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Florence d’Alché-Buc florence.dalche@telecom-paristech.fr
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Abstract

Leveraging the celebrated support vector regression (SVR) method, we propose a unifying
framework in order to deliver regression machines in reproducing kernel Hilbert spaces
(RKHSs) with data sparsity. The central point is a new definition of ε-insensitivity, valid for
many regression losses (including quantile and expectile regression) and their multivariate
extensions. We show that the dual optimization problem to empirical risk minimization
with ε-insensitivity involves a data sparse regularization. We also provide an analysis of
the excess of risk as well as a randomized coordinate descent algorithm for solving the dual.
Numerical experiments validate our approach.

Keywords: Quantile regression, Expectile regression, Operator-valued kernel.

1. Introduction

In supervised learning, sparsity is a common feature (Hastie et al., 2015). When it is put
on the table, the first reaction is certainly to invoke feature selection (Tibshirani, 1996).
In many domains such as finance and biology, feature selection aims at discovering the
covariates that really explain the outcomes (hopefully in a causal manner). However, when
dealing with nonparametric modeling, sparsity may also occur in the orthogonal direction:
data, which support ultimately the desired estimator. Data sparsity is mainly valuable for
two reasons: first, controlling the number of training data used in the model can prevent
from overfitting. Second, data sparsity implies less data to store and less time needed for
prediction as well as potentially less time needed for training. The main evidence of this
phenomenon lies in the celebrated support vector machines (SVMs) (Boser et al., 1992;
Vapnik, 2010; Mohri et al., 2012). The principle of margin maximization results in selecting
only a few data points that support the whole prediction function, leaving the others sink
into oblivion.

Data sparsity is particularly known for classification thanks to SVMs but is less predom-
inant for regression. Indeed, while classifying relies on the few points close to the frontier
(they are likely to be misclassified), regression is supported by points for which the outcome
is far from the conditional expectation. Those points, that are likely to be poorly character-
ized by the prediction, gather most of the training points. Thus, by nature, regressors tend
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to be less data sparse than classifiers. In order to obtain the valued data sparsity for a wide
class of regression problems, we consider regression relying on empirical risk minimization
(Vapnik, 2010) with non-linear methods based on RKHSs for uni and multidimensional
outcomes (Micchelli and Pontil, 2005).

The companion of SVM for regression, SVR (Drucker et al., 1997), is probably the
most relevant representative of data sparse regression methods in the frequentist domain
(in the Bayesian literature, relevance vector machines can deliver sparse regressors (Tipping,
2001)). SVR makes use of the celebrated ε-insensitive loss ξ ∈ R 7→ max (0, |ξ| − ε), where
ε > 0, in order to produce data sparsity. In practice, residues close to 0 are not penalized,
and consequently corresponding points are not considered in the prediction function. Later,
Park and Kim (2011) extended this ε-insensitive loss to quantile regression (QR) (Koenker,
2005) in an ad hoc manner.

These approaches are in deep contrast compared to kernel ridge regression (using the
loss ξ ∈ R 7→ 1

2ξ
2), that does not benefit from data sparsity. To remedy that lack of

sparsity, Lim et al. (2014) leveraged the representer theorem (Schölkopf et al., 2001) for
ridge regression and penalized the coefficients associated to each training point. The same
procedure was used by Zhang et al. (2016) for QR but with a sparse constraint instead of a
sparse regularization. Contrarily to ε-insensitive losses, the latter approaches constrain the
hypotheses while keeping the vanilla regression losses.

The previous works are either restricted to unidimensional losses (Drucker et al., 1997;
Park and Kim, 2011; Zhang et al., 2016) or compelled to assume a finite representation
of the optimal regressor (Lim et al., 2014; Zhang et al., 2016). Our contribution in this
context is to provide a novel and unifying view of ε-insensitive losses for data sparse kernel
regression, that is theoretically well founded (Section 3). In the spirit of SVR, we show
that, for a large number of regression problems (uni or multivariate, quantile or traditional
regression), data sparsity can be obtained by properly defining an ε-insensitive variant of the
loss in the data-fitting term which turns to be a data sparse regularization in the dual. This
framework contains SVR as a special case but also a new loss for QR (that is different from
the one introduced by Park and Kim (2011)) and expectile regression (Newey and Powell,
1987), as well as their multivariate extensions (Section 4) in the context of vector-valued
RKHSs. We also provide an analysis of the excess of risk (Section 5). Special attention
is paid to the dual form of the optimization problem and a randomized primal-dual block
coordinate descent algorithm for estimating our data sparse regressor (Section 6) is derived.
Numerical experiments conclude the discussion (Section 7).

2. Framework

Notations In the whole paper, we denote vectors with bold-face letters. Moreover, τ ∈
(0, 1) is a quantile level, τ ∈ (0, 1)p is a vector of quantile levels, n and p are two positive
integers (samples size and dimension), [n] is the range of integers between 1 and n, αl ∈ Rn
denotes the lth row vector of any α = (αi)1≤i≤n ∈ (Rp)n, I· is the indicator function (set
to 1 when the condition is fulfilled and 0 otherwise), 1 denotes the all-ones vector, χ· is
the characteristic function (set to 0 when the condition is met and to ∞ otherwise), 4
(respectively ≺) denotes the pointwise (respectively strict) inequality, diag is the operator
mapping a vector to a diagonal matrix, ∂ψ is the subdifferential of any function ψ (when it
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exists), proxψ denotes its proximal operator (Bauschke and Combettes, 2011), proj1 is the
projector onto the span of 1.

General framework Let X be a nonempty input space and Rp be the output Hilbert
space (for a given integer p). Let also H be a Hilbert space of hypotheses h : X → Rp and
{(xi,yi)}1≤i≤n be a training sample of n couples (xi,yi) ∈ X ×Rp. We consider the setting
of regularized empirical risk minimization for regression, based on a real-valued convex loss
function ` : Rp → R. This is to provide a minimizer to the optimization problem:

minimize
h∈H, b∈Rp

λ

2
‖h‖2H +

1

n

n∑
i=1

` (yi − (h(xi) + b)) , (P1)

where λ > 0 is a trade-off parameter and ‖·‖H is the norm associated to H. Problem (P1)
consists in minimizing a data-fitting term 1

n

∑n
i=1 `(ξi), where the residues ξi = yi−(h(xi)+

b) are driven close to zero. Here, the prediction function (or regressor) is f : x ∈ X 7→
h(x) + b. It is made of a functional part h ∈ H and of an intercept b ∈ Rp (such as
what we can find in SVMs). The last component of Problem (P1), λ

2 ‖·‖
2
H, is a regularizer,

which penalizes functions with high complexities, allowing for generalizing on unknown
observations (Mohri et al., 2012).

Let, for any x ∈ X , Ex : h ∈ H 7→ h(x) be the evaluation map and E∗x be its adjoint
operator. A common theorem in nonparametric regression, known as the representer theo-
rem (Schölkopf et al., 2001), states that any estimator based on (P1) is a finite expansion
of local functions supported by the training examples. More formally, the functional part
of any solution (ĥ, b̂) of Problem (P1) admits a representation of the form ĥ =

∑n
i=1E

∗
xiαi,

where αi ∈ Rp for all i ∈ [n].
A proof of this statement based on Karush-Kuhn-Tucker (KKT) conditions can be found

in Supplementary B, but many proofs already exist for kernel methods in the scalar (p = 1)
and the vectorial (p > 1) cases (Schölkopf et al., 2001; Brouard et al., 2016). The representer
theorem states that ĥ can be parametrized by a finite number of αi ∈ Rp (which boil down to
be Lagrange multipliers), such that each αi is associated to a training point xi. Therefore,
as soon as αi = 0, xi does not appear in ĥ (that is, xi is not a support vector). When many
αi = 0, we say that ĥ is data sparse. This feature is very attractive since it makes possible
to get rid of useless training points when computing ĥ(x), and speeds up the prediction
task. The next section introduces a way to get such a sparsity.

3. ε-insensitive losses and the associated minimization problem

In the whole discussion, we will assume that the loss function ` is convex, lower semi-
continuous and has a unique minimum at 0 with null value. Then, we develop the idea
that data sparsity can be obtained by substituting the original loss function ` by a slightly
different version `ε, where `ε is a kind of soft-thresholding of `. More formally, let ε be a
positive parameter and define the ε-insensitive the loss `ε by:

∀ξ ∈ Rp : `ε(ξ) =

 0 if ‖ξ‖`2 ≤ ε
inf

d∈Rp : ‖d‖`2=1
` (ξ − εd) otherwise.
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Name Loss `(ξ) ε-insensitive loss `ε(ξ) Conjugate loss `?(α)
Unidimensional Absolute |ξ| max(0, |ξ| − ε) χ−1≤α≤1

(ξ ∈ R, α ∈ R) Squared 1
2
ξ2 1

2
(max (0, |ξ| − ε))2 1

2
α2

Pinball
(
τ − Iξ<0

)
ξ

 0 if |ξ| ≤ ε
τ(ξ − ε) if ξ ≥ ε
(τ − 1)(ξ + ε) if ξ ≤ −ε

χτ−1≤α≤τ

Squared pinball 1
2

∣∣τ − Iξ<0

∣∣ ξ2


0 if |ξ| ≤ ε
τ
2

(ξ − ε)2 if ξ ≥ ε
1−τ
2

(ξ + ε)2 if ξ ≤ −ε

1
2
|τ − Iα<0|−1 α2

Multidimensional `1-norm ‖ξ‖`1 No closed-form found χ−14α41

(ξ ∈ Rp,α ∈ Rp) `2-norm 1
2
‖ξ‖2`2

1
2

∥∥∥∥ξ −min(‖ξ‖`2 , ε)
ξ

‖ξ‖`2

∥∥∥∥2
`2

1
2
‖α‖2`2

Multiple pinball
∑p
j=1

(
τj − Iξj<0

)
ξj No closed-form found χτ−14α4τ

Multiple
squared pinball

1
2

∑p
j=1

∣∣∣τj − Iξj<0

∣∣∣ ξ2j No closed-form found 1
2

∑p
j=1

∣∣∣τj − Iαj<0

∣∣∣−1
α2
j

Table 1: Examples of ε-insensitive losses.

Figure 1: Examples of unidimensional ε-losses (ε = 0.2, τ = 0.25).

Put another way, the new loss value associated to a residue ξ is set to 0 if the magnitude
of the residue is sufficiently small, or to the smallest loss value in a neighborhood centered
at the original residue. Let us remark that, by the previous assumptions, `ε is convex (see
Supplementary B). To illustrate this definition, Table 1 as well as Figure 1 provide several
examples of ε-insensitive losses, particularly for regression, QR and expectile regression.
Before developing further these examples in the next section, we explain why using this
ε-insensitive loss helps in getting data sparsity for the regressor.

Proposition 1 (Dual optimization problem) A dual to the learning problem

minimize
h∈H, b∈Rp

λ

2
‖h‖2H +

1

n

n∑
i=1

`ε (yi − (h(xi) + b)) (P2)

is

minimize
∀i∈[n],αi∈Rp

1

n

n∑
i=1

`?(αi) +
1

2λn2

n∑
i,j=1

〈
αi, ExiE

∗
xjαj

〉
`2
− 1

n

n∑
i=1

〈αi,yi〉`2 +
ε

n

n∑
i=1

‖αi‖`2

s. t.
n∑
i=1

αi = 0,

(P3)
where `? : α ∈ Rp 7→ supξ∈Rp 〈α, ξ〉`2 − `(ξ) is the Fenchel-Legendre transform of `. In

addition, let (α̂i)i∈[n] be solutions to Problem (P3). Then, the function ĥ = 1
λn

∑n
i=1E

∗
xiα̂i

(ĥ ∈ H) is solution to Problem (P2) for a given intercept b̂ ∈ Rp.
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We see that turning ` into an ε-insensitive loss leads to blending a sparsity regularization
in the learning process: the `1/`2-norm

∑n
i=1 ‖αi‖`2 , which is known to induce sparsity in

the vectors αi (Bach et al., 2012). Even though a proof of this proposition is proposed in
Supplementary B, we can grasp this phenomenon by remarking that `ε turns out to be an
infimal convolution (Bauschke and Combettes, 2011), noted � , of two functions. Thus, its
Fenchel-Legendre transform is the sum of Fenchel-Legendre transforms of each contribution
(Bauschke and Combettes, 2011):

`?ε =
(
`�χ‖·‖`2≤ε

)?
= `? +

(
χ‖·‖`2≤ε

)?
= `? + ε ‖·‖`2 .

The next section discusses several applications of ε-insensitive losses.

4. Examples of ε-insensitive losses

To illustrate the link between ε-insensitive losses and data sparsity, we focus on RKHSs H,
based either on a scalar-valued kernel k : X×X → R (Steinwart and Christmann, 2008) or on
a matrix-valued kernel (MVK) K : X ×X → Rp×p (Micchelli and Pontil, 2005). Therefore,
the base functions E∗xαi, appearing in Proposition 1 become x′ ∈ X 7→ αik(x′,x) ∈ R (αi ∈
R) and x′ ∈ X 7→ K(x′,x)αi ∈ Rp (αi ∈ Rp), respectively for the uni and multidimensional
case.

4.1. Least absolute deviation

The notion of ε-insensitive loss is very well illustrated in SVR: let us study the problem of
least absolute deviation, that is, solving (P1), where there is a single output (h : X → R,
yi ∈ R, b ∈ R, αi ∈ R) and the loss to be minimized is `(ξ) = |ξ|. In this situation, it is easy
to check that `ε boils down to: `ε(ξ) = max(0, |ξ| − ε), which is the well known ε-insensitive
loss considered in SVR (Hastie et al., 2009).

Now, since `?(α) = 0 when −1 ≤ α ≤ 1 and +∞ otherwise, Problem (P3) becomes (up
to normalizing the objective function by n):

minimize
∀i∈[n], αi∈R

1

2λn

n∑
i,j=1

αiαjk(xi,xj)−
n∑
i=1

αiyi + ε

n∑
i=1

|αi|

s. t. ∀i ∈ [n],−1 ≤ αi ≤ 1,
n∑
i=1

αi = 0.

Using that |α| = inf α+,α−≥0

α=α+−α−
{α+ + α−}, we can introduce auxiliary variables α+

i ≥ 0 and

α−i ≥ 0, decouple αi in α+
i − α

−
i and replace |αi| by α+

i + α−i . This turns the previous
optimization problem into:

minimize
∀i∈[n], α+

i , α
−
i ∈R

1

2λn

n∑
i,j=1

(α+
i − α

−
i )(α+

j − α
−
j )k(xi,xj)−

n∑
i=1

(α+
i − α

−
i )yi + ε

n∑
i=1

(α+
i + α−i )

s. t. ∀i ∈ [n], 0 ≤ α+
i ≤ 1, 0 ≤ α−i ≤ 1,

n∑
i=1

α+
i − α

−
i = 0,
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which is the well known dual of SVR. In this perspective, SVR is a data sparse version of
least absolute deviation, for which the sparsity inducing norm appears in the dual.

4.2. Least mean squares

Besides SVR, Kernel Ridge Regression is also well known among kernel methods. In par-
ticular, for the general case of multivariate regression (yi ∈ Rp), we aim at minimizing the
squared loss `(·) = 1

2 ‖·‖
2
`2

. Referring to Table 1, Problem (P3) then becomes:

minimize
∀i∈[n],αi∈Rp

1

2

n∑
i,j=1

〈
αi,

(
Ii=j Ip +

1

λn
K(xi,xj)

)
αj

〉
`2

−
n∑
i=1

〈αi,yi〉`2 + ε
n∑
i=1

‖αi‖`2

s. t.

n∑
i=1

αi = 0,

(P4)
where Ip is the p-dimensional identity matrix. This is similar to the dual of kernel ridge

regression but with an extra `1/`2-norm on Lagrange multipliers.
As far as we know, data sparsity for multivariate kernel ridge regression has been first

introduced by Lim et al. (2014). In this work, the authors assume first that the optimal
predictor ĥ has a finite representation ĥ = 1

λn

∑n
i=1K(·,xi)ci without relying on a repre-

senter theorem and regularize the vectors of weights ci associated to each point thanks to
an `1/`2-norm. They also dismiss the intercept b for simplicity. The learning problem, as
presented in (Lim et al., 2014) (with normalization chosen at purpose), is:

minimize
h∈H,

∀i∈[n], ci∈Rp

λ

2
‖h‖2H +

1

2n

n∑
i=1

‖yi − h(xi)‖2`2 +
ε

λn2

n∑
i=1

‖ci‖`2

s. t. h =
1

λn

n∑
i=1

K(·,xi)ci.

For the sake of readability, we write c = (c>1 , . . . , c
>
n )> the vector of all weights and

‖c‖`1/`2 =
∑n

i=1 ‖ci‖`2 . Let also K = (K(xi,xj))1≤i,j≤n be the symmetric positive semi-
definite (PSD) kernel matrix. Fermat’s rule indicates that a solution ĉ of the previous
learning problem must verify K

(
y − 1

λnKĉ− ĉ
)
∈ ∂(ε ‖·‖`1/`2)(ĉ).

To compare Lim et al.’s approach to the framework proposed in this paper, let us dismiss
the intercept b, which means omitting the dual constraint

∑n
i=1αi = 0 in (P4), and let

α̂ = (α̂>1 , . . . , α̂
>
n )> be a solution to (P4). Then Fermat’s rule gives:

(
y − 1

λnKα̂− α̂
)
∈

∂(ε ‖·‖`1/`2)(α̂). It appears that both approaches induce data sparsity thanks to a structured
norm and are equivalent up to a normalization by K.

4.3. Quantile regression

A slight generalization of least absolute deviation consists in changing the slope of the
absolute loss `(·) = | · |, asymmetrically around 0. For a quantile level τ ∈ (0, 1), the so
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Figure 2: Multiple ε-pinball loss and slices of it (ε = 0.2, τ = (0.25, 0.6)).

called pinball loss is defined by:

∀ξ ∈ R, ρτ (ξ) = (τ − Iξ<0) ξ = max (τξ, (τ − 1)ξ) .

Such a loss is used to estimate a conditional quantile of the output random variable, instead
of a conditional median such as in standard regression (Koenker, 2005).

In order to improve prediction, some works propose to estimate and to predict simulta-
neously several quantiles, which is referred to as joint QR (Takeuchi et al., 2013; Sangnier
et al., 2016). In this context, close to multivariate regression, the output space is Rp and the
loss is `(ξ) =

∑p
j=1 ρτj (ξj), where τ is a vector of p quantile levels τj ∈ (0, 1). Even though

we do not have a closed-form expression for the corresponding ε-loss, Figure 2 provides
graphical representations of `ε.

Besides the loss described above, the multiple QR framework comes with yi ∈ Rp,
αi ∈ Rp, b ∈ Rp and h : X → Rp, such that the jth component of the prediction value,
fj(x) = hj(x) + bj , estimates the τj-conditional quantile of the output random variable.

In a manner very similar to least absolute deviation, the Fenchel-Legendre transforma-
tion of the loss of interest is `?(α) = 0 when τ −1 4 α 4 τ and +∞ otherwise. Therefore,
Problem (P3) becomes:

minimize
∀i∈[n],αi∈Rp

1

2λn

n∑
i,j=1

〈αi,K(xi,xj)αj〉`2 −
n∑
i=1

〈αi,yi〉`2 + ε
n∑
i=1

‖αi‖`2

s. t. ∀i ∈ [n], τ − 1 4 αi 4 τ ,
n∑
i=1

αi = 0,

(P5)

where the sparsity inducing term is the `1/`2-norm
∑n

i=1 ‖αi‖`2 (Bach et al., 2012).
Very recently, Park and Kim (2011) also proposed an ε-insensitive loss for single QR

(that is, in the unidimensional case, when estimating only a single τ -conditional quantile),
based on a generalization of the one used for SVR. The proposition made by Park and Kim
(2011) is:

`PK
ε (ξ) = max (0, ρτ (ξ)− ε) =

{
0 if ρτ (ξ) ≤ ε
ρτ (ξ)− ε otherwise.

7



Sangnier Fercoq d’Alché-Buc

That is different from the ε-loss proposed in this paper, as illustrated in Figure 1. As
a comparison, the single QR dual in (Park and Kim, 2011) is similar to (P5) but with

max
(
αi
τ ,

αi
τ−1

)
instead of |αi|. Let us remark that, because of the asymmetry, it is difficult

to get a sparsity intuition for this modified `1-penalization.
The advantage of our approach over (Park and Kim, 2011) is to provide a unifying view

of ε-losses in the multidimensional setting, which matches SVR as a special case. Moreover,
the possibility to extend Park and Kim’s loss to joint QR is unclear and could not guarantee
data sparsity: as explained in Remark 1 (Supplementary A), this goal is achieved thanks
to the `1/`2-norm in the dual, which is equivalent to our proposition of ε-loss.

4.4. Expectile regression

As for QR, it is worth considering weighting the squared loss asymmetrically around 0. The
resulting framework is called expectile regression (Newey and Powell, 1987), by analogy with
quantiles and conditional expectation estimation with the squared loss. Despite the fact
that the expectile regression estimator has no statistical interpretation, it can be seen as a
smooth (and less robust) version of a conditional quantile. This explains that this topic, at
least in the unidimensional context, attracts a growing interest in the learning community
(Farooq and Steinwart, 2015; Yang et al., 2015; Farooq and Steinwart, 2017).

Following the guiding principle of QR (Sangnier et al., 2016), we can imagine learning
simultaneously several expectiles in a joint expectile regression framework. As far as we
know, this multivariate setting did not appear in the literature yet. Therefore, we consider
the multiple squared pinball loss:

∀ξ ∈ R, `(ξ) =

p∑
j=1

ψτj (ξj), with ψτ (ξ) =
1

2
|τ − Iξ<0| ξ2.

Similarly to the squared loss, the Fenchel-Legendre transformation of ` is `? : α ∈ Rp 7→
1
2α
>∆(α)α, where ∆(α) is the p×p diagonal matrix whose entries are

(∣∣τj − Iαj<0

∣∣−1
)

1≤j≤p
.

Therefore, a dual optimization problem of sparse joint expectile regression is:

minimize
∀i∈[n],αi∈Rp

1

2

n∑
i,j=1

〈
αi,

(
Ii=j ∆(αi) +

1

λn
K(xi,xj)

)
αj

〉
`2

−
n∑
i=1

〈αi,yi〉`2 + ε

n∑
i=1

‖αi‖`2

s. t.

n∑
i=1

αi = 0.

We see that the only difference compared to multivariate regression is the anisotropic ridge
∆(αi). Moreover, compared to other kernelized approaches for expectiles estimation such
as (Farooq and Steinwart, 2015; Yang et al., 2015), this setting goes beyond both in its
multivariate feature as well as its data sparsity.

5. Statistical guarantees

In this section, we focus on the excess of risk for learning with the proposed ε-insensitive loss.
As it is usual in statistical learning, we consider the constrained version of Problem (P2),
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which is legitimated by convexity of `ε (Tikhonov and Arsenin, 1977):

minimize
h∈H : ‖h‖H≤c

b∈Rp

1

n

n∑
i=1

`ε (yi − (h(xi) + b)) , (P6)

where c is a positive parameter linked to λ. This change of optimization problem is
motivated by the fact that any solution to (P2) is also solution to (P6) for a well chosen
parameter c.

Let (X,Y ) be the couple of random variables of interest, following an unknown joint
distribution. We assume being provided with n independent and identically distributed
(iid) copies of (X,Y ), denoted (Xi, Yi)1≤i≤n. Let us now fix an intercept b ∈ Rp. F =
{h(·) + b : h ∈ H, ‖h‖H ≤ c} is a class of hypotheses. We denote Rn (F) the Rademacher
average of the class F (Bartlett and Mendelson, 2002). Let f † ∈ arg minf∈F E [` (Y − f(X))]
be the target function, where the expectation is computed jointly on X and Y . For instance,
in the context of single QR, if we assume that the conditional quantile lives in F , then
the target f † can be this conditional quantile (up to uniqueness). Moreover, let f̂ε ∈
arg minf∈F

1
n

∑n
i=1 `ε (Yi − f(Xi)) be the empirical estimator of f †.

Theorem 2 (Generalization) Let us assume that the loss ` is L-Lipschitz (L > 0) and
that residues are bounded: ∀f ∈ F , ‖Y − f(X)‖`2 ≤M almost surely (where M > 0). Then,
for any δ ∈ (0, 1], with probability at least 1− δ over the random sample (Xi, Yi)1≤i≤n:

E
[
`
(
Y − f̂ε(X)

)]
− E

[
`
(
Y − f †(X)

)]
≤ 2
√

2LRn (F) + 2LM

√
log(2/δ)

2n
+ Lε.

A proof of this theorem is given in Supplementary B. The bound is similar to what we
usually observe (Boucheron et al., 2005; Mohri et al., 2012), but suffers from an extra term,
which is linear in ε. The latter embodies the bias induced by soft-thresholding the original
loss ` to induce data sparsity.

6. A primal-dual training algorithm

6.1. Description

For traditional kernel methods (real or vector-valued ones), pairwise coordinate descent as
well as deterministic and randomized coordinate descents are popular and efficient training
algorithms (Platt, 1999; Shalev-Shwartz and Zhang, 2013; Minh et al., 2016). However,
few of current algorithms are able to handle multiple non-differentiable contributions in the
objective value (such as the ones introduced by `?ε ) and multiple linear constraints (coming
from considering an intercept in our regressor, which is mandatory for QR (Takeuchi et al.,
2006; Sangnier et al., 2016)). For these reasons, we propose to use a randomized primal-
dual coordinate descent (PDCD) technique, introduced by Fercoq and Bianchi (2015) and
utterly workable for the problem at hand. Moreover, PDCD has been proved favorably
competitive with several state-of-the-art approaches (Fercoq and Bianchi, 2015).

9
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The learning problem we are interested in is:

minimize
∀i∈[n],αi∈Rp

s(α1, . . . ,αn) +
n∑
i=1

`?(αi)︸ ︷︷ ︸
differentiable

+ ε
n∑
i=1

‖αi‖`2︸ ︷︷ ︸
not differentiable

+ χ∑n
i=1αi=0︸ ︷︷ ︸

not differentiable

,
(P7)

where s(α1, . . . ,αn) = 1
2λn

∑n
i,j=1 〈αi,K(xi,xj)αj〉`2 −

1
n

∑n
i=1 〈αi,yi〉`2 is a quadratic

(differentiable) function. Depending on the kind of regression (see in Table 1), the mapping
`? may be differentiable or not. In any case, the objective function in (P7) can be writ-
ten as the summation of three components: one differentiable and two non-differentiable.
Given this three-term decomposition, PDCD (see Algorithm 1) dualizes the second non-
differentiable component and deploys a randomized block coordinate descent, in which each
iteration involves the proximal operators of the first non-differential function and of the
Fenchel-Legendre transformation of the second one. We can see in Algorithm 1 that PDCD
uses dual variables θ ∈ (Rp)n (which are updated during the descent) and has two sets of
parameters ν ∈ Rn and µ ∈ Rn, that verify ∀i ∈ [n]: µi <

1
λmax,i+νi

, where λmax,i is the

largest eigenvalue of K(xi,xi). In practice, we keep the same parameters as in (Fercoq and
Bianchi, 2015): νi = 10λmax,i and µi equal to 0.95 times the bound.

Algorithm 1 Primal-Dual Coordinate Descent.

Initialize αi,θi ∈ Rp (∀i ∈ [n]).
repeat

Choose i ∈ [n] uniformly at random.

Set θ
l ← proj1

(
θl + diag(ν)αl

)
for all l ∈ [p].

Set di ← ∇αis(α1, . . . ,αn) + 2θi − θi.
Set αi ← proxµi(ε‖·‖`2+`?)(αi − µidi).
Update coordinate i: αi ← αi, θi ← θi,
and keep other coordinates unchanged.

until convergence

PDCD is a workable algorithm for non-differentiable `? as soon as the proximal operator
proxε‖·‖`2+`? can be computed (when `? is differentiable, it can be moved to s and there

is only proxε‖·‖`2
, which is easy to compute (Bach et al., 2012)). For the situations of

interest in this paper, non-differentiable `? appear for multiple QR and take the form of the
characteristic function of box constraints (see Table 1). Nevertheless, as far as we know,
computing the proximal operator of the sum of the `2-norm and box constraints has not been
done yet. Therefore, the following section provides a way to compute it for box constraints
intersecting both the negative and the positive orthants (proofs are in Supplementary B.4).

10
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6.2. Proximal operator for multiple quantile regression

Let a and b be two vectors from Rp with positive entries, and λ > 0. From now on, let us
denote [·]b−a : Rp → Rp the clip operator, defined by:

∀y ∈ Rp,∀j ∈ [p] :
(

[y]b−a

)
j

=


yj if − aj < yj < bj
bj if yj ≥ bj
−aj if yj ≤ −aj .

Lemma 3 Let y ∈ Rp such that ‖y‖`2 ≥ λ be a fixed vector and µ ∈ [0, 1]. The equation1 +
λ∥∥∥[µy]b−a

∥∥∥
`2

µ = 1 (1)

is well defined and has a solution µ ∈ [0, 1].

Proposition 4
∀y ∈ Rp, proxλ‖·‖`2+χ−a4·4b(y) = [µy]b−a ,

where µ = 0 if ‖y‖`2 ≤ λ and solution to Equation (1) otherwise.

Proposition 4 states that proxλ‖·‖`2+χ−a4·4b can be computed as the composition of a

clip and a scaling operator, for which the scaling factor can be easily obtained by a bisection
of a Newton-Raphson method. As a straightforward consequence of Proposition 4, we can
express the proximal operator of the sum of an `1/`2-norm and box constraints as the
concatenation of proxλ‖·‖`2+χ−a4·4b (see Supplementary B for a formal statement), which

involves as many scaling factors as groups (n in this case).

6.3. Active set for multiple quantile regression

Learning sparse models gains a lot in identifying early the active points and optimizing only
over them. This is a way to speed up learning, that is particularly topical (Ndiaye et al.,
2015; Shibagaki et al., 2016; Ndiaye et al., 2016). Active points may have different meanings
depending on the context (sparse regression, SVR, SVM) but the unifying concept is to
detect optimizing variables for which the optimal value cannot be figured out beforehand.

In the context of QR (but this also holds true for SVR and SVM (Shibagaki et al.,
2016)), active points correspond to every data point xi for which the dual vector αi is
neither null nor on the border of the box constraint. These active points can be identified
thanks to optimality conditions.

Let f̂ = ĥ+ b̂ be an optimal solution to (P2) and (α̂i)1≤i≤n be optimal dual vectors to
(P3). In the general setting, primal feasibility and stationarity from KKT conditions yield:

∀i ∈ [n] : yi − f̂(xi) ∈ ∂ (`?ε ) (α̂i), (2)

11
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where, in the case of QR, `?ε = ε ‖·‖`2 + χτ−14·4τ . Therefore, ∀α ∈ Rp:

∂ (`?ε ) (α) =


{d : d ∈ Rp, ‖d‖`2 ≤ ε} if α = 0
ε

‖α‖`2
α if α 6= 0, τ − 1 ≺ α ≺ τ{

d ∈ ∂ (χτ−14·4τ ) (α) :

〈
d, α
‖α‖`2

〉
`2

≥ ε

}
otherwise.

Consequently, optimality condition in Equation (2) indicates that:

1.
∥∥∥yi − f̂(xi)

∥∥∥
`2
< ε =⇒ α̂i = 0;

2.
∥∥∥yi − f̂(xi)

∥∥∥
`2
> ε =⇒ ∀j ∈ [p], (α̂i)j = τj or (α̂i)j = τj − 1.

Therefore, for each situation (1. or 2.), if both conditions are fulfilled for the current
estimates f and αi, the corresponding dual vector αi is put aside (at least temporally) and
is not updated until optimality conditions are violated. In section 7.1, we will show that
this strategy dramatically speed up the learning process when ε is large enough.

7. Numerical experiments

This section presents two numerical experiments in the context of multiple QR with data
sparsity. The first experiment deals with training time. We compare an implementation
of Algorithm 1 with an off-the-shelf solver and study the impact of the active set strategy.
The second experiment analyses the effect of ε on quantile prediction and on the number
of support vectors (data points xi for which αi 6= 0).

Following Sangnier et al. (2016), we use a matrix-valued kernel of the form K(x,x′) =
k(x,x′)B, where B = (exp(−γ(τi − τj)2))1≤i,j≤p and k(x,x′) = exp(−‖x− x′‖2`2 /2σ

2). In
the first experiment (simulated data), γ = 1 and σ2 = 1, while in the second one (real
data) γ is set to 0.1 and σ is the 0.7-quantile of the pairwise distances of the training data
{xi}1≤i≤n. Quantile levels of interest are τ = (0.25, 0.5, 0.75).

7.1. Training time

We aim at comparing the execution time of four approaches for solving (P5): i) Algorithm 1
with active set (PDCD with AS ); ii) Algorithm 1 without active set (PDCD without AS ); iii)
an off-the-shelf solver based on an interior-point method for quadratic cone programming
(CVXOPT (CONEQP)) and iv) quadratic programming (CVXOPT (QP)) (Anderson et al.,
2012). For the last approach, we leverage a variational formulation of the sparsity constraint

(Bach et al., 2012):
∑n

i=1 ‖αi‖`2 = inf∀i∈[n], µi∈R+

1
2

∑n
i=1

(
1
µi
‖αi‖2`2 + µi

)
, and alternate

minimization with respect to (αi)1≤i≤n and (µi)1≤i≤n. By convexity and differentiability of
the objective, alternate minimization converges to an optimal solution (Rockafellar, 1970).

We fix 1/(λn) = 102 and we use a synthetic dataset for which X ∈ [0, 1.5]. The target
Y is computed as a sine curve at 1 Hz modulated by a sine envelope at 1/3 Hz and mean
1. Moreover, this pattern is distorted with a random Gaussian noise with mean 0 and a
linearly decreasing standard deviation from 1.2 at X = 0 to 0.2 at X = 1.5.
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Figure 3: Training time (synthetic dataset).

Figure 3 depicts the dual gap achieved by the competitors with respect to the CPU
time in different configurations (ε ∈ {0.1, 1, 5} and sample size n ∈ {50, 500}). These curves
are obtained by increasing the maximal number of iterations of each solver and recording
primal and dual objective values attained along with the CPU time. Given a configuration
(ε and n fixed), all dual gaps are computed with respect to the lowest primal obtained. This
comparison procedure is motivated by the fact that for multiple QR, we cannot compute
the exact duality gap (we cannot compute the primal loss `ε), but only over-estimate it
(see Remark 3 in Supplementary A). This explains why plots in Figure 3 do not necessarily
converge to 0 (we conjecture that when a method faces no progress, the exact dual gap is
almost null). Overall, the curves portray the behavior of the dual objective function rather
than the exact duality gap.

For small-scale data and small values of ε, CVXOPT is more efficient than our approach,
but its supremacy caves in when increasing ε and/or the sample size n. The impact of the
problem size n on the comparison between interior-point methods (such as CVXOPT) and
first-order ones (such as PDCD) is known for a long time, so this first finding is comforting.
Also, increasing the sparsity regularizer ε requires more and more calls to the alternate
procedure CVXOPT (QP), so the behavior with respect to ε was expected.

Analyzing the active-set strategy, we remark that it is never a drawback but becomes
a real asset for hard sparsity constraints. This comes from many α̂i to be null and thus
put aside. Yet, it appears that, contrarily to the unidimensional case, only a few αi are on
the border of the box constraint. Therefore, the active-set strategy provides only a limited
(but real) gain compared to the vanilla version of PDCD for small values of ε.

7.2. Data sparsity

This section investigates the actual data sparsity introduced by the proposed ε-insensitive
loss, along with its impact on the generalization error. For this purpose, we consider
the datasets used in (Takeuchi et al., 2006; Zhang et al., 2016), coming from the UCI
repository and three R packages: quantreg, alr3 and MASS. The sample sizes n vary from

13
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Table 2: Empirical (test) pinball loss ×100 (percentage of support vectors in parentheses).
Data set ε = 0 ε = 0.05 ε = 0.1 ε = 0.2 ε = 0.5 ε = 0.75 ε = 1 ε = 1.5 ε = 2 ε = 3

caution 67.50 (100) 67.40 (99) 67.17 (95) 67.54 (87) 69.93 (65) 73.24 (49) 76.80 (39) 83.42 (24) 100.22 (17) 142.19 (6)
ftcollinssnow 109.07 (100) 109.12 (100) 109.14 (100) 109.15 (100) 109.11 (100) 110.39 (98) 109.05 (82) 110.90 (53) 109.81 (34) 113.50 (8)
highway 79.29 (100) 78.10 (97) 76.75 (97) 76.66 (91) 75.09 (64) 70.94 (51) 75.10 (37) 97.67 (31) 112.30 (0) 112.09 (1)
heights 91.05 (100) 91.00 (100) 90.98 (100) 90.98 (100) 91.18 (99) 91.21 (86) 90.98 (67) 91.09 (40) 91.51 (23) 93.34 (5)
sniffer 32.34 (100) 31.40 (99) 32.31 (97) 31.40 (84) 34.64 (43) 39.84 (24) 41.82 (12) 52.06 (6) 62.21 (4) 103.76 (3)
snowgeese 49.62 (100) 50.51 (98) 51.25 (87) 51.08 (70) 52.88 (37) 53.81 (23) 62.81 (17) 90.15 (15) 107.53 (14) 94.25 (1)
ufc 57.87 (100) 57.90 (100) 57.78 (100) 57.84 (100) 57.67 (78) 57.84 (52) 58.19 (35) 61.04 (15) 66.81 (5) 86.23 (2)
birthwt 99.93 (100) 99.95 (100) 99.93 (100) 99.70 (100) 99.25 (100) 100.50 (87) 99.80 (67) 98.71 (43) 99.56 (24) 103.39 (6)
crabs 8.59 (100) 8.52 (91) 8.49 (55) 9.44 (16) 19.94 (6) 23.08 (2) 31.44 (3) 44.08 (2) 53.45 (1) 86.91 (2)
GAGurine 44.30 (100) 44.26 (99) 44.25 (99) 44.86 (87) 46.20 (50) 49.87 (33) 52.88 (22) 57.06 (12) 65.89 (6) 103.32 (2)
geyser 77.81 (100) 78.15 (100) 78.12 (100) 78.45 (100) 78.40 (92) 78.28 (78) 78.54 (59) 80.55 (32) 85.15 (16) 99.92 (1)
gilgais 32.96 (100) 33.12 (99) 33.27 (96) 33.42 (81) 35.08 (43) 36.62 (25) 37.94 (14) 48.17 (5) 94.65 (7) 104.12 (0)
topo 47.49 (100) 48.93 (100) 48.74 (98) 48.17 (94) 41.65 (57) 45.24 (38) 51.19 (26) 53.68 (16) 58.21 (12) 80.57 (6)
BostonHousing 34.54 (100) 34.68 (99) 34.70 (97) 34.09 (80) 35.27 (35) 37.65 (20) 41.31 (13) 55.04 (7) 73.39 (7) 112.22 (12)
CobarOre 0.50 (100) 5.05 (38) 8.75 (36) 12.47 (26) 23.84 (18) 35.82 (17) 47.35 (15) 66.15 (14) 84.51 (12) 106.89 (6)
engel 43.57 (100) 43.50 (100) 43.47 (99) 43.44 (89) 57.36 (39) 43.98 (19) 46.31 (11) 53.15 (4) 69.43 (5) 100.48 (0)
mcycle 63.95 (100) 63.88 (99) 64.26 (99) 64.90 (98) 65.89 (88) 67.29 (70) 70.11 (51) 74.78 (26) 86.49 (14) 109.79 (2)
BigMac2003 49.94 (100) 49.97 (98) 50.00 (96) 50.27 (85) 51.16 (56) 51.44 (36) 53.63 (28) 77.40 (18) 106.38 (14) 136.76 (4)
UN3 71.27 (100) 70.94 (100) 71.03 (100) 71.49 (99) 71.37 (87) 71.53 (65) 72.68 (50) 76.72 (27) 84.50 (13) 109.59 (0)
cpus 11.31 (100) 13.32 (28) 15.57 (21) 20.16 (15) 25.88 (8) 35.66 (6) 55.27 (6) 65.05 (0) 65.05 (0) 65.02 (0)

38 (CobarOre) to 1375 (heights) and the numbers of explanatory variables vary from 1 (6
sets) to 12 (BostonHousing). The datasets are standardized coordinate-wise to have zero
mean and unit variance. In addition, the generalization error is estimated by the mean
over 10 trials of the empirical loss 1

m

∑m
i=1 `(y

test
i − f(xtest

i )) computed on a test set. For
each trial, the whole dataset is randomly split in a train and a test set with ratio 0.7-0.3.
The parameter 1/(λn) is chosen by a 3-fold cross-validation (minimizing the pinball loss)
on a logarithmic scale between 10−3 and 103 (10 values). At last, a training point xi is
considered a support vector if ‖αi‖`2 /p > 10−3.

Table 2 reports the average empirical test loss (scaled by 100) along with the percentage
of support vectors (standard deviations appear in Supplementary C). For each dataset, the
bold-face numbers are the two lowest losses, to be compared to the loss for ε = 0. We
observe first that increasing ε does promote data sparsity. Second, the empirical loss tends
to increase with ε, as expected, but we do not lose much by requiring sparsity (we can even
gain a little).

8. Conclusion

This paper introduces a novel and unifying framework concerning ε-insensitive losses, which
offers a variety of opportunities for traditional, quantile and expectile regression, for uni
and multivariate outcomes. Estimators are based on vector-valued RKHSs (Micchelli and
Pontil, 2005) and benefit from theoretical guarantees concerning generalization as well as
an efficient learning algorithm. Future directions of research include improving further the
learning procedure and deriving sharper generalization bounds.

References

M.S. Anderson, J. Dahl, and L. Vandenberghe. CVXOPT: A Python package for convex
optimization, version 1.1.5., 2012.

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization with Sparsity-Inducing
Penalties. Foundations and Trends in Machine Learning, 4(1):1–106, January 2012.

14



Data sparse nonparametric regression with ε-insensitive losses

P.L. Bartlett and S. Mendelson. Rademacher and Gaussian Complexities: Risk Bounds and
Structural Results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator Theory in
Hilbert Spaces. Springer, 2011.

B.E. Boser, I.M. Guyon, and V.N. Vapnik. A Training Algorithm for Optimal Margin
Classifiers. In Conference on Learning Theory, 1992.

S. Boucheron, O. Bousquet, and G. Lugosi. Theory of Classification: a Survey of Some
Recent Advances. ESAIM: Probability and Statistics, 9:323–375, 2005.
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Appendix A. Remarks

Remark 1 It is easy to see that, for a unidimensional loss `, `ε is obtained in the following
manner:

∀ξ ∈ R : `ε(ξ) = ` (ξ −min(|ξ|, ε) sign(ξ))

=

{
0 if |ξ| ≤ ε
`
(
ξ
(

1− ε
|ξ|

))
otherwise.

Consequently, when a multivariate loss ` is separable, that is `(ξ) =
∑p

j=1 `
(j)(ξj) (for some

unidimensional losses `(j)), it is tempting to consider each component separately and to

define `ε =
∑p

j=1 `
(j)
ε . Basically, this boils down to replacing ‖·‖`2 by ‖·‖∞ in the general

ε-loss introduced in this paper.
However, this is not a good idea since this definition would result in adding an `1-norm∑n
i=1 ‖αi‖`1 instead of an `1/`2-norm in the dual. As a consequence, we would obtain sparse

vectors αi, which is not the data sparsity we pursue since αi could have null components
but could be different from 0, forcing us to keep the points xi for prediction.

Remark 2 In the body of the text, omitting the intercept b in Problem (P2) comes down
to removing the linear constraint in Problem (P3). This practice is common for support
vector regression (SVR) with a Gaussian kernel, but is excluded for quantile regression
(QR) (Takeuchi et al., 2006; Sangnier et al., 2016).

Example 1 Examples of scalar and matrix kernels are:

k(x,x′) = (1 +
〈
x,x′

〉
`2

)d (polynomial),

where d > 0 is the degree (Mohri et al., 2012), and

K(x,x′) =

[(
1 +

〈
Ti(x), Tj(x

′)
〉
`2

)d]
1≤i,j≤p

(transformable),

c© 2017 M. Sangnier, O. Fercoq & F. d’Alché-Buc.
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where Ti : Rp → Rp are any transformations (Alvarez et al., 2012).

Remark 3 As it is standard for coordinate descent methods, our implementation uses ef-

ficient updates for the computation of both
∑n

j=1K(xi,xj)αj and θ
l
. In addition, conver-

gence of Algorithm 1 can be assessed by duality gap (objective of (P2) minus objective of
(P3) in the body of the text). Yet, even though we do not have closed-form expressions
for the primal loss `ε, the duality gap can be over-estimated by upper-bounding `ε in the
following manner:

∀ξ ∈ Rp : `ε(ξ) ≤ `

(
ξ

(
1−

min(ε, ‖ξ‖`2)

‖ξ‖`2

))
.

This is true since

∥∥∥∥min(ε,‖ξ‖`2 )

‖ξ‖`2
ξ

∥∥∥∥
`2

≤ ε.

Remark 4 Contrarily to QR, expectile regression involves a differentiable mapping `?.
Consequently, it can be easily incorporated to the quadratic contribution of (P7) (see body
of the text). Nevertheless, it can also be considered jointly with ‖·‖`2, in the same manner
as for QR. In this case, the differentiable part remains the same for expectile and quantile
regression, only the non-differentiable part changes. The proximal operator needed is given
in the following proposition.

Proposition 5 Let ψ : y ∈ Rp 7→ 1
2

∑p
i=1

∣∣τj − Iyj<0

∣∣−1
y2
j . Then

∀y ∈ Rp,∀j ∈ [p][
prox

λ
(
‖·‖`2+ψ

)(y)

]
j

=

(
1 +

λ

µ
+ λ

∣∣τj − Iyj<0

∣∣−1
)−1

yj ,

if ‖y‖`2 > λ, where µ > 0 is solution to:

p∑
j=1

y2
j(

µ
(

1 + λ
∣∣τj − Iyj<0

∣∣−1
)

+ λ
)2 = 1, (1)

(such a solution exists) and prox
λ
(
‖·‖`2+ψ

)(y) = 0 if ‖y‖`2 ≤ λ,.

Similarly to Equation 1 in the body of the text, the scaling factor µ in Proposition 5 can
be easily obtained by a bisection of a Newton-Raphson method.

Appendix B. Technical details

B.1. Convexity and redefinition of `ε

For the sake of simplicity, let us first define:

∀ξ ∈ Rp : ˜̀
ε(ξ) = inf

u∈Rp : ‖u‖`2≤ε
`(ξ − u). (2)

2
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Since ` is convex, (ξ,u) 7→ `(ξ − u) + χ‖u‖`2≤ε
is jointly convex with respect to ξ and u.

Therefore, ˜̀
ε is convex as the coordinate infimum of a jointly convex function (Boyd and

Vandenberghe, 2004).
Let us now show that ˜̀

ε = `ε. First, since for any ξ, Slater’s constraint qualification are
satisfied for (2), strong duality holds, that is,

∀ξ ∈ Rp,∃λ ≥ 0 : ˜̀
ε(ξ) = inf

u∈Rp
`(ξ − u) + λ ‖u‖`2 − λε,

and thanks to the lower semi-continuity of the objective, the infimum is attained at, let us
say, û. Then, when ‖ξ‖`2 ≤ ε, we can chose û = ξ and we get ˜̀

ε(ξ) = 0, which is the
infimum of `. On the other hand, when ‖ξ‖`2 > ε, let us consider the Karush-Kuhn-Tucker
(KKT) conditions. By complementary slackness, either λ = 0 and ‖û‖`2 ≤ ε, or ‖û‖`2 = ε.

In the first situation (λ = 0 and ‖û‖`2 ≤ ε), ˜̀
ε(ξ) = infu∈Rp `(ξ−u) = `(ξ− û) = `(0) = 0

and û = ξ (by uniqueness of the minimizer of `). Thus, ‖ξ‖`2 ≤ ε, which is contradictory.
Consequently, we have necessarily, ‖û‖`2 = ε. To summarize:

∀ξ ∈ Rp : ˜̀
ε(ξ) =

 0 if ‖ξ‖`2 ≤ ε
inf

u∈Rp : ‖u‖`2=ε
` (ξ − u) otherwise,

which is exactly the definition of `ε.

B.2. Dual and representer theorem

Since `ε is convex and can be replaced by (2), Problem (P2) from the body of the text can
be reformulated in (Lagrange multipliers are indicated on the right):

minimize
h∈H, b∈Rp,

∀i∈[n], ξi∈Rp, ri∈Rp

λ

2
‖h‖2H +

1

n

n∑
i=1

` (ξi)

s. t.


∀i ∈ [n],
yi − (h(xi) + b)

n
=
ri + ξi
n

: αi ∈ Rp

‖ri‖2`2
2εn

≤ ε

2n
: µi ∈ R+.

(P1)

3
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Let us compute a dual to Problem (P1). The Lagrangian reads:

L (h, b, (ξi)1≤i≤n, (ri)1≤i≤n, (αi)1≤i≤n, (µi)1≤i≤n)

=
λ

2
‖h‖2H +

1

n

n∑
i=1

` (ξi) +
1

n

n∑
i=1

〈αi,yi − (h(xi) + b)− ri − ξi〉`2

+
1

2εn

n∑
i=1

µi ‖ri‖2`2 −
ε

2n

n∑
i=1

µi

=
1

n

n∑
i=1

(
` (ξi)− 〈αi, ξi〉`2

)
+
λ

2
‖h‖2H −

〈
1

n

n∑
i=1

E∗xiαi, h

〉
H

−

〈
1

n

n∑
i=1

αi, b

〉
`2

+
1

n

n∑
i=1

(µi
2ε
‖ri‖2`2 − 〈αi, ri〉`2

)
+

1

n

n∑
i=1

〈αi,yi〉`2

− ε

2n

n∑
i=1

µi.

The objective function of the dual problem to (P1) is obtained by minimizing the Lagrangian
with respect to the primal variables h, b, (ξi)1≤i≤n and (ri)1≤i≤n. For this purpose, let us
remark that minimizing on ξi boils down to introducing the Fenchel-Legendre transform of
`: `? : α ∈ Rp 7→ supξ∈Rp 〈α, ξ〉`2 − `(ξ). Thus, it remains to compute:

LD ((αi)1≤i≤n, (µi)1≤i≤n)

= inf
h∈H, b∈Rp,
∀i∈[n], ri∈Rp

{
− 1

n

n∑
i=1

`?(αi) +
λ

2
‖h‖2H −

〈
1

n

n∑
i=1

E∗xiαi, h

〉
H

−

〈
1

n

n∑
i=1

αi, b

〉
`2

+
1

n

n∑
i=1

(µi
2ε
‖ri‖2`2 − 〈αi, ri〉`2

)
+

1

n

n∑
i=1

〈αi,yi〉`2

− ε

2n

n∑
i=1

µi

}
.

Since H is unbounded in all directions, the minimum of L with respect to h, b and (ri)
n
i=1

is obtained by setting the gradients to 0, which leads to h = 1
λn

∑n
i=1E

∗
xiαi,

∑n
i=1αi = 0

and ri = ε
µi
αi, ∀i ∈ [n]. Thus, the dual objective reads:

LD ((αi)1≤i≤n, (µi)1≤i≤n)

= − 1

n

n∑
i=1

`?(αi)−
1

2λn2

n∑
i,j=1

〈
αi, ExiE

∗
xjαj

〉
`2

+
1

n

n∑
i=1

〈αi,yi〉`2

− ε

2n

n∑
i=1

(
1

µi
‖αi‖2`2 + µi

)
.

Then, the dual optimization problem consists in maximizing LD subject to the constraints∑n
i=1αi = 0 and µi ≥ 0, ∀i ∈ [n]. Remarking that inf∀i∈[n], µi∈R+

1
2

∑n
i=1

(
1
µi
‖αi‖2`2 + µi

)
=

4
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∑n
i=1 ‖αi‖`2 (Bach et al., 2012), a dual to Problem (P1) is:

minimize
∀i∈[n],αi∈Rp

1

n

n∑
i=1

`?(αi) +
1

2λn2

n∑
i,j=1

〈
αi, ExiE

∗
xjαj

〉
`2

− 1

n

n∑
i=1

〈αi,yi〉`2 +
ε

n

n∑
i=1

‖αi‖`2

s. t.

n∑
i=1

αi = 0.

(P2)

B.3. Generalization

Let P : f ∈ F 7→ E [` (Y − f(X))] and Pn : f ∈ F 7→ 1
n

∑n
i=1 `ε (Y − f(X)), as well as

respective twins Pε and Pn,ε obtained by substituting `ε to `. Let us decompose P f̂ε−Pf †:

P f̂ε − Pf † =
(
P f̂ε − Pnf̂ε

)
+
(
Pnf̂ε − Pnf †

)
+
(
Pnf

† − Pf †
)
.

First, by concentration inequalities (Bartlett and Mendelson, 2002; Maurer, 2016; Sangnier
et al., 2016), we have, with probability greater that 1− δ:

P f̂ε − Pnf̂ε ≤ sup
f∈F

(Pf − Pnf) ≤ 2
√

2LRn (F) + LM

√
log(1/δ)

2n
.

Second, let us decompose Pnf̂ε − Pnf †:

Pnf̂ε − Pnf † =
(
Pnf̂ε − Pn,εf̂ε

)
+
(
Pn,εf̂ε − Pn,εf †

)
+
(
Pn,εf

† − Pnf †
)
.

By Lipschitz continuity, we have:

∀ξ,u ∈ Rp, ‖u‖`2 ≤ ε : `(ξ)− `(ξ − u) ≤ L ‖ξ − (ξ − u)‖`2 ≤ Lε.

Consequently, `(ξ) − `ε(ξ) ≤ Lε and Pnf̂ε − Pn,εf̂ε ≤ Lε. In addition Pn,εf̂ε − Pn,εf † ≤ 0

since f̂ε is a minimizer of Pn,ε over F , and f † ∈ F . Finally, Pn,εf
†−Pnf † ≤ 0 since ` upper

bounds `ε. To summarize the second point, Pnf̂ε − Pnf † ≤ Lε.
Third and last, by Hoeffding’s inequality (Boucheron et al., 2013), with probability at

least 1− δ:

Pnf
† − Pf † ≤ LM

√
log(1/δ)

2n
.

Gathering these three points with a union bound concludes the proof.
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B.4. Algorithms

Proof (Lemma 3, body of the text) Let φ : µ ∈ [0, 1] 7→
(

1 + λ

‖[µy]b−a‖`2

)
µ. First,

φ(1) = 1 + λ

‖[y]b−a‖`2
≥ 1. Second, for µ ≥ 0 sufficiently close to 0, [µy]b−a = µy (since

entries of a and b are positive). Therefore φ(0) = limµ↓0

(
µ+ λµ

µ‖y‖`2

)
= λ
‖y‖`2

≤ 1. Fi-

nally, since φ is a continuous mapping on [0, 1] and 1 ∈ [φ(0), φ(1)], then the equation
φ(µ) = 1 has a solution in [0, 1].

Proof (Proposition 4, body of the text) The proof is in two part. First, we write optimality
conditions for the proximal operator of interest, then we show that [µy]b−a satisfies these
optimality conditions when µ is appropriately defined. From now on, let y ∈ Rp.

Optimality conditions Let x? = proxλ‖·‖`2+χ−a4·4b(y) = arg min−a4x4b λ ‖x‖`2+1
2 ‖y − x‖2`2

.

1. Assume that x? 6= 0. Then, λ ‖·‖`2 + 1
2 ‖y − ·‖

2
`2

is differentiable at x? and for each
coordinate j ∈ [p], either:

(a) −aj < x?j < bj and

(
1 + λ

‖x?‖`2

)
x?j = yj ;

(b) or x?j = bj and

(
1 + λ

‖x?‖`2

)
x?j ≤ yj ;

(c) or x?j = −aj and

(
1 + λ

‖x?‖`2

)
x?j ≥ yj .

Gathering Conditions 1a-1c gives ‖x?‖`2 +λ ≤ ‖y‖`2 . Since x? 6= 0, we get λ < ‖y‖`2 .
Conversely, if ‖y‖`2 ≤ λ, then x? = 0.

2. If x? = 0, then ∀δ > 0 such that −a 4 δy 4 b, λ ‖δy‖`2 + 1
2 ‖y − δy‖

2
`2
≥ 1

2 ‖y‖
2
`2
,

that is λ ‖y‖`2 ≥
(
1− δ

2

)
‖y‖2`2 . Thus, by continuity when δ ↓ 0, we have λ ≥ ‖y‖`2 .

To sum up, x? = 0 if and only if ‖y‖`2 ≤ λ.

Proximal solution Let x = [µy]b−a, where µ is defined in Proposition 4 from the body of
the text. Assume that ‖y‖`2 ≤ λ, then µ = 0 and x = 0 satisfies the optimality conditions.

On the other hand, if ‖y‖`2 > λ, then

(
1 + λ

‖x‖`2

)
µ = 1. As a result, either:

1. −aj < xj < bj , so necessarily xj = µyj (otherwise it would be clipped to bj or −aj).

Therefore

(
1 + λ

‖x‖`2

)
xj =

(
1 + λ

‖x‖`2

)
(µyj) = yj ;

2. or xj = bj , meaning that µyj ≥ bj . So

(
1 + λ

‖x‖`2

)
(µyj) ≥

(
1 + λ

‖x‖`2

)
bj , that is(

1 + λ
‖x‖`2

)
xj ≤ yj ;

6
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3. or xj = −aj , meaning that µyj ≤ −aj . So

(
1 + λ

‖x‖`2

)
(µyj) ≤

(
1 + λ

‖x‖`2

)
(−aj),

that is

(
1 + λ

‖x‖`2

)
xj ≥ yj .

Thus, when ‖y‖`2 > λ, x satisfies the optimality conditions. This concludes the proof.

Corollary 6 Let two n-tuples A = (a1, . . . ,an) and B = (b1, . . . , bn) of vectors from Rp
with positive entries. For any n-tuple Y = (y1, . . . ,yn) of vectors from Rp, let:

(x1, . . . ,xn) = proxλ‖·‖`1/`2+χ−A4·4B(Y ),

where ‖Y ‖`1/`2 =
∑n

i=1 ‖yi‖`2. Then, ∀i ∈ [n]:

xi = proxλ‖·‖`2+χ−ai4·4bi
(yi).

Proof This is a direct consequence of the separability of λ ‖·‖`1/`2 + χ−A4·4B.

Proof (Proposition 5) The proof is similar to the one for Proposition 4 (see body of the
text). Let y ∈ Rp.

Optimality conditions Let x? = prox
λ
(
‖·‖`2+ψ

)(y) = arg minx∈Rp λ ‖x‖`2 + λψ(x) +

1
2 ‖y − x‖2`2 .

1. Assume that x? 6= 0. Then, λ ‖·‖`2 + λψ + 1
2 ‖y − ·‖

2
`2

is differentiable at x? and for
each coordinate j ∈ [p]:

yj =

(
λ

‖x?‖`2
+ λ

∣∣∣τj − Ix?j<0

∣∣∣−1
+ 1

)
x?j .

It appears that x?j and yj have same sign. Therefore, Ix?j<0 = Iyj<0 and

x?j =

(
λ

‖x?‖`2
+ λ

∣∣τj − Iyj<0

∣∣−1
+ 1

)−1

yj .

Now, the previous relation implies:

‖x?‖2`2 =

p∑
j=1

y2
j(

λ
‖x?‖`2

+ λ
∣∣τj − Iyj<0

∣∣−1
+ 1

)2 .

Since x? 6= 0, we get:

1 =

p∑
j=1

y2
j(

λ+ ‖x?‖`2
(
λ
∣∣τj − Iyj<0

∣∣−1
+ 1
))2 .

7
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But ‖x?‖`2 > 0, so:

1 =

p∑
j=1

y2
j(

λ+ ‖x?‖`2
(
λ
∣∣τj − Iyj<0

∣∣−1
+ 1
))2 <

p∑
j=1

y2
j

λ2
,

that is λ < ‖y‖`2 . Conversely, if ‖y‖`2 ≤ λ, then x? = 0.

2. If x? = 0, then ∀δ > 0, λ ‖δy‖`2 +λψ(δy) + 1
2 ‖y − δy‖

2
`2
≥ 1

2 ‖y‖
2
`2
, that is λ(‖y‖`2 +

δψ(y)) ≥
(
1− δ

2

)
‖y‖2`2 . Thus, by continuity when δ ↓ 0, we have λ ≥ ‖y‖`2 . To sum

up, x? = 0 if and only if ‖y‖`2 ≤ λ.

Proximal solution If ‖y‖`2 ≤ λ, then x = 0 is satisfies trivially the optimality conditions.

On the other hand, if ‖y‖`2 > λ, then
∑p

j=1

y2
j

λ2 > 1 and limµ→+∞
∑p

j=1

y2
j(

µ

(
1+λ

∣∣∣τj−Iyj<0

∣∣∣−1
)

+λ

)2 =

0. Thus, by continuity, Equation 1 has a solution µ > 0. Let µ be such a solution and let
x ∈ Rp such that for each coordinate j ∈ [p],

xj =

(
1 +

λ

µ
+ λ

∣∣τj − Iyj<0

∣∣−1
)−1

yj .

Then:
‖x‖2`2
µ2

=

p∑
j=1

y2
j

µ2
(

1 + λ
µ + λ

∣∣τj − Iyj<0

∣∣−1
)2 = 1.

Consequently

xj =

(
1 +

λ

‖x‖`2
+ λ

∣∣τj − Iyj<0

∣∣−1

)−1

yj .

and x satisfies the optimality conditions. This concludes the proof.

Appendix C. Numerical experiments

Table 1 reports the average empirical loss (scaled by 100) along with the standard deviations.
It completes Talbe 2 from the body of the text. For each dataset, the bold-face numbers
are the two lowest losses. These values should be compared to the loss for ε = 0.
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