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Introduction

This course comes as a complement to Pr Biau’s course on statistical learning, and this in two directions:1. it tackles both supervised (Chapter 1) and unsupervised learning (Chapters 2 and 3);2. it presents an algorithmic point of view and comes with practical homeworks.This explains why some major methods, like k-nearest neighbors, decision trees and random forests areonly skimmed over.These lectures notes are organized in three chapters:Chapter 1: a few classification methods are introduced in details and we bridge quickly the gap betweenclassification an regression:
⋄ linear and quadratic discriminant analysis (LDA, QDA);
⋄ Fisher discriminant analysis (FDA);
⋄ kernel Fisher discriminant analysis (KFDA);
⋄ multiclass linear discriminant analysis;
⋄ logistic regression;
⋄ Adaboost and gradient boosting;
⋄ support vector machines (SVM) for classification (SVC) and regression (SVR).Chapter 2: we consider the problem of unobserved labels and present some methods to produce a partition ofthe input space:
⋄ expectation-maximization for Gaussian mixtures (soft k-means);
⋄ k-means algorithm;
⋄ spectral clustering;
⋄ hierarchical agglomerative clustering;
⋄ density-based spatial clustering of applications with noise (DBSCAN).Chapter 3: the curse of dimensionality is quickly addressed and some dimensionality reduction techniques(linear or not) are presented:
⋄ principal component analysis (PCA);
⋄ random projections;
⋄ kernel principal component analysis (KPCA);
⋄ multidimensional scaling (MDS).In all chapters, we start from a generative (or statistical modeling) point of view and gently slide to thediscriminative angle, keeping in mind Vapnik’s principle: avoiding a more general (and potentially moredifficult) task than that we aim at.
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Moreover, many methods are explained with a probabilistic point of view (namely, we consider a randomvariable X or a pair of random variables (X, Y ), respectively for unsupervised and supervised learn-ing) but in practice, we assume that people are provided with a sample {X1, . . . , Xn} (respectively
{(X1, Y1), . . . , (Xn, Yn)}) and all formulas can be transformed to an empirical twin by considering theempirical distribution 1

n
∑n

i=1 δ{Xi} (respectively 1
n
∑n

i=1 δ{(Xi,Yi)}), where δ represents the Dirac measure.
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Chapter 1

Classification

Classification focuses on a pair of random variables (X, Y ) ∈ Rd×[C ], where C is a positive integer, and Yis a label characterizing the class of X . The bracket notation is for indexing integers: [C ] = {1, 2, . . . , C}.If there is no ambiguity, with a slight abuse, we may consider that [2] = {−1,+1} = {±1} (this appearsfor binary classification). The aim of classification is to predict Y given X with minimal error (i.e. finding
g : Rd → [C ] such that P(Y ̸= g(X )) is minimal), based on a sample {(Xi, Yi)}1≤i≤n. This is the mostpleasant situation of statistical learning since we observe both X and Y , and Y is discrete.In this chapter, we describe several methods of classification, from a statistical modeling point of view toa discriminative one. We propose to make, at the end of this chapter, a detour to regression. Regressionis very similar to classification, but Y is continuous (Y ∈ R) instead of being discrete. In practice, thisboils down to changing the loss function appearing in variational formulations used to build estimators.
1.1 Discriminant analysis
1.1.1 The multivariate normal distributionThe first elements of machine learning rely on Gaussian vectors. To address them, let us first remindtheir definition and their usual estimators.

Definition 1.1.1. A random vector X having values in Rd is a Gaussian vector if

∀a ∈ Rd, a⊤X is
{

a univariate Gaussian random variable, or
constant almost surely.

Property 1. If X is a Gaussian vector, then it is squared integrable. In addition, denoting µ = EX
and Σ = V(X ), Σ is a positive semi-definite (PSD) matrix and the distribution of X , noted N (µ, Σ),
is entirely characterized by µ and Σ.

Moreover, if Σ is non-singular, then the distribution of X has a probability density function with
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respect to the Lebesgue measure on Rd , which is

x ∈ Rd 7→ |2πΣ|− 12 e− 12 (x−µ)⊤Σ−1(x−µ) = 1(2π) d2 |Σ| 12 e− 12 (x−µ)⊤Σ−1(x−µ),
where |Σ| is the determinant of Σ.

Proposition 2 (Maximum likelihood estimators). Let µ⋆ ∈ Rd , Σ⋆ be a positive definite (PD) matrix
and {X1, . . . , Xn} be a sample independent and identically distributed ( iid) according to N (µ⋆, Σ⋆).
Then,

µ̂ = 1
n

n∑
i=1 Xi

is a maximum likelihood estimator (MLE) of µ⋆ and as soon as n > d,

Σ̂ = 1
n

n∑
i=1 (Xi − µ̂)(Xi − µ̂)⊤

is a MLE of Σ⋆.
The proof is a good exercise.

Proposition 3 (Unbiased estimators). For a positive integer C , let{(X j1, . . . , X j
nj )}1≤j≤C be C independent samples such that each sample (X j1, . . . , X j

nj ) (for all
j ∈ [C ]) is iid according to N (µj , Σ), where µj ∈ Rd and Σ is a PSD matrix of size d.

Then for each j ∈ [C ]:
µ̂j = 1

nj

nj∑
i=1 X

j
i

is an unbiased and normally distributed estimate of µj and

Σ̂ = 1∑C
j=1 nj − C

C∑
j=1

nj∑
i=1 (X j

i − µ̂j )(X j
i − µ̂j )⊤

is an unbiased estimate of Σ.

The proof is a good exercise.
1.1.2 Bayes classifier for multivariate normal distributionsLet C be a positive integer and (X, Y ) ∈ Rd × [C ] be a random pair of variables, where Y is a labelcharacterizing the class of X . We are interested in computing a Bayes classifier when each class i ∈ [C ]

8



is normally distributed: there exists a PD matrix Σi and a vector µi ∈ Rd such that
X | Y = i ∼ N (µi, Σi).

More formally, we assume that (X, Y ) is distributed such that:{
∀i ∈ [C ] : X | Y = i ∼ N (µi, Σi)
Y ∼ D (π),

where π ∈]0, 1[C such that ∑C
i=1 πi = 1 and D (π) = ∑C

j=1 πjδj is the discrete distribution supportedby [C ] and such that D (π)({j}) = P(Y = j ) = πj for all j ∈ [C ].As a reminder, a Bayes classifier for classifying X is defined by:
∀x ∈ Rd : g⋆(x) ∈ arg maxi∈[C ] P(Y = i | X = x).

Proposition 4. Let us assume that each class is normally distributed and let πi = P(Y = i) be class
prior probabilities, for all i ∈ [C ]. Then, a Bayes classifier g⋆ is defined by:

∀x ∈ Rd : g⋆(x) ∈ arg mini∈[C ] 12(x − µi)⊤Σ−1
i (x − µi) + 12 log |Σi| − log(πi).

The proof will be done during the class.
Remark 1.1.1. When π1 = · · · = πC and Σ1 = · · · = ΣC = Id , the Bayes classifier g⋆ boils down
to be the minimum distance to center classifier.

Let us now assume that we have only two classes (C = 2) and let us analyze a Bayes classifier formultivariate normal distributions. As a reminder, we have
g⋆ : x ∈ Rd 7→

{ 1 if P(Y = 1 | X = x) > P(Y = −1 | X = x)
−1 otherwise.

Before stating the first result regarding discriminant analysis, let
sign : x ∈ R 7→

{ 1 if x > 0
−1 otherwise,

be the sign function.
Proposition 5 (Linear discriminant analysis (LDA)). Let us assume that C = 2 and that each class is
normally distributed with equal and non-singular covariance matrix, denoted Σ. Let πi = P(Y = i)
be class prior probabilities, for all i ∈ [2]. Then, a Bayes classifier is

g⋆ : x ∈ Rd 7→ sign(w⊤x + b),
9



where {
w = Σ−1(µ1 − µ−1)
b = 12 (µ−1 + µ1)⊤Σ−1(µ−1 − µ1) + log ( π1

π−1
)
.

The proof is a good exercise.
Remark 1.1.2. Under the LDA assumptions and when π1 = π−1, we have:

g⋆(x) = 1 ⇐⇒ (x − µ1)⊤Σ−1(x − µ1) < (x − µ−1)⊤Σ−1(x − µ−1),
i.e. if and only if x is closer to µ1 than µ−1 with respect to the Mahalanobis distance ruled by Σ.
This is similar to whitening the data with Σ− 12 and considering the Euclidean distance.

Using such a metric makes sens, as shown on Figure 1.1.

Figure 1.1: Here, the point Xi is closer to µ2 in the Euclidean distance while it appears naturally that itbelongs to the group of data centered in µ1. The Mahalanobis distance makes it possible to rectify thismisbehavior.
From a practical point of view, the Bayes classifier exhibited in Proposition 5 is estimated by plug-in:let {(Xi, Yi)}1≤i≤n be iid copies of (X, Y ). Then, an estimator of g⋆ as defined in Proposition 5 is:

ĝ : x ∈ Rd 7→ sign(ŵ⊤x + b̂),where {
ŵ = Σ̂−1(µ̂1 − µ̂−1)
b̂ = 12 (µ̂−1 + µ̂1)⊤Σ̂−1(µ̂−1 − µ̂1) + log ( π̂1

π̂−1
)

and 

µ̂1 = 1card({Xi:Yi=1,1≤i≤n}) ∑ 1≤i≤n
Yi=1 Xi

µ̂−1 = 1card({Xi:Yi=−1,1≤i≤n}) ∑ 1≤i≤n
Yi=−1 XiΣ̂ = 1

n−2 ∑j∈[2]∑ 1≤i≤n
Yi=j (Xi − µ̂j )(Xi − µ̂j )⊤

π̂1 = card({Xi:Yi=1,1≤i≤n})
n

π̂−1 = card({Xi:Yi=−1,1≤i≤n})
n = 1− π̂1.
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Let us remark that other estimators of Σ worth considering. For instance, since
Σ = V (X | Y = 1) = V (X | Y = −1) = π1 V (X | Y = 1) + π−1 V (X | Y = −1) ,

where V (X | Y ) = E
[(X − E [X | Y ]) (X − E [X | Y ])⊤ | Y ], we may consider

Σ̂′ = π̂1 1card ({Xi : Yi = 1, 1 ≤ i ≤ n}) ∑1≤i≤n
Yi=1

(Xi − µ̂j )(Xi − µ̂j )⊤
+ π̂−1 1card ({Xi : Yi = −1, 1 ≤ i ≤ n}) ∑1≤i≤n

Yi=−1
(Xi − µ̂j )(Xi − µ̂j )⊤

= 1
n
∑
j∈[2]

∑
1≤i≤n
Yi=j

(Xi − µ̂j )(Xi − µ̂j )⊤.
In Proposition 5, it appears that the class proportions π1 and π−1 translate the separating hyperplane tothe left or to the right. If one chooses to ignore class proportions (because of a known imbalance of thesample), it is then enough to estimate V(X ) rather than Σ. This is formalized in the following property.

Property 6. Assume that assumptions of Proposition 5 are granted and that π1 = π−1. Then, with
the same notation as for Proposition 5:{

x ∈ Rd : w⊤x + b = 0} = {x ∈ Rd : w̃⊤x + b̃ = 0} ,
where w̃ = V(X )−1(µ1 − µ−1) and b̃ = 12 (µ−1 + µ1)⊤V(X )−1(µ−1 − µ1).

The proof will be done during the class.
Proposition 7 (Quadratic discriminant analysis (QDA)). Let us assume that C = 2 and that each
class is normally distributed. Let πi = P(Y = i) be class prior probabilities, for all i ∈ [2], and let
us denote

h : x ∈ Rd 7→ 12x⊤(Σ−1
−1 − Σ−11 )x + (µ⊤1 Σ−11 − µ⊤−1Σ−1

−1)x
b = 12(µ⊤−1Σ−1

−1µ−1 − µ⊤1 Σ−11 µ1)− 12 log( |Σ1|
|Σ−1|

)+ log( π1
π−1
)
.

Then, a Bayes classifier is

g⋆ : x ∈ Rd 7→
{ 1 if h(x) + b > 0
−1 otherwise.

The proof is a good exercise.
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LDA exhibits that for Gaussian data with same covariance matrix, the optimal classifier is linear. Thesame kind of result can be obtained for least squares regression, as exemplified by Proposition 8.

Figure 1.2: Comparison of LDA and QDA on different simulated datasets (Gaussian classes with poten-tially different covariance matrices).
Proposition 8 (Linear regression). Let (X, Y ) be a pair of random variables with values in Rd × R

such that
(
X
Y

)
∼ N

((
µ
m

)
,
( Σ ℓ
ℓ⊤ σ 2

))
, where µ ∈ Rd , m ∈ R, Σ ∈ Rd×d , ℓ ∈ Rd , σ > 0

12



such that
( Σ ℓ
ℓ⊤ σ 2

)
is PD. Let w = Σ−1ℓ and σ ′2 = σ 2 − ℓ⊤Σ−1ℓ . Then,

∀x ∈ Rd, [Y | X = x ] ∼ N (m+ w⊤(x − µ), σ ′2),
and in particular, E [Y | X = x ] = m+ w⊤(x − µ).

The proof will be done during the class.
1.1.3 Fisher discriminant analysisFisher discriminant analysis explores linear classification with weaker assumptions on data that lineardiscriminant analysis. In practice, it is only assumed that X ∈ L2 (such that for all i ∈ [C ], E[X | Y = i]and V[X | Y = i] exist) meaning that the classes are sufficiently concentrated around their means.Fisher discriminant analysis aims at finding a direction w ∈ Rd\{0} such that the projection of X ontothis direction maximizes the variance between classes while minimizing the variances within classes (seeFigure 1.3).

Figure 1.3: Subspace with maximal Rayleigh quotient.
More formally, we are interested in minimizing the Rayleigh quotient:

maximize
w∈Rd

r(w), where r(w) = V
(
E
(
w⊤X|Y

))
E (V (w⊤X | Y )) 1w̸=0. (P1)

Denoting µ = EX and, for each i ∈ [C ], µi = E(X|Y = i), Σi = V(X|Y = i) and πi = P(Y = i), weremark that: {
E(X|Y ) ∼∑C

i=1 πiδµi
V(X|Y ) ∼∑C

i=1 πiδΣi.Thus, ∀w ̸= 0:
r(w) = w⊤

(∑C
i=1 πi(µi − µ)(µi − µ)⊤)w
w⊤
(∑C

i=1 πiΣi)w .
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Let us assume that C = 2. Then, we have µ = π1µ1 + (1− π1)µ−1 and the Rayleigh quotient becomes
r(w) = w⊤

(
π1(µ1 − µ)(µ1 − µ)⊤ + (1− π1)(µ−1 − µ)(µ−1 − µ)⊤)w

w⊤ (π1Σ1 + (1− π1)Σ−1)w= π1(1− π1)w⊤(µ1 − µ−1)(µ1 − µ−1)⊤w
w⊤Σw ,

where Σ = π1Σ1 + (1− π1)Σ−1.
Proposition 9 (Fisher’s linear discriminant). Let us assume that C = 2 with µ1 ̸= µ−1 and Σ =
π1Σ1 + (1− π1)Σ−1 non-singular. Then

range (Σ−1(µ1 − µ−1))\{0} = arg maxw∈Rd r(w).
The proof will be done during the class.

Remark 1.1.3. When covariance matrices are equal, Fisher’s discriminant direction is the same as
that of LDA.

In addition, if the LDA assumption Σ1 = Σ−1 is not granted but the LDA estimator is based on the
plugin estimator of Σ = π1 V(X|Y = 1) + (1 − π1)V(X|Y = −1), then estimated directions for
LDA and Fisher’s discriminant analysis are the same.

Projection of X on the direction w is given by:
h(X ) = w⊤X.

In order to classify, we may apply different rules like assigning to the class of the nearest center orthresholding based on an intercept. Such an intercept b can be defined by:
b ∈ arg mina∈R P(Y ̸= ga(X )),

where
ga : x ∈ Rd 7→ sign(h(x) + a).Let us remark that, in its empirical version (that is replacing expected values by their means computedwith the sample {(Xi, Yi)}1≤i≤n), an intercept can be defined by
b ∈ arg mina∈R 1

n

n∑
i=1 1Yi ̸=ga(Xi),

where a ∈ R 7→ 1
n
∑n

i=1 1Yi ̸=ga(Xi)) is a piecewise constant function, for which the steps are at
{−h(X1), . . . , −h(Xn)}. This means that only n values have to be evaluated to determine an empiricalthreshold b.

14



1.1.4 Kernel Fisher discriminant analysisLet {Xi}1≤i≤n ⊂ Rd be iid copies of X and k : Rd ×Rd → R a kernel (see Section 1.4.2) with featuremap φ : Rd → G, where G is an appropriate Hilbert space (of dimension D, potentially infinite). As areminder, we have ∀(x, x ′) ∈ Rd × Rd : k (x, x ′) = ⟨φ(x), φ(x ′)⟩G.We aim at applying the kernel trick (see Section 1.4.3) to Fisher’s approach. For this purpose, let usconsider the problem of Fisher’s linear discriminant analysis for the random pair (φ(X ), Y ). Denoting,for each i ∈ [C ], πi = P(Y = i), µφi = E(φ(X )|Y = i), Σφi = V(φ(X )|y = i), we have, for w ∈ G,
r(w) = π1(1− π1)

〈
w, µφ1 − µφ−1

〉2
G〈

w,
(
π1Σφ1 + (1− π1)Σφ−1

)
w
〉
G

.

Since G may be infinite-dimensional, the Rayleigh quotient cannot be maximized numerically. How-ever, in its empirical version, it involves the estimators µ̂φ1 , µ̂φ−1 ∈ span ({φ(X1), . . . , φ(Xn)}). Thus,
∀w ∈ span ({φ(X1), . . . , φ(Xn)})⊥, r(w) = 0 and we can restrict the maximization of r to w inspan ({φ(X1), . . . , φ(Xn)}). In other words, we look for solutions w such that there exists α ∈ Rnwith w = ∑n

i=1 αiφ(Xi). Then, we get
r(w) = π1(1− π1) (α⊤(ν1 − ν−1))2

α⊤ (π1Ψ1 + (1− π1)Ψ−1) α ,where for each i ∈ {1, 2},
νi = (〈µφi , φ(X1)〉

G
, . . . ,

〈
µφi , φ(Xn)〉

G

)
∈ Rn

and Ψi = (〈φ(Xl), Σφi φ(Xj )〉
G

)
1≤l,j≤n ∈ Rn×n.

Let Ii = {l ∈ [n] : Yl = i}. Replacing µφi and Σφi by their estimates µ̂φi = 1
|Ii|
∑

ℓ∈Ii φ(Xℓ ) and Σ̂φigives a practical method for nonlinear discriminant analysis: on the first hand, for each i ∈ {1, 2},
ν̂i = ( 1

|Ii|
∑
l∈Ii

k (Xl, X1), . . . , 1
|Ii|

∑
l∈Ii

k (Xl, X1)) .

On the other hand, let X be the sample matrix in the feature space G:
X = [φ(X1) | . . . | φ(Xn)]⊤ ∈ Rn×D.

Then, the matrix of centered data is
Z = X−

[1
n

n∑
ℓ=1 φ(Xℓ ) | . . . | 1n n∑

ℓ=1 φ(Xℓ )]⊤ = X− 1

(1
n

n∑
ℓ=1 φ(Xℓ ))⊤ = (In −M)X = HnX,
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where In is the identity matrix of size n, M = 11⊤/n ∈ Rn×n, 1 is the all-ones vector of adequate sizeand Hn = In −M .Let, for all i ∈ {1, 2}, Xi be the submatrix of X containing only the rows indexed by Ii, and
Zi = H|Ii|Xi,the matrix of the centered data from class i. Then,Σ̂φi = Z⊤i Zi = X⊤i H2

|Ii|Xi = X⊤i H|Ii|Xi.

Moreover, we easily see that Ψi = XΣφi X⊤, which leads to
Ψ̂i = XΣ̂φi X⊤ = XX⊤i H|Ii|XiX⊤ = KiH|Ii|K⊤i ,where Ki = XX⊤i ∈ Rn×|Ii| is also defined by Ki = (k (Xj , Xl)) 1≤j≤n1≤l≤|Ii| .Similarly to previously, solutions are given by
α ∝ (π1Ψ̂1 + (1− π1)Ψ̂−1)−1(ν̂1 − ν̂−1).

In addition, knowing the direction w = ∑n
i=1 αiφ(Xi), projection of X can be computed by:

h(X ) = ⟨w, φ(X )⟩G = n∑
i=1 αik (X, Xi).

1.1.5 Multiclass linear discriminantLet us denote µ = EX , µi = E(X|Y = i) and Σi = V(X|Y = i) for each i ∈ [C ], and Σ = ∑C
i=1 πΣi.Then, the Rayleigh quotient reads:

r(w) = w⊤Mw
w⊤Σw ,

were M = ∑C
i=1 πi(µi − µ)(µi − µ)⊤ is a priori a rank-(C − 1) matrix of size d × d.It can be shown, similarly to previously, that if w maximizes r , then w is an eigenvector of Σ−1M andthen the Rayleigh quotient equals the corresponding eigenvalue. Since Σ−1 is a rank-d matrix, if M is atmost a rank-(C − 1) matrix, then Σ−1M is a rank-(C − 1) matrix. Thus, the (C − 1) leading eigenvectorsof Σ−1M , denoted (w1, . . . , wC−1) (with non-increasing eigenvalues), concentrate the variability betweenfeatures.At this step, if for C = 2, it is sufficient to find an intercept to separate the data, it is more complicatedfor multiclass problems. The idea is thus to apply a simple classifier in the feature space described byeigenvectors (w1, . . . , wC−1): let P ∈ R(C−1)×d be the row matrix of normalized eigenvectors wi/ ∥∥wi∥∥ℓ2 .One can choose the classifier given by:

g(X ) ∈ arg mini∈[C ] ∥∥PX − Pµi
∥∥
ℓ2 .
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1.2 Logistic regression
1.2.1 Model and riskSince estimators of second order moments are very sensitive (in particular to model misspecification andoutliers), we explore here another way of estimating a linear classifier. For this purpose, we assume theBayes classifier to be linear through a particular decision function.Similarly to LDA, let us consider normally distributed classes with equal variances:

∀i ∈ [C ] : X | Y = i ∼ N (µi, Σ).
Then, for each class i ∈ [C ], the log posterior ratio is given by:

∀x ∈ Rd : log( P(Y = i | X = x)
P(Y = C | X = x)

) = w⊤i x + bi,

where
wi = Σ−1(µi − µC )
bi = log( πi

πC

)
− 12 log( |Σi||ΣC |

)+ 12µ⊤C Σ−1µC − 12µ⊤i Σ−1µi.
This linear form of the log ratio (also called log-odds or logit transformations) results from Gaussianassumption but motivates, in a more general framework, to model the log ratio as a linear function of x .Thus, without any other assumption, logistic regression assumes that, for each class i ∈ [C − 1], thereexists (b⋆i , w⋆

i ) ∈ R× Rd such that:
∀x ∈ Rd : log( P(Y = i | X = x)

P(Y = C | X = x)
) = (w⋆

i )⊤x + b⋆i .

In particular, for C = 2, it is assumed that there exists (b⋆, w⋆) ∈ R× Rd such that:
∀x ∈ Rd : log( P(Y = 1 | X = x)

P(Y = −1 | X = x)
) = (w⋆)⊤x + b⋆.

Remark 1.2.1 (Hypothesis on the Bayes classifier). The point of view adopted here is that, contrarily
to LDA, logistic regression does not directly make an assumption on the data distribution, but on
the Bayes classifier: for two classes (C = 2), the Bayes classifier is assumed to be linear ( i.e.
the decision frontier is a hyperplane). By simplicity, the common decision function f : x ∈ Rd 7→log ( P(Y=1 | X=x)

P(Y=−1 | X=x)
)

is assumed to be affine. The forthcoming derivation exhibits that this results in
making an assumption on the distribution of Y |X = x.
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Example 1.2.1. A motivating example is the case where X ∈ R2 and X | Y has density x ∈ R2 7→1√2πe− (x1−µY )22 1[0,1](x2), i.e. the first coordinate of X |Y is Gaussian and the second is independent
from the first and uniform on [0, 1]. In this case, it is easy to see that the decision function f is
linear but X | Y is definitely not Gaussian.

Now, optimal parameters w⋆, b⋆ have to be estimated. For this purpose, we resort to empirical riskminimization based on the following result.
Theorem 10. Let us consider that C = 2 and that the logit-transformation is affine with parameters(b⋆, w⋆). Let f ⋆ : x ∈ Rd 7→ (w⋆)⊤x + b⋆.

Assuming that X ∈ L1, then f ⋆ is a minimizer of the risk functional f 7→ E [log (1 + exp(−Y f (X )))]
over all affine functions and

g⋆ : x ∈ Rd 7→ sign(f ⋆(x))
is a Bayes classifier.

The proof will be done during the class.Let {(Xi, Yi)}1≤i≤n ⊂ Rd × {±1} be an iid sample distributed as (X, Y ). Theorem 10 illustrates thatparameters of logistic regression can be estimated by minimizing an empirical risk defined by the logisticloss:
Rn(w, b) = 1

n

n∑
i=1 log (1 + e−Yi(w⊤Xi+b))

with respect to the hyperplan parameters (w, b) ∈ Rd ×R. This is a new example of a loss function forclassification, to be compared to the exponential and the hinge functions (see Figure 1.4). Let us remarkthat the exponential and logistic losses are especially well suited for classification:1. they are convex and differentiable, which makes optimization easy;2. they are tight majorants of the 0 − 1 loss, making it possible to state that P(Y ̸= sign(f (X ))) ≤
E(ℓ (Y f (X ))) (the empirical version is also true);3. they help in reaching a Bayes classifier (see the next result).

Proposition 11 (Suit & tie classification losses). Let (X, Y ) be a pair of random variables having
values in Rd × {±1} and ℓ : R→ R be a function such that:

1. ℓ is strictly convex;
2. ℓ is differentiable;
3. ℓ is non-increasing;
4. ℓ is non-negative;
5. ∀x ∈ Rd : η(x) = P(Y = 1 | X = x) ∈ (0, 1).

Then, the risk functional f 7→ E[ℓ (Y f (X ))] has a minimizer f ⋆ and x ∈ Rd 7→ sign(f ⋆(x)) is a Bayes
classifier.

The proof will be done during the class.
18



Figure 1.4: Example of convex losses.
Let us remark that even though the hinge loss does not satisfies the assumptions of Proposition 11, itleads to a Bayes classifier (see Exercise 1.5).

Remark 1.2.2 (Regression-like model). Logistic regression can also be seen as a latent-variable
model: consider the latent variable Z = f ⋆(X ) + ε, where ε ∼ L(0, 1)a (the logistic distribution) is
a random variable independent from X , and set Y = sign(Z ). Then, for any x ∈ Rd , we have:

p = P(Y = 1 | X = x)= P(f ⋆(X ) + ε > 0 | X = x)= P(−ε < f ⋆(x)) (by independence)= P(ε < f ⋆(x)) (by symmetry of L(0, 1))
= 11 + e−f ⋆(x) (by definition).

As a result, log ( p1−p
) = f ⋆(x), which is the assumption of logistic regression. Let us remark that

the logistic distribution for the noise has been chosen for computational convenience (with respect
to a normal distribution, which leads to the probit model).

aA probability density function of L(µ, σ ) (σ > 0) is x ∈ R 7→ e− x−µ
σ

σ
(1+e− x−µ

σ
)2 and its cumulative density function is

x ∈ R 7→ 11+e− x−µ
σ

.
Remark 1.2.3 (Generalized linear model). Logistic regression can be introduced as a generalized
linear model in which Y | X ∼ B (σ ((w⋆)⊤X )), where σ : x ∈ R 7→ 11+e−x is a non-linear function
used for computational convenience (any other function from R to (0, 1), such as a cumulative
distribution function, can be chosen).

In other words, Y | X has a Bernoulli distribution and E[Y | X ] = g−1((w⋆)⊤X )) with the link function
g : x ∈ (0, 1) 7→ log ( x1−x ), called the logit function.
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Remark 1.2.4 (From LDA to logistic regression). For two classes, it appears that the LDA model:{
Y ∼ R(π)
X | Y ∼ N (µY , Σ)

is equivalent to {
X ∼ πN (µ1, Σ) + (1− π)N (µ−1, Σ)
Y | X ∼ R

( 11+e−(w⊤X+b)
) ,

(where w and b are given by Proposition 5) that is X has a Gaussian mixture distribution and
Y | X has a Rademacher distribution. In this setting, logistic regression consists in dropping the
first part of the model assumptions, that is X has a Gaussian mixture distribution, and keeping only
the second part.

Remark 1.2.5 (Geometrical interpretation). The proof of Theorem 10 reveals that the logistic regres-
sion assumption is equivalent to

∀(x, y) ∈ Rd × {±1} : P(Y = y | X = x) = 11 + exp (−y ((w⋆)⊤x + b⋆)) .
This probability is illustrated in Figure 1.6. Basically, it tells that when a point is far from the
hyperplane

{
x ∈ Rd : (w⋆)⊤x + b⋆

}
, its conditional probability is either 1 or 0. Otherwise, when a

point is close to the hyperplane, its conditional probability is almost a linear function of its distance
to the hyperplane.

1.2.2 Maximum likelihood estimationThe use of the logistic loss in the logistic risk R (w, b) = E
[log (1 + e−Y (w⊤X+b))] is consistent whenthinking to maximum likelihood estimation of (w⋆, b⋆). Let f(X,Y ) and fX be respectively a joint density of(X, Y ) and a marginal density of X . Since, for all x ∈ Rd , Y | X = x has density

fY | X (x, ·) : y 7→ 11 + exp(−y(b+ w⊤x))
with respect to a counting measure, the full log-likelihood of any (w, b) ∈ Rd × R is:

log(f(X,Y )(X, Y )) = log(fY | X (X, Y )) + log(fX (X )) = − log (1 + e−Y (w⊤X+b)) + log(fX (X )),
and the conditional log-likelihood (i.e. in the statistical model associated to Y | X ) is:

log(P(Y |X )) = − log (1 + e−Y (w⊤X+b)) .
Given our assumption, fX does not depend on the parameters w and b, so maximizing the full log-likelihoodin order to estimate (w⋆, b⋆) boils down to maximizing the conditional log-likelihood. Up to the sign, the
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conditional log-likelihood is exactly the term under the expectation in the logistic risk R (w, b). Goingto estimation, it becomes clear that the empirical conditional log-likelihood of any (w, b) ∈ Rd × R islinked to the the empirical logistic risk:
log( n∏

i=1 P(Yi | Xi)) = − n∑
i=1 log (1 + e−Yi(w⊤Xi+b)) = −nRn(w, b).

This point is a big difference between LDA and logistic regression: LDA fits the parameters by maximizingthe full log-likelihood log(f(X,Y )(X, Y )) = log(P(Y |X )) + log(fX (X )),while logistic regression leaves the marginal density of X aside and maximizes the conditional log-likelihood. In some sense, the marginal likelihood can be thought of as a regularizer.
Remark 1.2.6. If the dataset in a two-class logistic regression model is linearly separable, the
maximum likelihood estimates of the parameters are undefined (infinite): let {(Xi, Yi)}1≤i≤n be aniid sample distributed similarly to (X, Y ) and such that:

∃(w0, b0) ∈ Rd × R : ∀i ∈ [n], Yi(w⊤0 Xi + b0) > 0.
Then, φ : λ ∈ R 7→ F (λw0, λb0) = 1

n
∑n

i=1 log (1 + e−λ[Yi(w⊤0 Xi+b0)]) is decreasing and converges to0. In addition, for any (w, b) ∈ Rd×R, F (w, b) > F (w,b)2 > 0. Since φ is decreasing and converges
to 0, we can find λ̄ ∈ R such that F (w,b)2 ≥ φ(λ̄) = F (λ̄w0, λ̄b0), so F (w, b) > F (λ̄w0, λ̄b0). We
conclude that there is no solution.

However, the LDA coefficients for the same data will be well defined.

As a result of this remark and in order to enhance the generalization properties of logistic regression, it iscommon to estimate (w⋆, b⋆) by minimization of a regularized empirical risk (or negative log-likelihood):
minimize
w∈Rd, b∈R

1
n

n∑
i=1 log (1 + e−Yi(w⊤Xi+b)) + λ2 ∥w∥2

ℓ2 ,

where λ > 0 be a regularization parameter. It is easy to see that the ℓ2 regularization on w helps solvingboth caveats of vanilla logistic regression.
1.2.3 Logistic regression versus LDABesides the maximum likelihood difference enlightened in the previous section, we give here some empiricalconclusions borrowed from Hastie et al. [2013].
Power of logistic regressionIf in fact the classes are Gaussian, then in the worst case ignoring this marginal part of the likelihoodconstitutes a loss of efficiency of about 30% asymptotically in the error rate. Paraphrasing: with 30%more data, the conditional likelihood will do as well.
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OutliersObservations far from the decision boundary are down-weighted by logistic regression while they play arole in estimating the common covariance matrix. It means that LDA is not robust to gross outliers (seeFigure 1.7).
In practiceIn practice the normal assumption is never correct, and often some covariates are qualitative. It isgenerally felt that logistic regression is a safer, more robust bet than the LDA model, relying on fewerassumptions (see Figure 1.5).

Figure 1.5: Comparison of logistic regression and LDA with non-Gaussian classes.

Figure 1.6: Illustration of the logistic regression hypothesis with non-Gaussian classes.
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Figure 1.7: Comparison of logistic regression and LDA with a single outlier.
1.3 Boosting
1.3.1 AdaboostAdaboost (and boosting in a more general way) was designed to expand the expressiveness of linearpredictors by composing them on top of other functions. This can be done in several manners, suchas feature mapping or non-parametric estimation, or by boosting, which came up to answer a noveltheoretical question: that of designing a strong learning algorithm using a weak learning one.The boosting approach has two important features:1. the bias-complexity tradeoff: the error of an ERM learner can be decomposed into an approximationerror and an estimation error (see Figure 1.8). The more expressive the hypothesis class thelearner is searching over, the smaller the approximation error is, but the larger the estimationerror becomes. In the boosting paradigm, the learning starts with a basic class (that might have alarge approximation error), and as it progresses, the class that the predictor may belong to growsricher. This procedures allows to have a smooth control of the tradeoff between approximation andestimation errors.2. computational complexity of learning: boosting is very cheap, particularly with decision stumps.Let C be a symmetric class of {±1}-classifiers: for every g ∈ C , −g ∈ C . The aim of boosting is tosolve minimize

g∈F

1
n

n∑
i=1 ℓ (Yig(Xi)),

where F = {sign(∑T
t=1 fj ), fj ∈ C}. In the forthcoming paragraphs, we describe Adaboost (Algorithm 1)
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Figure 1.8: Types of errors in the empirical risk minimization process.
and its generalization ability.
Algorithm 1 Adaboost.
Input: T ∈ N (number of iterations), {(Xi, Yi)}1≤i≤n (training sample).
f0 = 0 (null function)
for t = 1 to T do(wt, gt) ∈ arg min(w,g)∈R+×C 1

n
∑n

i=1 e−Yi(ft−1(Xi)+wg(Xi)) (ERM)
ft ← ft−1 + wtgt

end for
Output: gTn = sign(fT ).
Let us first remark that, in Algorithm 1, it is licit to consider wt ≥ 0 since g ∈ C ⇐⇒ −g ∈ C , soif a pair (wt, gt) is solution to the empirical risk minimization problem, then (−wt, −gt) is solution too.Thus, we just focus on the solution with a non-negative weight.

Property 12. Assume that ∀g ∈ C, ∃i ̸= j ∈ [n] such that Yi = g(Xi) and Yj ̸= g(Xj ). Then, for
each iteration t ∈ [T ] of Algorithm 1, it is licit to consider:

gt ∈ arg ming∈C n∑
i=1 Dt(i)1Yi ̸=g(Xi) and wt = 12 log(1− εt

εt

)
,

where for every i ∈ [n], Dt(i) = e−Yift−1(Xi )∑n
j=1 e−Yj ft−1(Xj ) and εt = ∑n

i=1 Dt(i)1Yi ̸=gt (Xi).
The proof will be done during the class.It comes that the iteration of Adaboost can be wrapped up in the following three steps (detailed inAlgorithm 2):
⋄ find a classifier gt ∈ C with small weighted error;
⋄ weight gt with wt such that ft = ft−1 + wtgt has a small empirical risk;
⋄ update the point weights according to how they are recognized by ft .
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Algorithm 2 Adaboost in practice.
Input: T ∈ N (number of iterations), {(Xi, Yi)}1≤i≤n (training sample).

for i = 1 to n do
D1(i)← 1

n
end for
f0 = 0 (null function)
for t = 1 to T do
gt ∈ arg ming∈C∑n

i=1 Dt(i)1Yi ̸=g(Xi)
εt ←

∑n
i=1 Dt(i)1Yi ̸=gt (Xi)

wt ∈ arg minw∈R 1
n
∑n

i=1 e−Yi(ft−1(Xi)+wgt (Xi)) = 12 log ( 1−εt
εt

)
(ERM)

Zt ←
∑n

i=1 Dt(i) e−wtYigt (Xi) = 2√εt(1− εt) (normalization)
for i = 1 to n do
Dt+1(i)← Dt(i) e−wtYigt (Xi) /Zt

end for
ft = ∑t

j=1 wjgj
end for

Output: gTn = sign(fT ).
Property 13. In Algorithm 2, we have for each iteration t ∈ [T ]:
⋄ for all i ∈ [n], Dt+1(i) = e−Yift (Xi )

n
∏t

j=1 Zj ;
⋄ Zt = 2√εt(1− εt).

The proof will be done during the class.
Theorem 14. Assume that there exists γ > 0 such that ∀t ∈ [T ], εt ≤ 12 − γ almost surely and let
gTn : X → {±1} be the classifier returned by Adaboost. Then,

1
n

n∑
i=1 1Yi ̸=gTn (Xi) ≤ e−2γ2T .

The proof will be done during the class.
Definition 1.3.1. Let F be a class of function from Rd to R and (Z1, . . . , Zn) be an iid sample of
random vectors from Rd . Let also (σ1, . . . , σn) be iid Rademacher random variables, independent
from (Z1, . . . , Zn).
The Rademacher complexity of F is

Rn(F (Z n1 )) = E

(sup
f∈F

1
n

∣∣∣∣∣ n∑
i=1 σif (Zi)

∣∣∣∣∣ | Z1, . . . , Zn
)
.
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Let us consider F = {f = ∑T
j=1 wjgj : T ∈ N, (g1, . . . , gT ) ∈ CT ,∥w∥ℓ1 = 1} be the class ofhypotheses and let us denote Dn = {(X1, Y1), . . . , (Xn, Yn)} the training set (made of iid copies of(X, Y )).

Theorem 15. Let γ > 0 and δ ∈ (0, 1). Then, with probability at least 1− δ,

∀f ∈ F : P(Y ̸= sign(f (X ))) ≤ 1
n

n∑
i=1 1Yif (Xi)<γ + 4

γ E [Rn(C (X n1 ))] +√log(1/δ )2n .

The proof will be done during the class.
Lemma 16. Assume that there exists γ ∈ (0, 1/2) such that ∀t ∈ [T ], εt ≤ 12 − γ almost surely and
let fT : X → R be the Adaboost classifier at the last iteration. Then,

1
n

n∑
i=1 1Yi fT (Xi )∥w∥ℓ1 <γ ≤

((1− 4γ2) (1 + 2γ1− 2γ
)γ)T /2

.

In addition, we have (1− 4γ2) ( 1+2γ1−2γ
)γ

< 1.

The proof is a good exercise.
Theorem 17. Assume that there exists γ ∈ (0, 1/2) such that ∀t ∈ [T ], εt ≤ 12 − γ almost surely
and let gTn : X → {±1} be the classifier returned by Adaboost. Let also δ ∈ (0, 1). Then, with
probability at least 1− δ,

P(Y ̸= gTn (X ) | Dn) ≤ ((1− 4γ2) (1 + 2γ1− 2γ
)γ)T /2 + 4

γ E [Rn(C (X n1 ))] +√log(1/δ )2n .

The proof will be done during the class.
1.3.2 ERM point of view and remarks
ERMWe have seen in Algorithm 2 that for all t ∈ [T ], each weight wt is obtained by the rule

wt ∈ arg minw∈R 1
n

n∑
i=1 e−Yi(∑t−1

j=1 wjgj (Xi)+wgt (Xi)) .
Defining φ : x ∈ Rd 7→ (g1(x), . . . , gT (x)) ∈ {±1}T , this update rule can be seen as a coordinatedescent for the empirical risk

w ∈ RT 7→ 1
n

n∑
i=1 e−Yiw⊤φ(Xi) .
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Figure 1.9: Weighted error of each weak learner. As expected, it tends to 0.5 since Adaboost focuses onhard examples.
In a broader sense, Adaboost can be seen as a procedure alternating two steps:1. learning the t th component φt of φ;2. a descent on the t th coordinate of w .In that, Adaboost both learns a new representation of the data φ and performs a coordinate descent onthe convex risk previously defined, thus learning a generalized linear model penalized by the exponentialloss. Using the logistic loss x ∈ R 7→ log (1 + e−x ) instead leads to something very close to logisticregression.
Weak learnersIn practice, it is common to use stumps as base classifiers, that is, decision trees of depth one. Thus,at each iteration, decision stumps quantize the most discriminative coordinate in ±1. The coordinate isthen weighted by minimization of the exponential empirical risk.
NoiseIt has been shown empirically that noise severely damages the performance of Adaboost. That is themost serious disadvantage of boosting.In practice, we observe that the examples that are harder to classify end up dominating the selection ofthe base classifiers, which play a detrimental role in the definition of the final classifier.
Multiclass classificationEven though Adaboost with trees has been awarded with the “best off-the-shelf classifier in the world”title for binary classification problems, its natural extension to multiclass problems (C > 2) turns out tobe very poor.For this reason, an efficient extension of Adaboost has been proposed for multiclass problems, calledStagewise Additive Modeling using a Multiclass Exponential loss (SAMME). In accordance with its
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name, SAMME uses a multi-class exponential loss to computes the weights wt :
f 7→ 1

n

n∑
i=1 e− Ỹ ⊤i f (Xi )

C ,

where Ỹi has 1 in its Y th
i component and − 1

C−1 otherwise, and f : X → RC is a vector-valued decisionfunction, each component of which corresponding to a class. At iteration t , a weak classifier gt : X →
RC is learned, such that gt(x) does have the form of the coding vectors Ỹi (that is, components areeither 1 or − 1

C−1 ) and ft = ∑t
j=1 wjgj is a function from X to RC . The new updates are wt ←(C−1)2

C

(log ( 1−εt
εt

) + log (C − 1)) and Dt+1(i) = Dt(i) e− wt Ỹ⊤i gt (Xi )
C . Let us remark that this update isconsistent with the situation in which C = 2. Besides this difference, weak classifiers are required tohave an error better than random guessing, that is εt < C−1

C . Moreover, the final decision rule becomes
gTn (x) = arg max1≤j≤C (fT (x))j = arg max1≤j≤C∑T

t=1 wt1(gt (x))j=1. This last inequality can be seen byremarking that for any 1 ≤ j ̸= k ≤ C :
(fT (x))k − (fT (x))j = T∑

t=1 wt
[(gt(x))k − (gt(x))j] ,

where
(gt(x))k − (gt(x))j =


1 + 1

C−1 if (gt(x))k = 1
− 1

C−1 + 1
C−1 if (gt(x))k ̸= 1 and (gt(x))j ̸= 1

− 1
C−1 − 1 if (gt(x))j = 1.Thus

(fT (x))k − (fT (x))j = (1 + 1
C − 1

) T∑
t=1 wt1(gt (x))k=1 −

(1 + 1
C − 1

) T∑
t=1 wt1(gt (x))j=1,

and
(fT (x))k − (fT (x))j > 0 ⇐⇒ T∑

t=1 wt1(gt (x))k=1 >
T∑
t=1 wt1(gt (x))j=1.

In addition, SAMME comes with a variant of it, called SAMME.R (R for real), which makes use of classprobability estimates instead of classifiers gt . SAMME.R is generally even more efficient than SAMMEwith respect to the classification accuracy.
1.3.3 Gradient boostingLet F : Rn → R be a real-valued function. It is known that under some assumptions (convexity,differentiability of F and Lipschitz continuity of ∇F , coercivity), the sequence defined by any x0 ∈ Rnand for all positive integer t by:

xt = xt−1 − wt∇F (xt−1),
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where
wt ∈ arg minw∈R F (xt−1 − w∇F (xt−1)),converges to a minimizer of F . This is called gradient descent with exact line search. This procedurecan be wrapped-up in three steps:1. finding a direction of descent (here, ∇F (xt−1));2. computing a step of descent wt (minimizing F (xt−1 − w∇F (xt−1)) with respect to w ∈ R);3. updating the optimization variable xt = xt−1 − wt∇F (xt−1).Gradient boosting occurred from the similarity between Adaboost and gradient descent. To observe it, letus remark that at each step t > 0 of Adaboost,

ft = t∑
j=1 wjgj = ft−1 + wtgt,

where
wt ∈ arg minw∈R 1

n

n∑
i=1 e−Yi(ft−1(Xi)+wgt (Xi)) .

This line search is point-wise in the sense that it only depends on the evaluations of ft−1 and gt at
{X1, . . . , Xn}. Thus, let

F : x ∈ Rn 7→ 1
n

n∑
i=1 e

−Yixi

be the empirical risk minimized in Algorithm 1 and consider the notation
xt = (ft(X1), . . . , ft(Xn)) ∈ Rn and dt = (−gt(X1), . . . , −gt(Xn)) ∈ Rn.Then, the line search reads:

wt ∈ arg minw∈R F (xt−1 − wdt),and at each iteration t , gt (or equivalently dt) is learned so as to minimize the weighted error
n∑
i=1 Dt(i)1Yi ̸=gt (Xi) ∝ 2

n

n∑
i=1 e

−Yift−1(Xi)1Yi ̸=gt (Xi)
= 2
n

n∑
i=1 e

−Yift−1(Xi) 1− Yigt(Xi)2
= 1
n

n∑
i=1 e

−Yift−1(Xi) − n∑
i=1
(
−Yie−Yift−1(Xi)

n

) (−gt(Xi))
= F (xt−1)− ⟨∇F (xt−1), dt⟩ℓ2 ,that is so as to maximize ⟨∇F (xt−1), dt⟩ℓ2 . In other words, Adaboost learns at each iteration a baseclassifier, that is close to the gradient of F (in the correlation sense).1Consequently, Adaboost

1This way to find a direction of descent is related to the Frank–Wolfe algorithm, also known as the conditional gradientmethod.
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1. finds a direction of descent (−gt), which is a function;2. computes a step of descent wt according to a point-wise rule (minimizing F (xt−1 − wdt) withrespect to w ∈ R, where dt = (−gt(X1), . . . , −gt(Xn)));3. updates the optimization variable ft = ft−1 − wt(−gt), which is a function.It becomes clear that Adaboost is very similar to a gradient descent with exact line search except that:
⋄ the direction is not the gradient of F at xt−1 but dt = (−gt(X1), . . . , −gt(Xn));
⋄ gradient descent updates a vector xt while Adaboost maintains a functional variable ft .In a more general setting, we can consider

F : x ∈ Rn 7→ 1
n

n∑
i=1 ℓi(xi),where ℓi : R→ R is a loss function, which may be, for example:

⋄ the exponential loss (classification): ℓi(x) = e−Yix (similar to Adaboost);
⋄ the logistic loss (classification): ℓi(x) = log (1 + e−Yix

) (similar to logistic regression);
⋄ the squared loss (regression): ℓi(x) = 12 (Yi − x)2;
⋄ the absolute loss (regression): ℓi(x) = |Yi − x| (not differentiable at x = Yi).This is the first improvement of gradient boosting (described in Algorithm 3) over Adaboost. As a seconddifference, gradient boosting does not build a weak learner gt highly correlated with −∇F (xt−1) butsuch that for all i ∈ [n],

gt(Xi) ≈ −1
nℓ
′
i (ft−1(Xi)).Thus, gt is a base regressor picked in a given class R. In practice, we get rid of the constant term 1

n(this is redundant with the line search), so that gt(Xi) ≈ −ℓ ′i (ft−1(Xi)).
Algorithm 3 Gradient boosting.
Input: T ∈ N (number of iterations), ν ∈ (0, 1] (shrinkage coefficient), {(Xi, Yi)}1≤i≤n (training sample).
f0 ∈ arg minγ∈R 1

n
∑n

i=1 L(Yi, γ) (constant function)
for t = 1 to T do

for i = 1 to n do
ri,t ← −ℓ ′i (ft−1(Xi)) (pseudo-residuals)

end for
gt ← base regressor from R for the training set {(Xi, ri,t)}1≤i≤n
wt ← arg minw∈R 1

n
∑n

i=1 ℓi(ft−1(Xi) + wgt(Xi)) (line search)
ft = ft−1 + νwtgt

end for
Output: sign(fT ) for classification, fT for regression.
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Example 1.3.1. Let us consider the case where ℓi(x) = 12 (Yi − x)2. Then

ℓ ′i (x) = x − Yi,

and gt(Xi) ≈ Yi − ft−1(Xi). It appears that gt(Xi) approximates the quantity (the residual) that is
missing to ft−1(Xi) in order to reach Yi. With wt ≈ 1, the update rule becomes

ft(Xi) ≈ ft−1(Xi) + wt(Yi − ft−1(Xi)) = (1− wt)ft−1(Xi) + wtYi ≈ Yi.To sum up, let for i ∈ [n], ℓi : R→ R be a convex and differentiable loss function (adapted to classificationor regression), R ∈ RRd be a class of real-valued functions and F : x ∈ Rn 7→ 1
n
∑n

i=1 ℓi(xi).Then, gradient boosting (Algorithm 3) is an algorithm similar to gradient descent aimed at minimizingthe empirical risk:
A : f 7→ F


f (X1)...
f (Xn)


 = 1

n

n∑
i=1 ℓi(f (Xi)),over the linear combinations of functions in R, denoted span(R). The iteration of this algorithm reads,for any t > 0:

ft = ft−1 + wtgt,where gt ∈ R is a weak learner such that for all i ∈ [n], gt(Xi) ≈ − 1
nℓ
′
i (ft−1(Xi)).

Theorem 18 (Linear convergence). Assume that:

1. F is differentiable with L-Lipschitz continuous gradient ∇F (L > 0);
2. F is µ-strongly convex (with µ > 0);
3. there exists γ ∈ [0, 1] such that at each iteration t > 0,

n∑
i=1
(
gt(Xi) + 1

nℓ
′
i (ft−1)(Xi))2

≤ (1− γ) n∑
i=1
(1
nℓ
′
i (ft−1)(Xi))2 ;

4. A has a minimizer in span(R), denoted f ⋆;
5. ν = 1.

Let us denote fT the output of Algorithm 3, then:

A(fT )− A(f ⋆) ≤ (1− γµ2L)T (A(f0)− A(f ⋆)) .
The proof is a good exercise.
The importance of the shrinkage coefficientGiven a class of regressors R, the general problem of gradient boosting is to minimize the empiricalrisk A : f 7→ 1

n
∑n

i=1 ℓi(f (Xi)) over the linear combinations of functions in R, denoted span(R). Gradient
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boosting is a greedy procedure that performs T iterations and outputs a final estimator fT , where Tcontrols:
⋄ the number of gradient steps performed to minimize the risk A;
⋄ the size of the subspace of span(R) in which lies fT , since fT is a linear combination of at most
T + 1 functions in R.Let us remark that, nothing guarantees that fT is a minimizer of A over linear combinations of at most

T + 1 functions in R. We can even be pretty sure of the converse.That being said, it is now clear that T controls at the same time the convergence of the optimizationalgorithm and the complexity of the final estimator. In that, T acts as:
⋄ an iterative regularizer (controlling the number of iterations for minimizing the empirical risk A);
⋄ a statistical regularizer (controlling the complexity of the hypothesis space).However, it is obvious that these two complex regularization mechanisms cannot be monitored by a singleparameter. That is why the shrinkage coefficient ν ∈ (0, 1] comes into play: by rescaling the contributionof each gradient step, it impacts the convergence of the optimization algorithm while leaving the size ofthe subspace of span(R) in which lies fT unchanged.To wrap off, gradient boosting benefits from:
⋄ an iterative regularization, controlled by the pair (ν, T );
⋄ a statistical regularization, controlled by T .

1.4 Support vector machines
1.4.1 Large margin classifierIn its empirical version, logistic regression is computed by minimizing a regularized empirical risk definedby the logistic loss. Such a loss may be replaced by any convex surrogate of the 0− 1 loss (Figure 1.4)and in particular by the hinge loss: (x, x ′) ∈ R2 7→ max(0, 1 − xx ′). Let λ > 0 be a regularizationparameter. This gives rise to a novel classifier gn = sign(⟨w⋆, ·⟩ℓ2 + b⋆), where the decision functionparameters (w⋆, b⋆) are solutions to:

minimize
w∈Rd,b∈R

λ2 ∥w∥2
ℓ2 + 1

n

n∑
i=1 max(0, 1− Yi(w⊤Xi + b)), (P2)

where {(Xi, Yi)}1≤i≤n ⊂ Rd × {±1} is an iid sample distributed as (X, Y )). Such a classifier is calleda linear support vector machine (SVM) or soft SVM.The main interest of trading the logistic loss for the hinge loss is to provide a geometrical interpretation.To explain it, let us rewrite the previous optimization problem by replacing the hinge loss by a linearconstraint.
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Lemma 19. One has
∀x ∈ R : max(0, 1− x) = inf

ξ∈R+:x≥1−ξ ξ.
The proof will be done during the class.Let C = 1/(λn) (C > 0). Then, (P2) can be rewritten equivalently with slack variables (rescaling theobjective function): minimize

w∈Rd,b∈R
ξ∈Rn

12 ∥w∥2
ℓ2 + C

n∑
i=1 ξis. t. {

∀i ∈ [n], Yi(w⊤Xi + b) ≥ 1− ξi
∀i ∈ [n], ξi ≥ 0.

(P3)
In Problem (P3), each slack variable ξi represents the uncertainty (0 < ξi ≤ 1) or the error (ξi > 1) ofthe decision (w⊤Xi + b) given the true label Yi.Now, let us assume that the training dataset is linearly separable:

∃(w, b) ∈ Rd × R : ∀i ∈ [n], Yi(w⊤Xi + b) > 0.By rescaling w and b by min1≤i≤n Yi(w⊤Xi + b), the previous assumption is equivalent to:
∃(w, b) ∈ Rd × R : ∀i ∈ [n], Yi(w⊤Xi + b) ≥ 1.

Thus, it is quite natural and legitimate to focus only on classifiers able to classify correctly and withhigh confidence the training sample (that is with Yi(w⊤Xi + b) ≥ 1 for all i ∈ [n], or equivalently nullslack variables: ∀i ∈ [n], ξi = 0). The new optimization problem of interest is obtained by increasing
C to infinity in (P3) and by remarking that for all ξ ∈ Rn+, limC→∞ C

∑n
i=1 ξi = χξ=0 (with convention0×∞ = 0): minimize

w∈Rd,b∈R

12 ∥w∥2
ℓ2s. t. ∀i ∈ [n], Yi(w⊤Xi + b) ≥ 1. (P4)

The classifier defined by solving (P4) is called hard margin linear SVM or a large margin classifier becausethe direction of the decision function achieves the highest margin. The legitimacy of Problem (P4) comesfrom the existence of a solution when the training dataset is linearly separable (which is assumed fornow).
Proposition 20. Let (w, b) ∈ Rd\{0} × R and x ∈ Rd . Then |w

⊤x+b|∥w∥ℓ2 is the distance between the
hyperplane {z ∈ Rd : w⊤z + b = 0} and the point x.

The proof is a good exercise.Let (w, b) ∈ Rd\{0} × R. The margin of the hyperplane {z ∈ Rd : w⊤z + b = 0} is defined by:
µ(w, b) = min1≤i≤n |w

⊤Xi + b|∥w∥ℓ2 .
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Proposition 21. Let us assume that ∃i ̸= j ∈ [n] : Yi ̸= Yj and let (w⋆
n , b⋆n) be a solution to (P4).

Then, µ(w⋆
n , b⋆n) = 1∥∥w⋆

n
∥∥
ℓ2 and (w⋆

n , b⋆n) is solution to

maximize
w∈Rd\{0},b∈R µ(w, b)s. t. ∀i ∈ [n], Yi(w⊤Xi + b) ≥ 0. (P5)

The proof will be done during the class.Thus, SVM is said to maximize the margin, that is the distance between the separating hyperplane andthe nearest training points. The equivalence holds when the dataset is linearly separable. When this isnot true, SVM still maximizes the margin but accepts classification errors embodied by non-zero slackvariables ξi.
1.4.2 RKHSThe aim of this section is to introduce a class of (potentially) nonlinear functions, that may be used asdecision functions in order to build nonlinear classifiers and regressors. The underlying decision functionswill have the form of a kernel estimator ∑∞

i=1 αik (·, xi) (where (αi)i, (xi)i and k will be clarified latter),well-known in the statistics community.In the whole section, we consider a non-empty input set X .
Definition 1.4.1 (Kernel). A function k : X × X → R is called a kernel if there exists a Hilbert
space (G, ⟨·, ·⟩G) and a map φ : X → G such that

∀(x, x ′) ∈ X2 : k (x, x ′) = ⟨φ(x), φ(x ′)⟩G .
We call φ a feature map and G a feature space.

Example 1.4.1. Let φ1 : x ∈ Rd 7→ x and φ2 : x ∈ R2 7→ (x21 , x22 ,√2x1x2). Then k1(x, x ′) =
φ1(x)⊤φ1(x ′) = x⊤x ′ and k2(x, x ′) = φ2(x)⊤φ2(x ′) = (x⊤x ′)2 are two kernels.

Remark 1.4.1 (Feature map and feature space are not unique). Let us consider X = Rd and the
kernel k (x, x ′) = x⊤x ′. φ1 : x ∈ Rd 7→ x ∈ Rd and φ2 : x 7→ (

x√2 , x√2
)
∈ R2d are two feature

maps, respectively with feature spaces G1 = Rd and G2 = R2d .
Property 22 (Restriction of kernels). Let k be a kernel on X, X̃ be a set and A : X̃ → X. Then(x, x ′) ∈ X̃2 7→ k (A(x), A(x ′)) is a kernel on X̃ .

The proof is a good exercise.
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Property 23 (Sum of kernels). Let k1 and k2 be two kernels on X and α ≥ 0. Then αk1 and k1 + k2
are kernels.

The proof is a good exercise.
Property 24 (Product of kernels). Let k1 and k2 be two kernels on X. Then k1k2 is a kernel.

The proof is a good exercise.
Property 25 (Polynomial kernels). Assume that X ⊂ Rd and let p : R → R be a polynomial
function with non-negative coefficients. Then (x, x ′) ∈ X2 → p(x⊤x ′) is a kernel.

The proof is a good exercise.Computing the feature map φ is merely needed to define and to evaluate a kernel. We now present acharacterization of kernels based on inequalities.
Definition 1.4.2 (Positive definite function). A function k : X×X → R is said positive semi-definite
if for all n ∈ N, α ∈ Rn and {x1, . . . , xn} ⊂ X, we have:∑

1≤i,j≤n αiαjk (xi, xj ) ≥ 0.
Furthermore, k is said positive definite if for all n ∈ N, α ∈ Rn\{0} and {x1, . . . , xn} ⊂ X such
that xi = xj =⇒ i = j , we have: ∑

1≤i,j≤n αiαjk (xi, xj ) > 0.
Finally, k is said symmetric if for all (x, x ′) ∈ X2, k (x, x ′) = k (x ′, x).
Remark 1.4.2. The definition of a positive semi-definite function k can be trivially linked to positive
semi-definiteness of the kernel matrix K = (k (xi, xj ))1≤i,j≤n. In addition, K is often called Gram (or
Gramian) matrix.

Let us remark that we obviously have that kernels are symmetric positive semi-definite functions. Thefollowing theorem states that symmetric positive semi-definite functions are all kernels.
Theorem 26 (Symmetric positive semi-definite functions are kernels). A function k : X × X → R
is a kernel if and only if it is symmetric and positive semi-definite.

The proof will be done during the class.
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Corollary 27 (Limits of kernels). Let (kn)n≥0 be a sequence of kernels that converges pointwise to
k : X × X → R, i.e. for all (x, x ′) ∈ X2, limn→∞ kn(x, x ′) = k (x, x ′). Then k is a kernel.

Example 1.4.2 (Example of kernels). Let us consider X ⊂ Rd . The following functions are common
kernels (defined for all (x, x ′) ∈ X2):
linear : k (x, x ′) = x⊤x ′;
polynomial : k (x, x ′) = (1 + cx⊤x ′)d , c > 0, d ∈ N;
exponential : k (x, x ′) = eγx⊤x ′ , γ > 0;
Laplacian : k (x, x ′) = e−γ

∥∥x−x ′∥∥ℓ2 , γ > 0;
Gaussian : k (x, x ′) = e−γ

∥∥x−x ′∥∥2
ℓ2 , γ > 0.

In particular,

1. for X ⊂ R2, φ(x) = (x21 , x22 ,√2x1x2) is a feature map for k (x, x ′) = (x⊤x ′)2 (with ⟨·, ·⟩G
being the Euclidean inner product);

2. for X ⊂ R, φ(x) = √2 ( γπ )1/4 e−2γ(·−x)2 is a feature map for k (x, x ′) = e−γ(x−x ′)2 , with γ > 0
(with inner product ⟨f , g⟩G = ∫ fg and G = L2).

Kernels are mainly interesting because they define a function space, called a reproducing kernel Hilbertspace (RKHS).
Definition 1.4.3 (RKHS). Let H ⊂ RX be a Hilbert space and k a kernel. H is an RKHS with
kernel k (or k is a reproducing kernel of H) if for all x ∈ X:

⋄ k (·, x) ∈ H;
⋄ ∀f ∈ H : ⟨f , k (·, x)⟩H = f (x) (reproducing property).

Example 1.4.3 (Linear functions). H = {f : x ∈ Rd → w⊤x ∈ R, w ∈ Rd}, with the inner product
⟨f , g⟩H = w⊤β, where f : x 7→ w⊤x and g : x 7→ β⊤x, is an RKHS with kernel k : (x, x ′) 7→ x⊤x ′.

Remark 1.4.3. Let f ∈ H. Intuitively, f can be described by the infinite dimensional vector of its
evaluations (f (x)x∈X ), the coordinates of which are f (x) = ⟨f , k (·, x)⟩H. Even though {k (·, x), x ∈
X} may not be an orthonormal basis of H, the reproducing property suggests that we aim at
describing f by its expansion on {k (·, x), x ∈ X}: f = ∑

x∈X αxk (·, x) for some (αx )x∈X to be
defined.

Proposition 28. Let H be an RKHS with kernel k . Then, for all x ∈ X, the evaluation function
Ex : f ∈ H 7→ f (x) is continuous.

The proof will be done during the class.In particular, this proposition leads to a remarkable property of RKHSs: norm convergence implies
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pointwise convergence. Formally, let H be an RKHS, f ∈ H and (fn)n ⊂ H such that ∥∥f − fn
∥∥
H → 0for n → ∞. Then, for all x ∈ X , by continuity of Ex , fn(x) = Ex (f )→ f (x) for n → ∞. Obviously thisis not always the case: fn : x ∈ [0, 1] 7→ xn converges to 0 in L1 (∫[0,1] |fn(x)| dx = 1

n+1 −−−→n→∞
0) but notpointwise since fn(1) = 1.We have just seen that we can build an RKHS with a kernel. We now answer the two questions: givena kernel, is the associated RKHS unique? Given an RKHS, is the associated kernel unique?

Theorem 29 (Uniqueness of the reproducing kernel). An RKHS H has a unique reproducing kernel.

The proof will be done during the class.
Theorem 30 (Uniqueness of the RKHS, or Moore-Aronszajn theorem). Let k be a kernel. Then,
there exists a unique RKHS H associated to k .

Furthermore, let H0 = span {k (·, x), x ∈ X} associated to the inner product〈 n∑
i=1 αik (·, xi),

m∑
j=1 βjk (·, x ′j )

〉
H0

= ∑
1≤i≤n1≤j≤m

αiβjk (xi, x ′j ),
for any integers n and m, any points x1, . . . , xn, x ′1, . . . , x ′m ⊂ X and any vectors α ∈ Rn and
β ∈ Rm.

Then, H is the closure of H0 for ⟨·, ·⟩H0 , i.e. H is the set of functions that are pointwise limits of
Cauchy sequences from H0:

H = {x ∈ X 7→ lim
n→∞

fn(x) : (fn)n ⊂ H0 Cauchy sequence
}
,

with inner product ⟨limn→∞ fn, limn→∞ gn⟩H = limn→∞ ⟨fn, gn⟩H0 .

As a reminder, (fn)n ⊂ H0 is a Cauchy sequence if ∀ε > 0, ∃N ∈ N : m, n ≥ N =⇒ ∥∥fm − fn
∥∥
H0 ≤ ε .

Example 1.4.4. Assume that k = ⟨·, ·⟩ℓ2 . Then H0 ⊆ {
⟨·, w⟩ℓ2 , w ∈ Rd} ⊆ H0, so H0 ={

⟨·, w⟩ℓ2 , w ∈ Rd} and since H0 is already complete, then H = {
⟨·, w⟩ℓ2 , w ∈ Rd}, i.e. H is

the set of linear functions from Rd to R.

Corollary 31. Let H be an RKHS with kernel k . Then

H = { ∞∑
i=1 αik (·, xi) : ∞∑

i=1 α
2
i k (xi, xi) < ∞, (xi)i ⊂ X, (αi)i ⊂ R

}
.
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Theorem 32. Let G be a Hilbert space, φ : X → G and k the kernel associated to the feature map
φ: for all (x, x ′) ∈ X2, k (x, x ′) = ⟨φ(x), φ(x ′)⟩G.
Then, the RKHS associated to k is:

H = {⟨w, φ(·)⟩G : w ∈ G} ,
equipped with the norm: ∥∥f∥∥H = inf {∥w∥G : w ∈ G, f = ⟨w, φ(·)⟩G} .
In particular, both previous definitions are independent of the feature map φ.

Remark 1.4.4 (Canonical feature map). Let k be a kernel and H its associated RKHS. The canonical
feature map of k is defined as

φ : x ∈ X 7→ k (·, x),
with the canonical feature space G = H. Obviously, ⟨φ(x), φ(x ′)⟩G = ⟨k (·, x), k (·, x ′)⟩H = k (x, x ′)
for all (x, x ′) ∈ X2.
Definition 1.4.4 (Universal kernel). Assume that X is compact and let us denote C (X ) the set of all
continuous and bounded functions on X. A continuous kernel k on X is said universal if its RKHS
H is dense in C (X ).
Example 1.4.5 (Examples of universal kernels). The exponential and the Gaussian kernels are
universal.

1.4.3 Kernel trick and nonlinear SVMLet k : Rd × Rd → R be a kernel and {(Xi, Yi)}1≤i≤n ⊂ Rd × {±1} be an iid sample. Let us denote
G and φ : Rd → G respectively the feature space and the feature map associated to k .We would like to find the linear SVM (with tradeoff parameter C > 0) for the dataset {(φ(Xi), Yi)}1≤i≤n.Accordingly to Problem (P3), the parameters of such an SVM are solution to the optimization problem:

minimize
w∈G,b∈R
ξ∈Rn

12 ∥w∥2
G + C

n∑
i=1 ξis. t. {

∀i ∈ [n], Yi(⟨w, φ(Xi)⟩G + b) ≥ 1− ξi
∀i ∈ [n], ξi ≥ 0.

(P6)
Let now H be the RKHS associated to k . Thanks to Theorem 32, we know that for all w ∈ G,
h = ⟨w, φ(·)⟩G ∈ H and ∥∥h∥∥H = inf {∥∥w ′∥∥G : w ′ ∈ G, f = ⟨w ′, φ(·)⟩G}. Therefore, by a change of
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variable, (P6) can be written:
minimize
w∈G,b∈R
ξ∈Rn,h∈H

12 ∥w∥2
G + C

n∑
i=1 ξi

s. t.
 ∀i ∈ [n], Yi(h(Xi) + b) ≥ 1− ξi
∀i ∈ [n], ξi ≥ 0
h = ⟨w, φ(·)⟩G ,or, by joint convexity, minimize

h∈H,b∈R
ξ∈Rn

inf
w∈G

h=⟨w,φ(·)⟩G

{12 ∥w∥2
G

}+ C
n∑
i=1 ξis. t. {

∀i ∈ [n], Yi(h(Xi) + b) ≥ 1− ξi
∀i ∈ [n], ξi ≥ 0,

that is, minimize
h∈H,b∈R
ξ∈Rn

12 ∥∥h∥∥2
H + C

n∑
i=1 ξis. t. {

∀i ∈ [n], Yi(h(Xi) + b) ≥ 1− ξi
∀i ∈ [n], ξi ≥ 0.

(P7)
(P7) reveals that by transforming the data with the feature map φ, a linear SVM can be used to estimatea decision function f = h + b, h ∈ H, b ∈ R, which is nonlinear as soon as the kernel k is not thelinear kernel. On the other hand, when k is the linear kernel, φ boils down to be the identity and Hthe set of linear functions (i.e. (P3) and (P7) are strictly the same).A central question with nonlinear SVM is to compute it in practice. This is not trivial since, on the onehand, solving (P6) involves computing the feature map φ (which is unknown for certain kernels, eveninfinite dimensional for some kernels such as the Gaussian kernel). On the other hand, (P7) involves anonparametric optimization variable h ∈ H.The next theorem states that solutions to (P7) are supported by the data. It is quite reassuring since itprovides a way to solve (P7): restricting h to be of the form ∑n

i=1 αik (·, Xi), for α ∈ Rn.
Theorem 33 (Representer theorem). Let k : Rd×Rd → R be a kernel and H the associated RKHS.
Let also ψ : R+ → R be a non-decreasing function and ℓ : R2n → R be any loss function. Given
a training sample {(Xi, Yi)}1≤i≤n from (X × R)n, if the optimization problem

minimize
h∈H, b∈R

ψ
(∥∥h∥∥H) + ℓ (Y1, . . . , Yn, h(X1) + b, . . . , h(Xn) + b) (P8)

has a solution, then there exists a solution (h⋆, b⋆) such that h⋆ has the form

h⋆ = n∑
i=1 αik (·, Xi),

where α ∈ Rn.
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In addition, if ψ is an increasing function, then all solutions of (P8) can be written in the form
described above.The proof will be done during the class.
Remark 1.4.5. Even if ψ is an increasing function, (P8) may not have a solution. For instance,
let R : (h, b) ∈ H × R 7→

∥∥h∥∥2
H + e−(h(X1)+b). Then, for any pair (h, b), R (h, b) > 0 and

R (0, b) →
b→+∞ 0. So (P8) has no minimizer.

Another example is R : (h, b) ∈ H × R 7→
∥∥h∥∥2

H − h(X1)4. Let hλ = λk (·, X1). Then R (hλ, 0) =
λ2k (X1, X1)− λ4k (X1, X1) −−−→

λ→∞
−∞. So (P8) has no minimizer.

Remark 1.4.6. If ψ and (h, b) 7→ ℓ (Y1, . . . , Yn, h(X1) + b, . . . , h(Xn) + b) are strictly convex, then
the pair (h⋆, b⋆) is unique but the expansion of h⋆ may not be (it is the case if the kernel matrix(k (Xi, Xj ))1≤i,j≤n is rank deficient).

In practice, the duality theory of convex optimization is preferred to the representer theorem in order tosolve (P7). It simultaneously exhibit the same result as the representer theorem and a novel optimizationproblem to determine the optimal weights α . The next sections are devoted to deriving a dual optimizationproblem to (P7).Let us remark that the forthcoming derivation could also be executed based on (P6), i.e. using only thefeature space notation (w ∈ G and φ(Xi) ∈ G). The final result would be exactly the same: in order tocompute the optimal decision function, we only need to evaluate the kernel k but never to compute thefeature map φ. This is known as the kernel trick.
1.4.4 SVM in action
⋄ A fancy demo of polynomial kernel.
⋄ An applet for playing with SVM.

1.4.5 Duality in convex optimization
Definition 1.4.5. A function f : Rd → R is convex if

∀(x, y) ∈ Rd × Rd, ∀t ∈ (0, 1) : f (tx + (1− t)y) ≤ tf (x) + (1− t)f (y).
Lemma 34. Let f : Rd → R be a convex and differentiable function. Then

∀(x, y) ∈ Rd × Rd, : f (y) ≥ f (x) + ⟨∇f (x), y − x⟩ℓ2 .

The proof will be done during the class.
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Remark 1.4.7 (First order characterization of convex functions). Actually, a differentiable function
f : Rd → R is convex if and only if

∀(x, y) ∈ Rd × Rd : f (y) ≥ f (x) + ⟨∇f (x), y − x⟩ℓ2 .
This is the first order characterization of convex functions. ⇒ is given by Lemma 34, while for ⇐,
it is enough to remark that, for every t ∈ (0, 1),{

f (x) ≥ f (tx + (1− t)y) +∇f (tx + (1− t)y)⊤ ((1− t)(x − y))
f (y) ≥ f (tx + (1− t)y) +∇f (tx + (1− t)y)⊤ (t(y − x)) ,

so
tf (x) + (1− t)f (y) ≥ f (tx + (1− t)y).

Theorem 35 (Fermat’s rule). Let f : Rd → R be a convex and differentiable function. Then

x⋆ ∈ arg minx∈Rd f (x) ⇐⇒ ∇f (x⋆) = 0.
The proof will be done during the class.From now on, we consider the optimization problem

minimize
x∈Rd

f (x)
s. t. {

∀i ∈ [n] : gi(x) ≤ 0
∀i ∈ [m] : hi(x) = 0, (P9)

where f : Rd → R, (gi : Rd → R)1≤i≤n and (hi : Rd → R)1≤i≤m are n+m+1 convex and differentiablefunctions. let C = {x ∈ Rd : ∀i ∈ [n], gi(x) ≤ 0, ∀i ∈ [m], hi(x) = 0} be the set of constraints.
Definition 1.4.6 (Lagrangian function). The Lagrangian function of (P9) is:

L : (x, λ, ν) ∈ Rd × Rn+ × Rm 7→ f (x) + n∑
i=1 λigi(x) +

m∑
i=1 νihi(x).

Property 36. Let us consider (P9) along with its Lagrangian L. Then

∀x ∈ Rd : sup
λ∈Rn+,ν∈Rm

L(x, λ, ν) = {f (x) if x ∈ C
∞ otherwise.

In addition, if C ≠ ∅, then inf
x∈C

f (x) = inf
x∈Rd

sup
λ∈Rn+,ν∈Rm

L(x, λ, ν).
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The proof is a good exercise.
Remark 1.4.8 (Variational formulation of the characteristic function). Considering f = 0 leads tosupλ∈Rn+,ν∈Rm L(·, λ, ν) = χC , where χC is the characteristic function of the set C . In other words,supλ∈Rn+,ν∈Rm L(·, λ, ν) is no more than a variational formulation of the characteristic function of the
set of constraint C .

Then (in the general case where f ̸= 0), it becomes obvious that (P9) can be reformulated as the
minimization of f + χC , i.e. of

f + sup
λ∈Rn+,ν∈Rm

n∑
i=1 λigi +

m∑
i=1 νihi.

Definition 1.4.7 (Dual function). Let us consider (P9) along with its Lagrangian L. The dual function
of (P9) is

D : (λ, ν) ∈ Rn+ × Rm 7→ inf
x∈Rd

L(x, λ, ν).
Let us remark that D is concave and may take value −∞ for some (λ, ν).

Property 37 (Weak duality). sup(λ,ν)∈Rn+×Rm
D(λ, ν) ≤ inf

x∈C
f (x).

The proof will be done during the class.The optimization problem maximize(λ,ν)∈Rn×Rm
D(λ, ν)s. t. λ ≽ 0 (P10)

is called the dual problem to (P9), itself called the primal problem.
Definition 1.4.8 (Convex problem). Problem (P9) is said convex if

1. f : Rd → R and (gi : Rd → R)1≤i≤n are n+ 1 convex functions;
2. (hi : Rd → R)1≤i≤m are affine functions.

In this case, C is a convex set.

Theorem 38 (Strong duality). Let us assume that (P9) is convex. If (Slater’s constraint qualification)

∃x ∈ Rd : ∀i ∈ [n], gi(x) < 0 and ∀i ∈ [m], hi(x) = 0,
then

1. sup(λ,ν)∈Rn+×Rm D(λ, ν) = infx∈C f (x) (zero duality gap);
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2. ∃(λ⋆, ν⋆) ∈ Rn+ × Rm : sup(λ,ν)∈Rn+×Rm D(λ, ν) = D(λ⋆, ν⋆) (dual attainment).

Theorem 38 states that the minimal value of f in C can be recovered by maximizing the dual function
D. However, our main interest is more about linking solutions to these two optimization problems, ratherthat the optimal values: in practice, the estimator we want to build is solution to the primal problem andwe would like to recover it from a solution to the dual problem. Theorem 39 makes this link explicit.

Theorem 39 (Karush-Kuhn-Tucker (KKT) conditions). Let us assume that (P9) is convex and that
Slater’s constraint qualification hold. x⋆ ∈ Rd and (λ⋆, ν⋆) ∈ Rn × Rm are respectively solutions
to (P9) and (P10) if and only if

1. primal feasibility: ∀i ∈ [n], gi(x⋆) ≤ 0 and ∀i ∈ [m], hi(x⋆) = 0;
2. dual feasibility: λ⋆ ≽ 0
3. complementary slackness: ∀i ∈ [n], λ⋆i gi(x⋆) = 0;
4. stationarity: ∇xL(x⋆, λ⋆, ν⋆) = 0.

The proof will be done during the class.
1.4.6 Dual problem and support vectorsLet Q = (k (Xi, Xj )YiYj )1≤i,j≤n be the labeled kernel matrix. The Lagrangian function associated to (P7)is:

∀(h, b, ξ, α, β) ∈ H× R× Rn × Rn+ × Rn+ :
L(h, b, ξ, α, β) = 12 ∥∥h∥∥2

H + C1⊤ξ + n∑
i=1 αi (1− ξi − Yi(h(Xi) + b))− β⊤ξ.

For all (α, β)Rn+ × Rn+, the dual function is:
D(α, β) = inf(h,b,ξ )∈H×R×Rn

L(h, b, ξ, α, β).
But H×R×Rn is unbounded in all directions and L(·, ·, ·, α, β) is convex and differentiable. So, either
D(α, β) > −∞ and the infimum is attained at a critical point. Or D(α, β) = −∞. By first orderstationarity, we thus get:

D(α, β) = {− 12α⊤Qα + 1⊤α if 0 ≼ α ≼ C1 and y⊤α = 0
−∞ otherwise.

Consequently, a dual optimization problem to (P7) is:
maximize

α∈Rn
−12α⊤Qα + 1⊤α

s. t. {
∀i ∈ [n] : 0 ≤ αi ≤ C
y⊤α = 0. (P11)

Problem (P11) is generally solved by sequential minimal optimization (SMO), introduced in 1998, forwhich a simplified version is described in Algorithm 4.
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Algorithm 4 Sequential minimal optimization.
Input: C > 0 (tradeoff parameter), k : X × X → R (kernel function), {(Xi, Yi)}1≤i≤n (training sample).
Q ← (k (Xi, Xj )YiYj )1≤i,j≤n (labeled kernel matrix)
while not converged dofind αi for which KKT conditions are violatedpick αj ̸= αi at randomsolve Problem (P11) with respect to (αi, αj ) with all other variables fixed
end while

Output: (α1, . . . , αn).
Property 40 (KKT conditions for SVM). Let (h⋆n, b⋆n) be an SVM defined accordingly to (P7). Then,
(P11) has a solution, denoted α⋆ ∈ Rn, and

⋄ h⋆n = ∑n
i=1 α⋆i Yik (·, Xi);

⋄ for all i ∈ [n],
Yi(h⋆n(Xi) + b⋆n) > 1 =⇒ α⋆i = 0
Yi(h⋆n(Xi) + b⋆n) < 1 =⇒ α⋆i = C ;

⋄ for all i ∈ [n],
α⋆i = 0 =⇒ Yi(h⋆n(Xi) + b⋆n) ≥ 1
α⋆i = C =⇒ Yi(h⋆n(Xi) + b⋆n) ≤ 10 < α⋆i < C =⇒ Yi(h⋆n(Xi) + b⋆n) = 1;

⋄ denoting

M = {i ∈ [n] : 0 < α⋆i < C}
I = {i ∈ [n] : α⋆i = C}
O = {i ∈ [n] : α⋆i = 0}

and respectively I+, I−, O+, O− the intersection of I and O with {i ∈ [n] : Yi = 1} and
{i ∈ [n] : Yi = −1}, one has

b⋆n ∈
[ max
i∈I−∪O+{Yi − h⋆n(Xi)}, min

i∈I+∪O−{Yi − h⋆n(Xi)}] ;
⋄ ∀i ∈ M, b⋆n = Yi − h⋆n(Xi).

The proof will be done during the class.Property 40 highlights that solving (P11) makes it possible to solve (P7): given a solution α⋆ ∈ Rn+ to
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(P11), a solution to (P7) is given by:
h⋆n = ∑n

i=1 α⋆i Yik (·, Xi);
b⋆n = Yi − h⋆n(Xi) for some i ∈ M, if M ≠ ∅ or
b⋆n ∈ [maxi∈I−∪O+{Yi − h⋆n(Xi)},mini∈I+∪O−{Yi − h⋆n(Xi)}] otherwise;
ξ⋆ ∈ Rn+ such that for all i ∈ [n], ξ⋆i = max (0, 1− Yi(h⋆n(Xi) + b⋆n)) .

Remark 1.4.9. In practice a good choice of C (with respect to a cross-validation score) makes it
sufficiently large so that many points Xi are well classified and out of the margin. In other words,
I ∩M is relatively small and

h⋆n = n∑
i=1 α

⋆
i Yik (·, Xi) = ∑

1≤i≤n
α⋆i >0

α⋆i Yik (·, Xi)
is supported only by few vectors Xi (i ∈ I ∩M). The latter are called the support vectors of the
SVM (h⋆n, b⋆n).

1.4.7 Statistical perspectiveFrom a statistical perspective, an SVM is not a large margin classifier but an estimator f ⋆n = h⋆n + b⋆n(where b⋆n is called an intercept) of the Bayes classifier defined by
(h⋆n, b⋆n) ∈ arg min h∈F

b∈R,f=h+b
1
n

n∑
i=1 max(0, 1− Yif (Xi)), (1.1)

where F = {f ∈ H : ∥∥h∥∥H ≤ c
} for c > 0.The optimization problem of interest possesses a capacity constraint ∥∥h∥∥H ≤ c, which makes it possibleto derive generalization guarantees.In fact, Equation (1.1) is equivalent to (P7).

Proposition 41 (Tikhonov regularization). There exists λ ≥ 0 such that the SVM defined by (1.1) is
a minimizer of minimize

h∈H,b∈R

λ2 ∥∥h∥∥2
H + 1

n

n∑
i=1 max(0, 1− Yi(h(Xi) + b)). (P12)

Respectively, let λ ≥ 0 and (h⋆, b⋆) be solution to (P12). Then, there exists c ≥ 0 such that (h⋆, b⋆)
is also a minimizer of Problem (1.1).

The proof will be done during the class.
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Theorem 42. Let φ : R→ R be an Lφ-Lipschitz continuous loss function such that 1x<0 ≤ φ(x), for
every real x, and f ⋆n be defined by:

f ⋆n ∈ arg minf∈F 1
n

n∑
i=1 φ(Yif (Xi)).

Assume that there exists B > 0 such that supf∈F φ(Y f (X )) ≤ B almost surely and let δ ∈ (0, 1).
Then, with probability at least 1− δ,

P (Y ̸= sign(f ⋆n (X ))|Dn) ≤ 1
n

n∑
i=1 φ(Yif ⋆n (Xi)) + 4Lφ ERn(F (X n1 )) + B

√log(1/δ )2n .

The proof will be done during the class.
Corollary 43 (Generalization bound). Let f ⋆n be defined by:

f ⋆n ∈ arg minf∈F 1
n

n∑
i=1 max (0, 1− Yif (Xi)) .

Let us assume that the kernel k is bounded and let κ > 0 be an upper bound of it : supx∈X k (x, x) ≤
κ2. Let δ ∈ (0, 1). Then, with probability at least 1− δ,

P (Y ̸= sign(f ⋆n (X ))|Dn) ≤ 1
n

n∑
i=1 max (0, 1− Yif ⋆n (Xi)) + 4 cκ√n + (1 + cκ)√log(1/δ )2n .

The proof will be done during the class.
1.5 A detour to nonparametric regression
1.5.1 Least mean squaresLet g : Rd → R be a measurable function and let us consider the model:

Y = g(X ) + ε,

where
⋄ X ∈ Rd is a random vector;
⋄ ε ∈ R is a random variable, such that ε ∈ L2 and E[ε|X ] = 0;
⋄ g(X ) ∈ L2.
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Theorem 44. The function g is a minimizer of the least mean squares risk functional f ∈ F 7→
E
((Y − f (X ))2) over all measurable functions.

The proof will be done during the class.Given an RKHS, regression can be performed in the same manner than SVM, which is usually calledkernel ridge regression (KRR):
minimize
h∈H,b∈R

λ2 ∥∥h∥∥2
H + 1

n

n∑
i=1 (Yi − (h(Xi) + b))2. (P13)

1.5.2 Least absolute deviationsLet g : Rd → R be a measurable function and let us consider the model:
Y = g(X ) + ε,where

⋄ X ∈ Rd is a random vector;
⋄ ε ∈ R is a random variable, such that ε ∈ L1 and P(ε ≥ 0|X ) = 12 ;
⋄ g(X ) ∈ L1.

Theorem 45. The function g is a minimizer of the least absolute deviations risk functional f ∈ F 7→
E (|Y − f (X )|) over all measurable functions.

The proof is a good exercise.
1.5.3 Support vector regressionEven though quite natural, regression with support vector machines was originally introduced thanks tothe so called ε-insensitive:

ℓε : x ∈ R 7→ max(0, |x| − ε).The parameter ε enforces the notion of support vectors.The resulting estimator f ⋆n = h⋆n + b⋆n is called support vector regression (SVR) and defined by
(h⋆n, b⋆n) ∈ arg min h∈H:∥∥h∥∥H≤c

b∈R,f=h+b
1
n

n∑
i=1 ℓε(Yi − f (Xi)). (1.2)

where c > 0. Numerically, ones solves
minimize
h∈H,b∈R

λ2 ∥∥h∥∥2
H + 1

n

n∑
i=1 ℓε(Yi − (h(Xi) + b)), (P14)

where λ ≥ 0.Let us consider F = {f ∈ H : ∥∥f∥∥H ≤ c} be the class of hypotheses and let Dn = {(X1, Y1), . . . , (Xn, Yn)}denote the training set.
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Theorem 46. Let φ : R→ R be an Lφ-Lipschitz continuous loss function and f ⋆n be defined by:

f ⋆n ∈ arg minf∈F 1
n

n∑
i=1 φ(Yi − f (Xi)).

Assume that there exist C > 0 such that |Y | ≤ C almost surely and B > 0 such that supf∈F φ(Y −
f (X )) ≤ B almost surely and let δ ∈ (0, 1). Then, with probability at least 1− δ,

E [φ(Y − f ⋆n (X ))|Dn]− inf
f∈F
{E(φ(Y − f (X )))} ≤ 8Lφ(ERn(F (X n1 )) + C

√2 log 2
n

)+ 2B√log(1/δ )2n .

The proof will be done during the class.
Corollary 47 (Oracle bound). Let f ⋆n be defined by:

f ⋆n ∈ arg minf∈F 1
n

n∑
i=1 ℓε(Yi − f (Xi)).

Let us assume that the kernel k is bounded and let κ > 0 be an upper bound of it : supx∈X k (x, x) ≤
κ2. Assume also that Y is almost surely bounded by B > 0 and let δ ∈ (0, 1). Then, with probability
at least 1− δ,

E [ℓε(Y − f ⋆n (X ))|Dn]− inf
f∈F
{E(ℓε(Y − f (X )))} ≤ 8 cκ√n + 8B√2 log 2

n + 2(B + cκ)√log(1/δ )2n .

The proof will be done during the class.Now, we focus on deriving a dual to (P14).
Lemma 48. One has

∀x ∈ R : max(0, |x| − ε) = inf(ξ+,ξ−)∈R+×R+:−ξ−−ε≤x≤ξ++ε ξ+ + ξ−.

The proof is a good exercise.Now, let C = 1/(λn) and K = (k (Xi, Xj ))1≤i,j≤n be the kernel matrix. Then, (P14) can be rewrittenequivalently with slack variables (rescaling the objective function):
minimize
h∈H,b∈R
ξ∈Rn

12 ∥∥h∥∥2
H + C

n∑
i=1 (ξ+

i + ξ−i )
s. t.

 Yi − (h(Xi) + b) ≤ ξ+
i + ε(h(Xi) + b)− Yi ≤ ξ−i + ε

∀i ∈ [n], ξ+
i ≥ 0, ξ−i ≥ 0.

(P15)
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A dual of (P15) is:
maximize

α+∈Rn,α−∈Rn
−12(α+ − α−)⊤K (α+ − α−) + y⊤(α+ − α−)− ε1⊤(α+ + α−)

s. t. {
∀i ∈ [n] : 0 ≤ α+

i ≤ C, 0 ≤ α−i ≤ C
1⊤(α+ − α−) = 0. (P16)

Remark 1.5.1. There are other ways to derive a dual to (P14). For example, remarking that ∀x ∈ R:

max(0, |x| − ε) = inf
ξ∈R+:−ξ−ε≤x≤ξ+ε ξ,

leads to the dual

maximize
α+∈Rn,α−∈Rn

−12(α+ − α−)⊤K (α+ − α−) + y⊤(α+ − α−)− ε1⊤(α+ + α−)
s. t.


∀i ∈ [n] : 0 ≤ α+

i
∀i ∈ [n] : 0 ≤ α−i
∀i ∈ [n] : α+

i + α−i ≤ C
1⊤(α+ − α−) = 0.

1.6 Other methods
1.6.1 k-nearest neighborsThe principle of the k-nearest neighbor method is to estimate directly the Bayes classifier thanks toestimations of P(Y = j |X ). There are several manners to do so, the simplest one is

P(Y = j |X = x) ≈ nV∑n
i=1 1Xi∈Vx

∑n
i=1 1Yi=j ,Xi∈Vx

nV = 1∑n
i=1 1Xi∈Vx

n∑
i=1 1Yi=j ,Xi∈Vx ,

where Vx is a neighborhood of x of volume V . Unfortunately, a usual ball of prescribed radius isuseless since there may be regions of the space where this neighborhood is empty, thus giving an infiniteestimator of the probability.To circumvent this problem, the neighborhood is chosen as the k-nearest neighbors of x .There exist of course several other manners to define a suitable neighborhood:
smoothing : the naive choice is to choose for Vx an ℓ2-ball of radius ε . Then, 1Xi∈Vx = 1∥∥Xi−x∥∥ℓ2≤ε ,where 1·≤ε can be approximated by a smooth function: α 7→ e−α2/2. This boils down to use akernel method to estimate P(Y = j |X = x) and leads to the weighted version of the k-nearestneighbor method.
partitioning : Vx can be chosen such that ∪ni=1VXi = Rd , in other words such that neighborhoods makea partition of the entire space. This is what is done by decision trees, the cells of which consistin hypercubes of Rd .
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At the end of the day, the k-nearest neighbors rule consists in predicting, for x ∈ Rd , the majority vote(for classification, or the mean for regression) of the k-nearest neighbors of x . Formally, the predictedclass is:
g(x) ∈ arg maxy∈Y k∑

i=1 1Y(i)=y,
where the ranked labeled {Y(1), . . . , Y(n)} are such that ∥∥X(1) − x

∥∥
ℓ2 ≤ · · · ≤

∥∥X(n) − x
∥∥
ℓ2 .For the smoothed (or weighted) version of k-nearest neighbors, the vote of each neighbor is consideredin the prediction, but weighted (generally) by e−γX(j )−x2 . The new classification rule becomes:

gγ (x) ∈ arg maxy∈Y k∑
i=1 e

−γX(i)−x21Y(i)=y.

1.6.2 Decision treesDecision trees, and in particular classification and regression trees (CART), are supervised estimatorsintroduced by Leo Breiman et al. The paradigm of a binary decision tree is to recursively split thespace X with simple rules such that: is the explicative variable xj greater than the threshold τ or not?Doing so, a decision tree is built, for which each node corresponds to a simple rule (and secondarly toa partition cell of X ). The final result is a partition of X by hypercubes.At each step of the learning algorithm,1. consider the partition P = {X};2. for each cell A of P, define the two-cell partition A = Lj ,τ ∪ Rj ,τ , where j ∈ [d] is a featureindex and τ ∈ R is a threhold, and{
Lj ,τ = {x ∈ A : xj ≤ τ

}
Rj ,τ = {x ∈ A : xj > τ

}
are the "left" and "right" parts of A. Then, find the best pair (feature, threhold) for splitting:

(j , τ) ∈ arg min 1≤j≤d
τ∈R

∣∣Lj ,τ∣∣
|A| D(Lj ,τ ) + ∣∣Rj ,τ

∣∣
|A| D(Rj ,τ )

where D is a distortion measure for a cell (see below);3. replace A by Lj ,τ and Rj ,τ in the partition P;4. go to 2.Given a cell A, one may define the ratio of observations of A of class y ∈ Y:
py(A) = |{i ∈ [n] : Xi ∈ A, Yi = y}|

|A| .

Then, the distortion of the cell A may be:
⋄ Gini impurity: D(A) = ∑y∈Y py(A)(1− py(A)) (classification);
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⋄ entropy: D(A) = −∑y∈Y py(A) log(py(A)) (classification);
⋄ mean squared error: D(A) = 1

|A|
∑ 1≤i≤n

Xi∈A

(
Yi − ȲA

)2, with ȲA = 1
|A|
∑ 1≤i≤n

Xi∈A
Yi (regression).

Remark 1.6.1 (Gini impurity and random prediction). The Gini impurity corresponds the error ob-
tained when producing a random label according to the empirical distribution of labels in the given
cell A.

Consider a binary classification problem with proportion of labels 1 π = P(Y = 1|X ∈ A) in the
cell A of interest. Let g be a classifier with g(X )|X ∈ A d= Z , where Z ∼ B (π). Then

P(Y ̸= g(X )|X ∈ A) = P(Y ̸= Z |X ∈ A)= P(Y = 1 & Z ̸= 1|X ∈ A) + P(Y ̸= 1 & Z = 1|X ∈ A)= P(Y = 1|X ∈ A)P(Z ̸= 1) + P(Y ̸= 1|X ∈ A)P(Z = 1)= π(1− π) + (1− π)π= 2π(1− π).
For regression, Jerome Friedman suggested an improved criterion (in its original paper tackling gradientboosting), referred to as Friedman’s mean squared error:

(j , τ) ∈ arg min 1≤j≤d
τ∈R

∣∣Lj ,τ∣∣ ∣∣Rj ,τ
∣∣∣∣Lj ,τ∣∣ + ∣∣Rj ,τ
∣∣ (ȲLj ,τ − ȲRj ,τ

)2
.

Last be not least, several stopping rules are of interests:
⋄ maximal depth of the tree;
⋄ minimal number of observations required to split an internal node;
⋄ minimal number of observations required to be at a leaf node;
⋄ maximal number of leaf nodes.

1.6.3 BaggingBagging is a portmanteau word for bootstrap aggregating. The paradigm of bagging is to train inde-pendently several base classifiers (g1, . . . , gT ), with gt : Rd → {±1}, and to build a new classifier byaveraging the predictions of the base classifiers:
gTn (x) = sign( 1

T

T∑
t=1 gt(x)

)
.

Doing so, the variance of the prediction is reduced and so it is for the global error. The requirements forsuch a result are:
⋄ base classifiers should be more accurate than chance;
⋄ base classifiers should be estimated independently from each other.
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In practice, base classifiers are trained *quasi-independently* by bootstrapping the training set.Bagging is also valid for multiclass problems: for C classes, the prediction is:
gTn (x) = arg max1≤j≤C 1

T

T∑
t=1 gt(x)1gt (x)=j = arg max1≤j≤C card ({t ∈ [T ] : gt(x)1gt (x)=j}) ,

where gt : Rd → [C ], which corresponds to the majority vote since base classifiers are equally weighted.Finally, one may also bag regressors gt : Rd → R by a simple averaging:
gTn (x) = 1

T

T∑
t=1 gt(x).

1.6.4 Random forestsRandom forests are bagged trees: for binary classification, a random forest is
gTn (x) = sign( 1

T

T∑
t=1 gt(x)

)
,

where the base classifiers (g1, . . . , gT ), with gt : Rd → {±1}, are learned quasi-independently bybootstrap.However, in order to enforce the independent learning, each decision tree gt owns an additional ran-domization step in its learning procedure:1. at each cell, select a subset of features at random;2. find the best pair (feature, threshold) for splitting.
1.7 Exercises
1.7.1 Discriminant analysis
Exercise 1.1 (MLE in the Gaussian model (proof of Proposition 2)).
Simple derivationLet µ⋆ ∈ Rd , Σ⋆ be a PD matrix and {X1, . . . , Xn} be a sample iid according to N (µ⋆, Σ⋆). We considerthe problem of estimating (µ⋆, Σ⋆) in the statistical model

P = {N (µ, Σ), (µ, Σ) ∈ Rd × S
}
,

where S is the set of PD matrices of shape d × d.1. Write the log-likelihood ℓn : Rd × S→ R for the model P and show that µ̂ = 1
n
∑n

i=1 Xi is theMLE of µ⋆.
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2. For any B ∈ Rd×d , let f : A ∈ Rd×d 7→ tr(AB) and g : A ∈ S 7→ log(|A|). We remind that fand g are differentiable everywhere they are defined with, for all A ∈ Rd×d (such that |A| ≠ 0):
∇f (A) = B⊤, ∇g(A) = (A−1)⊤ .

Admitting that Σ̂ = 1
n

n∑
i=1 (Xi − µ̂)(Xi − µ̂)⊤

is PD and that ℓn(µ, ·) is concave for every µ ∈ Rd , show that Σ̂ is the MLE of Σ⋆.
Maximization with respect to ΣLet S ∈ S be a PD matrix of size d × d and

f : A ∈ S 7→ tr(AS)− log(|A|).
1. Show that for all A ∈ S, denoting B = S1/2AS1/2, we have:

f (A) = tr(B)− log(|B|)− log(|S−1|).
2. Let us now consider the eigendecomposition B = UDU⊤ of B, where D is the diagonal matrixof eigenvalues λ1, . . . , λd . Show that f is maximized for A such that λ1 = · · · = λd = 1, i.e. for
A = S−1.

Positive definiteness of the sample covariance matrixLet Y1, . . . , Yn iid∼ N (a, Id), with a ∈ Rd , and A = ∑n
i=1(Yi − Ȳn)(Yi − Ȳn)⊤, where Ȳn = 1

n
∑n

i=1 Yi.1. Show that A = Y⊤P⊤PY, where
Y =

Y ⊤1...
Y ⊤n

 ∈ Rn×d, and P = In −
1
n

1 . . . 1... . . . ...1 . . . 1
 .

2. By remarking that P is the orthogonal projector onto range(1)⊥, write A as:
A = Z⊤Z, where Z = U⊤Y ∈ R(n−1)×d,

with U ∈ Rn×(n−1) an orthogonal matrix.3. Show that the columns of Y are independent random vectors. What is the distribution of the j thcolumn of Y, denoted cj (j ∈ J1, dK)? What is that of U⊤cj?4. Deduce that A = ∑n−1
i=1 ZiZ⊤i , where Z1, . . . , Zn−1 iid∼ N (0, Id).5. Let now µ⋆ ∈ Rd , Σ⋆ be a PD matrix, {X1, . . . , Xn} be a sample iid according to N (µ⋆, Σ⋆) and

Sn = ∑n
i=1(Xi − X̄n)(Xi − X̄n)⊤, where X̄n = 1

n
∑n

i=1 Xi. Show that Sn can be written:
Sn = n−1∑

i=1 ViV
⊤
i ,

where V1, . . . , Vn−1 iid∼ N (0, Σ⋆).
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6. Let v2, . . . , vn−1 ∈ Rd . Compute
P (V1 ∈ span{V2, . . . , Vn−1} | V2 = v2, . . . , Vn−1 = vn−1) .

7. Assume that n ≤ d + 1. Deduce that P(rank(Sn) < n − 1) = 0. This shows in particular that(considering the situation n = d + 1),
P

(rank( d∑
i=1 ViV

⊤
i

)
< d

) = 0
8. Let now n be any positive integer. Show that,

Sn is invertible with probability 1 if and only if n ≥ d + 1.Moreover, if n ≤ d, Sn is invertible with probability 0.
Exercise 1.2 (Unbiased estimators (proof of Proposition 3)). Let us consider the notation and assumptionsof Proposition 3. By setting, for every j ∈ [C ] and i ∈ [nj ], Z j

i = X j
i − µj , show that, for every j ∈ [C ]:

E

( 1
nj

nj∑
i=1 (X j

i − µ̂j )(X j
i − µ̂j )⊤) = nj − 1

nj
Σ.

Conclude by showing that Σ̂ is unbiased.
Exercise 1.3 (LDA (proof of Proposition 5)). Consider LDA with means µ1 and µ−1, covariance denotedΣ and prior probability π = P(Y = 1). Show that g⋆ : x ∈ Rd 7→ sign(w⊤x + b), where{

w = Σ−1(µ1 − µ−1)
b = 12 (µ⊤−1Σ−1µ−1 − µ⊤1 Σ−1µ1) + log ( π1−π )is the Bayes classifier.

Exercise 1.4 (QDA (proof of Proposition 7)). Consider QDA with means µ1 and µ−1, covariances Σ1 andΣ−1, and prior probability π = P(Y = 1). Show that g⋆ : x ∈ Rd 7→ sign( 12x⊤Qx + w⊤x + b), where
Q = Σ−1

−1 − Σ−11
w = Σ−11 µ1 − Σ−1

−1µ−1
b = 12 (µ⊤−1Σ−1

−1µ−1 − µ⊤1 Σ−11 µ1)− 12 log ( |Σ1|
|Σ−1|
) + log ( π1−π )

is the Bayes classifier.
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Exercise 1.5. Let (X, Y ) be a pair of random variables having values in Rd × {±1} such that for all
x ∈ Rd , η(x) = P (Y = 1 | X = x) ∈ (0, 1). Show that, for a loss function ℓ : R→ R being defined as:1. ℓ (x) = e−x ;2. ℓ (x) = log2 (1 + e−x );3. ℓ (x) = max (0, 1− x);the risk functional f 7→ E[ℓ (Y f (X ))] has a minimizer f ⋆ and x ∈ Rd 7→ sign(f ⋆(x)) is a Bayes classifier.

1.7.2 Boosting
Exercise 1.6 (Adaboost (proof of Lemma 16)). In Adaboost, assume that there exists γ ∈ (0, 1/2) suchthat ∀t ∈ [T ], εt ≤ 12 − γ almost surely and let fT : X → R be the classifier at the last iteration.1. Show that: 1

n

n∑
i=1 1Yi fT (Xi )∥w∥ℓ1 <γ ≤ 2T T∏

t=1
√
ε1−γ
t (1− εt)1+γ .

2. Analyze the behavior of x ∈ [0, 12] 7→ log (x1−γ (1 + x)1+γ). Deduce that:
1
n

n∑
i=1 1Yi fT (Xi )∥w∥ℓ1 <γ ≤ 2T ((12 − γ

)1−γ (12 + γ
)1+γ)T /2

.

3. Conclude that: 1
n

n∑
i=1 1Yi fT (Xi )∥w∥ℓ1 <γ ≤

[((1− 2γ)1−γ (1 + 2γ)1+γ)]T /2 .

Exercise 1.7 (Adaboost). In Adaboost, show that the error made by a weak learner at the future iterationis 12 , i.e. at each iteration t > 0:
n∑
i=1 Dt+1(i)1Yi ̸=gt (Xi) = 12 .

Exercise 1.8 (Convergence of gradient boosting (proof of Theorem 18)). Let f : Rd → R. We considerthe optimization problem minimize
x∈Rd

f (x),
and the iterative algorithm with iteration:{

dt = P(∇f (xt))
xt+1 = xt − ηdt,
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where P : Rd → Rd is an operator and η > 0 is a step size defined later.Let us assume that:(H1) f is differentiable and ∇f is L-Lipschitz continuous (L > 0);(H2) f is µ-strongly convex (µ > 0). This implies that
∀x, x ′ ∈ Rd : f (x ′) ≥ f (x) + ⟨∇f (x), x ′ − x⟩ℓ2 + µ2 ∥∥x ′ − x

∥∥2
ℓ2 ;

(H3) f has a minimizer denoted x⋆;(H4) there exists γ ∈ [0, 1] such that:
∀y ∈ Rd : ∥∥y − P(y)∥∥2

ℓ2 ≤ (1− γ) ∥∥y∥∥2
ℓ2 .1. Knowing that a differentiable function h : Rd → R is convex if and only if

∀x, x ′ ∈ Rd : (
∇f (x)−∇f (x ′))⊤ (x − x ′) ≥ 0,

show that g = L2 ∥·∥2
ℓ2 − f is convex.2. Show that

∀x, x ′ ∈ Rd : f (x ′) ≤ f (x) + ⟨∇f (x), x ′ − x⟩ℓ2 + L2 ∥∥x ′ − x
∥∥2
ℓ2 .3. Show that

∀x ∈ Rd : ∥∥∇f (x)∥∥2
ℓ2 ≥ 2µ (f (x)− f (x⋆)) .4. Show that for each iteration t ≥ 0:

f (xt+1) ≤ f (xt)− γη2 ∥∥∇f (xt)∥∥2
ℓ2 −

η2(1− Lη) ∥∥dt∥∥2
ℓ2 .

5. Choosing η = 12L and defining ∆t = f (xt)− f (x⋆), show that:
∆t+1 ≤ (1− γµ2L)∆t.

6. Conclude on the linear convergence of the iterate:
f (xt)− f (x⋆) ≤ (1− γµ2L)t (f (x0)− f (x⋆)) .

1.7.3 SVM
Exercise 1.9 (Distance to a hyperplane (proof of Proposition 20)). Let (w, b) ∈ Rd\{0} × R and
H = {z ∈ Rd : w⊤z + b = 0}. Using Lagrange duality, show that the distance between H and anypoint x ∈ Rd is

d(H, x) = |w⊤x + b|∥w∥ℓ2 .
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Exercise 1.10 (Kernel trick). Let {(Xi, Yi)}1≤i≤n ⊂ Rd × {±1} be an iid sample and for j ∈ {±1},
µ̂j = 1∑n

i=1 1Yi=j
∑n

i=1 1Yi=jXi be the center of class j . Show that the kernel trick can be applied to theclassification rule:
∀x ∈ Rd : g(x) = {1 if ∥∥x − µ̂1∥∥ℓ2 < ∥∥x − µ̂−1∥∥ℓ2

−1 otherwise.
Exercise 1.11 (Techniques for constructing kernels). Given valid kernels k1 and k2 on Rd × Rd , showthat the functions k defined below are still kernels:1. ∀x, x ′ ∈ Rd : k (x, x ′) = ck1(x, x ′), where c > 0.2. ∀x, x ′ ∈ Rd : k (x, x ′) = k1(x, x ′)f (x)f (x ′), where f ∈ RRd .3. ∀x, x ′ ∈ Rd : k (x, x ′) = exp (k1(x, x ′)).4. ∀x, x ′ ∈ Rd : k (x, x ′) = k1(x, x ′) + k2(x, x ′).5. ∀x, x ′ ∈ Rd : k (x, x ′) = k1(x, x ′)k2(x, x ′).6. ∀x, x ′ ∈ Rd : k (x, x ′) = q(k1(x, x ′)), where q ∈ RR is a polynomial with nonnegative coefficients.7. ∀x, x ′ ∈ Rd : k (x, x ′) = k1(φ(x), φ(x ′)), where φ : Rd → Rp.8. ∀x, x ′ ∈ Rd : k (x, x ′) = x⊤Ax ′, where A ∈ Rd×d is PSD.9. ∀x, x ′ ∈ Rd : k (x, x ′) = exp (− ∥∥x − x ′

∥∥2
ℓ2
).

Exercise 1.12 (Kernelized regression). Let {(Xi, Yi)}1≤i≤n ⊂ Rd×R be an iid sample, H be the RKHSassociated to a kernel k on Rd × Rd . Let us consider the optimization problem:
minimize
h∈H, ξ∈Rn

12 ∥∥h∥∥2
H + C2 ∥∥ξ∥∥2

ℓ2s. t. ∀i ∈ [n] : Yi − h(Xi)− ξi = 0, (P17)
where C > 0.1. Exhibit the dual problem to (P17).2. Let (h⋆, ξ⋆) and α⋆ be solutions respectively to (P17) and its dual. Justify and exhibit the linkbetween these quantities.3. Determine the value of α⋆.Now, we focus on the unconstrained version on (P17):

minimize
h∈H, ξ∈Rn

12 ∥∥h∥∥2
H + C2 n∑

i=1 (Yi − h(Xi))2. (P18)
4. Let h⋆ be a solution to (P18). Justify that there exists β⋆ ∈ Rn such that h⋆ = ∑n

i=1 β⋆i k (·, Xi).Deduce a parametric version of (P18).5. Determine the value of β⋆.
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1.7.4 Regression
Exercise 1.13 (Robust regression (proof of Theorem 45)). Let g : Rd → R be a measurable function andlet us consider the model Y = g(X ) + ε , where X ∈ Rd is a random vector, g(X ) ∈ L1 and ε ∈ R is arandom variable, such that ε ∈ L1 and P(ε ≥ 0|X ) = 12 . Let also F = {f : Rd → R, f (X ) ∈ L1}.1. Show that ∀x ∈ R, |x| = (1− 21x<0)x and deduce that for all f ∈ F ,

|Y − g(X )| = (1− 21Y−g(X )<0)(f (X )− g(X )) + (1− 21Y−g(X )<0)(Y − f (x)).
2. Deduce that for all f ∈ F ,
|Y − f (X )| − |Y − g(X )| = 2(Y − f (X ))(1Y−g(X )<0 − 1Y−f (X )<0)− (1− 21Y−g(X )<0)(f (X )− g(X )).

3. Show that (Y − f (X ))(1Y−g(X )<0 − 1Y−f (X )<0) ≥ 0.4. Deduce that E [|Y − f (X )| − |Y − g(X )||X ] ≥ 0 and then that g is a minimizer of f ∈ F 7→
E (|Y − f (X )|) over F .
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Figure 1.10: Example of classification frontier with a nearest neighbors.
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Figure 1.11: Example of classification frontier with a decision tree.

Figure 1.12: Classification accuracy when bagging independent weak classifiers with same error proba-bility 1− p.
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Figure 1.13: Example of regression with bagging trees.

Figure 1.14: Regression accuracy for the diabetes dataset.
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Chapter 2

Clustering

In a way similar to classification, we consider a pair of random variables (X, Y ) with values in Rd × [k ],where k is a positive integer, and we wish to predict Y given X . As a particularity of clustering, weobserve X but we do not observe Y , which makes the problem ill-posed in several directions:1. We do not know beforehand the number of groups (or modalities of Y ) k . In practice, this problemis got around by considering that k is a hyperparameter, that can be chosen given some priorinformation, automatically by a low-density assumption, or by model selection techniques (seeafter).2. Since we do not have access to a paired data (X, Y ), the wish to predict Y given X is unreal,except up to a permutation of the modalities of Y . Therefore, clustering is more interested inpartitioning the space Rd than predicting a prescribed label. The aim of clustering would thus beto produce a partition {C1, . . . , Ck}, such that there exists a permutation σ : [k ] → [k ] for which,for all j ∈ [k ],
Cj = {x ∈ Rd : P(Y = σ (j )|X = x) ≥ P(Y = ℓ|X = x), ∀ℓ ∈ [k ]} .

3. It is clear that several distributions of (X, Y ) lead to the same distribution of X (see the forthcomingexample). This is true for several number of groups and several meanings of them. Since we onlyobserve X , it is thus quite impossible (at least in a general setting) to get an information on Y | Xknowing only X . In practice, this is circumvented by choosing specific statistical models.
Example 2.0.1. Consider two pairs of random variables (X, Y ) and (X̃ , Ỹ ) in [−1, 1]× {±1} such
that 

X|Y = 1 ∼ U([0, 1])
X|Y = −1 ∼ U([−1, 0])
P(Y = 1) = 12

and


X̃ |Ỹ = 1 ∼ U([− 12 , 1])
X̃ |Ỹ = −1 ∼ U([−1, − 12 ])
P(Ỹ = 1) = 34 .

Then, it is straightforward that X ∼ U([−1, 1]) and X̃ ∼ U([−1, 1]).
As a consequence, it is common (yet vague) to define the aim of clustering as organizing the data in
some meaningful way. This often means creating clusters (or a partition) such that:
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1. points inside a cluster are similar (this corresponds to a mode in the marginal distribution of X );2. points in separated clusters are dissimilar (this corresponds to the existence of a frontier of lowdensity).In this chapter, we describe several methods of clustering, from a statistical modeling point of view toheuristic approaches.
2.1 Gaussian mixtures
2.1.1 Mixture modelLet {Pλ = fλ · µ : λ ∈ Λ} be a parametrized family of distributions on Rd , dominated by a measure µ.The distribution of the random pair (X, Y ) may be defined by:{

X|Y = j ∼ Pλ⋆j , λ⋆j ∈ Λ, j ∈ [k ]
Y ∼ D (π⋆),

where π⋆ is a k-probability vector: π⋆ ∈ [0, 1]k and ∑m
j=1 π⋆j = 1. Since only X is observed, we focuson the distribution of X . By marginalization, it appears that X has density:

∀x ∈ Rd : m(x) = k∑
j=1 πj fλ⋆j (x).In other words, X is distributed according to a mixture model, which is define now. The next propositionexplains why mixture models are naturally used for clustering.

Definition 2.1.1 (Mixture model). Let {Pλ = fλ · µ : λ ∈ Λ} be a family of distributions dominated
by a measure µ, m be a positive integer, (λ1, . . . , λm) ∈ Λm and π be an m-probability vector. Then,
the distribution with density

∑m
j=1 πj fλj with respect to µ, denoted

∑m
j=1 πjPλj , is called a mixture

model.

Proposition 49 (Latent variable). Let {Pλ = fλ · µ : λ ∈ Λ} be a family of distributions dominated
by a measure µ, m be a positive integer, (λ1, . . . , λm) ∈ Λm and π be an m-probability vector. For
any pair of random variables (X, Y ), we have:{

X|Y ∼ PλY
Y ∼ D (π) ⇐⇒

{
X ∼

∑m
j=1 πjPλj

Y |X ∼ D (πX ),
where πX = ( π1fλ1 (X )∑m

j=1 πj fλj (X ) , . . . , πmfλm (X )∑m
j=1 πj fλj (X )

)
is a probability vector.

The proof is a good exercise.Proposition 49 has two direct benefits: first it explains (by ⇒) how to sample according to a mixturemodel (see Algorithm 5 for clarity), second it bridges the gap between mixture models and clustering:
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⇒ clustering, in which clusters are conditional random variables X|Y , is naturally modeled by amixture model, which is the distribution of the single observation X ;
⇐ conversely, when X is distributed according to a mixture model with k components, we can builda latent variable Y |X (taking values in [k ]) such that the conditional random variable X|Y definesa cluster distributed according to the mixture component PλY .

Algorithm 5 Sampling of a mixture model.
Input: {Pλ1, . . . , Pλm} (mixture components) and π (m-probability vector).
z ← sample from M(1, π) (multinomial variable)
y ←

∑m
j=1 j1zj=1 (cluster label)

x ← sample from Pλy .
Output: x .
Ignoring the permutation problem described above, finding the desired distribution requires to computethe Bayes rule:

g⋆ : x ∈ Rd 7→ arg max1≤j≤k P (Y = j |X = x) = arg max1≤j≤k π⋆j fλ⋆j (x).The partitioning {C1, . . . , Ck} is then produced by setting iteratively, for all j ∈ [k ],
Cj = {x ∈ Rd : g⋆(x) = j

}
\
(
∪j−1
ℓ=1Cℓ

)
.As a consequence, it remains to estimate the parameter θ⋆ = (π⋆, λ⋆) ∈ Θ in the statistical modelassociated to X (i.e. of the marginal distributions):

Pm =
 k∑

j=1 πj fλj : θ = (π, λ) ∈ Θ
 ,

where Θ = {θ = (π, λ), π ∈ [0, 1]k ,1⊤π = 1, λ ∈ Λk} .
The forthcoming sections describe a way to compute a MLE of θ⋆.
2.1.2 Mixture of two GaussiansIn this section, we describe a very simple example of estimation of a mixture model, which highlights thecomputing difficulties and motivates the need for a particular algorithm. Let (X, Y ) ∈ R × {±1} be apair of random variables such that 

X|Y = 1 ∼ N (1, 1)
X|Y = −1 ∼ N (−1, 1)
Y ∼ D

( 12) .We assume that we only observe X , which has distribution 12N (1, 1) + 12N (−1, 1). We consider thatvariances are known and we aim at estimating the proportion and the means, that is θ⋆ = ( 12 , 1, −1).For this purpose, we consider the statistical model
Pm = {πN (µ1, 1) + (1− π)N (µ−1, 1) : θ = (π, µ1, µ−1) ∈ Θ} , Θ = [0, 1]× R× R.
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It is clear that Pm is dominated by the Lebesgue measure on R and that each candidate distributionwith parameter θ = (π, µ1, µ−1) has for density:
mθ : x ∈ R 7→ πφ(x − µ1) + (1− π)φ(x − µ−1),where φ is the probability density function of N (0, 1).Assuming that there exists a sample ((X1, Y1), . . . , (Xn, Yn)), the variables of which are iid copies of(X, Y ), but that we only observe the sample (X1, . . . , Xn), an MLE of θ⋆ can be obtained by maximizingthe log-likelihood associated to Pm:

∀θ ∈ Θ : ℓX n1 (θ) = n∑
i=1 log(mθ (Xi))

= n∑
i=1 log (πφ(Xi − µ1) + (1− π)φ(Xi − µ−1))

= n∑
i=1 log(πe− (Xi−µ1)22 + (1− π)e− (Xi−µ−1)22

)+ C,

where C is a constant. It appears that this maximization problem has no closed-form solution. For thisreason, we have to resort to an iterative algorithm in order to estimate θ⋆. The Newton-Raphson methodis an available option, but we describe here an alternative: the expectation-maximization (EM) algorithm.To describe this algorithm, we assume being provided with random variables Z1, . . . , Zn living in {±1}and representing some approximations of the unknown labels Y1, . . . , Yn. To be consistent with theunobserved sample, it is assumed that (X1, Z1), . . ., (Xn, Zn) are iid . We would like to estimate θ⋆ basedon the previous sample. For this purpose, and remarking that (X, Y ) has density:
gθ⋆ (x, y) : (x, y) ∈ R× {±1} 7→ P(Y = y)φ(x − µ⋆y) = [12φ(x − 1)]1y=1 [12φ(x + 1)]1y=−1

,

we design a statistical model for the distribution of (X, Y ):
Pg = {Gθ : θ ∈ Θ} ,where for θ = (π, µ1, µ−1), Gθ has density:

gθ (x, y) : (x, y) ∈ R× {±1} 7→ [πφ(x − µ1)]1y=1 [(1− π)φ(x − µ−1)]1y=−1 .
The joint log-likelihood of any θ ∈ Θ based on the statistical model Pg and the sample {(X1, Z1), . . . , (Xn, Zn)}is:

ℓ(X,Z )n1 (θ) = n∑
i=1 log(gθ (Xi, Zi))

= n∑
i=1 [1Zi=1 log(πφ(Xi − µ1)) + 1Zi=−1 log((1− π)φ(Xi − µ−1))]

= n∑
i=1 1Zi=1

[log(π)− 12(Xi − µ1)2] + n∑
i=1 1Zi=−1

[log(1− π)− 12(Xi − µ−1)2] + C,
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where C is a constant.Defining m̃ = ∑n
i=1 1Zi=1, maximizing this quantity is straightforward and provides the solutions:

π̃ = m̃
n

µ̃1 = 1̃
m
∑ 1≤i≤n

Zi=1 Xi
µ̃−1 = 1

n−m̃
∑ 1≤i≤n

Zi=−1 Xi.Unfortunately, the approximated labels Z1, . . . , Zn are, as it turns out, an illusion. Consequently, therandom variables 1Zi=1 and 1Zi=−1 are unknown and the quantities ℓ(X,Z )n1 (θ), m̃, π̃ , µ̃1 and µ̃−1 can becomputed. However, if we are provided with a candidate θ0 ∈ Θ, it is possible to replace 1Zi=1 and
1Zi=−1 by the values that can be legitimately expected given the information included in θ0. In otherwords, we can replace 1Zi=1 and 1Zi=−1 by E[1Zi=1|X n1 ] and E[1Zi=−1|X n1 ], where the distribution of
Zi|X n1 is chosen as close as possible to that of Yi|X n1 . But Yi|X n1 has same distribution as Y |X , which issupported by {±1} such that

P(Y = 1|X = x) = gθ⋆ (x, 1)
mθ⋆ (x)= π⋆pµ⋆1 (x)
mθ⋆ (x) .Thus, we can define a statistical model for Y |X :

Pq = {x ∈ R 7→ Qθ,x : θ ∈ Θ} ,where for every θ = (π, µ1, µ−1) and x ∈ R, Qθ,x is characterized by:
Qθ,x ({1}) = qθ,x = πφ(x − µ1)

mθ (x) = πφ(x − µ1)
πφ(x − µ1) + (1− π)φ(x − µ−1)and choose Qθ0,Xi for the distribution of Zi|X n1 . The novel criterion to maximize, with respect to θ , insteadof ℓ(X,Z )n1 is:

FX n1 (θ) = E
[
ℓ(X,Z )n1 (θ)|X n1 ]

= n∑
i=1 E [1Zi=1|X n1 ] [log(π)− 12(Xi − µ1)2] + n∑

i=1 E [1Zi=−1|X n1 ] [log(1− π)− 12(Xi − µ−1)2] + C

= n∑
i=1 qθ0,Xi

[log(π)− 12(Xi − µ1)2] + n∑
i=1 (1−) [log(1− π)− 12(Xi − µ−1)2] + C.

Maximization is easy and leads to the estimator θ̂ = (π̂, µ̂1, µ̂−1) defined by:
π̂ = 1

n
∑n

i=1 qθ0,Xi
µ̂1 = ∑n

i=1 qθ0,XiXi∑n
i=1 qθ0,Xi

µ̂−1 = ∑n
i=1(1−qθ0,Xi )Xi
n−
∑n

i=1 qθ0,Xi .Since this estimator highly depends on θ0 (through qθ0,Xi ), it is legitimate to repeat this operationreplacing θ0 by θ̂ . We have just described the iteration of the EM, which can be summarized by thefollowing iterative process: given an initialization θ̂0 (a function of (X1, . . . , Xn)), repeat for t = 1, 2, . . .:
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1. Define Z (t)1 , . . . , Z (t)
n such that, for all i ∈ [n], Zi|X n1 = Zi|θ̂t, Xi ∼ Qθ̂t ,Xi .2. Expectation: compute

FX n1 (θ|θ̂t) = E
[
ℓ(X,Z (t))n1 (θ)|X n1 ] ,where the vertical bar in FX n1 is a notation to emphasize that FX n1 is computed given θ̂t .3. Maximization: set θ̂t+1 ∈ arg maxθ∈Θ FX n1 (θ|θ̂t).

Remark 2.1.1. It is clear that (X1, Z (t)1 )|θ̂t, . . . , (Xn, Z (t)
n )|θ̂t are iid pairs of random variables.

Theorem 53 in the forthcoming section justifies that the EM algorithm builds a reasonable estimator of
θ⋆.
2.1.3 Non-decreasingness of the EM algorithmLet X and Y be two probabilistic spaces and Pg = {Gθ : θ ∈ Θ} a statistical model over the productspace X ×Y. For θ ∈ Θ, we call Mθ the first marginal distribution of Gθ (i.e., if (X, Y ) ∼ Gθ , X ∼ Mθ )and for all x ∈ X , Qθ,x the conditional distribution given that the first random variable equals x (i.e.
Y |X = x ∼ Qθ,x ). We consider the statistical models

Pm = {Mθ : θ ∈ Θ} and Pc = {x ∈ X 7→ Qθ,x : θ ∈ Θ} ,
and it is assumed that Pg is dominated by a product measure µ × ν . The densities of interest are thendenoted: 

gθ = dGθ
d(µ×ν)

mθ = dMθ
dµ

qθ,x = dQθ,x
dν , x ∈ X.

Let θ⋆ ∈ Θ and (X, Y ) ∼ Gθ⋆ . We aim at computing an MLE θ̂MLE of θ⋆ only based on X (Y is assumedto be unobserved), i.e. maximizing
θ ∈ Θ 7→ log (mθ (X ))thanks to the EM (see Algorithm 6). In the forthcoming paragraphs, it will be shown that the expectedjoint log-likelihood F (θ|θ̂t) = E

[log (gθ (X, Z (t))) |X] (where Z (t) is defined in Algorithm 6) is a lowerbound of the marginal log-likelihood log (mθ (X )) and that EM, for lack of converging to a maximizer of
θ 7→ log (mθ (X )), produces a monotonically increasing sequence. The key tool for showing this is theKullback-Leibler divergence.

Remark 2.1.2. In practice, X = (Rd)n, Y = [k ]n, and X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) are
two random vectors such that (X1, Y1), . . . , (Xn, Yn) are iid.

Definition 2.1.2 (Kullback-Leibler divergence). For any distributions P = p · µ and Q = q · µ
absolutely continuous with respect to the same measure µ, the Kullback-Leibler divergence of P
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Algorithm 6 EM algorithm.
Input: T ∈ N (number of iterations), X (observed sample).
θ̂0 ← random initialization
for t = 0 to T − 1 doset Z (t)|X ∼ Qθ̂t ,XE step: compute F (θ|θ̂t) = E

[log (gθ (X, Z (t))) |X]M step: set θ̂t+1 ∈ arg maxθ∈Θ F (θ|θ̂t)
end for

Output: θ̂T .
with respect to Q is

DKL (P||Q) = ∫ log(p(z)q(z)
)
p(z) µ(dz) = E

[log(p(Z )
q(Z )

)]
,

where Z ∼ P.

Property 50 (Kullback-Leibler divergence). For any distributions P and Q, we have

DKL (P||Q) ∈ R+ ∪ {∞},
and

DKL (P||Q) = 0 ⇐⇒ P = Q.

The proof will be done during the class.The next result makes use of the entropy of a distribution P = p · µ (with density p with respect to adominant measure µ):
H(P) = − ∫ log(p(z))p(z) µ(dz) = −E [log (p(Z ))] ,

where Z ∼ P .
Lemma 51. Let Q be any distribution on Y and Z ∼ Q. Then, for all x ∈ X and θ ∈ Θ, one has:

log (mθ (x)) = E [log (gθ (x, Z ))] + DKL (Q||Qθ ) + H(Q).
In particular, for any θ ∈ Θ and θ ′ ∈ Θ, one has:

log (mθ (X )) = F (θ|θ ′) + DKL(θ ′||θ) + H(θ ′),
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where, if Z is a random variable such that Z |X ∼ Qθ′,X ,

F (θ|θ ′) = E [log (gθ (X, Z )) |X ] ,
and, with a slight abuse of notation, DKL(θ ′||θ) and H(θ ′) are respectively the Kullback-Liebler
divergence of Qθ′,X with respect to Qθ and the entropy of Qθ′,X computed given X .

The proof will be done during the class.
Proposition 52. For any θ ∈ Θ and θ ′ ∈ Θ (function of X ), one has

log (mθ (X )) ≥ F (θ|θ ′) + H(θ ′),
and

log (mθ (X )) = F (θ|θ) + H(θ).
The proof will be done during the class.Proposition 52 tells us that {F (·|θ ′) + H(θ ′), θ ′ ∈ Θ} is a family of minorants of θ 7→ log(mθ (X )).Therefore, EM can be viewed as the two maximization steps described in Algorithm 7 and illustrated inFigure 2.1.
Algorithm 7 EM algorithm (maximization-maximization).
Input: T ∈ N (number of iterations), X (observed sample).
θ̂0 ← random initialization
for t = 0 to T − 1 doE step: find the best lower bound of θ 7→ log (mθ (X )) at θ̂t , i.e. that which is maximal at θ̂t : set

θ̂ ′t ∈ arg maxθ∈Θ F (θ̂t|θ) + H(θ),
and remark that θ̂ ′t = θ̂tM step: maximize the chosen lower bound F (·|θ̂t) + H(θ̂t): set

θ̂t+1 ∈ arg maxθ∈Θ F (θ|θ̂t)
end for

Output: θ̂T .
Theorem 53. Let (θ̂t)t≥0 be the sequence defined by θ̂0 ∈ Θ and for all integer t,

θ̂t+1 ∈ arg maxθ∈Θ F (θ|θ̂t).
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Figure 2.1: Illustration of the E step (finding the best lower bound — among blues points) and the Mstep (maximizing the lower bound) of the EM algorithm. The values of mθ (X ) are unknown except for
θ̂t, θ̂t+1, . . . (black points).

Then the sequence
(log (mθ̂t (X )))t≥0 is non-decreasing.

The proof will be done during the class.
Remark 2.1.3 (The sampling case). In the setting of Remark 2.1.2, let us denote G ′θ⋆ the distribution of(X1, Y1) and Q′θ⋆,X1 the distribution of Y1|X1. Then Gθ⋆ = (G ′θ⋆ )⊗n and Qθ⋆,X = Q′θ⋆,X1⊗· · ·⊗Q′θ⋆,Xn .
In other words, Y1|X1, . . . , Yn|Xn are independent (but not identically distributed).

Thus, (Z (t)|X ) ∼ (Q′θ̂t ,X1 ⊗ · · · ⊗ Q′θ̂t ,Xn ), which means that for all i ∈ [n], Z (t)
i |X n1 = Z (t)

i |(θ̂t, Xi) ∼
Qθ̂t ,Xi and Z (t)1 |(θ̂t, X1), . . . , Z (t)

n |(θ̂t, Xn) are independent. It comes that Z (t)1 |θ̂t, . . . , Z (t)
n |θ̂t are iid.

In addition, denoting g′θ the density of G ′θ , the criterion to maximize becomes:

FX n1 (θ|θ̂t) = E

[ n∑
i=1 log (g′θ (Xi, Z (t)

i )) |X n1
]
.

2.1.4 EM for Gaussian mixtures (soft k-means)In this section, we apply the EM algorithm to a mixture of k Gaussian distributions on Rd . In otherwords, we assume that: {
X|Y = j ∼ N (µ⋆j , Σ⋆j ), j ∈ [k ]
Y ∼ D (π⋆) ,where for all j ∈ [k ], Σ⋆j ∈ S, where S is the set of d × d symmetric definite positive matrices, and π⋆is a d-probability vector. It is clear that the distribution of (X, Y ) lies in the statistical model

Pg = {Gθ : θ ∈ Θ} ,
where the sets of parameters are

Θ = {θ = (π, λ) : π ∈ [0, 1]k ,1⊤π = 1, λ ∈ Λn} , Λ = Rd × S.
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From this statistical model, we derive the two other models for marginal and conditional distributions:
Pm =

Mθ = k∑
j=1 πjN (µj , Σj ) : θ = (π, λ) ∈ Θ

 , and Pc = {x ∈ X 7→ Qθ,x : θ ∈ Θ} .
For all θ ∈ Θ and x ∈ Rd , it is clear that Gθ , Mθ and Qθ,x have densities (with respect to a Lebesgue,a counting or a product measure), which are respectively:

gθ : (x, y) ∈ Rd × [k ] 7→ πyφλy (x)
mθ : x ∈ Rd 7→

k∑
j=1 gθ (x, j ) = k∑

j=1 πjφλj (x)
qθ,x : y ∈ [k ] 7→ gθ (x, y)

mθ (x) = πyφλy (x)∑k
j=1 πjφλj (x) ,where for λ = (µ, Σ) ∈ Λ,

φλ : x ∈ Rd 7→ 1
√2πd√|Σ| e− 12 (x−µ)⊤Σ−1(x−µ)

is the probability density function of N (µ, Σ).Let (X1, Y1), . . . , (Xn, Yn) be n iid copies of (X, Y ) and assume that we only observe (X1, . . . , Xn). Wenow detail the two steps of the EM algorithm.
Expectation stepLet θ̂t = (π̂ (t), λ̂(t)) ∈ Θ be a current estimate of θ⋆, and (Z (t)1 , . . . , Z (t)

n ) be a sample such that1. (X1, Z (t)1 )|θ̂t, . . . , (Xn, Z (t)
n )|θ̂t are iid ;2. for each i ∈ [n], Z (t)

i |X n1 ∼ Qθ̂t ,Xi . Let, for all j ∈ [k ]:
p(t)
ij = P(Z (t)

i = j |X n1 ) = qθ̂t ,Xi (j ) = π̂ (t)
j φλ̂(t)j (Xi)∑k

ℓ=1 π̂ (t)
ℓ φλ(t)ℓ (Xi) . (2.1)

The first step of EM is to compute the conditional expectation of the joint log-likelihood, which is, forany θ ∈ Θ:
FX n1 (θ|θ̂t) = E

[ n∑
i=1 log (gθ (Xi, Z (t)

i )) |X n1
]

= n∑
i=1

k∑
j=1 pij

(t) [log (πj) + log (φλj (Xi))] .
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Maximization stepGiven the computation of FX n1 (θ|θ̂t), the goal of this second step is to maximize FX n1 (θ|θ̂t) with respect to
θ , that is to solve

maximize
µ1,...,µkΣ1,...,Σk

n∑
i=1

k∑
j=1 pij

(t) [log (πj)− 12(Xi − µj )⊤Σ−1
j (Xi − µj )− 12 log (|Σj |)]

s. t.


k∑
j=1 πj = 1
∀j ∈ [k ] : πj ≥ 0

µj ∈ RdΣj ∈ Rd×d, PD.

(P19)

Property 54. Solution to Problem (P19) is θ̂t+1 = (π̂ (t+1), λ̂(t+1)), where for all j ∈ [k ], λ̂(t+1) =(
µ̂(t+1)
j , Σ̂(t+1)

j

)
and 

π̂ (t+1)
j = 1

n
∑n

i=1 pij (t)
µ̂(t+1)
j = ∑n

i=1 pij (t)Xi∑n
i=1 pij (t)Σ̂(t+1)

j = ∑n
i=1 pij (t)[(Xi−µ̂(t+1)

j )(Xi−µ̂(t+1)
j )⊤]∑n

i=1 pij (t) .

The proof is a good exercise.
Algorithm 8 EM for Gaussian mixtures (soft k-means).
Input: {Xi}1≤i≤n (training sample).
πj ← 1

k , for all j ∈ [k ] (initialization)
µj ← random point, for all j ∈ [k ]Σj ← overall sample covariance, for all j ∈ [k ] or identity matrix
while not converged do
pij ←

πjφ(µj ,Σj )(Xi)∑k
ℓ=1 πℓφ(µℓ ,Σℓ )(Xi)≈ P(Yi = j |Xi) (expectation)

πj ← 1
n
∑n

i=1 pij (maximization)
µj ←

∑n
i=1 pijXi∑n
i=1 pijΣj ← ∑n
i=1 pij [(Xi−µj )(Xi−µj )⊤]∑n

i=1 pij
end while

The steps described above are summed up in Algorithm 8. This algorithm (EM for Gaussian mixtures) isoften called soft k-means because of its similarity to the k-means algorithm (Algorithm 9, see Remark 2.2.4).
2.1.5 Model selectionModel selection for clustering generally lies in choosing the number of clusters k . Some empiricalmethods will be presented in Section 2.5, nevertheless, we quickly introduce here two criteria specific tolikelihood maximization.
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Figure 2.2: Example of soft k-means and clustering frontier.

Figure 2.3: Soft k-means can produce very different results (including unexpected ones) according to therandom initialization of means.
When computing an MLE, it is possible to increase the likelihood by adding parameters. For instance,with Gaussian mixtures, considering k = n, µj = Xj for all j ∈ [k ] and Σj = σ 2I , with σ 2 → 0 leads toa likelihood increasing to 1. This situation is typical from overfitting the training sample.The Bayesian information criterion (BIC) and the Akaike information criterion (AIC) help in choosing thenumber of clusters by adding a penalty term growing with the number of free parameters in the model.
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Given and iid sample {X1, . . . , Xn} and an MLE θ̂ , BIC and AIC are defined by
BIC = −2 log (mθ̂ (X1, . . . , Xn)) + m log(n),

and
AIC = −2 log (mθ̂ (X1, . . . , Xn)) + 2m,where m is the number of free parameters (for Gaussian mixtures, m = (k − 1) + kd + k d(d+1)2 ). Thenumber of clusters can be chosen as the one minimizing either BIC or AIC (note that BIC is moreconservative than AIC in that its penalty term is larger than that of AIC as soon as n ≥ 8).Criteria BIC and AIC come respectively from Bayesian and information theory. It can be shown that,under different assumptions and for n large, the log-likelihood of a model can be approximated by either

−BIC2 or −AIC2 . As a consequence, minimizing one of these two criteria, tends to maximize the likelihoodof the model.
2.2 Cost minimization methods
Similarly to what has been seen for supervised learning, clustering can be tackled either under Gaussianassumptions or by minimization of a cost. Clustering is then a partitioning of minimal cost.Going back to the “definition” of clustering:1. gathering similar points;2. separating dissimilar points;we have two options: focusing on Item 1. or Item 2. Besides, there are two possible approaches:1. using a paired criterion of (dis)similarity (i.e. between two points);2. using a center-based criterion of (dis)similarity (i.e. between each point and a “representingindividual”).For now, we focus on designing a method of minimal cost that aims at gathering similar points (Item 1.of the definition) through a center-based criterion (Approach 2.). As we will see later, Section 2.2.5addresses the opposite point of view, i.e. Item 2. coupled with Approach 1.
2.2.1 Center-based approachIn order to define a sensible cost, we need a dissimilarity measure d : X × X → R+, that is a non-negative symmetric function d such that d(x, x) = 0. Note that a distance is a dissimilarity measurewith extra properties (separation and triangle inequality). For the sake of simplicity, the method will bedescribed with d(x, x ′) = ∥∥x − x ′

∥∥2
ℓ2 , leading to the k-means approach.Let P(X ) be the complete set partition of size k of X . For a partition (C1, . . . , Ck ) ∈ P(X ), we areinterested in a cost that measures the dissimilarity of all points x ∈ Cj in a given cell Cj (j ∈ [k ]) to arepresenter (or centroid) of this cell Cj . Given the previous discussion, such a quantity is logically

E
[
d(X, µ(Cj )) | X ∈ Cj

] = 1
P(X ∈ Cj ) E [d(X, µ(Cj ))1X∈Cj ] ,
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where µ(Cj ) is the representer of the cell Cj . In all rationality, the representer is the individual the “mostsimilar to all other”, i.e.

µ(Cj ) ∈ arg minµ∈X E [d(X, µ) | X ∈ Cj
] = arg minµ∈X E [d(X, µ)1X∈Cj ] .Marginalizing of X , we are then interested in minimizing the cost:minimize(C1,...,Ck )∈P(X ) D(C1, . . . , Ck ), (P20)

where
D(C1, . . . , Ck ) = k∑

j=1 P(X ∈ Cj )E [d(X, µ(Cj )) | X ∈ Cj
] = E

 k∑
j=1 d(X, µ(Cj ))1X∈Cj

 ,
which is sometimes called the distortion of the partition (C1, . . . , Ck ).

Remark 2.2.1. Defining the quantizer q : x ∈ X 7→ ∑k
j=1 µ(Cj )1x∈Cj , we obtain for D the usual

distortion:
D(C1, . . . , Ck ) = E [φ(d(X, q(X )))] .

This represents the quantification error when discretizing the original space X.

For d(x, x ′) = ∥∥x − x ′
∥∥2
ℓ2 , it is clear that the centroid of each cell is unique and defined by:
µ(Cj ) = E

[
X | X ∈ Cj

] = 1
P(X ∈ Cj ) E [X1X∈Cj

]
.

In addition, moving to estimation based on iid observations X1, . . . , Xn, distortion and representers havenatural counterparts, which are:
Dn(C1, . . . , Ck ) = n∑

i=1
k∑
j=1 d(Xi, µn(Cj ))1Xi∈Cj ,and

µn(Cj ) = 1
|{i ∈ [n] : Xi ∈ Cj}|

n∑
i=1 Xi1Xi∈Cj .

2.2.2 k-means algorithmFor k-means, we are thus interested in solving the following optimization problem:
minimize(C1,...,Ck )∈P(X )(µ1,...,µk )∈Xk

Dn(C1, . . . , Ck ) = k∑
j=1

n∑
i=1
∥∥X − µj

∥∥2
ℓ2 1Xi∈Cj

s. t. µj = 1
|{i ∈ [n] : Xi ∈ Cj}|

n∑
i=1 Xi1Xi∈Cj , ∀j ∈ [k ].
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Compared to (P20), the previous problem has be rewritten in order to make a new set of optimizationvariables appear ((µ1, . . . , µk )), along with the corresponding equality constraints.Indeed, minimizing the k-means objective function turns out to be computationally infeasible at a largescale (it is NP-hard and even NP-hard to approximate to within some constant). For this reason, weresort to the alternating procedure:1. minimization with respect to (C1, . . . , Ck ) for a fixed (µ1, . . . , µk );2. minimization with respect to (µ1, . . . , µk ) for a fixed (C1, . . . , Ck ).The second part is trivial for it involves equality constraints. It is thus computing µj = 1
|{i∈[n]:Xi∈Cj}|∑n

i=1 Xi1Xi∈Cjfor all j ∈ [k ]. The following property formalizes the first part and Algorithm 9 sums the whole up.
Property 55. Let (C V1 , . . . , C V

k ) be a Voronoi partitioning based on fixed centroids (µ1, . . . , µk ):
iteratively for all j ∈ [k ] (with convention ∪0

ℓ=1C V
ℓ = ∅):

C V
j = {x ∈ X : ∥∥x − µj

∥∥
ℓ2 ≤

∥∥x − µℓ
∥∥
ℓ2 , ∀ℓ ∈ [k ]} \ ∪j−1

ℓ=1 C V
ℓ .

Then (C V1 , . . . , C V
k ) ∈ arg min(C1,...,Ck )∈P(X )

k∑
j=1

n∑
i=1
∥∥X − µj

∥∥2
ℓ2 1Xi∈Cj ,

i.e. (C V1 , . . . , C V
k ) solves the first part of the alternating procedure described above.

The proof will be done during the class.
Algorithm 9 k-means.
Input: T ∈ N (number of iterations), {Xi}1≤i≤n (training sample).
µj ← random point from X for all j ∈ [k ] (initialization)
for t = 1 to T docompute a Voronoi partitioning (C1, . . . , Ck ) corresponding to cluster centers (µ1, . . . , µk )
µj ← 1

|{i∈[n]:Xi∈Cj}|∑n
i=1 Xi1Xi∈Cj for all j ∈ [k ]

end for
Output: (C1, . . . , Ck ).

Remark 2.2.2. Since clusters are only characterized by their centroids, a Voronoi partitioning is
optimal at each step and k-means thus implicitly assumes that cells are convex (no notion of
shape/variance). In this sense, k-means is weaker than Gaussian mixtures (see Figure 2.4 versus
Figure 2.2, and Figure 2.5).

Remark 2.2.3. The k-means algorithm is also known as Lloyd’s iteration, after Stuart Lloyd, who
proposed the method in 1957 in the context of vector quantization for image compression.
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Figure 2.4: Example of k-means clustering.

Figure 2.5: Comparison of k-means and soft k-means on non-Gaussian clusters.
Remark 2.2.4 (k-means and soft k-means). Algorithms 8 and 9 share many similarities. Indeed,
when computing a Voronoi partitioning, the k-means algorithm assigns each point Xi to a cluster Cj
and then updates the cluster centroid µj by averaging the members of the cluster Cj .

However, the soft k-means algorithm first estimates the probability that each example Xi belongs
to each cluster Cj (based on a Mahalanobis distance between Xi and µj ) and then updates the
centroids with a weighted average over the entire sample {X1, . . . , Xn}.
If we fix the covariance matrices Σj of Algorithm 8 to σ 2Id , then the probability of assigning Xi to Cj
becomes a monotone function of the Euclidean distance between the data point Xi and the centroid
µj . Moreover, as σ 2 → 0, these probabilities become 0 and 1, and the two algorithms coincide.

Remark 2.2.5 (k-means and weighted k-nearest neighbors). The update of the centers in Algorithm 8
can be rewritten, for all j ∈ [k ],

µj = 1
n

n∑
i=1 wiXi,

where wi ∝ pij ∝ e−||Xi−µj ||
2Σj , with || · ||Σj being a Mahalanobis distance. In other words, the

contribution of each point is considered weighted by an exponential function of the distance, which
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is the same spirit as weighted k-nearest neighbors.

Proposition 56. Let
((C t1 , . . . , C t

k ))t≥1 be the sequence of partitions created by Algorithm 9. Then(
Dn(C t1 , . . . , C t

k ))t≥1 is monotonically decreasing.

The proof will be done during the class.
Remark 2.2.6. First, we have no guarantee concerning the number of iterations the k-means algorithm
needs in order to reach convergence. In fact, k-means might stop at a point which is not even a
local minimum. This situation can particularly occur for a bad initialization.

Second, there is no nontrivial lower bound on the gap between the value of the k-means objective
for the partition returned by Algorithm 9 and the optimal k-means objective value.

The algorithm named k-means++ is an attempt to answer the first caveat (bad initialization in k-means).To describe it (see Algorithm 10), let, for all j ∈ [k ], j > 1, ∆j be the dissimilarity defined by:∆j : x ∈ X 7→ min1≤ℓ≤j−1
∥∥x − µ̂ℓ

∥∥
ℓ2 ,and let us denote δx the Dirac measure in x ∈ X . Then, k-means++ initializes Lloyd’s iteration withvalues of µj far away from each others (see Algorithm 10).

Algorithm 10 k-means++.
Input: T ∈ N (number of iterations), {Xi}1≤i≤n (training sample).
µ̂1 ← random point from {Xi}1≤i≤n (initialization)
for j = 2 to k do
µ̂j ← random point from {Xi}1≤i≤n with density ∑n

i=1 ∆j (·)2∑n
ℓ=1 ∆j (Xℓ )2 δXi (·)

end for(C1, . . . , Ck )← output of k-means algorithm based on (µ̂1, . . . , µ̂k )
Output: (C1, . . . , Ck ).
Some remarks on k-means follow.
k-means separates dissimilar points

Proposition 57. For any partition (C1, . . . , Ck ) of X, we have:

E
(∥∥X − EX

∥∥2
ℓ2
) = D(C1, . . . , Ck ) + k∑

j=1 P(X ∈ Cj ) ∥∥µ(Cj )− EX
∥∥2
ℓ2

The proof is a good exercise.This proposition is sometimes referred to as “Huygens property”. The three terms are respectively:1. the total inertia;
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2. the intraclass inertia;3. the interclass inertia.The previous proposition highlights that minimizing the intraclass inertia (D(C1, . . . , Ck )) also maximizesthe interclass inertia.
Variants of k-meansThere are two well-known variants of k-means.
k-medoids objective This is similar to k-means but it requires the cluster centers to be members of theinput set (X1, . . . , Xn). Thus, for all j ∈ [k ]:

µn(Cj ) = Xt with t ∈ arg minℓ∈[n]
n∑
i=1
∥∥Xi − Xℓ

∥∥2
ℓ2 1Xi∈Cj .

k-median objective This is similar to k-medoids except that d is the Euclidean distance:
µn(Cj ) = Xt with t ∈ arg minℓ∈[n]

n∑
i=1
∥∥Xi − Xℓ

∥∥
ℓ2 1Xi∈Cj ,

for all j ∈ [k ] and
Dn(C1, . . . , Ck ) = k∑

j=1
n∑
i=1
∥∥X − µn(Cj )∥∥ℓ2 1Xi∈Cj .

Hierarchy of partitionsIn addition the lack of theoretical guarantees concerning k-means, another drawback is that clusters arenot hierarchically built when k increases. A possible strategy for answering this point is hierarchicalclustering, described later. In addition, when using Ward’s cluster linkage, hierarchical clustering trieseffectively to minimize the k-means objective.
2.2.3 Point-based objectivesIn this section, we address the point of view opposite to the k-means approach: our aim is to devise amethod that separate dissimilar points thanks to a paired criterion. For a partition (C1, . . . , Ck ) ∈ P(X )and a similarity function s : X × X → [0, 1], the distortion to minimize is then

D(C1, . . . , Ck ) = E

 k∑
j=1 s(X, Y )1X∈Cj∩Y /∈Cj

 .
Moving to estimation based on iid observations X1, . . . , Xn, the previous distortion has a natural coun-terpart:

Dn(C1, . . . , Ck ) = k∑
j=1
∑
1≤i≤n1≤ℓ≤n

s(Xi, Xℓ )1Xi∈Cj∩Xj /∈Cj .
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Then, it is often convenient to represent the relationships between training points by a similarity graph, inwhich each vertex represents a data point Xi and vertices are connected by an edge whose weight is theirsimilarity. Such a graph can be defined by the similarity (or adjacency) matrix W = (s(Xi, Xj ))1≤i,j≤n.Given the partition of the indexes (I1, . . . , Ik ) ∈ P([n]), defined by i ∈ Ij ⇐⇒ Xi ∈ Cj , the previouspoint-based distortion reads:
Dn(C1, . . . , Ck ) = k∑

j=1
∑
i∈Ij
ℓ /∈Ij

Wi,ℓ .

Minimizing Dn(C1, . . . , Ck ) is often referred to as the graph cut problem.
Remark 2.2.7. As we will see after, the approach described in this section makes it possible to use
non-Euclidean distance, such as graph distances, which are estimations of the intrinsic geodesic
distance (on the potential manifold supporting the data). An example of such a distance is the length
of the shortest path to go from a point to another in the graph:

d(Xi, Xj ) = inf {m ∈ N∗ : {x1, . . . , xm} ⊂ {X1, . . . , Xn}, s(xi, xi+1) > 0, x1 = Xi, xm = Xj
}
− 1

(with convention inf ∅ =∞). With this in mind, spectral clustering is more powerful than k-means.

2.2.4 Similarity graphsTo be a bit more formal, we consider a similarity graph G = (V , E ), for which the vertices V = (v1, . . . , vn)represent the points (X1, . . . , Xn). Tow vertices vi and vj are connected if the similarity s(Xi, Xj ) > 0(or greater than a prescribed threshold) and the edge between these two vertices is weighted by theirsimilarity s(Xi, Xj ). The weighted adjacency matrix is W = (s(Xi, Xj ))1≤i,j≤n.The graph G is assumed undirected, which is equivalent to W being symmetric. In practice, this comesfrom considering a symmetric similarity measure s.
Definition 2.2.1. The degree of a vertex vi ∈ V is di = ∑n

ℓ=1 Wi,ℓ .

Given A ⊂ V , we call size of A the number of its vertices |A| and volume of A vol(A) = ∑i∈[n]:vi∈A di.
A is said connected if any two vertices of A can be joined by a path such that all intermediate
points also lie in A.

A is called a connected component if it is connected and if there are no connections between vertices
in A and V \A.

When constructing a similarity graph, the goal is to model the local relationships between data points.In the forthcoming paragraphs, we describe four popular similarity graphs based on a given distance
d : X × X → R+.
The ε-neighborhood graph Two points Xi and Xj are connected if and only if their distance is less thana positive threshold ε: d(Xi, Xj ) ≤ ε . If ε is small enough, all connected points are roughly at the same
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distance. Therefore, the weights assigned are Wi,j = 1 (if d(Xi, Xj ) ≤ ε) and 0 otherwise. Given thisrule, the ε-neighborhood graph is usually considered as an unweighted graph.
k-nearest neighbor graph Two points Xi and Xj are connected if and only if Xi is among the k-nearestneighbors of Xj or the other way around. Similarly to the ε-neighborhood graph, the weights are Wi,j = 1if Xi and Xj are connected and 0 otherwise.
Mutual k-nearest neighbor graph Two points Xi and Xj are connected if and only if Xi is among the
k-nearest neighbors of Xj and Xj is among the k-nearest neighbors of Xi. The weights are assignedsimilarly to the k-nearest neighbor graph.
The fully connected graph Points are connected if they have a positive similarity s(Xi, Xj ) and theedges are weighted by s(Xi, Xj ). It is important to note that since a similarity graph is supposed toreflect the local relationships, the similarity should be defined accordingly. In practice, it is asked to sto be fulfill s(x, x) = 1, ∀x ∈ X and s(x, x ′) (x ′ ∈ X ) to decrease quickly to 0 when x and x ′ get awayfrom each other. A popular choice is the Gaussian similarity: s(x, x ′) = e−

d(x,x′ )22σ2 , in which σ 2 plays arole similar to ε and k for the similarity graphs introduced previously.
2.2.5 Spectral clusteringFor k = 2, finding a minimal cut of a graph is a relatively easy problem and can be solved efficiently(for instance thanks to the Stoer-Wagner algorithm). However, it often results in separating an individualvertex from the rest of the graph, which is not satisfactory. Several solutions to this problem have beensuggested but the most common ones are to normalize the empirical distortion either by the size of theclusters: RatioCut(C1, . . . , Ck ) = k∑

j=1
1
|Ij |
∑
i∈Ij
ℓ /∈Ij

Wi,ℓ ,

(let us remind that the partition of the indexes (I1, . . . , Ik ) ∈ P([n]) is defined by i ∈ Ij ⇐⇒ Xi ∈ Cj )or by their volume:
NormCut(C1, . . . , Ck ) = k∑

j=1
1vol(Ij ) ∑i∈Ij

ℓ /∈Ij

Wi,ℓ .

These objectives are respectively called Ratio Cut and Normalized Cut. Unfortunately, the balancingintroduced by the cluster importance makes the minimization problem computationally hard to solve.Therefore, from now on, we describe a relaxation procedure resulting in the so called spectral clusteringalgorithm.To this end, we assume that the similarity measure s : X × X → [0, 1] is such that:{
∀(x, x ′) ∈ X2 : s(x, x ′) = s(x ′, x)
∀x ∈ X : s(x, x) > 0.
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Definition 2.2.2 (Unnormalized graph Laplacian). Let W ∈ Rn×n be a symmetric matrix. The
diagonal matrix D ∈ Rn×n such that Di,i = ∑n

j=1 Wi,j , ∀i ∈ [n] and L = D −W are respectively
called the degree matrix and the Laplacian of the graph defined by W .

Proposition 58. Let W and L be respectively the adjacency matrix and the Laplacian of the similarity
graph of (X1, . . . , Xn). For any positive integer k and for all partitioning (C1, . . . , Ck ) of (X1, . . . , Xn),
we have

RatioCut(C1, . . . , Ck ) = tr(H⊤LH),
where H = ( 1√

|Ij |
1i∈Ij

)
1≤i≤n1≤j≤k

.

In addition, the columns of H are orthonormal to each other (H⊤H = Ik ).

The proof will be done during the class.
Remark 2.2.8. Up to normalization, H represents the one-hot-encoding of the clusters. For example,
for k = 3, if we reorganize the sample (X1, . . . , Xn) such that C1 appears first, then C2 and so on,
we get

H =



1
|I1| 0 0
... ... ...1
|I1| 0 00 1

|I2| 0
... ... ...0 1

|I2| 00 0 1
|I3|... ... ...0 0 1
|I3|


.

Owing to Proposition 58, the Ratio Cut problem
minimize(I1,...,Ik )∈P([n])

k∑
j=1

1
|Ij |
∑
i∈Ij
ℓ /∈Ij

Wi,ℓ

is equivalent to minimize
H∈Rn×k
α∈Rk

tr(H⊤LH)
s. t.


H⊤H = Ik
∀j ∈ [k ], ∀i ∈ [n] : Hi,j ∈

{0, 1
αj

}
∀j ∈ [k ], α2

j = n∑
i=1 1Hi,j>0.
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This optimization problem is an integer programming problem. Unfortunately such problems are known(or at least were used to be known) to be difficult to solve numerically. Therefore, we relax the problemby discarding the last two constraints. Unnormalized spectral clustering boils down to solving
minimize
H∈Rn×k

tr(H⊤LH)s. t. H⊤H = Ik .
(P21)

The forthcoming theorem tells that a solution to (P21) can be obtained easily by a spectral decomposition.
Theorem 59. Let C ∈ Rd×d be a symmetric matrix and let us denote C = ∑d

i=1 λiviv⊤i its
eigendecomposition, where for all i ∈ [d], vi ∈ Rd and λi ∈ R+, with sorted eigenvalues λ1 ≤ · · · ≤
λd . For any k ∈ [d], let us denote V− = [v1| . . . |vk ] ∈ Rd×k and V+ = [vd−k+1| . . . |vd ] ∈ Rd×k ,
respectively the matrices of the minor and major eigenvectors.

Then, inf
U∈Rd×k
U⊤U=Ik

tr(U⊤CU ) = tr(V ⊤− CV−)
and sup

U∈Rd×k
U⊤U=Ik

tr(U⊤CU ) = tr(V ⊤+ CV+).
The proof will be done during the class.By Theorem 59, (P21) is solved by the matrix H for which the columns are the minor eigenvectors of
L. The resulting algorithm (see Algorithm 11) is called Unnormalized spectral clustering. It proceeds bymapping the data (X1, . . . , Xn) to the rows of the k minor eigenvectors of L and then by performing avanilla k-means.
Algorithm 11 Unnormalized spectral clustering.
Input: W ∈ Rn×n (adjacency matrix).
L ← Laplacian of W
H ← k minor eigenvectors of L as columns
Yi ← ith row of H (for all i ∈ [n]) (Yi ∈ Rk )(Ĉ1, . . . , Ĉk )← output of k-means algorithm based on (Y1, . . . , Yn)

Output: (Ĉ1, . . . , Ĉk ).
Proposition 60. Let W and L be respectively the adjacency matrix and the Laplacian of the similarity
graph of (X1, . . . , Xn). For any positive integer k and for all partitioning (C1, . . . , Ck ) of (X1, . . . , Xn),
we have

NormCut(C1, . . . , Ck ) = tr(H⊤LH),
where H = ( 1√vol(Ij )1i∈Ij

)
1≤i≤n1≤j≤k

.
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In addition, the columns of D 12H are orthonormal to each other (H⊤DH = Ik ).The proof is a good exercise.Owing to Proposition 60, the Normalized Cut problem
minimize(I1,...,Ik )∈P([n])

k∑
j=1

1vol(Ij ) ∑i∈Ij
ℓ /∈Ij

Wi,ℓ

is equivalent to minimize
H∈Rn×k
α∈Rk

tr(H⊤LH)
s. t.


H⊤DH = Ik
∀j ∈ [k ], ∀i ∈ [n] : Hi,j ∈

{0, 1
αj

}
∀j ∈ [k ], α2

j = n∑
i=1 di1Hi,j>0.

and can be relaxed to minimize
H∈Rn×k

tr(H⊤LH)s. t. H⊤DH = Ik .
(P22)

Since D is invertible (by assumptions on s) and (P22) can be reformulated
minimize
H∈Rn×k

tr(U⊤LsU )
s. t. {

H = D− 12U
U⊤U = Ik ,

where Ls = D− 12 LD− 12 . Therefore (P22) is solved by the matrix U for which the columns are the minoreigenvectors of Ls, which corresponds to H for which the columns are the minor eigenvectors of Lw = D−1L(see below). The resulting algorithm (see Algorithm 12) is called Normalized spectral clustering.
Remark 2.2.9. λ ∈ R+ is eigenvalue of Lw with eigenvector u if and only if λ and u solve the
generalized eigenvalue problem Lu = λDu.

Algorithm 12 Normalized spectral clustering (with Lw ).
Input: W ∈ Rn×n (adjacency matrix).
Lw ← Laplacian of W
H ← k minor eigenvectors of Lw as columns (similar to the generalized eigenproblem Lu = λDu)
Yi ← ith row of H (for all i ∈ [n]) (Yi ∈ Rk )(Ĉ1, . . . , Ĉk )← output of k-means algorithm based on (Y1, . . . , Yn)

Output: (Ĉ1, . . . , Ĉk ).
84



Remark 2.2.10. Comparing Ratio Cut and Normalized Cut leads to a very interesting discovery.
First, let us remark that, as already mentioned, both objective functions encodes the second part of
the intuitive definition of clustering: points separated into different clusters should be dissimilar.

In addition, the balancing introduced takes into account the importance of the clusters, either through
their size or their volume. This is so since minimizing the min cut objectives leads to minimizing the
cuts between the clusters while maximizing their importance. However, Ratio Cut and Normalized
Cut behave differently concerning cluster importance. Indeed, it is easy to see that, for all j ∈ [k ]:∑

i∈Ij
ℓ∈Ij

Wi,ℓ = vol(Ij )−∑
i∈Ij
ℓ /∈Ij

Wi,ℓ .

In other words, the intra-cluster similarity is maximized as soon as the volume of the cluster is
maximized and the cut with the rest of the vertices is minimized; which is what is achieved by
Normalized Cut minimization. On the other hand, the size |Ij | of a cluster is not necessarily related
to the intra-cluster similarity.

In this sense, Normalized Cut minimization addresses both parts of the clustering definition.

Moreover, it can be shown that, Lw behaves as expected when n → ∞ and so it is for the resulting
partitioning provided by normalized spectral clustering. On the contrary, L can lead to completely
unreliable results, even for small sample size [von Luxburg, 2007].

There exists another popular normalized spectral clustering algorithm (see Algorithm 13) based on thethird Laplacian that popped up during this analysis: Ls.
Algorithm 13 Normalized spectral clustering (with Ls).
Input: W ∈ Rn×n (adjacency matrix).
Ls ← Laplacian of W
H ← k minor eigenvectors of Ls as columns
Yi ← ith row of H normalized to 1 (for all i ∈ [n]) (Yi ∈ Rk ,

∑k
j=1(Yi)2j = 1)(Ĉ1, . . . , Ĉk )← output of k-means algorithm based on (Y1, . . . , Yn)

Output: (Ĉ1, . . . , Ĉk ).
Remark 2.2.11. First, there is no theoretical guarantees concerning the “quality” of these two
relaxations.

Second, there exist many other relaxations. Some of them rely on semidefinite programming.

Last but not least, spectral relaxations are not appealing for the quality of the solutions they provide
but for the simplicity of the problem in which they results (standard linear algebra – eigenvalue –
problems).
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Figure 2.6: Example of spectral clustering (k-nearest neighbor graph).

Figure 2.7: Example of spectral clustering (fully connected Gaussian graph).
2.2.6 Properties of graph LaplaciansLet us consider W ∈ Rn×n+ a symmetric adjacency matrix and D ∈ Rn×n its degree matrix. So far, wehave seen three Laplacians, summed up in the following definition.

Definition 2.2.3.

Unnormalized Laplacian: L = D −W ;
Nomalized Laplacian 1: Ls = D− 12 LD− 12 = I − D− 12WD− 12 ;
Nomalized Laplacian 2: Lw = D−1L = I − D−1W .

Normalized Laplacians are subscripted by s and w because they are respectively symmetrically normalized
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by D− 12 (on left and right) and whitened by D.Graph Laplacians have many properties. In the next proposition, we recover in particular the two propertiesbridging the gap between graph cut and eigenvalue decomposition (Item 1) and discover that 0 is aneigenvalue of L and Lw with eigenvector 1.
Proposition 61.

1. One has, ∀u ∈ Rn:

u⊤Lu = 12 ∑
1≤i,ℓ≤nWi,ℓ (ui − uℓ )2

u⊤Lsu = 12 ∑
1≤i,ℓ≤nWi,ℓ

(
ui√
Di,i
− uℓ√

Dℓ,ℓ

)2
.

2. 0 is eigenvalue of L and Lw with eigenvector 1. 0 is eigenvalue of Ls with eigenvector D 121.
3. λ ∈ R+ is eigenvalue of Lw with eigenvector u if and only if λ is eigenvalue of Ls with

eigenvector D 12u.
4. L, Ls and Lw are symmetric PSD matrices.

The proof is a good exercise.
Proposition 62. Let G be an undirected graph with non-negative weights. Then, the multiplicities
of the eigenvalue 0 of L, Ls and Lw are the same and equal the number k of connected components(A1, . . . , Ak ) in G.

In addition, the eigenspace of 0 for both L and Lw is spanned by {1A1, . . . ,1Ak} and the eigenspace
of 0 for Ls is spanned by {D− 121A1, . . . , D− 121Ak}.

We refer to [von Luxburg, 2007, Fig. 1] for an illustration of eigenvector properties.
2.2.7 Practical details
Similarity graph ε-neighborhood cannot handle different scales (different distances between data points)in different regions of the space. k-nearest neighbor graph can and connects regions of high and lowdensities. On the contrary, mutual k-nearest neighbor graph does not connect regions of high and lowdensities. It can be used to detect clusters of different densities.k-nearest neighbor graph is a good starting point.
Connectivity parameter For k-nearest neighbor graph, choose k such that the graph is connected orhas significantly fewer connected components than clusters to detect. Otherwise, spectral clustering willtrivially return connected components as clusters. Some asymptotic connectivity results suggest to choose
k in the order of log(n).
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Very generally, we can observe that the mutual k-nearest neighbor graph has much fewer edges thanthe k-nearest neighbor graph for the same parameter k . This suggest to choose k larger for the mutualk-nearest neighbor graph.For the ε-neighborhood graph, ε should be chosen such that the graph is connected. The smallest valueof ε for which the graph is connected can be estimated by the length of the longest edge in a minimalspanning tree covering the fully connected graph of the data. However this method is very sensitive tooutliers and isolated tight clusters.For a fully connected graph, σ can be chose as the mean distance of a point to its k-nearest neighbors,where k is chosen similarly as above (k of the order log(n)).
Number of clusters The gap heuristic: choose k such that all eigenvalues λ1, . . . , λk are very smalland λk+1 is relatively large (see Figures 2.8 and 2.9). A justification of this procedure, coming fromperturbation theory, is that in the ideal case of k completely disconnected clusters, the eigenvalue 0 hasmultiplicity k and λk+1 > 0.

Figure 2.8: Example of Laplacian eigenvalues (k-nearest neighbor graph).

Figure 2.9: Example of Laplacian eigenvalues (fully connected Gaussian graph).
Graph Laplacian One may look at the degree distribution of the similarity graph. If most vertices haveapproximately the same degree, then all graph Laplacians will perform equally. However, if the degrees
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of the graph are very broadly distributed, then Laplacians differ considerably and we suggest to choosenormalized Laplacians, and particularly Lw rather than Ls.This choice is justified first by Remark 2.2.10.
2.3 Hierarchical clustering
Hierarchical methods for clustering aim at answering a major drawback of k-means: the lack of hierarchy inclusters (i.e. decreasing k does not lead to merging clusters). This section introduces very simple methodsbased on measuring the similarity (or linkage) between clusters. We focus on agglomerative approaches(which are based on merging clusters) and put divisive ones aside (based on splitting clusters).
2.3.1 Agglomerative approachesLinkage-based methods are probably the simplest and most intuitive paradigm of clustering. In theiragglomerative version, they start from the partitioning of the training set (X1, . . . , Xn) in which eachcluster is a unit set {Xi} (for i ∈ [n]) and merge successively the closest clusters. Straightforwardly, thenumber of clusters decreases at each iteration and clusters are nested: each cluster Ĉ t at iteration t iseither the same as at iteration t−1 (Ĉ t = Ĉ t−1) or the union of two previous clusters (Ĉ t = Ĉ t−11 ∪Ĉ t−12 ).Two parameters need to be defined in such a procedure: the (dis)similarity (or linkage) between twoclusters and the merging stopping rule. To make the first point precise, let d : X × X → R+ be adissimilarity and consider two subsets A and B of (X1, . . . , Xn). We now give common examples ofcluster dissimilarities D : P({X1, . . . , Xn})2 → R+.
Single linkage

D(A, B) = min
x∈A,y∈B

d(x, y).
Complete linkage

D(A, B) = max
x∈A,y∈B

d(x, y).
Average linkage

D(A, B) = 1
|A||B|

∑
x∈A,y∈B

d(x, y).
Ward’s minimum varianceGiven the intraclass inertia for a generic subset C ⊂ (X1, . . . , Xn):

I(C ) =∑
x∈C

d (x, mC )2 ,

89



where mC = 1
|C |
∑

y∈C y, the cluster dissimilarity in Ward’s method is
D(A, B) = I(A ∪ B)− I(A)− I(B),

which is the increase of intraclass inertia when merging A and B. For the Euclidean distance,
D(A, B) = |A||B|

|A|+ |B| ∥∥mA − mB
∥∥2
ℓ2 .

Since Ward’s method merges clusters by minimizing the increase in the total intraclass inertia, it is verysimilar to k-means but approximates a minimizer of the k-means objective with an agglomerative hierarchi-cal procedure. Indeed, let us remind the distortion used in k-means: for a partition (C1, . . . , Ck ) ∈ P(X ),
Dn(C1, . . . , Ck ) = k∑

j=1
n∑
i=1
∥∥X − µn(Cj )∥∥2

ℓ2 1Xi∈Cj = k∑
j=1 I(Ĉj ),

where µn(Cj ) = 1
|{i∈[n]:Xi∈Cj}|∑n

i=1 Xi1Xi∈Cj and Ĉj = Cj ∩ {X1, . . . , Xn}. At the beginning of theagglomerative procedure, the empirical partition is (Ĉ1, . . . , Ĉn) = ({X1}, . . . , {Xn}) and (with a slightabuse of notation)
Dn({X1}, . . . , {Xn}) = 0.Then, given an empirical partition (Ĉ1, . . . , Ĉm), the agglomerative clustering techniques merges the twoclusters Ĉi and Ĉj such that merging two components of the summation bellow produces a minimalincrease:

Dn(Ĉ1, . . . , Ĉm) = I(Ĉ1) + I(Ĉ1) + · · ·+ I(Ĉm−1) + I(Ĉm).Consequently, the distortion increases slightly at each iteration a reaches at the end a value of distortion,which is close to that obtained by k-means (and likely bigger).
Remark 2.3.1. Linkage methods can be used with a variety of distances (or affinities), in particular:

⋄ Euclidean distance (or l2);
⋄ Manhattan distance (or Cityblock, or l1);
⋄ cosine distance;
⋄ any precomputed affinity matrix.

If the agglomerative procedure runs until the end, all points share the same large cluster. The resultingsequence of partitioning can be represented as a tree, called a dendrogram, the root of which is theunique cluster that gathers all points (the final cluster) and the leaves of which are the unit set clusters(algorithm initialization).If one is more interested in a useful partitioning instead of the clustering dendrogram, one needs toemploy a stopping rule, which may be:
⋄ a fixed number of clusters;
⋄ a distance upper bound D̄ (or alternatively a scaled distance upper bound α ∈ R+ such that
D̄ = α max1≤i,j≤n d(Xi, Xj ) for single, complete and average linkages).
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Figure 2.10: Example of agglomerative clustering (two rectangles).

Figure 2.11: Example of agglomerative clustering (single rectangle).

Figure 2.12: Example of agglomerative clustering (Gaussian clusters).
2.3.2 Connection with minimum spanning treesGiven a connected edge-weighted undirected graph G = (V , E ), with weight function d : V ×V → R+,the problem of minimum spanning tree (MST) is to find a subgraph T = (V , E ′) that connects all verticeswith minimal sum of weights ∑{u,v}∈E ′ d(u, v ). It is easy to see that such a subgraph T is necessarily atree. Indeed, if there where a cycle in T , we could remove an edge on the cycle to get a new subgraphconnecting all vertices and with fewer sum of weights.There are several classic techniques for finding an MST: Borůvka’s, Kruskal’s, Prim’s and reverse-deletealgorithms. All are greedy methods. In particular, Kruskal’s algorithm consists in adding edges inincreasing weight (at the initialization, we consider an edge with minimal weight), skipping those whoseaddition would create a cycle.Back to clustering and similarly to spectral methods, let us consider the similarity graph, in which eachvertex represents a data point and vertices Xi and Xj are all connected by an edge whose weight istheir distance d(Xi, Xj ). Then, applying Kruskal’s algorithm to this graph is exactly performing a single
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linkage agglomerative clustering on the set (X1, . . . , Xn). Indeed, picking edges in increasing weight inKruskal’s algorithm corresponds to merging the closest clusters in single linkage. In addition, discardingedges that would create a cycle is exactly saying that we measure distances and merge two differentclusters in single linkage.To complete the comparison, once an MST T is created, deleting the k − 1 most expensive edges in Tproduces k connected subgraphs, which are exactly the clusters produced by single linkage.
2.4 Density-based clustering
The algorithm called density-based spatial clustering of applications with noise (DBSCAN) assumes thatclusters are dense regions separated by low-density corridors. It is one of the most common clusteringalgorithms because of its efficiency and its ability to automatically determine the number of clusters.Given two parameters, a radius ε > 0 and a minimal number of neighbors m, DBSCAN considers threetypes of points:1. core points are points that have at least m neighbors within a distance ε (the ε-neighborhood),including themselves (the ε-neighborhood is at least a unit set);2. reachable points are non-core points that fall in the neighborhood of a core point;3. outliers are other points.Clusters are formed by core points that fall in the neighborhoods of each other and by their reachablepoints.

Remark 2.4.1. With m = 2, DBSCAN performs the same clustering as single linkage for which the
dendrogram has been cut at height ε.

Advantages

⋄ DBSCAN makes assumption on cluster density, thus it determines automatically the number ofclusters.
⋄ There is no shape restriction for discovered clusters (while k-means requires convex clusters).
⋄ DBSCAN prevents the single-link effect (different clusters being connected by a thin line of points).
⋄ There is a notion of outliers/noise.
⋄ DBSCAN is mostly insensitive to sample ordering.

Drawbacks

⋄ DBSCAN is only deterministic on core and noise points. Border points that are reachable fromseveral clusters can be part of either cluster, depending on the order the data is processed.
⋄ DBSCAN cannot cluster data sets well with large differences in densities, since the parameters εand m cannot be chosen appropriately for all clusters.
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Algorithm 14 DBSCAN.
Input: ε > 0 (neighborhood radius), m ∈ N (minimal number of neighbors), {Xi}1≤i≤n (training sample).
T ← {Xi}1≤i≤n (unlabeled points)
k ← 0 (current number of clusters)
while T ̸= ∅ dopick X in T
N ← ε-neighborhood of X
if |N| ≥ m then
k ← k + 1initialize a new cluster Ĉk = ∅move X from T to Ĉk
S ← (N\{X}) ∩ T (unlabeled neighbors)
while S ̸= ∅ dopick Y in Smove Y from S to Ĉk (and remove Y from T )
N ′ ← ε-neighborhood of Y
if |N ′| ≥ m then
S ← S ∪ (N ′ ∩ T ) (unlabeled neighbors)

end if
end while

end if
end while

Output: (Ĉ1, . . . , Ĉk , T ) (k clusters and a set of outliers)

Choice of the parameters1. Because of the curse of dimensionality, m should be chosen of the order of 2d.2. The radius ε can be chosen at the elbow of the monotonic curve of maximum distances between apoint and its m − 1 nearest neighbors.
DBSCAN in action1. A fancy demo of DBSCAN.
2.5 Clustering evaluation
When the ground truth is known, several criteria can be used for evaluating a clustering performance:adjusted rand index, normalized and adjusted mutual informations, V-measure, Fowlkes-Mallows score.All scores measure the similarity between class labels ignoring permutation. Besides, adjusted indexesand Fowlkes-Mallows score have chance normalization: random uniform label assignment gets a 0 score.Now, we briefly present some methods for assessing a clustering performance when the ground truth isnot known. These methods can be used to select the number of clusters k or other parameters.

93

https://www.youtube.com/watch?v=h53WMIImUuc


2.5.1 Elbow methodThe elbow method is a method of validation of a partitioning based on the intraclass inertia. It is oftenused to choose an appropriate number of clusters and is particularly suited for convex clusters (due tothe nature of its criterion).The elbow method looks at the intraclass inertia (or inversely at the percentage of variance explained,that is the ratio of the interclass inertia to the total inertia) as a function of the number of clusters (seeFigures 2.13 and 2.14).The idea of the elbow method is that such a curve has two regimes:
⋄ going from 1 to 2 (then 3) clusters will decrease a lot the intraclass inertia since these clustershelp discovering groups;
⋄ once we have more clusters than actual groups, there is a very limited gain (in the intraclassinertia) of adding a new cluster.Therefore, intuitively, there should be an angle in the graph, separating the two regimes mentioned above.The point where this angle appears is called an elbow and precisely indicates the number of clusters tochoose. However, in practice this elbow cannot always be unambiguously identified.

Figure 2.13: The elbow method (in theory). Courtesy of WWW.

Figure 2.14: The elbow method (in practice).
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2.5.2 Silhouette coefficientFor all i ∈ [i], let Ĉj be the cluster associated to Xi and
ai = 1

|Ĉj | − 1∑Y∈Ĉj
Y ̸=Xi

d(Xi, Y ),
as well as

bi = min1≤ℓ≤k
ℓ ̸=j

1
|Ĉℓ |

∑
Y∈Ĉj

d(Xi, Y )
being respectively the average distance of Xi to its companions and to the members of the neighboring
cluster. These values can be interpreted as how well Xi is compliant with its cluster and different fromthe neighboring cluster. The silhouette value for Xi is

si = bi − aimax(ai, bi) ∈ [−1, 1].
The average si over all data of a cluster 1

|Ĉj |

∑ 1≤i≤n
Xi∈Ĉj

si measures how tightly grouped all the data in thecluster are, and how distant from the neighboring cluster they are. In this sense, it is a density-basedindex, which is close to 1 when Ĉj is a dense group separated by a low-density corridor from its neighbor(similarly to the operating of DBSCAN).The silhouette coefficient is well suited for choosing the number k of clusters: if there are too many ortoo few clusters, some of them will typically display much narrower silhouettes than the others, meaningthat they should or should not be split (see for instance this interesting example).Averaging the silhouette coefficients over all data produces a measure of how appropriate (the higher,the better) is the partitioning:
s = 1

n

n∑
i=1 si.

2.5.3 Calinski-Harabasz indexAnother density-based index is the Calinski-Harabasz coefficient, which boils down to a normalized ratioof the between-cluster dispersion (or interclass inertia) and the within-cluster dispersion (or intraclassinertia):
s = n − k

k − 1 bw ,where b is the between-cluster dispersion
b = k∑

j=1
|Ĉj |
n
∥∥µ̂ − µ̂j

∥∥2
ℓ2 ,

95

http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html#sphx-glr-auto-examples-cluster-plot-kmeans-silhouette-analysis-py


and w is the within-cluster dispersion:
w = 1

n

k∑
j=1
∑
X∈Ĉj

∥∥X − µ̂j
∥∥2
ℓ2 ,

where µ is the global mean and µ̂j is the mean of the cluster Ĉj .
Remark 2.5.1. Paradoxically, both previous indexes are generally higher for convex clusters than for
other concepts of clusters, such as those produced by DBSCAN.
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Chapter 3

Dimensionality reduction

Dimensionality reduction is related to the concept of lossy compression in information theory. It consistsin transforming data from a high-dimensional space to new data from a lower-dimensional space, withas few loss of information as possible.Dimensionality reduction is motivated by:
⋄ computational challenges;
⋄ poor generalization ability (for example, for nearest neighbors classifiers, the sample complexityincreases exponentially with the dimension);
⋄ interpretability of the data (finding a meaningful structure, displaying the data).

Theorem 63 ([Shalev-Shwartz and Ben-David, 2014, Theorems 19.4 and 19.5]). Let X = [0, 1]d ,
Y = {±1}, k ∈ N∗ and (X1, Y1), . . . , (Xn, Yn), (X, Y ) iid. We note gn : X → Y the k-nearest
neighbor classifier based on (X1, Y1), . . . , (Xn, Yn), g⋆ : X → Y a Bayes classifier for (X, Y ) and
η : X → P (Y = 1 | X = x) the regression function.

For any distribution on (X, Y ) such that η is L-Lipschitz continuous for some L > 0 and for any
k ≥ 10:

P(gn(X ) ̸= Y ) ≤ (1 +√8
k

)
P(g⋆(X ) ̸= Y ) + 6L√d + k

n 1
d+1 .

Moreover, for all L > 1 and k ∈ N∗, there exists a distribution for (X, Y ) such that η is L-Lipschitz
continuous,

g⋆(X ) = Y a.s. and ∀n ≤ (L + 1)d2 , P(gn(X ) ̸= Y ) ≥ 14 .
It is easy to see that for the last term of the generalization bound in Theorem 63 to be smaller than ε > 0,we should have n ≥

( 6L√d+k
ε

)d+1. That is, the size of the training set should increase exponentiallywith the dimension. Besides, the rest of Theorem 63 tells us that this is not just an artifact of our upper
97



bound, since there exists distributions for which we need exponentially big training samples to get lowerrors. This phenomenon is often referred to as the curse of dimensionality.
Other examples of the curse of dimensionality
SamplingSampling evenly a unit hypercube with a lattice that has a spacing of ε ∈ (0, 1], requires ε−d points.For instance, for ε = 10−2, 100 points are required to sample the segment [0, 1] while 1020 points areneeded for the 10-dimensional unit hypercube.Reciprocally, 100 points represent well the segment [0, 1], while they are really insufficient for “covering”[0, 1]10.
Distance functionsGiven a radius r > 0, the ratio of the volumes of an inscribed hypersphere with radius r (in dimension
d) to a hypercube with edges of length 2r is given by

2rdπd/2
dΓ(d/2)(2r)d = πd/22d−1dΓ(d/2) = (√π2

)d 2
dΓ(d/2) ,where Γ is the gamma function and √π/2 ≈ 0.9. It is easy to see that this quantity goes exponentiallyfast to 0 when d grows. As a consequence, we are used to say that “points are concentrated in thecorners” of the hypercube. This assertion is enforced by the fact that the distance between a corner andthe hypercube center is r√d. In this sens, the major part of the high-dimensional space is far away fromthe centre.

The Volume is in a narrow AnnulusThe ratio of the volume of a sphere of radius (1 − ε)r (ε ∈ [0, 1], r > 0) to the volume of a sphere ofradius r is 2((1−ε)r)dπd/2
dΓ(d/2)2rdπd/2
dΓ(d/2) = (1− ε)d,

which decreases exponentially fast to 0 as d goes to infinity. In other words, in high dimensions, all ofthe volume of the sphere is concentrated in a narrow annulus at the surface.Going back to dimensionality reduction, this chapter mainly focuses on linear methods, that is, finding amatrix W ∈ Rp×d , where d is the input dimension and p is the desired reduced dimension, that inducesthe mapping φ : x ∈ Rd 7→ W x ∈ Rp. Without supervised information, a natural criterion for choosing
W is that the reduction mapping enables a reasonable recovery of the original data x .The fondamental hypothesis underlying dimensionality reduction is that data does not fill the entire spacebut lives in a manifold of small dimension. Informally, a manifold is a (topological) space, that is locallyhomeomorphic to the Euclidean space of dimension p (which is also the dimension of the manifold). Thelocally feature means that for any point, there exists a neighborhood (hence the need of the topology),that is homeomorphic to the Euclidean space.
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There are two points of view in dimensionality reduction:1. there is a manifold M ⊆ Rd of dimension p lower than d, in which we aim at “projecting” thedata with few distortion of the geometry;2. there is a manifoldM = f (Rp), where f : Rp →M is a homeomorphism with particular featuressuch as isometry. Then, we look for a latent variable y ∈ Rp such that x ≈ f (y).
3.1 Linear methods
3.1.1 Principal component analysisAs explained before, the most straightforward approach of dimensionality reduction is to find
⋄ a compression function φ : Rd → Rp;
⋄ a decompression function ψ : Rp → Rd ,where p < d is the reduced dimension, such that φ enables a reasonable recovery of the original data,

i.e. that ψ ◦φ has minimal reconstruction error. Given the random variable of interest X ∈ Rd (X ∈ L2),a natural variational formulation, of dimensionality reduction is
minimize
φ:Rd→Rp
ψ :Rp→Rd

E
[∥∥X − (ψ ◦ φ)(X )∥∥2

ℓ2
]
.

Since we are interested in linear methods, we assume that φ ψ are two linear functions. Then, theproblem boils down to finding a compression matrix W ∈ Rp×d such that φ : x ∈ Rd 7→ W x ∈ Rpand a recovery matrix U ∈ Rd×p such that ψ : y ∈ Rp 7→ Uy ∈ Rd . Then, the optimization problembecomes minimize
U∈Rd×p, W∈Rp×d

E
[∥∥X − UWX

∥∥2
ℓ2
]
. (P23)

Remark 3.1.1. When φ and ψ are parameterized by neural networks, this approach corresponds to
auto-encoders.

Property 64. If p ≤ d and (P23) admits a solution, then there exists V ∈ Rd×p, such that V ⊤V = Ip
and the pair (V , V ⊤) is also a solution to (P23), i.e. the compression φ : x ∈ Rd 7→ V ⊤x ∈ Rp

and recovery ψ : y ∈ Rp 7→ V y ∈ Rd functions are optimal for linear dimensionality reduction.

The proof will be done during the class.
Owing to the preceding lemma, (P23) boils down to minimizing E

(∥∥X − UU⊤X
∥∥2
ℓ2
) with respect to
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U ∈ Rd×p such that U⊤U = Ip. In addition, by simple algebra, one has
E
(∥∥X − UU⊤X

∥∥2
ℓ2
) = E

(∥∥X∥∥2
ℓ2 + X⊤UU⊤UU⊤X − 2X⊤UU⊤X)

= E
(∥∥X∥∥2

ℓ2 − X⊤UU⊤X
) (U⊤U = Ip)= E

(∥∥X∥∥2
ℓ2
)
− E

(
X⊤UU⊤X

)
= E

(∥∥X∥∥2
ℓ2
)
− E

(tr (X⊤UU⊤X)) (X⊤UU⊤X is a scalar)
= E

(∥∥X∥∥2
ℓ2
)
− E

(tr (U⊤XX⊤U)) (⋆)
= E

(∥∥X∥∥2
ℓ2
)
− tr (U⊤ E (XX⊤)U) ,

where we have used that the trace is invariant under cyclic permutations (⋆). Therefore, once again,(P23) boils down to maximize
U∈Rd×p:U⊤U=Ip tr (U⊤ E (XX⊤)U) . (P24)

By Theorem 59, it results that a solution to (P24) is U = V+, where V+ ∈ Rd×p is the matrix of theleading eigenvectors of E [XX⊤]. Then, dimensionality reduction mapping is φ : x ∈ Rd 7→ V ⊤+ x ∈ Rpand the reconstruction mapping ψ : y ∈ Rd 7→ V+y ∈ Rd . This approach is called PCA, due to itsrelation to eigendecomposition.
Remark 3.1.2. The proof of Theorem 59 tells us that

tr (V ⊤+ E
[
XX⊤

]
V+) = d∑

i=d−p+1 λi ≤
d∑
i=1 λi,

where 0 ≤ λ1 ≤ · · · ≤ λd are the sorted eigenvalues of E
[
XX⊤

]
. Since the bound is attained

for p = d (that is, there is no dimensionality reduction), the maximal value tr (V ⊤+ E
[
XX⊤

]
V+)

serves as an indicator of the “quality” of the approximation made when reducing the dimensionality
of the data.

Let us remark that we can go back to (P23):

E
[∥∥X − V+V ⊤+ X∥∥2

ℓ2
] = E

[∥∥X∥∥2
ℓ2
]
− tr (V ⊤+ E

[
XX⊤

)
V+]= E

[tr(XX⊤)]− tr (V ⊤+ E
[
XX⊤

)
V+]= tr [E(XX⊤)]− tr (V ⊤+ E

[
XX⊤

)
V+]

= d−p∑
i=1 λi.
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It comes then that the relative error of reconstruction is:

E
[∥∥X − (ψ ◦ φ)(X )∥∥2

ℓ2
]

E
[∥∥X∥∥2

ℓ2
] = ∑d−p

i=1 λi∑d
i=1 λi .

In addition, for all x ∈ Rd and j ∈ [p], (V ⊤+ x)j = ∑d
i=1(V+)ijxi. In particular, for all i ∈ [d], (V+)ij

describes the “influence” of the explicative variable xi to the j th component. Therefore, if |(V+)ij | is
large, it likely explains disparities of points in the j th direction of the reduced space.

3.1.2 Link with variance maximizationUp to now, PCA has been defined as building linear functions for compression and reconstruction (inother words, as projecting a random vector on a linear subspace with minimal error) but there is noreason not to consider an affine transformations (that is projecting on an affine subspace) :
minimize

U∈Rd×p,W∈Rp×d
µ∈Rp, λ∈Rd

E
[∥∥X − {U (WX + µ) + λ}

∥∥2
ℓ2
]
.

It comes trivially that, for (U,W ) fixed, the optimal pairs (µ, λ) are{
µ ∈ Rp

λ = EX − UW EX − Uµ.

In particular, we choose µ = 0, which leads to λ = EX − UW EX and to the affine PCA problem:
minimize

U∈Rd×p, W∈Rp×d
E
[∥∥(X − EX )− UW (X − EX )∥∥2

ℓ2
]
.

That is why, it is a common practice to center the data before applying PCA, namely considering therandom variable Z = X − EX instead of X . Then, PCA aims at solving
maximize

U∈Rd×p:U⊤U=Ip tr (U⊤ E [ZZ⊤]U) = tr (U⊤V(X )U) ,
where V(X ) = E

[(X − EX )(X − EX )⊤] is the covariance matrix of X . If follows that the principalcomponents (the column vectors of V+) are the orthonormal vectors that “maximize the variance of X ”.To be more formal, let us describe what we mean by “maximizing” the variance of X . For this purpose,we define recursively the sequence (u1, . . . , up). Let u1 ∈ Rn be the normalized vector (direction) thatmaximizes the unidirectional variance of X , namely a solution to:
maximize

u∈Rd
V(u⊤X )s. t. ∥u∥ℓ2 = 1. (P25)
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Then, for all k ∈ [p − 1], given (u1, . . . , uk ), let uk+1 be solution to
maximize

u∈Rd
V(u⊤X )

s. t. { ∥u∥ℓ2 = 1
∀j ∈ [k ] : u⊤uj = 0. (P26)

Now, we will show by induction that (up, . . . , u1) corresponds to the principal components, namely thecolumn vectors of V+, which are also the leading eigenvectors of V(X ).First, since V(u⊤X ) = u⊤V(X )u = tr (u⊤V(X )u), by Theorem 59, the leading eigenvector of V(X ) issolution to (P25). So we can set u1 = vd (with the preceding notation).Second, for any k ∈ [p − 1], let us assume that (uk , . . . , u1) = (vd−k+1, . . . , vd). Since (u1, . . . , uk )are fixed, maximizing V(u⊤X ) = u⊤V(X )u is the same as maximizing u⊤V(X )u +∑k
j=1 u⊤j V(X )uj .Therefore, (P26) is similar to

maximize
u∈Rd, U∈Rd×(k+1)

k∑
j=1 u

⊤
j V(X )uj + u⊤V(X )u = tr (U⊤V(X )U)

s. t. {
U = [u|uk | . . . |u1] = [u|vd−k+1| . . . |vd ]
U⊤U = Ik+1.

(P27)
Let us remark that (P27) has a solution since (vd−k+1, . . . , vd) are orthonormal. Now, let us consider
V+ = [vd−k |vd−k+1| . . . |vd ]. Then, by Theorem 59, tr (V ⊤+ V(X )V+) ≥ tr (U⊤V(X )U) for all U ∈
Rd×(k+1) such that U⊤U = Ik+1. In particular, this is also true for all U that fulfill the constraint of(P27) (said admissible). Since V+ is also admissible, this proves that V+, along with its first column
u = vd−k , is a maximizer of (P26).

Remark 3.1.3. As explained previously,
∑d

i=d−p+1 λi measures the quality of the approximation made

by PCA with p components. In view of the variance maximization paradigm, r = ∑d
i=d−p+1 λi∑d

i=1 λi is often
called the “ratio of explained variance” and is a normalized indicator of the quality of approximation.

3.1.3 Link with the Gram matrixIn practice, we are provided with a sample {X1, . . . , Xn} ⊆ Rd . Then, considering the empirical twin of
E[XX⊤], which is 1

n
∑n

i=1 XiX⊤i , PCA boils down to finding the p leading eigenvectors of the empirical(and scaled by n) covariance matrix C = ∑n
i=1 XiX⊤i = X⊤X ∈ Rd×d , where X ∈ Rn×d is the matrixwhose rows are the observations Xi (i ∈ [n]).As we are interested in dimensionality reduction, it is quite licit to assume that the dimension d isvery big and that d ≥ n. Therefore, PCA has to diagonalize a (big) d × d matrix, while saving onlythe p leading eigenvectors. The forthcoming property tells us that (as long as the reduced dimension

p ≤ n) PCA can be implemented in a cheaper manner by diagonalizing the (small) Gram matrix
K = (X⊤i Xj)1≤i,j≤n = XX⊤ ∈ Rn×n.
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Property 65. Let us assume that d ≥ n. Then if λ1 ≤ · · · ≤ λn are the eigenvalues of K with
eigenvectors (v1, . . . , vn), then there exists (u1, . . . , ud−n) ∈ (Rd)d−n such that 0 ≤ · · · ≤ 0 ≤
λ1 ≤ · · · ≤ λn are eigenvalues of C with eigenvectors (u1, . . . , ud−n,X⊤v1, . . . ,X⊤vn).

The proof will be done during the class.Then, in order to built the dimensionality reduction mapping x ∈ Rd 7→ V ⊤+ x ∈ Rp, we have tonormalize the leading eigenvectors (vn−p+1, . . . , vn) of K to unit vectors:
V+ = [ 1∥∥X⊤vn−p+1∥∥ℓ2 X⊤vn−p+1| . . . | 1∥∥X⊤vn

∥∥
ℓ2

X⊤vn

]
∈ Rd×p.

Remark 3.1.4. Then for all i ∈ [p], we have∥∥X⊤vn−p+i∥∥2
ℓ2 = v⊤n−p+iKvn−p+i = λn−p+i ∥∥vn−p+i∥∥2

ℓ2 = λn−p+i.
In addition, the matrix of reduced representations is(

V ⊤+ X⊤
)⊤ = XV+

= [ Kvn−p+1∥∥X⊤vn−p+1∥∥ℓ2
∣∣∣∣∣ . . .

∣∣∣∣∣ Kvn∥∥X⊤vn
∥∥
ℓ2

]
= [λn−p+1vn−p+1√

λn−p+1
∣∣∣∣∣ . . .

∣∣∣∣∣ λnvn√λn
]

= [√λn−p+1vn−p+1∣∣∣ . . . ∣∣∣√λnvn
]
.

Remark 3.1.5 (PCA and spectral clustering). Let us go back to spectral clustering: the Gram matrix
K can legitimately be viewed as an adjacency matrix. Moreover, if all points have approximately the
same degree, that is D ≈ γIn, then the minor eigenvectors of the Laplacian L = D −K correspond
to the leading eigenvectors of K . As a result, PCA and spectral clustering boil down to perform
almost the same dimensionality reduction, while their purposes are completely different.

3.1.4 Link with singular valuesThe next theorem gives a more general solution to PCA.
Theorem 66 (singular value decomposition (SVD) [Shalev-Shwartz and Ben-David, 2014, Ap-pendix C.4]). Let m and n be two positive integers and A ∈ Rm×n. Let r = rank(A) be the
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rank of A, then there exist U ∈ Rm×r , D ∈ Rr×r and V ∈ Rn×r such that

A = UDV ⊤,

and

⋄ the columns of U are orthonormal: U⊤U = Ir ;
⋄ D is diagonal with positive and uniquely defined entries σ1, . . . , σr (called singular values);
⋄ the columns of V are orthonormal: V ⊤V = Ir .

Furthermore, denoting U = [u1| . . . |ur ] and V = [v1| . . . |vr ], one has:

⋄ A = ∑r
i=1 σiuiv⊤i ;

⋄ for all i ∈ [r ], ui and vi are left and right singular vectors: Avi = σiui and A⊤ui = σivi;
⋄ for all i ∈ [r ], ui is an eigenvector of AA⊤ with eigenvalue σ 2

i ;
⋄ for all i ∈ [r ], vi is an eigenvector of A⊤A with eigenvalue σ 2

i .

In practice, SVD is a tool from linear algebra, that is more robust than eigendecomposition for solvingPCA. It computes neither X⊤X nor XX⊤. In addition, PCA is performed even faster by computing thetop p singular values, along with the left and right singular vectors of X thanks to a truncated SVD.Let us remark that for computing the dimensionality reduction mapping, we need the eigenvectors of
C = X⊤X, i.e. the right singular vectors, and for the matrix of reduced representations, the eigenvectorsof K = XX⊤, i.e. the left singular vectors.
Algorithm 15 Reduced representation by PCA.
Input: X ∈ Rn×d (data matrix), p (reduced dimension).

Second order matrix
C ← X⊤X
V ← p leading eigenvectors of C
U ← XV
Gram matrix
K ← XX⊤
λ1, . . . , λp ← p leading eigenvalues
V ← p leading eigenvectors of K
U ←

[√
λ1v1| . . . |√λpvp

]
SVD
σ1, . . . , σp ← p leading singular values of X
V ← p leading left singular vectors of X
U ← [σ1v1| . . . |σpvp]

Output: U ∈ Rn×p.
3.1.5 Random projectionAlthough PCA is very appealing by its simplicity and probabilistic interpretation, it requires computingsingular vectors, which can be very expensive for very high-dimensional data, or very big samples. Thatis why, we describe in this section a very cheap way of reducing dimension. Here, the criterion of interest
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is not a reasonable recovery of the original data but saving the original placement of the data points
{X1, . . . , Xn} with respect to each other. In other words, we would like to preserve pairwise distances.Roughly speaking, Theorem 68 states that if the reduced dimension p is proportional to log(n)/ε2, thena random matrix W ∈ Rp×d produces a dimensionality reduction mapping φ : x ∈ Rd 7→ W x ∈ Rp,that preserves pairwise distances up to an error ε .

Lemma 67 (Concentration of a chi-squared variable). Let p ∈ N∗ and Z ∼ χ 2
p . Then for all

ε ∈ (0, 1):
P
(∣∣∣∣Zp − 1∣∣∣∣ > ε

)
≤ 2 e− pε28 .

The proof is a good exercise.
Theorem 68 (Johnson-Lindenstrauss Lemma). Let S ⊆ Rd be a finite set of vectors with cardinality
n ≥ 2 and W ∈ Rp×d be a random matrix such that its entries {Wij} 1≤i≤p1≤j≤d are iid and distributed

according to N
(0, 1

p

)
. For any (ε, δ ) ∈ (0, 1)2, if

p ≥ 16ε−2 log (n/√δ) ,
then with probability at least 1− δ on the random matrix W ,

∀(x, x ′) ∈ S2 : (1− ε) ∥∥x − x ′
∥∥2
ℓ2 ≤

∥∥Wx −Wx ′
∥∥2
ℓ2 ≤ (1 + ε) ∥∥x − x ′

∥∥2
ℓ2 .

The mapping x ∈ Rd 7→ W x ∈ Rp is called an ε-isometry on S.

The proof will be done during the class.
Remark 3.1.6. The underlying idea of this approach is that the reduction mapping x ∈ Rd 7→
W x ∈ Rp is an exact isometry “in expectation”:

∀x ∈ Rd : E
(∥∥Wx

∥∥2
ℓ2
) = ∥x∥2

ℓ2 .

Indeed, since for all x ∈ Rd such that x ̸= 0,
p
∥∥Wx

∥∥2
ℓ2∥x∥2

ℓ2 ∼ χ 2
p , one has

E
(∥∥Wx

∥∥2
ℓ2
) = ∥x∥2

ℓ2
p E

p
∥∥Wx

∥∥2
ℓ2∥x∥2

ℓ2

 = ∥x∥2
ℓ2

p p = ∥x∥2
ℓ2 .

Let us remark that it is enough for {Wij} 1≤i≤p1≤j≤d to be independent with EWij = 0 and V(Wij ) = 1
p

(for all i ∈ [p] and j ∈ [d]) in order to get an exact isometry “in expectation”. Indeed, denoting
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Z = Wx, we have for all i ∈ [p], E Zi = 0 and V(Zi) = ∑d
j=1 x2

j V(Wij ) = ∥x∥2
ℓ2

p . Then, it comes:

E
[∥∥Wx

∥∥2
ℓ2
] = E

[∥∥Z∥∥2
ℓ2
] = p∑

i=1 E
[
Z 2
i
] = p∑

i=1
[
V(Zi) + (E Zi)2] = ∥x∥2

ℓ2 .

Remark 3.1.7. It is remarkable that the requirement on the reduced dimension p ≥ 16ε−2 log(n/√δ )
does not depend on the original dimension d. This means that we could consider data in infinite-
dimensional Hilbert space.

The forthcoming corollary goes a step further Theorem 68, telling us that we can find very quickly alinear dimensionality reduction mapping, that is an exact ε-isometry on a given dataset. This is done bysampling a matrix and checking that it provides the expected result.
Corollary 69. Let S ⊆ Rd be a finite set of vectors with cardinality n ≥ 2. For any ε ∈ (0, 1), let
p be an integer such that

p ≥ 16ε−2 log(n),
then there exists a matrix W ∈ Rp×d such that

∀(x, x ′) ∈ S2 : (1− ε) ∥∥x − x ′
∥∥2
ℓ2 ≤

∥∥Wx −Wx ′
∥∥2
ℓ2 ≤ (1 + ε) ∥∥x − x ′

∥∥2
ℓ2 .

In addition, such a matrix can be found by a randomized algorithm, for which the expected time is
linear in n.

The proof will be done during the class.Figure 3.1 illustrates Corollary 69 regarding the minimal dimension required to get an ε-isometry. Weobserve that this is quite huge. Thus, random projection is a workable method only for very high-dimensional data. Otherwise, PCA should be preferred.

Figure 3.1: Curves p = 16ε−2 log(n) (presented bound) and p = 4
ε2/2−ε2/3 log(n) (Dasgupta and Gupta’simproved bound) for ε = 0.05.
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Besides, Figure 3.2 depicts the ratio ∥∥Wxi−Wxj
∥∥2
ℓ2∥∥xi−xj∥∥2

ℓ2 for two trials of random matrices W and a dataset of 50points uniformly sample on the hypercube [0, 1]10000. It appears that, in practice, a single trial is sufficientto get a suitable matrix W (which is dramatically faster than linear in n) and even if the first trial doesnot work, the ε-isometry requirement is violated only for few points. A possible explanation is that thelower bound of the probability of success of finding a suitable matrix W (1/n) is very loose because ofthe union bound used in the proof and of the lack of hypothesis on the data distribution.

Figure 3.2: Analysis of the requirement ∣∣∣∣∥∥Wxi−Wxj
∥∥2
ℓ2∥∥xi−xj∥∥2

ℓ2 − 1∣∣∣∣ ≤ ε , which is fulfilled for the left trial andviolated for the right one.
3.1.6 Reconstruction of random projectionsWhen we moved from PCA to random projections, we changed the paradigm of dimensionality reductionfrom a reasonable recovery to preserving pairwise distances. It is entirely licit to wonder if one has areasonable recovery of the original data when pairwise distances are preserved up to an error ε .An answer comes from the mathematical domain of compressed sensing (see Claire Boyer’s class), whichrequires nevertheless to modify our assumptions: from now on, we do not consider being provided witha finite set of points S any longer, but, given an integer s, we focus on all s-sparse vectors. A vector
x ∈ Rd is said s-sparse if its pseudo ℓ0-norm is bounded by s:

∥x∥ℓ0 = d∑
i=1 1xi ̸=0 ≤ s.

Theorem 70 ([Shalev-Shwartz and Ben-David, 2014, Theorem 23.9]). Let W ∈ Rp×d be a random
matrix such that its entries {Wij} 1≤i≤p1≤j≤d are iid and distributed according to N

(0, 1
p

)
, and s ∈ [d]

a sparsity level. For any (ε, δ ) ∈ (0, 1)2, if

p ≥ 100sε−2 log(40d/(δε)),
then with probability at least 1− δ on the random matrix W ,

∀x ∈ Rd : ∥x∥ℓ0 ≤ s, (1− ε) ∥x∥2
ℓ2 ≤

∥∥Wx
∥∥2
ℓ2 ≤ (1 + ε) ∥x∥2

ℓ2 .
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The matrix W is said to have the (ε, s)-restricted isometry property (RIP).

Theorem 70 gives a condition on the reduced dimension p for the dimensionality reduction mapping
x ∈ Rd 7→ W x ∈ Rp to be an ε-isometry on the set of all s-sparse vectors “in expectation”. It shouldbe noticed that, contrarily to the Johnson-Lindenstrauss Lemma (Theorem 68), this condition on p dependson the dimension d of the original data. Figure 3.3 compares both requirements.

Figure 3.3: Curves p = 100sε−2 log(40d/(δε)) (presented bound for reconstruction) and p =4
ε2/2−ε2/3 log(n) (improved random projection bound) for ε = 0.1.
Now, Theorem 71 states that we can recover the original data x ∈ Rd from its Gaussian random projection
Wx ∈ Rp by solving a convex optimization problem. This topic is studied in the minutest detail in ClaireBoyer’s class.

Theorem 71 ([Shalev-Shwartz and Ben-David, 2014, Theorem 23.7]). Let ε ∈ (0, 2/5), s ∈ [d] be a
sparsity level and W ∈ Rp×d be an (ε, 2s)-RIP matrix. Then,

∀x ∈ Rd : ∥x∥ℓ0 ≤ s, x ∈ arg min u∈Rd :
Wu=Wx

∥u∥ℓ1 ,
where ∥u∥ℓ1 = ∑d

i=1 |ui|.
Remark 3.1.8. It is quite natural to wonder which of PCA or random projection is preferable. To
answer this question, one can focus on the recovery property of each method.

On the one hand, PCA guarantees perfect recovery whenever the variable X lies in a linear subspace
of Rd , with dimension k less than the number p of selected components. Indeed, if R is the subspace
in which lies X and R⊥ is its orthogonal subspace, the k directions u ∈ Rd (∥u∥ℓ2 = 1) that
maximize the variance of u⊤X are necessarily in R (u⊤X = 0 as soon as u ∈ R⊥). Thus, if we
are interested in p ≥ k components, then the p directions that maximize the variance contain an
orthornomal basis of R, which guarantees perfect recovery of X from its projection.

On the other hand, Gaussian random projection guarantees perfect recovery whenever the original
data is sparse (in a well chosen basis).
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3.2 Nonlinear methods
3.2.1 Kernel principal component analysis
With the kernel trickLet {Xi}1≤i≤n ⊂ Rd be iid copies of X and k : Rd × Rd → R a kernel with feature map φ : Rd → G,where G is an appropriate Hilbert space (of dimension D, potentially infinite). As a reminder, we have
∀(x, x ′) ∈ Rd × Rd : k (x, x ′) = ⟨φ(x), φ(x ′)⟩G.Similarly to kernel Fisher discriminant analysis (Section 1.1.4), we consider the general method ofapplying PCA to the random variable Z = φ(X ) − E(φ(X )) ∈ G. As shown in Section 3.1.1, thisboils down to diagonalizing E(ZZ⊤), which may be an infinitely dimensional matrix (as soon as G is ofdimension ∞), that is a linear operator. From now on, we may use as a notation for all x ∈ Rd and
x ′ ∈ Rd , φ(x)⊤φ(x ′) = ⟨φ(x), φ(x ′)⟩G.Even though it seems quite difficult, we rely on Section 3.1.3, in which we have shown that, in itsempirical version, PCA can be performed by diagonalizing the Gram matrix KZ = (〈

Zi, Zj
〉
G

)
1≤i,j≤n ofthe sample {Zi}1≤i≤n, where for each i ∈ [n], Zi = φ(Xi)− 1

n
∑n

ℓ=1 φ(Xℓ ).Then, we can write the sample matrices
X = [φ(X1)| . . . |φ(Xn)]⊤ ∈ Rn×D, Z = [Z1| . . . |Zn]⊤ ∈ Rn×D,

the rows of which are the sample vectors. Since 1
n
∑n

ℓ=1 φ(Xℓ ) = X⊤1/n, it is easy to show that
Z = X−

[1
n

n∑
ℓ=1 φ(Xℓ )| . . . |1n n∑

ℓ=1 φ(Xℓ )]⊤ = X− 1

(1
n

n∑
ℓ=1 φ(Xℓ ))⊤ = (In −M)X,

where M = 11⊤/n ∈ Rn×n. Therefore
KZ = ZZ⊤ = (In −M)KX (In −M),

where KX = (〈φ(Xi), φ(Xj )〉G)1≤i,j≤n = (k (Xi, Xj ))1≤i,j≤n.
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Remark 3.2.1. More formally, one has, for all (i, j ) ∈ [n]2:
(KZ )ij = 〈Zi, Zj〉G

= 〈φ(Xi), φ(Xj )〉G + ∥∥∥∥∥1
n

n∑
ℓ=1 φ(Xℓ )∥∥∥∥∥

2
G

−
〈
φ(Xi), 1

n

n∑
ℓ=1 φ(Xℓ )〉

G

−
〈
φ(Xj ), 1

n

n∑
ℓ=1 φ(Xℓ )〉

G

= 〈φ(Xi), φ(Xj )〉G + 1
n2 ∑

1≤ℓ,h≤n ⟨φ(Xℓ ), φ(Xh)⟩G − 1
n

n∑
ℓ=1 ⟨φ(Xi), φ(Xℓ )⟩G − 1

n

n∑
ℓ=1
〈
φ(Xj ), φ(Xℓ )〉G

= (KX )ij + (MKXM)ij − (KM)ij − (MK )ij= ((In −M)KX (In −M))ij .
Remark 3.2.2. If the data is not centered, that is PCA is applied on the sample {φ(Xi)}1≤i≤n, then
the matrix to diagonalize is KX instead of KZ .

Let now (v1, . . . , vp) ⊂ Rn be the leading unit eigenvectors of KZ . The dimensionality reduction mappingis φ : x ∈ RD 7→ V ⊤+ x ∈ Rp, where
V+ = [ 1∥∥Z⊤v1∥∥ℓ2 Z⊤v1| . . . | 1∥∥Z⊤vp

∥∥
ℓ2

Z⊤vp

]
∈ RD×p.

We have, for all i ∈ [p], ∥∥Z⊤vi
∥∥2
G = v⊤i KZ vi = λi

∥∥vi∥∥2
ℓ2 = λi.

In addition, let U ∈ Rn×p be the matrix of reduced representations (that is (V ⊤+ [φ(Xi)− 1
n
∑n

ℓ=1 φ(Xℓ )])1≤i≤nare the rows of U) is
U = (V ⊤+ Z⊤

)⊤ = ZV+ = [KZ v1√
λ1 | . . . |

KZ vp√
λp

] = [√λ1v1| . . . |√λpvp
]
. (3.1)

Moreover, given a new point x ∈ Rd , its reduced representation u ∈ Rp is u = φ
(
φ(x)− 1

n
∑n

ℓ=1 φ(Xℓ )) =
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V ⊤+ (φ(x)− 1
n
∑n

ℓ=1 φ(Xℓ )), with, for all j ∈ [p]:
uj = λ−1/2

j v⊤j Z
(
φ(x)− 1

n

n∑
ℓ=1 φ(Xℓ ))

= λ−1/2
j

n∑
i=1 (vj )i(φ(Xi)− 1

n

n∑
ℓ=1 φ(Xℓ ))⊤(φ(x)− 1

n

n∑
ℓ=1 φ(Xℓ ))

= λ−1/2
j

n∑
i=1 (vj )i

k (x, Xi) + 1
n2 ∑

1≤ℓ,ℓ ′≤n k (Xℓ , Xℓ ′ )− 1
n

n∑
ℓ=1 (k (x, Xℓ ) + k (Xi, Xℓ ))


= λ−1/2

j

[ n∑
i=1 (vj )i(k (x, Xi)− 1

n

n∑
ℓ=1 k (Xℓ , Xi)

) + 1⊤vj
n

n∑
i=1
(1
n

n∑
ℓ=1 k (Xi, Xℓ )− k (x, Xi))]

= λ−1/2
j

 n∑
i=1
((vj )i − 1⊤vj

n

)
k (x, Xi) + 1

n
∑

1≤i,ℓ≤n
(
1⊤vj
n − (vj )i) k (Xi, Xℓ )


= n∑

i=1 (αj )ik (x, Xi)− 1
n
∑

1≤i,ℓ≤n(αj )ik (Xi, Xℓ ),where αj = λ−1/2
j
(
vj −

( 1
n1
⊤vj
)
1
) = λ−1/2

j (In −M)vj ∈ Rn for all j ∈ [p].This derivation shows that, as expected, we only need the kernel k (and not the — possibly infinitedimensional — feature mapping φ) to apply PCA in the feature space G.
Remark 3.2.3 (PCA and spectral clustering). See Remark 3.1.5.

RKHS point of viewFor the sake of simplicity, let us assume that the dataset is centered in G: 1
n
∑n

i=1 φ(Xi) = 0. Theprevious derivation boils down to uj = ∑n
i=1(αj )ik (x, Xi), where αj = λ−1/2

j vj for all j ∈ [p], i.e.

φ (φ(x)) =
h1(x)...
hp(x)

 ,

for some hj ∈ H, where H is the RKHS associated to k .Changing a bit the notation, let us consider the problem of determining a reduction mapping φ : x ∈
Rd 7→ (h1(x), . . . , hp(x)), where hj ∈ H for all j ∈ [p], and such that the components are orthonormalwith maximal variance:

maximize
h1,...,hp∈H

p∑
j=1 V(hj (X ))

s. t. {
∀j ∈ [p],∥∥hj∥∥H = 1
∀i, j ∈ [p], i ̸= j =⇒ 〈

hi, hj
〉
H = 0.
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Remarking that 1
n
∑n

i=1 φ(Xi) = 0 =⇒ 1
n
∑n

i=1 h(Xi) = 0, ∀h ∈ H, the empirical point of view of thelatter problem is maximize
h1,...,hp∈H

∑
1≤j≤p1≤i≤n

hj (Xi)2
s. t. {

∀j ∈ [p],∥∥hj∥∥H = 1
∀i, j ∈ [p], i ̸= j =⇒ 〈

hi, hj
〉
H = 0,

the maximizers of which being chosen in span {k (Xi, ·), i ∈ [n]}. Thus, considering hj = ∑n
i=1(α ′j )ik (·, Xi)for some α ′j ∈ Rn, the problem of maximal variance becomes

maximize
α ′1,...,α ′p∈Rn

p∑
j=1 α

′⊤
j K 2

Xα ′j

s. t. {
∀j ∈ [p], α ′⊤j KXα ′j = 1
∀i, j ∈ [p], i ̸= j =⇒ α ′⊤i KXα ′j = 0.

With the change of variable v ′j = K
12
X α ′j (assuming KX invertible), this boils down to solve

maximize
v ′1,...,v ′p∈Rn

p∑
j=1 v

′⊤
j KX v ′j

s. t. { ∀j ∈ [p],∥∥v ′j∥∥ℓ2 = 1
∀i, j ∈ [p], i ̸= j =⇒ v ′⊤i v ′j = 0.

Remembering that KZ = KX , it is clear that the p leading eigenvectors v1, . . . , vp of KZ are solution tothe latter problem, meaning that α ′j = K−
12

Z vj = λ−1/2
j vj = αj are solutions to the former problem.To sum up, applying kernel PCA with centered data in G is equivalent to building a nonlinear reductionmapping φ(x) = (h1(x), . . . , hp(x)), where h1, . . . , hp ∈ H are such that the empirical variance of hj (X )is maximal and h1, . . . , hp are orthonormal.

Remark 3.2.4. When the data is not centered, it should be considered φj = hj − 1
n
∑p

ℓ=1 hℓ , with
hj = ∑n

i=1(α ′j )ik (·, Xi) for some α ′j ∈ Rn, which leads for α ′1, . . . , α ′p to be solution to

maximize
α ′1,...,α ′p∈Rn

1
n

p∑
j=1 α

′⊤
j KX (In −M)KXα ′j

s. t. {
∀j ∈ [p], α ′⊤j KXα ′j = 1
∀i, j ∈ [p], i ̸= j =⇒ α ′⊤i KXα ′j = 0.

It can be shown that α ′j = (In−M)K− 12
Z vj = αj is solution to the latter problem, which is consistent

with the initial derivation.

112



3.2.2 Classical multidimensional scalingIn Section 3.1.5, we introduced the paradigm of preserving pairwise distances and showed that it wasconceivable with random projections (based on Gaussian matrices). More formally, for any ε ∈ (0, 1), weexhibited a matrix W ∈ Rp×d such that for all pairs of points of interest (x, x ′) ∈ Rd × Rd ,
(1− ε) ∥∥x − x ′

∥∥2
ℓ2 ≤

∥∥Wx −Wx ′
∥∥2
ℓ2 ≤ (1 + ε) ∥∥x − x ′

∥∥2
ℓ2 ,namely ∣∣∣∥∥x − x ′

∥∥2
ℓ2 −

∥∥Wx −Wx ′
∥∥2
ℓ2
∣∣∣ ≤ ε

∥∥x − x ′
∥∥2
ℓ2 .The approach, called multidimensional scaling (MDS), goes a step further by building representations, notnecessarily linear, that tend to preserve pairwise distances. Given a training sample {Xi}1≤i≤n ⊆ Rd ,MDS proceeds by defining a stress function S and minimizing it over the reduced representations

{zi}1≤i≤n.Classical scaling considers that the distance of each pair of points should be preserved, regardless ofhow far points are, namely ∣∣∣∥∥x − x ′
∥∥2
ℓ2 −

∥∥Wx −Wx ′
∥∥2
ℓ2
∣∣∣ ≤ ε.Let Z ∈ Rn×p be the matrix of which the rows are the reduced representations {zi}1≤i≤n. A naturalvariational formulation of the preceding criterion is to minimize the stress function

SC (Z) = ∑
1≤i̸=j≤n

(∥∥Xi − Xj
∥∥2
ℓ2 −

∥∥zi − zj
∥∥2
ℓ2
)2
.

Let X ∈ Rn×d be the matrix of which the rows are the training points {Xi}1≤i≤n, DX = (∥∥Xi − Xj
∥∥2
ℓ2
)

1≤i,j≤nand DZ = (∥∥zi − zj
∥∥2
ℓ2
)

1≤i,j≤n be respectively the squared pairwise distances. Then, we have
SC (Z) = ∥∥DX − DZ

∥∥2
F .

Since minimizing such a function with respect to Z may be difficult, classical scaling introduces the Grammatrices KX = XX⊤ ∈ Rn×n and KZ = ZZ⊤ ∈ Rn×n. This makes the problem simple since as soon aswe know KZ, Z can be obtained by factorization (see below).It should be noticed that DZ and KZ are linked together: let δX = diag(KX) ∈ Rn be the vector ofdiagonal items of KX. Then, one has
DX = δX1

⊤ + 1δ⊤X − 2KX. (3.2)
However, obtaining KX from DX (what we need in practice) is not so easy. That is why we make use ofthe matrix of centered data:

X′ = X− 1X̄⊤,where X̄ = 1
n
∑n

i=1 Xi. Let now KX′ = X′X′⊤ be the Gram matrix of the centered data.
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Property 72. One has
KX′ = −12HDXH,

where H = In − 1
n11

⊤ ∈ Rn×n.

The proof will be done during the class.
Remark 3.2.5. H is the PSD matrix of the orthogonal projection onto the vector space orthogonal
to range(1).
Property 73. One has ∥∥DX − DZ

∥∥
F ≤ 2(1 +√n) ∥∥KX′ − KZ

∥∥
F .

The proof will be done during the class.Property 73 tells us that minimizing the distance between KX′ and KZ makes the squared pairwisedistances closer. Therefore, we now aim at minimizing the stress function
S ′C (Z) = ∥∥KX′ − ZZ⊤

∥∥2
F = ∑

1≤i,j≤n
(〈

Xi − X̄, Xj − X̄
〉
ℓ2 −

〈
zi, zj

〉
ℓ2
)2

.

Such a problem is a low rank approximation problem. As explained in the forthcoming theorem, it issolved by the truncation of the smallest singular values of KX′ .
Lemma 74. Let A ∈ Rm×n be a matrix of rank r, with A = UDV ⊤ being its SVD. Then

∥∥A∥∥2
F = r∑

i=1 D
2
ii.

The proof will be done during the class.
Lemma 75 (Weyl’s inequality). Let A ∈ Rm×n and B ∈ Rm×n be two matrices and let us denote
q = min(m, n). Let (σ1(·), . . . , σq(·)) be the set of singular values (of a given matrix) sorted in
decreasing order and completed with 0 after the rank.

Then, for all (i, j ) ∈ [q]2 such that i+ j − 1 ∈ [q],
σi+j−1(A + B) ≤ σi(A) + σj (B).
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Theorem 76 (Eckart-Young-Mirsky theorem). Let A ∈ Rm×n be a matrix of rank r and let us denote
q = min(m, n). Then, for any p ∈ [q], a solution to

minimize
B∈Rm×n:rank(B)≤p

∥∥A − B
∥∥
F

is B⋆ = A if p ≥ r and if p < r, B⋆ = UD′V ⊤, where

⋄ A = UDV ⊤ is the SVD of A with singular values D11 ≥ · · · ≥ Dr ;
⋄ D′ ∈ Rr×r is such that D′ii = Dii for all i ∈ [p] and 0 otherwise.

The proof will be done during the class.From Theorem 76, we obtain that S ′C can be minimized by computing a low rank approximation K̃ of KX′and by factorizing K̃ in ZZ⊤. This is described in Algorithm 16. We can remark that the result obtainedfor kernel PCA (or centered linear PCA solved with the Gram matrix) is similar to classical MDS (seeEquation (3.1) and Remark 3.1.4). In fact, kernel PCA (with centered data) can be seen as classicalMDS applied in the feature space G. There is however a big difference: kernel PCA is a predictive (orinductive) model, while MDS is not (we have to know all points beforehand in order to transform them— it is a transductive method).
Algorithm 16 Classical multidimensional scaling.
Input: D ∈ Rn×n (matrix of squared pairwise distances), p ∈ [n] (reduced dimension).
KX′ ← − 12HDXHCompute the eigendecomposition ∑n

i=1 λiviv⊤i of KX′ , with λ1 ≥ · · · ≥ λn
Z←

[√
λ1v1| . . . |√λpvp

]
∈ Rn×p

{zi}1≤i≤n ← rows of Z
Output: {zi}1≤i≤n.

Remark 3.2.6. All this derivation is true for Euclidean distance matrices. However, classical MDS
may be performed with simple dissimilarity matrices. One should only take care of negative eigen-
values.

3.2.3 Metric and nonmetric multidimensional scalingClassical scaling is part of the family of metric scaling, because it tends to preserve pairwise distances.Two other approaches are included in this family.
Kruskal-ShepardKruskal-Shepard scaling is a variant of classical scaling, where squares have been dropped. The stressfunction to minimize is

SKS (Z) = ∑
1≤i̸=j≤n

(∥∥Xi − Xj
∥∥
ℓ2 −

∥∥zi − zj
∥∥
ℓ2
)2
.
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In practice, Kruskal-Shepard scaling is solved by the scaling by majorizing a complicated function(SMACOF) algorithm. It consists in majorizing SKS by a convex quadratic function.
Property 77. Let α ∈ Rn×n be a symmetric matrix. For any Y ∈ Rn×p, with rows denoted
{yi}1≤i≤n ⊆ Rp, ∑

1≤i̸=j≤n αij (zi − zj )⊤(yi − yj ) = tr(Z⊤VY),
where V ∈ Rn×n and for all i ∈ [n], Vii = 2∑ 1≤j≤n

j ̸=i αij and for all j ∈ [n], such that i ̸= j ,
Vij = −2αij .

The proof will be done during the class.Let, for all i ∈ [n] and j ∈ [n], dij = ∥∥Xi − Xj
∥∥
ℓ2 and δij = ∥∥zi − zj

∥∥
ℓ2 . Then,

SKS (Z) = ∑
1≤i̸=j≤n

(
dij − δij

)2
= ∑

1≤i̸=j≤n d
2
ij + ∑

1≤i̸=j≤n δ
2
ij − 2 ∑

1≤i̸=j≤n dijδij .In addition, ∑
1≤i̸=j≤n δ

2
ij = ∑

1≤i̸=j≤n(zi − zj )⊤(zi − zj ) = tr(Z⊤VZ),
where V ∈ Rn×n has 2(n − 1) on the diagonal and −2 elsewhere, and∑

1≤i̸=j≤n dijδij = ∑
1≤i̸=j≤n

dij
δij

1δij ̸=0δ2
ij = ∑

1≤i̸=j≤n
dij
δij

1δij ̸=0(zi − zj )⊤(zi − zj ) = tr(Z⊤V ′(Z)Z),
where V ′(Z) ∈ Rn×n has (2∑ 1≤j≤n

j ̸=i
dij
δij 1δij ̸=0)1≤i≤n on the diagonal and (−2dijδij 1δij ̸=0)1≤i̸=j≤n elsewhere.

Thus,
SKS (Z) = ∑

1≤i̸=j≤n d
2
ij + tr(Z⊤VZ)− 2 tr(Z⊤V ′(Z)Z).

But, for any Y ∈ Rn×p,
tr(Z⊤V ′(Y)Y) = ∑

1≤i̸=j≤n
dij∥∥yi − yj

∥∥
ℓ2

1∥∥yi−yj∥∥ℓ2 ̸=0(zi − zj )⊤(yi − yj )
≤

∑
1≤i̸=j≤n

dij∥∥yi − yj
∥∥
ℓ2

1∥∥yi−yj∥∥ℓ2 ̸=0 ∥∥zi − zj
∥∥
ℓ2
∥∥yi − yj

∥∥
ℓ2

= ∑
1≤i̸=j≤n dijδij1

∥∥yi−yj∥∥ℓ2 ̸=0
≤

∑
1≤i̸=j≤n dijδij ,
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by Cauchy-Schwarz and non-negativity of the weights inside the sum. As a consequence, by denoting
MKS (Z,Y) = ∑

1≤i̸=j≤n d
2
ij + tr(Z⊤VZ)− 2 tr(Z⊤V ′(Y)Y),

which is a convex quadratic function in Z, we obtain, for all Y ∈ Rn×p,
SKS (Z) ≤ MKS (Z,Y) and SKS (Z) = MKS (Z,Z).

Given Y ∈ Rn×p, the minimum of MKS (·,Y) can be obtained by Fermat’s rule:0 =∇ZMKS (Z,Y) = 2VZ− 2V ′(Y)Y,by symmetry of V . Since V is not necessarily full rank, it cannot be inverted. That is why we resort tothe Moore-Penrose inverse of V , denoted V +, in order to obtain a minimizer of MKS (·,Y):
Z = V +V ′(Y)Y.

Algorithm 17 SMACOF.
Input: d ∈ Rn×n (matrix of pairwise distances), p ∈ [n] (reduced dimension).
V ← matrix from Rn×n with 2(n − 1) on the diagonal and −2 elsewhere
V + ← Moore-Penrose inverse of V
Z← random matrix from Rn×p (initialization)
while not converged do
{zi}1≤i≤n ← rows of Z
δij ←

∥∥zi − zj
∥∥
ℓ2 for all (i, j ) ∈ [n]

V ′ ← matrix from Rn×n with (2∑ 1≤j≤n
j ̸=i

dij
δij 1δij ̸=0)1≤i≤n on the diagonal and (−2dijδij 1δij ̸=0)1≤i̸=j≤nelsewhere.

Z← V +V ′Z
end while
{zi}1≤i≤n ← rows of Z

Output: {zi}1≤i≤n.
The resulting procedure is described in Algorithm 17. It provides naturally a series of non-increasingstress values.
Sammon scalingSammon scaling goes back to the roots by considering the original criterion for preserving pairwisedistances: for all pairs of points of interest (x, x ′) ∈ Rd × Rd ,∣∣∣∥∥x − x ′

∥∥2
ℓ2 −

∥∥Wx −Wx ′
∥∥2
ℓ2
∣∣∣ ≤ ε

∥∥x − x ′
∥∥2
ℓ2 .A natural variational formulation is to minimize the Sammon mapping with respect to Z:

SS (Z) = ∑
1≤i̸=j≤n

(∥∥Xi − Xj
∥∥
ℓ2 −

∥∥zi − zj
∥∥
ℓ2
)2∥∥Xi − Xj

∥∥
ℓ2

.
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Nonmetric scalingIn some applications, like wine tasting for instance, pairwise distances are not as important as rankingof them: if for some (i, j , i′, j ′) ∈ [n]4, ∥∥Xi − Xj
∥∥
ℓ2 ≥

∥∥Xi′ − Xj ′
∥∥
ℓ2 , we would like a representation Zthat fulfills ∥∥zi − zj

∥∥
ℓ2 ≥

∥∥zi′ − zj ′
∥∥
ℓ2 . The major interest here is preserving the ordinal properties ofthe data. For this reason, nonmetric scaling aims at minimizing the stress function

SNM (Z, φ) = ∑1≤i̸=j≤n
(
φ
(∥∥Xi − Xj

∥∥
ℓ2
)
−
∥∥zi − zj

∥∥
ℓ2
)2

∑1≤i̸=j≤n ∥∥zi − zj
∥∥2
ℓ2

,

over representations Z and monotonically increasing functions φ.A naive algorithm in order to approximate a minimizer of SNM is to alternate minimization over Z (forinstance thanks to a subgradient descent) for a fixed φ, and isotonic regression to approximate φ given
Z.
3.3 Other methods
3.3.1 Spectral embeddingAs explained in Section 2.2.5, spectral clustering boils down to finding a novel representation of thetraining data and then performing a k-means. This new representation is in fact a dimensionalityreduction technique, called spectral embedding.
3.3.2 Linear discriminant analysisDimensionality reduction can be performed naturally in a supervised manner, taking into consideration thederivation of multiclass discriminant analysis (Section 1.1.5). It has been shown that the (let us say, p)leading eigenvectors of Σ−1M (see notation in Section 1.1.5), denoted (v1, . . . , vp) ⊆ Rn, concentrate thevariability between features. Thus, x ∈ Rd 7→ [v1| . . . |vp]⊤ x ∈ Rp defines a dimensionality reductionmapping. In fact, when p = C − 1 (C being the number of classes), this mapping projects the data ontothe subspace spanned by the class centers, which is enough to discriminate points.
3.4 Exercises
3.4.1 Random projection
Exercise 3.1 (Concentration of a chi-squared variable). Let k be a positive integer and Z ∼ χ 2

k . Themoment-generating function of Z is defined for all λ < 12 by:
E
(
eλZ
) = (1− 2λ)− k2 .

1. Show that for all x ≤ 14 : 1√1− 2x ≤ ex+2x21x≥0 + ex+x21x<0.
118



Prove that for all ε ∈ [0, 1],
P
(
Z
k − 1 ≥ ε

)
≤ e−k ε

28 .

Prove that for all ε ≥ 0,
P
(
−
(
Z
k − 1) ≥ ε

)
≤ e−k ε

24 .

Deduce that ∀ε ∈ [0, 1],
P
(∣∣∣∣Zk − 1∣∣∣∣ ≥ ε

)
≤ 2e−k ε28 .
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Sorbonne Université Introduction à l’apprentissage automatique 12 novembre 2021

Examen :
Introduction à l’apprentissage automatique

12 novembre 2021

Aucun document n’est autorisé.
Les questions peuvent être traitées de manière indépendante en admettant les résultats des

questions précédentes.
Le barème (sur 20 points, auxquels s’ajoutent 2 points bonus) n’est donné qu’à titre indicatif.

Exercice 1 (Questions de cours, 4 points)

1. (1 point) Soient {(xi, yi)}1≤i≤n ⊂ Rd × {±1} et C > 0. Construire un classifieur SVM
revient à déterminer

(ŵn, b̂n) ∈ argminw∈Rd,b∈R
1

2
∥w∥2ℓ2 + C

n∑

i=1

max
(
0, 1− yi(w

⊤xi + b)
)
.

a) Expliquer le rôle de chacun des deux termes dans la fonction à minimiser.

b) Quelle est la particularité de ce modèle par rapport à celui de régression logistique ?

2. (1 point) Soient {(xi, yi)}1≤i≤n ⊂ Rd×R, λ > 0 et H est RKHS de noyau k : Rd×Rd → R.
On définit alors

L : h ∈ H 7→ λ

2
∥h∥2H +

n∑

i=1

∥h(xi)− yi∥2ℓ2 .

a) Pour tout h ∈ H, on appelle h∥ la projection de h sur span{k(·, x1), . . . , k(·, xn)} et

h⊥ = h− h∥. Montrer que
∑n

i=1 ∥h(xi)− yi∥2ℓ2 =
∑n

i=1

∥∥h∥(xi)− yi
∥∥2
ℓ2
.

b) En déduire que L(h) ≥ L(h∥).

3. (2 points) Soient r > 0 et x ∈ Rd tel que ∥x∥ℓ2 > r. On souhaite retrouver la projection

de x sur la boule de rayon r, Br =
{
y ∈ Rd, ∥y∥ℓ2 ≤ r

}
, par dualité lagrangienne. Pour ce

faire, on résout
minimiser

y∈Rd
∥y − x∥2ℓ2

s. c. ∥y∥2ℓ2 ≤ r2.

a) Vérifier que le problème et convexe et que les conditions de qualification de Slater
s’appliquent.

b) Définir un lagrangien pour ce problème.

c) Énoncer les conditions KKT.

d) En déduire une expression de la projection de x sur Br.
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Exercice 2 (Algorithme EM, 71/2 points)
Soient {(Xi, Yi)}1≤i≤n des paires indépendantes de variables aléatoires à valeurs dans R ×
{b1, b2}, avec {b1, b2} ⊂ R, telles que pour tout i ∈ J1, nK :

P(Yi = b1) = α0 et Xi

∣∣Yi ∼ N
(
a⊤i β0 + Yi, σ

2
0

)
,

où (α0, β0, σ
2
0) ∈]0, 1[×Rd × R∗

+ est un jeu de paramètres inconnus (les autres sont connus).
On suppose ici que l’on n’observe que {X1, . . . , Xn} et l’on souhaite estimer (α0, β0, σ

2
0) par

l’algorithme EM.

1. (1 point) Montrer que la formulation :




Xi = a⊤i β0 + Yi + ϵi, ∀i ∈ J1, nK
ϵ ∼ N (0, σ20In)

ϵ |= (Y1, . . . , Yn)
{Y1, . . . , Yn} i.i.d avec P(Y1 = b1) = α0

est compatible avec le modèle posé (en particulier, on pourra utiliser que deux couples
(Xi, Yi) et (Xj , Yj), pour i ̸= j dans J1, nK, sont indépendants si pour toutes fonctions
boréliennes bornées φ et ψ, E[φ(Xi, Yi)ψ(Xj , Yj)] = E[φ(Xi, Yi)]E[ψ(Xj , Yj)]).

2. (1 point) En déduire une interprétation dudit modèle (on pourra se placer dans le cas
d = 1 et proposer une représentation graphique).

Le modèle correspond-il à un problème de classification ou de régression ? À plan d’expérience
fixé (fixed design) ou aléatoire ?

3. (1 point) Donner la loi jointe de (X1, Y1) (on précisera une mesure dominante). En déduire
un modèle statistique pour la loi de (X1, Y1) puis l’expression de la log-vraisemblance
ℓ(X,Y )n1

(α, β, σ2) d’un paramètre quelconque (α, β, σ2) ∈]0, 1[×Rd × R∗
+ (au regard de

{(X1, Y1), . . . , (Xn, Yn)}).
4. (1 point) Expliciter, pour tout x ∈ R, la loi de Y1

∣∣X1 = x.

On suppose disposer d’un estimateur candidat (α̂, β̂, σ̂2) de (α0, β0, σ
2
0). Construire n va-

riables aléatoires Z1, . . . , Zn visant à ≪ approcher ≫ Y1, . . . , Yn, connaissant l’estimateur
(α̂, β̂, σ̂2).

5. (1 point) En déduire que pour tout (α, β, σ2) ∈]0, 1[×Rd × R∗
+,

E[ℓ(X,Z)n1
(α, β, σ2)

∣∣X1, . . . , Xn]

= log(α)

n∑

i=1

pi + log(1− α)

(
n−

n∑

i=1

pi

)
− n

2

(
log(2π) + log(σ2)

)

− 1

2σ2

n∑

i=1

[
pi

(
Xi − (a⊤i β + b1)

)2
+ (1− pi)

(
Xi − (a⊤i β + b2)

)2]
,

où p1, . . . , pn sont à déterminer.

6. (2 points) En appelant A =



a⊤1
...
a⊤n


 ∈ Rn×d et en supposant que rang(A) = d, déterminer

argmax(α,β,σ2)∈]0,1[×Rd×R∗
+

E[ℓ(X,Z)n1
(α, β, σ2)

∣∣X1, . . . , Xn].
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7. (1/2 point) Décrire l’algorithme EM adapté au problème posé.

Exercice 3 (Clustering spectral, 81/2 points)
Soient {x1, . . . , xn} ⊂ Rd et s : Rd×Rd → R+ une mesure de similarité symétrique. On appelle
W = (s(xi, xj))1≤i,j≤n la matrice d’adjacence des données, D = diag(d1, . . . , dn) ∈ Rn×n la
matrice diagonale des degrés di =

∑n
j=1Wij et L = D − W le laplacien non-normalisé du

graphe associé. Soient de plus Ls = D−1/2LD−1/2 et Lw = D−1L les laplaciens normalisés.

Préliminaires

1. (1/2 point) Donner une condition suffisante sur s pour que D soit non-singulière.

2. (1/2 point) On suppose D non-singulière. Montrer que u ∈ Rn est vecteur propre de Lw

avec pour valeur propre λ ∈ R si est seulement si D1/2u est vecteur propre de Ls avec
pour valeur propre λ.

3. (1/2 point) En déduire que 1 et (
√
d1, . . . ,

√
dn) sont vecteurs propres de Lw et Ls respec-

tivement et déterminer les valeurs propres associées.

Partie A

Pour une partie I ⊂ J1, nK, on définit vol(I) =
∑

i∈I di et le vecteur

fI =

(√
vol(Ic)

vol(I)
1i∈I −

√
vol(I)

vol(Ic)
1i∈Ic

)

1≤i≤n

,

où Ic est le complémentaire de I dans J1, nK.
1. (1 point) Montrer que pour i ∈ I et j ∈ Ic, en notant fI i la i

e composante de fI ,

(fI i − fI j)
2 =

tr(D)

vol(I)
+

tr(D)

vol(Ic)
.

2. (1 point) Montrer que 1⊤DfI = 0 et f⊤I DfI = tr(D).

3. (1 point) Sachant que pour tout u ∈ Rn, u⊤Lu = 1
2

∑
1≤i,j≤nWij(ui − uj)

2, montrer que

f⊤I LfI = tr(D)



∑

i∈I
j∈Ic

Wij

vol(I)
+

∑
i∈Ic

j∈I
Wij

vol(Ic)


 .

4. (1 point) En déduire une réécriture du problème de Normalized cut dans le cas d’une seule
coupure (i.e. d’un partitionnement en deux groupes) et un relâchement de celui-ci sous la
forme d’un problème d’optimisation continue.

5. (1 point) Expliciter une solution du problème relâché.
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Partie B

On s’intéresse à présent au problème de partitionnement en k (entier supérieur à 2) groupes par
clustering spectral minimisant le coût Normalized cut, et on nomme donc U ∈ Rn×k la matrice
dont les colonnes sont les vecteurs propres de Ls associés aux k plus petites valeurs propres. On
souhaite, à partir de cette matrice, remonter à une partition I = (I1, . . . , Ik) de J1, nK telle que
≪ le sous-espace vectoriel engendré par la partition I ≫ soit aussi proche que possible de celui
engendré par les colonnes de H = D−1/2U , la matrice solution du problème relâché. Autrement
dit, on souhaite avoir range(D1/2YI) ≈ range(U), où YI = (1i∈Ij ) 1≤i≤n

1≤j≤k
∈ Rn×k est la matrice

one-hot encoding de la partition I.

Pour ce faire, on utilise une distance entre projecteurs :

L(I) = 1

2
∥PU − PI∥2F = k −

k∑

j=1

1

vol(Ij)

∑

i,ℓ∈Ij

√
didℓu

⊤
i uℓ,

où PU et PI sont les projecteurs orthogonaux sur range(U) et range(D1/2YI) respectivement,
u⊤i est la ie ligne de U et où l’on a remarqué que

∑
1≤i≤n
1≤j≤k

U2
ij = k.

1. (2 points) Montrer que, pour tout j ∈ J1, kK,

min
µ∈Rk

∑

i∈Ij
di

∥∥∥∥
ui√
di

− µ

∥∥∥∥
2

ℓ2

=
∑

i∈Ij
∥ui∥2ℓ2 −

1

vol(Ij)

∑

i,ℓ∈Ij

√
didℓu

⊤
i uℓ,

puis en déduire une formulation variationnelle du critère L(I) en fonction des lignes h⊤i =
u⊤
i√
di

de la matrice H.

2. (2 points (bonus)) Proposer une variante de l’algorithme des k-moyennes construisant une
suite de partitions (It)t≥1 telle que la suite (L(It))t≥1 soit décroissante (on justifiera ce
point).
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Notations

Dans tout le sujet, on notera :

1. N (µ,Σ) la loi normale multivariée d’espérance µ et de matrice de variance-covariance Σ
(symétrique et semi-définie positive), dont la densité (par rapport à la mesure de Lebesgue

sur Rd) lorsque Σ est définie positive est x ∈ Rd 7→ 1√
2π

d√
det(Σ)

e−
1
2
(x−µ)⊤Σ−1(x−µ).

2. B(p) la loi de Bernoulli de paramètre p ∈ (0, 1), qui a pour densité x ∈ {0, 1} 7→ px(1− p)1−x

(par rapport à la mesure de comptage sur {0, 1}).
3. B(m, p) la loi binomiale de paramètres m ∈ N⋆ et p ∈ (0, 1).

4. 1 le vecteur rempli de 1 (de taille adéquate).

5. In la matrice identité de taille n (la taille peut varier).

6. sign : x ∈ R 7→
{
1 si x > 0

−1 sinon.

Exercice 1 (Modèle mixte, 7 points)
Soit (X,Y ) une pair de variables aléatoires à valeurs dans Rd+m×{±1}. On souhaite modéliser
des données de la forme

X1 =




0.49
1.34
−0.70
−1.81
−0.02

1
0
1




, X2 =




0.69
−0.92
−0.07
−0.82
0.28
0
0
1




, X3 =




−0.74
−1.75
1.08
−0.15
−0.40

1
1
0




, . . .

Pour ce faire, on décompose X en

[
U
V

]
de sorte que (U, V ) soit à valeurs dans Rd × {0, 1}m,

U représentant les données continues, V les données discrètes. Soit maintenant le modèle





P(Y = 1) = π ∈ (0, 1)

U |Y = 1 ∼ N (µ+,Σ+) est indépendant de V |Y = 1 ∼ B(p1)⊗ · · · ⊗ B(pm)

U |Y = −1 ∼ N (µ−,Σ−) est indépendant de V |Y = −1 ∼ B(q1)⊗ · · · ⊗ B(qm),
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avec Σ+ et Σ− deux matrices de taille d × d symétriques et définies positives, µ+, µ− ∈ Rd,
p1, . . . , pm ∈ (0, 1), q1, . . . , qm ∈ (0, 1) 1.

1. (1 point) Donner une mesure dominante pour la loi de (X,Y ) ainsi qu’une fonction de
densité.

2. (11/2 points) Montrer que le classifieur de Bayes pour ce modèle est

g⋆ : (u, v) ∈ Rd × {0, 1}m 7→ sign

(
1

2
u⊤Qu+ α⊤u+ β⊤v + b

)
,

où




Q = Σ−1
− − Σ−1

+

α = Σ−1
+ µ+ − Σ−1

− µ−

β =
[
log
(
p1(1−q1)
q1(1−p1)

)
, . . . , log

(
pm(1−qm)
qm(1−pm)

)]

b = log
(

π
1−π

)
+ 1

2 log
(
det(Σ−)
det(Σ+)

)
+ 1

2

(
µ⊤−Σ

−1
− µ− − µ⊤+Σ

−1
+ µ+

)
+
∑m

j=1 log
(
1−pj
1−qj

)
.

3. (1 point) On suppose disposer d’un échantillon (X1, Y1), . . . , (Xn, Yn) de même loi que
(X,Y ). Préciser les estimateurs du maximum de vraisemblance des paramètres p1, . . . , pm,
q1, . . . , qm.

4. On suppose que Σ+ = Σ− = Id, π = 1
2 , p1 = · · · = pm, q1 = · · · = qm et µ+ ̸= µ−.

a) (1 point) Montrer que
α⊤U + b

∣∣Y = 1 ∼ N
(
δc, δ2

)
,

où δ = ∥µ+ − µ−∥ℓ2 et c = δ
2 + m

δ log
(
1−p1
1−q1

)
.

b) (11/2 points) En déduire que α⊤U + β⊤V + b
∣∣Y = 1 a même loi que

δc+ δA+ eB,

où A ∼ N (0, 1) |= B ∼ B(m, p1) et e = log
(
p1(1−q1)
q1(1−p1)

)
, puis que

P(g⋆(X) = −1
∣∣Y = 1) =

m∑

k=0

(
m

k

)
pk1(1− p1)

m−kΦ

(
−c− k

δ
e

)
,

où Φ est la fonction de répartition de N (0, 1).

c) (1 point) Conclure que lorsque p1 = q1, P(g⋆(X) ̸= Y ) = Φ
(
− δ

2

)
.

Exercice 2 (Régression à vecteurs supports, 51/2 points)
Soient (X1, Y1), . . . , (Xn, Yn) des couples aléatoires i.i.d. à valeurs dans Rd × R, ε > 0 et

ℓε : u ∈ R 7→ 1

2
max(0, |u| − ε)2.

1. Pour rappel, si (V1, . . . , Vm) ∼ P1 ⊗ · · · ⊗ Pm alors les variables aléatoires V1, . . . , Vm sont indépendantes et
Vi ∼ Pi, ∀i ∈ J1,mK.
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On considère un RKHSH de noyau k : Rd×Rd → R et, pour λ > 0, le problème d’optimisation :

minimiser
h∈H

λ

2
∥h∥2H +

n∑

i=1

ℓε (Yi − h(Xi)) . (P1)

1. (1 point) Est-ce un problème de classification ou de régression ? Quelle est sa particularité
par rapport à ce qui a été vu en cours ?

2. (1 point) Expliquer pourquoi le problème (P1) est équivalent à

minimiser
h∈H,ξ∈Rn

λ

2
∥h∥2H +

1

2
∥ξ∥2ℓ2

s. c. ∀i ∈ J1, nK





Yi − h(Xi) ≤ ξi + ε : αi ≥ 0
h(Xi)− Yi ≤ ξi + ε : βi ≥ 0
ξi ≥ 0 : δi ≥ 0

,
(P2)

où on a donné à titre indicatif les multiplicateurs de Lagrange αi, βi et δi (i ∈ J1, nK)
associés à chaque contrainte.

3. (11/2 points) Définir le lagrangien associé à (P2) et énoncer les conditions KKT.

4. (1 point) Montrer qu’en notant y = (Y1, . . . , Yn) ∈ Rn, le problème dual à (P2) est

maximiser
α∈Rn

+,β∈Rn
+,δ∈Rn

+

−1

2

(
α⊤Qα+ β⊤Qβ + ∥δ∥2ℓ2

)
− α⊤Pβ

−δ⊤(α+ β)− α⊤(ε1− y)− β⊤(ε1+ y),
(P3)

où 



K = (k(Xi, Xj))1≤i,j≤n

Q = In + K
λ

P = In − K
λ .

5. (1 point) Soient α ∈ Rn
+, β ∈ Rn

+. Montrer que ∀δ ∈ Rn
+, ∥δ∥2ℓ2 + 2δ⊤(α + β) ≥ 0 et en

déduire infδ∈Rn
+
∥δ∥2ℓ2 + 2δ⊤(α+ β). Montrer que (P3) est équivalent à

minimiser
α∈Rn

+,β∈Rn
+

1

2
α⊤Qα+

1

2
β⊤Qβ + α⊤Pβ + α⊤(ε1− y) + β⊤(ε1+ y).

6. (1 point (bonus)) On suppose ε = 0 et K inversible. Montrer que (P1) a une unique
solution et l’expliciter.

Exercice 3 (Analyse en composantes principales, 71/2 points)
Dans cet exercice, pour une matrice notée en majuscule, par exemple A ∈ Rn×d, nous noterons
en minuscule ces colonnes : a1, . . . , ad ∈ Rn. On rappelle qu’alors

range(A) = span({a1, . . . , ad}) =
{

d∑

i=1

tiai, t ∈ Rd

}
,

qui est un sous-espace vectoriel de Rn.
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De plus, pour une matrice Q ∈ Rn×n réelle symétrique, on appellera décomposition en éléments
propres de Q une factorisation Q = UΛU⊤, où U ∈ Rn×n est une matrice orthogonale (U⊤U =
In), dont les colonnes u1, . . . , un sont les vecteurs propres de Q, et Λ ∈ Rn×n est une matrice
diagonale, dont les éléments diagonaux sont les valeurs propres λ1 ≥ · · · ≥ λn de Q rangées par
ordre décroissant.

On notera alors, pour tout p ≤ n, Up = [u1| . . . |up] ∈ Rn×p la matrice rectangulaire des p
premières colonnes de U et

Λp =



λ1 . . . 0
...

. . .
...

0 . . . λp


 ∈ Rp×p

la matrice diagonale carrée des p premières valeurs propres.

1. a) (1 point) Soient Q ∈ Rn×n une matrice symétrique et semi-définie positive de rang r
et x ∈ Rn. Montrer que la projection orthogonale de x sur range(Q), notée Px, vérifie
Px = Qα avec α ∈ Rn tel que Qx = Q2α.

b) (11/2 points) Soit Q = UΛU⊤ une décomposition en éléments propres de Q. Montrer
que Q = UrΛrU

⊤
r puis que le projecteur orthogonal sur range(Q) est P = UrU

⊤
r .

2. (1 point) Soit A ∈ Rn×d (avec n ≤ d) une matrice de rang r ≤ n ≤ d. En remarquant que
range(A) = range(AA⊤), déterminer le projecteur orthogonal sur range(A).

3. a) (1 point) Soit AA⊤ = UΛU⊤ une décomposition en éléments propres de AA⊤. On
note

V = A⊤UrΛ
−1/2
r , avec Λ−1/2

r =



λ
−1/2
1 . . . 0
...

. . .
...

0 . . . λ
−1/2
r


 .

Montrer que les colonnes de V sont orthonormales.

b) (1 point) En notant Σ = Λ
1/2
r , montrer que UrΣV

⊤ = A.

La décomposition de la forme A = UΣV ⊤, où U ∈ Rn×r et V ∈ Rd×r sont deux
matrices possédant des colonnes orthonormales (U⊤U = Ir et V

⊤V = Ir) et Σ ∈ Rr×r

est une matrice diagonale, dont les éléments diagonaux σ1 ≥ · · · ≥ σr ≥ 0 sont rangés
par ordre décroissant, est appelée décomposition en éléments singuliers (SVD) de A.

4. (1 point) Comment peut-on lier une décomposition en éléments propres de A⊤A à une
décomposition en éléments singuliers de A ?

5. (1 point) Soient {X1, . . . , Xn} n vecteurs aléatoires i.i.d. à valeurs dans Rd tels que E[X1] =
0 et X ∈ Rn×d la matrice des données correspondante. Exprimer un estimateur de Var(X1)
en fonction de X puis décrire une procédure fondée sur la SVD permettant d’implémenter
l’analyse en p composantes principales des données, avec p ≤ r.

6. (1 point (bonus)) Exprimer la matrice (≪ des données réduites ≫) de taille n×p dont la ie

ligne est la compression de Xi en fonction des éléments singuliers déterminés à la question
précédente.

7. (1 point (bonus)) En remarquant que, pour tout matrice réelle B, range(B) = ker(B⊤)⊥

(l’espace orthogonal à ker(B⊤)), montrer que range(B) = range(BB⊤).



Sorbonne Université Introduction à l’apprentissage automatique 18 novembre 2023

Examen :
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Notations

Dans tout le sujet, on notera :

1. 1 le vecteur rempli de 1 (de taille adéquate).

2. 1A =

{
1 si A est vrai

0 sinon.

3. card (I) le cardinal de tout ensemble I ⊂ N.
4. In la matrice identité de taille n (la taille peut varier).

5. sign : x ∈ R 7→
{
1 si x > 0

−1 sinon.

6. ∥A∥F =
√
tr(AA⊤) la norme de Frobénius de toute matrice A.

Exercice 1 (Algorithme EM, 31/2 points)
Soient (X1, Y1), . . . , (Xn, Yn) des couples i.i.d. à valeurs dans N× {0, 1} telles que

{
Y1 ∼ B(π⋆), π⋆ ∈ ]0, 1[

X1

∣∣Y1 ∼ P(λ⋆
Y1
), λ⋆

Y1
> 0,

où B(π⋆) est la loi de Bernoulli de paramètre π⋆ et P(λ) la loi de Poisson de paramètre
λ > 0, de densité x ∈ N 7→ λx

x!
e−λ par rapport à la mesure de comptage sur N. Dans la

suite, on souhaite partitionner X1, . . . , Xn via l’algorithme EM.

1. (1 point) On suppose d’abord observer (X1, Y1), . . . , (Xn, Yn). Définir, pour tout
θ = (π, λ1, λ0) ∈]0, 1[×R∗

+ ×R∗
+ la log-vraisemblance ℓ(θ,X1, . . . , Xn, Y1, . . . , Yn) de

θ au regard des observations et donner l’estimateur du maximum de vraisemblance
de θ⋆ = (π⋆, λ⋆

1, λ
⋆
0).

2. (1/2 point) Déterminer la loi de Y1

∣∣X1, notée Qθ⋆,X1 .
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3. (1 point) On suppose maintenant n’observer que X1, . . . , Xn mais disposer d’un
estimateur candidat θ̂0. Soient alors Z1, . . . , Zn telles que Z1

∣∣ θ̂0, . . . , Zn

∣∣ θ̂0 sont

i.i.d. et pour tout i ∈ J1, nK, Zi

∣∣ (X1, . . . , Xn) = Zi

∣∣ (Xi, θ̂0) ∼ Qθ̂0,Xi
. Déterminer

argmaxθ∈]0,1[×R∗
+×R∗

+
F (θ

∣∣ θ̂0) = E
[
ℓ(θ,X1, . . . , Xn, Z1, . . . , Zn

∣∣ (X1, . . . , Xn)
]
.

4. (1 point) Décrire l’algorithme EM produisant la suite d’estimateurs (θ̂t)t≥1 dans ce
cas.

5. (1 point (bonus)) En raisonnant de manière générale et en appelant mθ⋆ la densité
marginale de X = (X1, . . . , Xn), montrer qu’à chaque iteration t ≥ 1,

log
(
mθ̂t+1

(X)
)
− log

(
mθ̂t

(X)
)
≥ 0.

On devra faire intervenir un vecteur aléatoire Z = (Z1, . . . , Zn) tel que

Z
∣∣X ∼ Qθ̂t,X1

⊗ · · · ⊗Qθ̂t,Xn
.

Exercice 2 (Clustering spectral, 31/2 points)
Soient {x1, . . . , xn} ⊂ Rd un jeu de données, s : Rd×Rd → [0, 1] une mesure de similarité
symétrique et W = (s(xi, xj))1≤i,j≤n la matrice de similarité correspondante. Nous avons
montré en cours que, pour n’importe quelle partition (I1, . . . , Ik) des indices J1, nK

RatioCut(I1, . . . , Ik) = tr(H⊤LH),

où L = ([
∑n

ℓ=1Wi,ℓ]1i=j −Wi,j)1≤i,j≤n et H =

(
1i∈Ij√
card(Ij)

)

1≤i≤n
1≤j≤k

.

1. (1 point) Rappeler l’algorithme de clustering spectral construit sur le RatioCut.

2. (1 point) Soit J = (1i∈Ij) 1≤i≤n
1≤j≤k

. Exprimer la matrice de projection orthogonale sur

range(J), notée PJ , qui est l’unique matrice de taille n × n telle que pour tout
x ∈ Rn,

{PJx} = argminy∈range(J) ∥x− y∥ℓ2
et montrer que sa décomposition en éléments propres est définie par les vecteurs

propres uj =

(
1i∈Ij√
card(Ij)

)

1≤i≤n

, j = 1 . . . k, de valeur propre commune 1.

3. (11/2 points) Soit S =
{
U ∈ Rn×k : U⊤U = Ik

}
. On souhaite illustrer l’assertion

≪ range(H) est l’espace vectoriel le plus proche de range(J) parmi ceux engendrés
par les matrices de l’ensemble S ≫. Pour ce faire, montrer que

H ∈ argminU∈S ∥PJ − PU∥F ,

où PU est le projecteur orthogonale sur range(U).
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Exercice 3 (Fonctions de perte pour la classification, 51/2 points)
On considère un couple aléatoire (X, Y ) à valeurs dans Rd × {±1} tel que η : x ∈
Rd 7→ P (Y = 1 | X = x) ∈ ]0, 1[. Soit maintenant φ : R → R une fonction convexe et
différentiable autour de 0 telle que

φ′(0) < 0 et argminu∈R φ(u) ̸= ∅.
Remarquons qu’en particulier :

∀u ∈ R : φ(u) ≥ φ(0) + φ′(0)u.

1. (11/2 points) En remarquant que φ′(0) = limu→0
u>0

φ(u)−φ(0)
u

, montrer que ∃ū > 0 :

φ(0) > φ(ū). En déduire que ∀u ≤ 0, φ(u) > φ(ū), puis que

argminu∈R φ(u) ⊂ R∗
+.

2. (11/2 points) Soient ℓ : R → R une fonction de perte convexe, positive et différentiable
autour de 0 telle que ℓ′(0) < 0. Justifier que pour tout x ∈ Rd

φ : u ∈ R 7→ E [ℓ(Y u) | X = x]

est coercive (i.e. lim−∞ φ = lim∞ φ = ∞). En appelant u∗
x un miniseur de φ sur R,

montrer que f ∗ : x 7→ u∗
x est minimiseur du risque

f 7→ E[ℓ(Y f(X))]

et que g⋆ : x 7→ sign(f ∗(x)) est un classifieur de Bayes.

3. (1 point) On choisit ℓ : u 7→ max(0, 1− u)2. Dessiner le graphe de φ puis exprimer
f ⋆ dans ce cas.

4. (11/2 points) Proposer une manière d’estimer g⋆ par un classifieur linéaire fondé sur
la minimisation d’un risque régularisé construit sur la perte ℓ et exprimer le gradient
de ce risque.

5. (1 point (bonus)) Montrer que pour ℓ : u 7→ 1
(1+eu)2

, f ⋆ : x 7→ log
(

η(x)
1−η(x)

)
.

Conclure.

Exercice 4 (Classification à noyau, 71/2 points)
Soient {(x1, y1), . . . , (xn, yn)} ⊂ Rd × {±1} un jeu de données, k : Rd × Rd → R un
noyau, H le RKHS associé et λ > 0. On s’intéresse à la construction d’un classifieur via
la résolution du problème d’optimisation

minimiser
h∈H, ξ∈Rn

λ

2
∥h∥2H +

1

2

n∑

i=1

ξ2i

s. c. ∀i ∈ J1, nK
{

Yih(Xi) ≥ 1− ξi : αi ≥ 0
ξi ≥ 0 : βi ≥ 0.

(P1)

dans le dual (on donne dans (P1) les multiplicateurs de Lagrange αi et βi associés à
chaque contrainte).
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1. (1 point) Les conditions de qualification de Slater sont-elles vérifiées ? Définir le
lagrangien L associé à (P1) et expliciter, pour tous α ∈ Rn

+ et β ∈ Rn
+, les conditions

de stationarité primale en (h, ξ) ∈ H × Rn :

∇hL(h, ξ, α, β) = 0 et ∇ξL(h, ξ, α, β) = 0.

2. (11/2 points) Montrer qu’un problème dual à (P1) est

maximiser
α∈Rn

+, β∈Rn
+

− 1

2λ
α⊤Qα + 1⊤α− 1

2
∥α + β∥2ℓ2 ,

où Q est une matrice à préciser, puis que ce problème est équivalent (au sens où
connaissant les solutions de l’un, on peut déterminer celles de l’autre et vice versa)
à

minimiser
α∈Rn

+

1

2λ
α⊤Pα− 1⊤α, (P2)

où P est une matrice à préciser.

3. (1 point) Montrer que P est symétrique et semi-définie positive. Que peut-on en
déduire de (P2) ?

4. (1 point) Expliciter les étapes d’un algorithme de résolution de (P2) de type ≪ des-
cente par coordonnée ≫.

5. (11/2 points) Énoncer les conditions KKT pour des candidats solutions (h⋆, ξ⋆) et
(α⋆, β⋆) et en déduire une classifieur issu de la résolution de (P1).

6. (11/2 points) Justifier que, connaissant h⋆, on peut choisir ξ⋆i = max (0, 1− Yih
⋆(xi))

pour tout i ∈ J1, nK. En déduire que pour tout i ∈ J1, nK, si Yih
⋆(xi) > 1, alors

α⋆
i = 0.

7. (1 point (bonus)) Proposer un critère d’arrêt pour l’algorithme itératif de la ques-
tion 4. Le justifier rapidement et expliciter le calcul.
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