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Abstract Reduced Basis Methods for the approximation to parameter-dependent Par-

tial Differential Equations are now well-developed and start to be used for industrial

applications. The classical implementation of the Reduced Basis Method goes through

two stages: in the first one, offline and time consuming, from standard approxima-

tion methods a reduced basis is constructed; then in a second stage, online and very

cheap, a small problem, of the size of the reduced basis, is solved. The offline stage is a

learning one from which the online stage can proceed efficiently. In this paper we pro-

pose to exploit Machine Learning procedures in both offline and online stages to either

tackle different classes of problems or increase the speed-up during the online stage.

The method is presented through a simple flow problem — a flow past a backward

step governed by the Navier Stokes equations — which shows, however, interesting

features.

This work is part of the activity of the “Institut Carnot Smiles” .

P. Gallinari & O. Schwander
Sorbonne Universités, UPMC Univ. Paris 06 and CNRS, UMR 7606,
LIP6, 4, Place Jussieu, 75252, Paris Cedex 05, France.
E-mail: {Patrick.Gallinari, olivier.schwander}@lip6.fr
Y. Maday
Sorbonne Universités, UPMC Univ. Paris 06 and CNRS, UMR 7598,
Laboratoire Jacques-Louis Lions, 4, Place Jussieu, 75252, Paris Cedex 05, France
Institut Universtaire de France
Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
E-mail: maday@ann.jussieu.fr
M. Sangnier
Sorbonne Universités, UPMC Univ. Paris 06, CNRS, FRE 3684,
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1 Introduction

Reduced Basis Methods (RBM) is a class of model order reduction techniques for

the approximation of the solution to parameter-dependent problems, stated e.g. as a

Partial Differential Equation (PDE), when many-query and/or real-time simulations

are required. They rely and exploit the fact that the solutions, as a function of the

parameter, look quite alike, and — stated in a more rigorous way — constitute a

manifold with a small Kolmogorov width. Most of the times, the RBM is deployed in

two stages. The first one, called “offline”, is a deterministic learning process where the

reduced basis is constructed by learning the similarities and the differences between

the various solutions for different values of the parameter. This learning process is

generally either based on a singular value decomposition of (large enough and pragmatic

discrete sample of) the manifold of all solutions or a greedy procedure based on an

(pragmatically accurate and reliable) error estimator. The second stage, called “online”,

consists in solving a (very) low-dimensional problem associated to, e.g. a Galerkin

approximation of the PDE on the space spanned by the reduced basis.

These approaches allow to lower significantly the complexity for approximating —

online — the solution to the PDE by exploiting the knowledge that is acquired during

the offline stage. The offline stage, on its own, requires classical approximations like

finite element or spectral methods in order to determine the basis functions. These

are written in terms of the (not reduced) finite element or spectral basis. During the

offline step, together with the construction of the RB, basic computations are done (like

construction of elementary mass and stiffness reduced matrices involving computation

within the finite element or spectral framework). These are then used, online, for rapid

construction and inversion of the Galerkin process either by affine assumption or use of

the Empirical Interpolation Techniques. The online cost is much reduced with respect

to the finite element case (typically scaling like N3 where N is the size of the reduced

basis, which is much smaller than the size N of the underlined discretization) leading

to a rapid procedure for many-query or real-time simulations. We refer to [1] [11], [12],

[14] and also to the recent books [5] and [13] for more on the subject of RBM.

Note that, actually, the reduced basis framework can even go beyond this basic

case by allowing reduced approximations of problems that could not be even solved

by classical approaches, because they would be too large. Examples are provided by

the reduced basis element method (RBEM) [10,9,8], and by the static-condensation

reduced basis element method (scRBEM) [6,7,15] that combine the domain decompo-

sition framework with the RB techniques. In these methods indeed a “large” domain is

decomposed into smaller “components” that, like in a “Lego-brick” construction, allow

to get together and re-constitute the domain Ω of interest. These components are all

deformations of few generic shapes. These generic shapes are “filled” with reduced bases

that represent local solutions to the given phenomenon that has been modeled through

the PDE on various deformations of the generic shapes. Hence, when transported back

to each subdomain from the domain decomposition, these reduced bases are able to

approximate well the local restriction of the solution defined on the whole domain.

The (offline) construction of the local solutions does not require using a large domain

for the finite element (say) simulation. Indeed, a moderate-sized domain, from which
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the local solutions are extracted, is generally good enough for this purpose. Once the

different “generic” local reduced bases are constructed, one can assemble the discrete

global space by gluing together (and the RBEM and scRBEM differ from the way the

glue is performed) the local solutions obtained by mapping on each subdomain the re-

duced basis from the relevant generic shape. The full (say finite element) discretization

method is thus never deployed on the whole domain but the reduced system is the only

one to be implemented. Note that during the online stage, the domains of interest can

be much larger than the ones used during the offline stage to construct the local RB.

The above strategy allows to understand that, if the solution to some PDE does

depend on the geometry, this dependence behaves in a reproducing way so that the

same part of the solution can be found in another configuration.

Our project here is to exploit this fact and go one step further and is rooted in the

following observations :

1. expert engineers generally envision what the solution of the system they know

well can be, and they can also detect incoherence in numerical solutions that are

proposed to them;1

2. users of numerical methods are able to recognize, among various numerical repre-

sentations of solutions, those that correspond e.g. to fluid flows from those corre-

sponding to wave propagation problems;

3. machine learning methods are now routinely able to classify pictures or features

representing different objects or situations;

4. machine learning methods are also able to mimic “input/output” systems.

For our project, in the framework of fluid flows, we want:

1. to reproduce — through an automatic procedure — the ability of expert engineers

of qualitatively approximating the solution to a given flow problem by assembling

a number of regimes that they have seen before. These flow regimes (effectively,

the pieces of the “puzzle”) are close to the “generic” local reduced bases that are

constructed in the reduced basis element method;

2. to simplify the construction of the reduced basis method by using a variety of

previously-computed approximations, by automatically deconstructing the global

solutions and by automatically classifying the different regimes;

3. to automatically identify, for a new configuration, a partition of the computational

domain such that each element of the partition is characterized by one of the

previously-observed flow regimes;

4. to propose an approximation by exploiting a library of flows.

The project is ambitious at the global level but partial realizations are already

interesting. The present paper is a first contribution in this direction, and deals with

a flow problem past a backstep.

2 Description of the model problem

Let us consider the domain Ω = (0, L1]× (0, H0) ∪ (L1, L)× (H0 −H1, H0) shown in

Figure 1. We set H0 = 1, and we consider L1, L,H1 as parameters of the model.

1 note, however, that this does not imply that numerical methods are not worthy as they can
lead to new solutions and also are able to be connected to optimization or control algorithms
based on mathematical concepts.
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Fig. 1: Laminar flow past a backstep: computational domain.

The flow in such a domain is characterized by its velocity field u : Ω → R2, and its

pressure field p : Ω → R solution to the steady Navier Stokes equations with parabolic

inflow at Γin: 

− 1
Re∆u + (u · ∇)u+∇p = 0 inΩ,

∇ · u = 0 inΩ

u(x) =

[
4 x2
H0

(1− x2
H0

)

0

]
onΓin

1
Re∂nu− pn = 0 onΓout

u = 0 on ∂Ω \ Γout

(1)

where x = (x1, x2) ∈ Ω. We observe that the solution pair (u, p) is uniquely determined

by the vector of parameters

µ = [Re, L1, H1, L] ∈ P, (2)

where P denotes the parameter domain, set here to P = [30, 100] × [3, 6] × [1.5, 2] ×
[10, 15]. To stress this dependence, we adopt notation (u(.;µ), p(.;µ)) to indicate the

solution to (1) for a given µ ∈ P. Similarly, we use notation Ω = Ω(µ) to indicate the

domain associated to the parameter µ ∈ P.

Figure 2 shows the first and the second components of the velocity field2 for three

values of the parameter µ ∈ P. We observe that the three solutions considered share

significant features among each other, and more in general we observe the same qualita-

tive physical behavior (nearly-parabolic flow, followed by a recirculating flow, followed

by another nearly-parabolic flow) for a significant range of parameters P.

The fact that these Figures look alike comes from the continuous dependence of

the solutions with respect to a (small at least) variation of the geometric or flow

parameters in P and implies a possible reduction from reduced basis method. As said

in the introduction, we consider the manifold of all (velocities) solutions to problem

(1) when the parameters vary.

Actually, as is the case in other situations where some knowledge on the flow can

be used to diminish further the Kolmogorov dimension of the manifold of solutions (see

e.g. ([2]) for hyperbolic flows with solutions with moving discontinuities), we are going

to exploit the presence of a recirculating zone with varying length.

Let us make this more precise : we can separate the flow into three separate regions,

or components similarly to RBEM or scRBEM, define two distinct flow regimes.

2 From now on, we restrict our attention to the velocity field. The same discussion can be
extended to the pressure field.
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(a) µ1 (b) µ2 (c) µ3

Fig. 2: Flow past a backstep: solution for three values of µ ∈ P: µ1 = [65, 4.5, 1.75, 12.5],

µ2 = [87, 3.4, 1.8, 11.4], µ3 = [93, 5.7, 1.5, 12.7].

– Entrance: before the step, the flow is roughly approximated by the Poiseuille flow,

almost independent of x1

u1(x) =
4x2
H0

(
1− x2

H0

)
, u2(x) ≡ 0.

– Region close to the step: the flow is here characterised by a laminar oblique

flow on top, and by a recirculating flow on the bottom.

– Exit: after the recirculating zone, the flow is again roughly approximated by the

Poiseuille solution:

u1(x) = 4
x2 +H1 −H0

H1

(
1− x2 +H1 −H0

H1

)
, u2(x) ≡ 0.

From a mathematical standpoint, we split the domain Ω in three subregions,

Ω1, Ω2, Ω3 corresponding to the two regimes identified before; then, we define a lo-

cal manifold for each subregion. In the remainder of the paper, we describe (i) how

to practically identify the subregions, and (ii) how to determine the coefficients of the

expansion during the online stage. In order to simplify the geometric transformation,

the interface between the two last regions will be chosen perpendicular to the channel,

at a proper abscissa ξ(µ) that will be defined later.

3 Construction of the solution manifolds

3.1 Decomposition of the solutions into Poiseuille component and recirculating one

In order to clarify the procedure, let us further discuss the application of the proposed

algorithm to the particular model problem at hand. We state upfront that the extension

of our approach to a larger class of problems requires some more investigation.

Motivated by the previous discussion, we wish to consider the global solution man-

ifold as the combination of (here) two distinct local manifolds corresponding to the

three regions (entrance, step, exit) of the flow taking into account that there are two

flow regimes (Poiseuille flow and recirculating flow).

By the physical argument exposed before, we first choose

Ω1(µ) = (0, L1)× (0, H0), Ω2(µ) = (L1, L1 + ξ(µ))× (H0 −H1, H0),

Ω3(µ) = (L1 + ξ(µ), L)× (H0 −H1, H0), (3)
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and we characterize the flow regime in each of the subdomains Ωk(µ) by labeling them

with an index `k(µ). Here we have the choice between two flow regimes : `k(µ) = 1 for

Poiseuille flow and `k(µ) = 2 for recirculating flow . Hence we set `1(µ) = `3(µ) = 1 and

`2(µ) = 2. We observe thatΩ2(µ) andΩ3(µ) depend on the quantity ξ : P → (0, L−L1)

introduced in the previous section that is for the moment only heuristically stated; we

discuss later how to choose it.

We then notice that the three regions are rectangles thus easily mapped to the unit

square Ĉ = (0, 1)2. We thus introduce the affine maps

Tk : Ĉ × P → Ωk(µ). (4)

Tk(x̂;µ) = Bk(µ)x̂+ bk(µ), more precisely

T1(x̂;µ) =

[
L1x̂1
H0x̂2

]
, T2(x̂;µ) =

[
L1 + ξ(µ)x̂1

H1x̂2 +H0 −H1

]
, (5)

T3(x̂;µ) =

[
L− (L− (L1 + ξ(µ)))x̂1
−H1x̂2 + (H1 −H0)

]
.

We observe that the choice of T3 is motivated by a symmetry argument so that the

sides corresponding to the true boundaries of Ω1(µ) and Ω3(µ) get mapped to the

same side of Ĉ.
Now, given the velocity field u(µ) : Ω(µ) → R2, and the linear maps Tk(µ) :

Ĉ → Ωk(µ), k = 1, 2, 3, we employ a Piola transformation to map the velocity to the

reference configuration in a convenient way3:

uref
k (x̂;µ) = |det(B(µ))|Bk(µ)−1u|Ωk(µ)(Tk(x̂;µ);µ). (6)

In section 4.4, we provide further details about the practical construction of uref
k for

finite element/spectral discretizations.

All these pieces are now defined on a unique reference domain Ĉ and we can build

the two manifolds :

– manifold of “Poiseuille-like” flows

Z(1) = span{uref
1 (.;µ),uref

3 (.;µ), µ ∈ P}; (7)

– manifold of “recirculation” flows

Z(2) = span{uref
2 (.;µ), µ ∈ P}. (8)

With these notations, we can now explain how to define properly the map ξ : P →
(0, L− L1) : it is chosen to maximise the averaged correlation between (i) the restric-

tion of u(x;µ) to Ω2(µ) and uref
2 ([T2(µ)]−1x;µref), and (ii) the restriction of u(x;µ)

to Ω3(µ) and uref
1 ([T3(µ)]−1x;µref). Here µref is the centroid of P, and we choose

ξ(µref) = 3 by inspection. In formulas, ξ(µ) is given by

ξ(µ) = arg max
ξ∈(0,L−L1)

ρ
(
uref
2 (·;µref , ξref),uref

2 (·;µ, ξ)
)

+ρ
(
uref
3 (·;µref , ξref),uref

3 (·;µ, ξ)
)

(9a)

where the correlation coefficient ρ : L2(Ĉ)× L2(Ĉ)→ [−1, 1] is given by the following

formula:

ρ(w,v) =
(w,v)

L2(Ĉ)

‖w‖
L2(Ĉ)

‖v‖
L2(Ĉ)

. (9b)

3 Remember that this Piola transformation preserves the incompressibility condition satis-
fied by the velocity field.
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3.2 Construction of the reduced velocity spaces

The two manifolds Z(1) and Z(2) being constructed — theoretically at least — we need

now to extract the reduced bases that approximate them well. A classical approach is

to use a Proper Orthogonal Decomposition (POD) of those over a sufficiently large

sample. We thus design a sufficiently large training set

Ptrain = {µp ∈ P, p = 1, . . . , ntrain}, (10)

where µ1, . . . , µntrain are randomly sampled from an uniform distribution over P. This

allows to define the training spaces Z(1)
train and Z(2)

train as follows

Z(1)
train = span{uref

1 (.;µp),uref
3 (.;µp), p = 1, . . . , ntrain} (11)

with dimension 2ntrain and

Z(2)
train = span{uref

2 (.;µp), p = 1, . . . , ntrain} (12)

with dimension ntrain.

We then perform a standard POD on the basis of these two spaces based on the

L2 – energy norm (i.e., ‖u‖2 :=
∫
Ω

∑2
i=1 u

2
i ) and consider the associated eigenmodes.

An indicator that the reduced approximation is consistent is that the eigenvalues

(when ranked in a decreasing order) converge to zero pretty fast : this is what we notice

indeed , look at Figure 3 where the eigenvalues are plotted for both spaces, computed

out of ntrain = 20 and ntrain = 200. We notice the fast decay and the fact that, even for

ntrain = 20, we are able to estimate the first N = 6, 7 eigenvalues extremely accurately.

(a) Z(1)
train (b) Z(2)

train

Fig. 3: Flow past a backstep: behavior of the POD modes for two datasets.

The reduced spaces Z(`)
N`

(` = 1, 2) are then constructed by retaining the N` most

energetic modes ζ
(`)
n associated to the largest eigenvalues extracted from Z(`)

train, they

produce the reference local reduced spaces for the velocity fields:

Z(`)
N`

= span{ζ(`)n : Ĉ → R2 : n = 1, . . . , N`}, ` = 1, 2. (13)
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The spaces {Z(`)
N`
}2`=1 will then allow to approximate, through the maps (5), the

flow in the three regions of the domains corresponding to the two flow regimes. Remem-

ber that they are defined over the reference configuration Ĉ and that Z(1)
N1

corresponds

to the “Poiseuille flow”, while Z(2)
N2

corresponds to the “recirculating flow”.

We can thus expect to approximate for any µ ∈ P the velocity as follows

u(x;µ) ≈ uN (x;µ) :=

N∑̀
n=1

un,k(µ)Pk

(
ζ(`)n

)
(x), x ∈ Ωk(µ); (14)

where Pk(w)(x) = 1
det(B(µ))w

(
[Tk(µ)]−1(x)

)
is the Piola transformation for the map

Tk(x̂;µ) = B(µ)x̂+b(µ). Like in any reduced basis method, the coefficients {un,k(µ)}n,k
must be estimated by resorting to some technique: for instance by projection based on

the mathematical model (1) or on a simplified version of it. Another difficulty though

appears as all the construction above is based on the definition of the quantity ξ asso-

ciated with the geometric transformation: recalling (9), the computation of ξ requires

the computation of the solution u(µ). Assuming that we know the optimal coefficients

{un,k(µ)}n,k and the mapping parameter ξ(µ), we can appreciate the accuracy of the

best approximation (14), Figures (6 (a)–(e)) below show that the mean relative L2(Ω)

error decreases rapidly with N as it should, and is about 10−3 for N = 10.

3.3 Algorithm for the Reduced Basis constructions

Algorithm 1 First offline stage : Construction of the Reduced Basis

Given the offline solutions {u(µp)}ntrain
p=1 , for randomly-sampled parameters µp from an uniform

distribution over P
1: set µref as the centroid of P, set ξ(µref) by inspection (here = 3), and build the K = 3

reference solutions uref
k (.;µref), k = 1, 2, 3 from (6).

2: For each µp ∈ Ptrain determine ξ(µp), by computing (9).
3: For each µp ∈ Ptrain determine the partition {Ωk(µp)}k (3), and the maps {Tk(·;µp)}k

(5), and consider the L ≡ 2 libraries of flow regimes {uref,1 (µp)}2ntrain
p=1 and {uref2 (µp)}ntrain

p=1 ,

4: apply POD based on the L2(Ĉ) – energy norm to each library to obtain the reduced spaces

Z(1)
N1

and Z(2)
N2

.

The difficulty now is to derive a workable evaluation of the map ξ and of the coefficients

{un,k(µ)}n,k that does not require (as we did in the above test reported in Figures

(6 (a)–(e)) to compute the solution u(µ) before approximating it by its reduced basis

representation (14).

We present in the next section a statistical learning procedure to evaluate both ξ

and the coefficients un,k(µ).
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4 Statistical learning approach for ξ and more

4.1 Automatic partitioning of the region after the step

Given the dataset {(µp, ξ(µp))}ntrain
p=1 generated applying Algorithm 1, we fit a regres-

sion tree4 (using the Matlab function fitrtree) ξlearned : P → R that approximates

the offline map ξ : P → R (9). Decision trees is a class of statistical learning methods

used both in classification and regression. The last situation is the one that meets our

expectations since we aim at estimating a real-valued (in opposition to binary-valued)

function ξ : P → R. In a nutshell, a regression tree is an iterative algorithm that fits a

piecewise constant function to the data.The constant cells are determined in the space

of parameters P in order that they are as homogeneous as possible regarding the value

to predict [4]. Let us note that the cells are rectangular since, at each iteration, a re-

gression tree chooses a cell, along with a single variable to split, so that homogeneity

is maximized on each side. In our implementation, a cell cannot be split if there are

less than 10 training points inside.

In order to assess the accuracy and determine whether or not to collect new data

(i.e., run new offline simulations), we resort to a cross-validation procedure. We ran-

domly partition the offline dataset into a subset of size 0.9ntrain and a subset of size

0.1ntrain. The former is used to learn the regressor, the latter is used to measure per-

formance. In this work, we compute the coefficient of determination R2:

R2(ξ) = 1−
∑ntest

p=1 (ξlearned(µ̃p))− ξ(µ̃p))2∑ntest

p=1 (ξ̄train − ξ(µ̃p))2
, ξ̄train =

1

ntrain

ntrain∑
p=1

ξ(µp).

The coefficient of determination measures the proportion of the variance in the depen-

dent variable that is predictable from the independent variables: a value close to zero

means that the regressor is highly-inaccurate and/or the independent variables are not

informative about the quantity we wish to predict, while a value close to one proves

that the regressor is accurate. We consider B independent random splits in order to

reduce the effect of the particular split considered. Figure 4 shows the histogram of R2

for B = 2000 and ntrain = 200. The averaged value of the R2 is equal to 0.93.

Fig. 4: Flow past a backstep: histogram of the out-of-sample coefficient of determination

(R2) based on B 0.9-0.1 random split of the dataset (B = 2000, ntrain = 200). The

averaged R2 is equal to 0.93.

4 Note that in this paper regression trees have been chosen because it is a classical regressor,
but any other regressor could have been used.
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Another approach — which is not computationally practical — to measure the

performance of the regressor is to consider the behavior of the exact projection on the

reduced basis space defined from the use of ξlearned. We can check in Figures (6 (b)–(f))

below that we need many more samples for the estimate of the mapping parameter

ξ than for the estimate of the first POD eigenvalues, as we are only able to get fair

approximations with ntrain = 200.

4.2 Prediction of expansion coefficients

We define the optimal expansion coefficients {un,k(µ)}n as follows:

un,k(µ) =
(
ζ`kn ,u

ref
k (·;µ)

)
L2(Ĉ)

, n = 1, . . . , N, k = 1, 2, 3. (15)

Then, we apply the same procedure to learn and predict the coefficients {un,k}n (for

each region indexed by k) in the RB expansion (14) for new values of µ. As for the

regressor associated with ξ, also in this case, we can compute the coefficient of deter-

mination R2(un,k).

As illustrated in Figure 5, we realize also that the estimate of the coefficients

un,k(µ) requires many more samples than the estimate of the first POD eigenvalues.

For ntrain = 200, we are able to estimate well only 3 coefficients for the third region.

There is a practical explanation of why the coefficients in the first region are easier to

learn: the choice of ξ does not influence the first region while it certainly influences the

second and the third regions. Therefore, the estimate of the coefficients in the second

and third regions faces two sources of uncertainty; (i) the intrinsic uncertainty dictated

by variations with µ of the expansion coefficients {un,k(µ)}n, and (ii) the uncertainty

dictated by the errors associated with the estimate of the mapping parameter ξ.

(a) out-of-sample, ntrain = 20 (b) out-of-sample, ntrain = 50 (c) out-of-sample, ntrain = 200

Fig. 5: Flow past a backstep: behavior of the coefficient of determination (R2) for each

regressor. Out-of-sample R2 is computed based on B = 200 0.9−0.1 random train/test

partitions.

4.3 Full learning algorithm

Let us summarize the procedure through Algorithm 2.
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Algorithm 2 Second offline stage : Learning process

Given the offline solutions {u(µp)}ntrain
p=1 ,

1: compute {ξ(µp)}p and {un,k(µp)}n,k,p, n = 1, . . . , N , k = 1, 2, 3, p = 1, . . . , ntrain using
(9) and (15);

2: learn the maps ξlearned for ξ, and {ulearnedn,k }n,k for {un,k}n,k using regression trees.

4.4 From the finite element solutions over Ω(µ) to the Learned Reduced Basis

The solution to the Navier Stokes equations (1) in the physical domain Ω(µ), µ ∈ P is

obtained using a classical Taylor-Hood P3-P2 continuous Finite Element solver. The

meshes for different values of the parameters have been generated independently. The

number of degrees of freedom associated with the FE problem is in the order of 2 · 105

for all values of µ considered.

We emphasize that for this problem it is certainly possible to use the same reference

mesh for all domains {Ω(µ) : µ ∈ P} by introducing a suitable mapping. However, we

envision that the definition of a single reference mesh is only feasible for relatively-

simple parametrizations of the domain. Furthermore, even in our case, we should have

set the dependence of the mapping parameter ξ on µ a priori, rather than learning it

using simulations: a priori choices of ξ would lead to larger Kolmogorov widths, an are

thus unfavorable for the subsequent reduction.

It is convenient over Ĉ to use a polynomial representation that we choose by using

a 30 by 30 tensor product approximation based on Legendre polynomials which gives

N̂ = 2× 900 degrees of freedom

V̂ =
[
span{Ln(x) = Ln1(x1)Ln2(x2) : n1, n2 = 1, . . . ,

√
N̂ }
]2
,

Given the velocity field u(µ) : Ω(µ)→ R2, and the linear maps Tk : Ĉ×P → Ωk(µ)

Tk(x̂;µ) = Bk(µ)x̂+bk(µ), we employ the Piola transformation (6) to map the velocity

to the reference configuration. Since we consider inconsistent approximation spaces

between the reference domain and the physical domain Ω(µ), the definition of uref
k

requires some care. Here, we define uref
k as follows:

uref
k (x̂;µ) = Π

V̂

[
| det(B(µ))|Bk(µ)−1u|Ωk(µ)(Tk(x̂;µ);µ)

]
, (16)

where Π
V̂

is the L2 – projection operator over V̂ (which is a obtained through a simple

matrix multiplication).

Finally, the mapping parameter ξ (9) is approximated as

ξtrain = arg max
ξ∈Ξtrain

ρ
(
uref
2 (·;µref , ξref),uref

2 (·;µ, ξ)
)

+ρ
(
uref
3 (·;µref , ξref),uref

3 (·;µ, ξ)
)

(17)

where Ξtrain ⊂ (0, L− L1), |Ξtrain| = 15 is a set of candidate values for ξ.

5 Numerical results

Figure 6 shows the behavior of the mean relative L2 error in the reference and in

the physical configurations. We consider four different cases corresponding to two
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choices for the expansion coefficients and for the mapping parameter ξ: the coeffi-

cients {un,k(µ)}n,k are computed either by projection (15) (opt. un,k) or by resorting

to the learning process (learned un,k); similarly, the parameter ξ is computed either

by applying (9) (opt. ξ) or by the learning process (learned ξ). We have already com-

mented the two first columns: we observe that going from ntrain = 20 to ntrain = 200

is not particularly beneficial for the projection error, while it is more relevant for the

error in the estimated field. This is consistent with the results of Figure 3 and 5.

ntrain = 20

(a) opt. un,k, ξ (b) opt. un,k, learned ξ (c) learned un,k, opt. ξ (d) learned un,k, ξ

ntrain = 200

(e) opt. un,k, ξ (f) opt. un,k, learned ξ (g) learned un,k, opt. ξ (h) learned un,k, ξ

Fig. 6: Flow past a backstep: behavior of the mean relative L2 error for ntest = 10 dat-

apoints for optimal and learned expansion coefficients {un,k} and mapping parameter

ξ, for two values of ntrain.

Figure 7 shows the behavior of the predicted field for three values of N , for ntrain =

200. We observe convergence (in the eyeball norm) to the FE solution. We further

observe that, particularly for small values of N , artifacts clearly appear at the interface

between the subdomains. This can be explained by recalling that our learning procedure

does not impose continuity between components at the interfaces.

Next, Figures 8 and 9, obtained using N = 10 reduced basis modes, show that the

estimated field (in the eyeball norm) is close to the one predicted using the FE method.

Again the largest errors are at the interface between the different domains, and at the

tip of the backstep where the gradient of the velocity is large.

Then, Figure 10 shows the behavior of the relative mean L2 error with ntrain for

N = 2 and N = 4. We generate a dataset based on ntot = 250 offline solves, then

for several values of ntrain we consider B = 10 random ntrain - ntest train/test splits

(ntrain + ntest = ntot): the training set is used to learn the model, while the test set is

used to assess performance. The relative error is computed as follows:

1

B

B∑
b=1

 1

ntest

ntest∑
j=1

‖u(µb,j)− û(µb,j)‖L2(Ω)

‖u(µb,j)‖L2(Ω)


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(a) µ = µ1, N = 1 (b) µ = µ1, N = 2 (c) µ = µ1, N = 10

(d) µ = µ2, N = 1 (e) µ = µ2, N = 2 (f) µ = µ2, N = 10

Fig. 7: Flow past a backstep: visualisation of the predicted field for three val-

ues of N and ntrain = 200. µ1 = [87.0307, 5.7174, 1.5635, 14.5669], µ2 =

[74.2651, 3.2926, 1.6392, 12.7344].

Here, b = 1, . . . , B is the index associated with the training/test split, while j =

1, . . . , ntest. µ
b,j is the j-th value of the parameter in the test set associated with the

b-th split. We observe that the error stagnates to roughly 2.5 · 10−2 for N = 2 and

1.5 · 10−2 for N = 4: this can be explained by observing that in this test we consider

a fixed value of N .

(a) u (b) û (c) u− û

Fig. 8: Flow past a backstep: visualisation of the true and predicted fields for µ =

[71.82, 4, 1.65, 12.26] (ntrain = 200), here N = 10.
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(a) u (b) û (c) u− û

Fig. 9: Flow past a backstep: visualisation of the true and predicted fields for µ =

[59.59, 4.08, 1.78, 13.71] (ntrain = 200), here N = 10.

(a) N = 2 (b) N = 4

Fig. 10: Flow past a backstep: behavior of the relative mean L2 error with ntrain for

N = 2 and N = 4. The black trend lines correspond to the curves y(n) = 0.111n−0.335

for N = 2, and y(n) = 0.124n−0.396 for N = 4.

6 Conclusion and challenges

We have presented in this paper a first attempt to employ Machine Learning techniques

during the offline and online stages of the Reduced Basis method. We wish to employ

Machine Learning procedures

– to automatically recognize in a given solution to a fluid problem specific flow regimes

(like the Poiseuille flow and recirculation) by using classifiers, possibly informed by

experts’ knowledge;

– to build, for each such identified regimes, a Reduced Basis of each flow regime;

– to learn how to define the partition {Ωk(µ)}Kk=1 of the domain Ω(µ) in such a way

each subdomain reflects a specific flow regime;

– to learn (or at least compute from a Reduced Basis Galerkin representation of the

problem) the coefficients of the solution to be determined in its proper RB.

This approach is certainly not working for problems where the classical Reduced

Basis is not appropriate, i.e. for turbulent flows (see however [3] for a recent contribution

in this direction), but there are many applications of interest in Mechanics, where this

method could be developed.

Note that, in the current framework, we assume that the reference flow regimes are

known a priori. We believe that this is reasonable for almost any practical application.

However, it would be certainly important to be able to detect new regimes and properly

augment the library of examples.
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Note also that, in this (very) simple example, the dimensionality of µ is moderate.

This may not be the case for other applications: we have indeed that geometry is

typically described by a collection of edges (or triangles in 3D) that describe the surface.

Although in certain cases it is possible to parametrize the geometry in terms of a modest

amount of parameters, we envision that the procedure should be designed to handle

high-dimensional inputs.

In order to proceed, we need to propose an efficient way to automatically seg-

ment a set of velocity flows {u(µp)}p (considered as images) following some patterns

{uref
k }k corresponding to flow regimes. This will be achieved thanks to convolutional

architectures.

In the problem at hand, we expect our learning procedure to automatically dis-

cover the regions {Ω1(µp)}p, {Ω2(µp)}p and {Ω3(µp)}p, as well as to recognize that

{Ω1(µp)}p and {Ω3(µp)}p correspond to the same physical regime.

For each regime indexed by k, we shall learn the map Tk : Ĉ ×{µp}p → ∪pΩk(µp) .

Note that for relatively-simple configurations, these maps can be determined (at least

in part) based on prior knowledge, and may consist in a simple dilation according to

the axes x1 and x2. In a more complicated situation, the maps {Tk}k may also include

rotations and other transformations. In the problem at hand, estimating the maps

{Tk}k boils down to learning the cutting point ξ as a function of µ.
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