeu de paramétres inconnus (les autres sont connus).
On suppose ici que I'on n’observe que {Xi,...,X,} et Uon souhaite estimer («p, 8y, 03) par
I’algorithme EM.

1. (1 point) Montrer que la formulation :

Xi=a]Bo+Y;+e,Vie[l,n]

e ~N(0,031,)

e 1 (Yl,...,Yn)

{Yl, PN ,Yn} i.i.d avec P(Yl = bl) = p
est compatible avec le modele posé (en particulier, on pourra utiliser que deux couples
(X5,Y;) et (X;,Y;), pour i # j dans [1,n], sont indépendants si pour toutes fonctions
boréliennes bornées ¢ et 1, E[p(X;, Y;) (X}, Y;)] = Elp(X;, Vi) E[¢ (X, Y))]).

2. (1 point) En déduire une interprétation dudit modele (on pourra se placer dans le cas

d =1 et proposer une représentation graphique).
Le modele correspond-il a un probleme de classification ou de régression ? A plan d’expérience
fixé (fized design) ou aléatoire ?

3. (1 point) Donner la loi jointe de (X7, Y1) (on précisera une mesure dominante). En déduire
un modele statistique pour la loi de (Xi,Y7) puis l'expression de la log-vraisemblance
7y)7lz(06,,3,0'2) d’un parametre quelconque (o, 8,0%) €]0,1[xR? x R% (au regard de
{(X1, 1), .., (X, Vo) }).
4. (1 point) Expliciter, pour tout x € R, la loi de Y} ‘Xl =z.

On suppose disposer d'un estimateur candidat (&, 3,62) de (ao, Bo,03). Construire n va-
riables aléatoires Z1,...,Z, visant a < approcher > Y7,...,Y,, connaissant I’estimateur

(&, 3,52).
5. (1 point) En déduire que pour tout (o, 3,02) €]0,1[xR? x RY,,
Ell(x,zyp (@, 8,0%) | X1, ..., Xu]

= log(« sz +log(1 — « (n - sz> = (log(2m) + log(UQ))

=1

L\:>§

~ 5 QZ[pz< i ,6’+b1)> +(1—p¢)(Xi—(ajﬁ+bQ))2],

ou pi, ..., P, sont & déterminer.
af
6. (2 points) En appelant A = | : | € R et en supposant que rang(A) = d, déterminer
T
aTL

arg max(a,ﬁ,JQ)E]O,l[XRdX]R:L E[e(x’z)? (Oé, B, 0'2) ‘ Xl, v 7Xn]-
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7. (Y, point) Décrire 'algorithme EM adapté au probleme posé.

Exercice 3 (Clustering spectral, 8!, points)
Soient {x1,...,z,} C R? et s : RY x RY — R, une mesure de similarité symétrique. On appelle
W = (s(x;,%))1<ij<n la matrice d’adjacence des données, D = diag(dy,...,d,) € R™*" la
matrice diagonale des degrés d; = Z?Zl Wij et L = D — W le laplacien non-normalisé du
graphe associé. Soient de plus Ly = D~Y2LD~1/2 et L,, = DL les laplaciens normalisés.

Préliminaires
1. (¥ point) Donner une condition suffisante sur s pour que D soit non-singuliére.

2. (Y, point) On suppose D non-singuliere. Montrer que u € R" est vecteur propre de Ly,
avec pour valeur propre A € R si est seulement si DY/2y est vecteur propre de L avec
pour valeur propre A.

3. (Y% point) En déduire que 1 et (v/di,...,+/d,) sont vecteurs propres de L,, et L, respec-
tivement et déterminer les valeurs propres associées.
Partie A

Pour une partie I C [1,n], on définit vol(I ; d; et le vecteur

Vol IC vol(I
IC ZEI )

ou I¢ est le complémentaire de I dans [1,n].
1. (1 point) Montrer que pour i € I et j € I¢, en notant fr; la i composante de fr,

tr(D)  tr(D)
(Fri = f15)° = vol(I)  vol(I¢)’

2. (1 point) Montrer que 1TDf; =0 et fITDfI = tr(D).

3. (1 point) Sachant que pour tout v € R™, u' Lu = %Zlgi,jgn Wij(u; — u;)?, montrer que

E 161 le Zzelc 'L]

T _ jel
Jr Lfr = (D) vol(I) Vol(IC)

4. (1 point) En déduire une réécriture du probléeme de Normalized cut dans le cas d’une seule
coupure (i.e. d'un partitionnement en deux groupes) et un relachement de celui-ci sous la
forme d’un probléme d’optimisation continue.

5. (1 point) Expliciter une solution du probléme relaché.
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Partie B

On s’intéresse & présent au probleme de partitionnement en k (entier supérieur a 2) groupes par
clustering spectral minimisant le cotit Normalized cut, et on nomme donc U € R™** la matrice
dont les colonnes sont les vecteurs propres de L associés aux k plus petites valeurs propres. On
souhaite, a partir de cette matrice, remonter a une partition I = (I,...,Ij) de [1,n] telle que
< le sous-espace vectoriel engendré par la partition I > soit aussi proche que possible de celui
engendré par les colonnes de H = D~/2U, la matrice solution du probléme reléché. Autrement
dit, on souhaite avoir range(D'/2Y7) ~ range(U), ot Y7 = (1 icl; )1§zin € R™* est la matrice

one-hot encoding de la partition I.

Pour ce faire, on utilise une distance entre projecteurs :

k
1 2
£0) = SRy = Prlfe = k=3 ey S Vo e

7j=1 ) EEI

oil Py et Py sont les projecteurs orthogonaux sur range(U) et range(D/?Y7) respectivement,

u est la ¢¢ ligne de U et ou 'on a remarqué que Zl<1<n Uin =k.
1<j5<k

1. (2 points) Montrer que, pour tout j € [1, k],

= luwllz, - Z Vididgu] ug,

£ i€l 1,0l

min d;
k
HeR IS

dz

puis en déduire une formulation variationnelle du critere £(I) en fonction des lignes h; =

u, .

NA de la matrice H.

2. (2 points (bonus)) Proposer une variante de I’algorithme des k-moyennes construisant une
suite de partitions (I;);>1 telle que la suite (L£(I¢));>1 soit décroissante (on justifiera ce
point).
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Les questions peuvent étre traitées de manieére indépendante en admettant les résultats des
questions précédentes.

Le baréme (sur 20 points, auxquels s’ajoutent 3 points bonus) n’est donné qu’a titre indicatif.

Notations

Dans tout le sujet, on notera :

1. N(u,¥) la loi normale multivariée d’espérance p et de matrice de variance-covariance ¥
(symétrique et semi-définie positive), dont la densité (par rapport a la mesure de Lebesgue
1 o 3(@—u) "= (@—p)

2. B(p) la loi de Bernoulli de parametre p € (0, 1), qui a pour densité z € {0,1} = p®(1 —p)1~*
(par rapport & la mesure de comptage sur {0,1}).

sur R?) lorsque X est définie positive est z € R?

3. B(m,p) la loi binomiale de parametres m € N* et p € (0,1).
4. 1 le vecteur rempli de 1 (de taille adéquate).

5. I, la matrice identité de taille n (la taille peut varier).

1 siz >0

6.sign::c€]Rl—>{ )
—1 sinon.

Exercice 1 (Modéle mixte, 7 points)

Soit (X,Y) une pair de variables aléatoires & valeurs dans R*™ x {£1}. On souhaite modéliser
des données de la forme

0.49 0.69 —0.74
1.34 ~0.92 ~1.75
—0.70 —0.07 1.08
—~1.81 ~0.82 —-0.15
Xe=1_g02|" 2= o028 |" %= | 0a0 |

1 0 1

0 0 1

1 1 0

Pour ce faire, on décompose X en [g] de sorte que (U, V) soit & valeurs dans R? x {0,1}™,
U représentant les données continues, V' les données discretes. Soit maintenant le modele
P(Y =1) =7 € (0,1)
UY =1~ N(us,X4) est indépendant de V|Y =1~ B(p1) @ - - @ B(pm)
UY =—-1~N(u_,X_) est indépendant de V|Y = —1 ~ B(q1) @ - - - @ B(qmn),
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avec ¥4 et ¥_ deux matrices de taille d x d symétriques et définies positives, pi,pu_ € R?

P1y---yPm S <071)7 q1y---59m S (071)1
1. (1 point) Donner une mesure dominante pour la loi de (X,Y’) ainsi qu’une fonction de

densité.

2. (14 points) Montrer que le classifieur de Bayes pour ce modele est

1
g* : (u,v) € R? x {0, 1}m»—>51gn< u'Qu+tal u—l—ﬁTv—i-b)

ol

-1 -1
Q =x"'-x7

a = E;1u+ . T
5 = [og (51=5) - tos (=i
b =log (%) + 410 g(jggg ) 3 (I e = e ) + X log (1))

(X5, Y,) de méme loi que

3. (1 point) On suppose disposer d'un échantillon (X1,Y7),...,
A 7pm7

(X,Y). Préciser les estimateurs du maximum de vraisemblance des parametres p1, .

q1,--->4qm-
4. Onsupposeque2+:§l_:[d,7r:%,plz---:pm,ql: © = Qm et pg F p_.

a) (1 point) Montrer que
a'U+b|Y =1~ N (6c,6%),

ot d = ||y — p—|lp, et c= 2+m10g(1 pl).
b) (1Y% points) En déduire que o' U + 8"V +b|Y =1 a méme loi que

dc+ 6A + eB,

ou A~ N(0,1) Il B~ B(m,p1) et e =log (pl((i glg) puis que
L (m — k
k=0
ol @ est la fonction de répartition de AV (0,1).
c¢) (1 point) Conclure que lorsque p1 = q1, P(¢*(X) #Y) = ® (—g).

Exercice 2 (Régression a vecteurs supports, 5 points)
Soient (X1,Y1),...,(Xn,Y;) des couples aléatoires i.i.d. & valeurs dans R x R, € > 0 et

1
le:u€eR— imax(O, lu| — )2,

1. Pour rappel, si (V1,...,Vin) ~ P ® -+ ® Py, alors les variables aléatoires Vi,..., V,, sont indépendantes et

Vi ~ Py, Vi € [1,m].
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On considere un RKHS # de noyau k : R4 xR? — R et, pour A > 0, le probléeme d’optimisation :

A2 e
minimiser — ||h L (Y — h(X5)) . P1
fger 5 Bl -+ 35 e (3 = HCX0) (1)
1. (1 point) Est-ce un probleme de classification ou de régression ? Quelle est sa particularité
par rapport a ce qui a été vu en cours ?

2. (1 point) Expliquer pourquoi le probleme (P1) est équivalent a

. A 1
minimiser HhHi + B H§||?2

heH EERn
Y- h(X;) <& +e 1a; 20 (P2)
s.c.  VYie[l,n]q h(X;)-Y;<&+e :8,>0
& >0 :0; >0

ol on a donné & titre indicatif les multiplicateurs de Lagrange «;, 5; et §; (i € [1,n])
associés a chaque contrainte.

3. (1% points) Définir le lagrangien associé a (P2) et énoncer les conditions KKT.
4. (1 point) Montrer qu’en notant y = (Y1,...,Y,) € R", le probleme dual & (P2) est

.. 1 T T 2 T
_Z ) ) — P
aeﬁ%é%?fgm 2 (a Qo+ 8 Q8+l o PP

T (a+pB)—a(el1—y)— BT (el +y),

(P3)

ou
K = (k(Xi, X)) 1 j<n
Q =hL+%
P =1,-%.

5. (1 point) Soient o € R, 3 € R’}. Montrer que Vé € R}, HéHZ +25T(a+B) > 0 et en
déduire infsepn ||5H?2 + 26" (a + B). Montrer que (P3) est équivalent &

1 1
minimiser —a' Qa4+ =8 QB +a'PB+a' (el —y)+ 8" (e1+y).
a€R? ,BeRT 2 2

6. (1 point (bonus)) On suppose ¢ = 0 et K inversible. Montrer que (P1) a une unique
solution et I'expliciter.

Exercice 3 (Analyse en composantes principales, 7Y, points)
Dans cet exercice, pour une matrice notée en majuscule, par exemple A €
en minuscule ces colonnes : aq,...,a4 € R™. On rappelle qu’alors

R™*¢ nous noterons

d
range(A) = span({aq,...,aq}) = {Ztiai,t € Rd} ,
i=1

qui est un sous-espace vectoriel de R".
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De plus, pour une matrice € R™*™ réelle symétrique, on appellera décomposition en éléments
propres de @ une factorisation Q@ = UAU ", ott U € R™*™ est une matrice orthogonale (U U =
I,,), dont les colonnes uyq, ..., u, sont les vecteurs propres de @, et A € R™*"™ est une matrice
diagonale, dont les éléments diagonaux sont les valeurs propres Ay > --- > A, de ) rangées par
ordre décroissant.

On notera alors, pour tout p < n, Uy, = [u1]...|up] € R™*P la matrice rectangulaire des p
premieres colonnes de U et
Al 0
Ap=11: . | eRP?
0 ... A

la matrice diagonale carrée des p premieres valeurs propres.
1. a) (1 point) Soient @ € R™ ™ une matrice symétrique et semi-définie positive de rang r
et z € R™. Montrer que la projection orthogonale de x sur range(Q), notée Pz, vérifie
Pz = Qa avec o € R” tel que Qz = Q%a.

b) (11 points) Soit Q = UAU " une décomposition en éléments propres de (. Montrer
que Q = U, AU, puis que le projecteur orthogonal sur range(Q) est P = U, U, .

2. (1 point) Soit A € R™ 9 (avec n < d) une matrice de rang r < n < d. En remarquant que
range(A) = range(AA "), déterminer le projecteur orthogonal sur range(A).

3. a) (1 point) Soit AAT = UAUT une décomposition en éléments propres de AAT. On
note
AR 0
V=ATUA Y2, avec AT = : :
0 ... A2
Montrer que les colonnes de V' sont orthonormales.
b) (1 point) En notant ¥ = A}«/2, montrer que U, XV = A.
La décomposition de la forme A = ULV, o U € R™" et V € R¥™" sont deux
matrices possédant des colonnes orthonormales (U'U = I, et V'V =I,) et & € R™*"

est une matrice diagonale, dont les éléments diagonaux o; > --- > o, > 0 sont rangés
par ordre décroissant, est appelée décomposition en éléments singuliers (SVD) de A.

4. (1 point) Comment peut-on lier une décomposition en éléments propres de ATA & une
décomposition en éléments singuliers de A ?

5. (1 point) Soient {Xi,..., X, } n vecteurs aléatoires i.i.d. & valeurs dans R? tels que E[X;] =
0 et X € R™"*? la matrice des données correspondante. Exprimer un estimateur de Var(X)
en fonction de X puis décrire une procédure fondée sur la SVD permettant d’implémenter
I’analyse en p composantes principales des données, avec p < 7.

6. (1 point (bonus)) Exprimer la matrice (< des données réduites >) de taille n x p dont la ¢
ligne est la compression de X; en fonction des éléments singuliers déterminés & la question
précédente.

7. (1 point (bonus)) En remarquant que, pour tout matrice réelle B, range(B) = ker(B")*
(I'espace orthogonal & ker(BT)), montrer que range(B) = range(BBT).



Sorbonne Université  Introduction a I'apprentissage automatique 18 novembre 2023

Examen :
Introduction a 'apprentissage automatique

18 novembre 2023
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Les questions peuvent étre traitées de maniere indépendante en admettant les résultats
des questions précédentes.

Le baréme (sur 20 points, auxquels s’ajoutent 3 points bonus) n’est donné qu’a titre
indicatif.

Notations

Dans tout le sujet, on notera :

1. 1 le vecteur rempli de 1 (de taille adéquate).

9 1, — 1 si A est vrai
CoAT 0 sinon.

3. card (1) le cardinal de tout ensemble I C N.

4. I, la matrice identité de taille n (la taille peut varier).

1 siz>0

—1 sinon.

D. sign:xeRH{

6. |Al|» = \/tr(AAT) la norme de Frobénius de toute matrice A.

Exercice 1 (Algorithme EM, 3!, points)
Soient (X1,Y7),...,(X,,Y,) des couples i.i.d. & valeurs dans N x {0, 1} telles que

Y1 ~ B(m), 7 € ]0,1]
X1 | Vi ~PON,), Ay >0,

ou B(7*) est la loi de Bernoulli de parametre 7* et P(\) la loi de Poisson de parametre
A > 0, de densité z € N — % e~ par rapport a la mesure de comptage sur N. Dans la
suite, on souhaite partitionner X1,..., X, via l'algorithme EM.
1. (1 point) On suppose d’abord observer (Xi,Y7),...,(X,,Y,). Définir, pour tout
0 = (m, A1, Ao) €]0, 1[xR* x R% la log-vraisemblance £(0, X1, ..., X,,Y1,...,Y,) de
0 au regard des observations et donner ’estimateur du maximum de vraisemblance
de 0% = (7, A}, A).

2. (Y, point) Déterminer la loi de Y; | Xy, notée Qp« x, .
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3. (1 point) On suppose maintenant n’observer que Xj, ..., X, mais disposer d’'un
estimateur candidat 6y. Soient alors Zi,...,Z, telles que Z; | Oo,...,7Z, | 0y sont

i.i.d. et pour tout i € [1,n], Z; } (X1,...,Xn) = 2Z; ‘ (X, 90) ~ Qp, x,- Déterminer

arg Maxgejo 1[xps xx; F (0] 00) =E [£(0, X1,..., X0, 21, Zo | (X1, o, X)) -

4. (1 point) Décrire I'algorithme EM produisant la suite d’estimateurs (6;);>; dans ce
cas.

5. (1 point (bonus)) En raisonnant de maniere générale et en appelant mg- la densité
marginale de X = (X, ..., X,,), montrer qu’a chaque iteration ¢t > 1,

log (m@Hl(X)) — log (mét (X)) > 0.
On devra faire intervenir un vecteur aléatoire Z = (71, ..., Z,) tel que

Z | X~ Qém)ﬁ Q- Qét,Xn'

Exercice 2 (Clustering spectral, 3% points)
Soient {x1,...,7,} C R?un jeu de données, s : R?x R — [0, 1] une mesure de similarité
symétrique et W = (s(z;, ;) )1<i j<n 1la matrice de similarité correspondante. Nous avons
montré en cours que, pour n’importe quelle partition (I, ..., I}) des indices [1, n]

RatioCut(Iy,...,I,) = tr(H LH),

\ . Lier,
ou L = ([Zé:l sz] ]]-z:j - VViyj)lSi,jS?’l et H = (w/cardj(lj)) 1<i<n .
1<j<k

1. (1 point) Rappeler I'algorithme de clustering spectral construit sur le RatioCut.

2. (1 point) Soit J = (Lsey;) 1<icn. Exprimer la matrice de projection orthogonale sur
1555
range(.J), notée Py, qui est l'unique matrice de taille n x n telle que pour tout
r € R",
{PJ‘T} = arg minyErange(J) ||ZE' - y”ég

et montrer que sa décomposition en éléments propres est définie par les vecteurs
Lier;

——L , 3 =1...k, de valeur propre commune 1.
card(I;)

1<i<n

3. (1% points) Soit § = {U € R™*: UTU =1;}. On souhaite illustrer I’assertion
< range(H) est I'espace vectoriel le plus proche de range(J) parmi ceux engendrés
par les matrices de ’ensemble $ »>. Pour ce faire, montrer que

propres u; =

H € argming g ||P; — Pullp .

ou Py est le projecteur orthogonale sur range(U).
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Exercice 3 (Fonctions de perte pour la classification, 5! points)
On considére un couple aléatoire (X,Y) & valeurs dans RY x {£1} tel que n : = €
R — P(Y =1]| X =2z) € ]0,1[. Soit maintenant ¢ : R — R une fonction convexe et
différentiable autour de 0 telle que
¢'(0) <0 et arg min, cp p(u) # 0.
Remarquons qu’en particulier :
VueR:  o(u) > ¢(0)+ ¢ (0)u.

»(u)—»(0)

1. (1'% points) En remarquant que ¢'(0) = limu—o , montrer que Ju > 0 :

©(0) > @(u). En déduire que Vu < 0, p(u) > 4,01@0), puis que
argmin, g p(u) C R
2. (1Y% points) Soient ¢ : R — R une fonction de perte convexe, positive et différentiable
autour de 0 telle que #(0) < 0. Justifier que pour tout x € R?
prueR—=E[((Yu) | X =1

est coercive (i.e. lim_, ¢ = lim, ¢ = 00). En appelant v} un miniseur de ¢ sur R,
montrer que f*:z +— u) est minimiseur du risque

f= Bl f(X))]
et que ¢g* : x — sign(f*(z)) est un classifieur de Bayes.

3. (1 point) On choisit ¢ : u — max(0,1 — u)?. Dessiner le graphe de ¢ puis exprimer
f* dans ce cas.

4. (1Y%, points) Proposer une maniere d’estimer g* par un classifieur linéaire fondé sur
la minimisation d’un risque régularisé construit sur la perte £ et exprimer le gradient
de ce risque.

5. (1 point (bonus)) Montrer que pour ¢ : u +— m, f* o= 10g<1ﬁs7$()x)>.

Conclure.

Exercice 4 (Classification a noyau, 7Y points)
Soient {(z1,1), -, (Tn,yn)} C R? x {£1} un jeu de données, k : R? x RY — R un
noyau, H le RKHS associé et A > 0. On s’intéresse a la construction d’un classifieur via
la résolution du probléeme d’optimisation

.. . )\ 2 1 u 2
sisiugser 5105+ 5 3¢ .
Yih( X)) >1-¢& ;>0

s.c. Vi€ﬂ1>nﬂ{§i20 B > 0.

dans le dual (on donne dans (P1) les multiplicateurs de Lagrange «; et (; associés a
chaque contrainte).
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1. (1 point) Les conditions de qualification de Slater sont-elles vérifiées? Définir le
lagrangien £ associé a (P1) et expliciter, pour tous o € R et 3 € R, les conditions

de stationarité primale en (h,§) € H x R™ :
Vil(h,&a,8)=0 et  VL(h,E a,5)=0.

2. (1'%, points) Montrer qu'un probleme dual a (P1) est

. 1 4 - 1 )
maximiser ——o a+1'a—=lla+
a€R?%, BERY 2\ Q 9 H BHEQ )

ou () est une matrice a préciser, puis que ce probleme est équivalent (au sens ou
connaissant les solutions de 'un, on peut déterminer celles de 'autre et vice versa)
o 1
minimiser —a' Pa —1"a, (P2)
aEeRY
ou P est une matrice a préciser.

3. (1 point) Montrer que P est symétrique et semi-définie positive. Que peut-on en
déduire de (P2)7

4. (1 point) Expliciter les étapes d’'un algorithme de résolution de (P2) de type < des-
cente par coordonnée .

5. (1, points) Enoncer les conditions KKT pour des candidats solutions (h*,£*) et
(a*, B*) et en déduire une classifieur issu de la résolution de (P1).

6. (1% points) Justifier que, connaissant h*, on peut choisir £ = max (0,1 — Y;h*(z;))
pour tout ¢ € [1,n]. En déduire que pour tout ¢ € [1,n], si Y;h*(x;) > 1, alors
a; = 0.

7. (1 point (bonus)) Proposer un critere d’arrét pour l'algorithme itératif de la ques-
tion 4. Le justifier rapidement et expliciter le calcul.
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