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Abstract

Gradient boosting is a prediction method that iteratively combines weak learners to produce
a complex and accurate model. From an optimization point of view, the learning procedure of
gradient boosting mimics a gradient descent on a functional variable. This paper proposes to build
upon the proximal point algorithm, when the empirical risk to minimize is not differentiable, in
order to introduce a novel boosting approach, called proximal boosting. It comes with a companion
algorithm inspired by [Grubb and Bagnell, 2011] and called residual proximal boosting, which is
aimed at better controlling the approximation error. Theoretical convergence is proved for these
two procedures under different hypotheses on the empirical risk and advantages of leveraging
proximal methods for boosting are illustrated by numerical experiments on simulated and real-
world data. In particular, we exhibit a favorable comparison over gradient boosting regarding
convergence rate and prediction accuracy.

1 Introduction

Boosting is a celebrated machine learning technique, both in statistics and data science. In broad
outline, boosting sequentially combines simple models (called weak learners) to build a more complex
and accurate model. This assembly is performed iteratively, taking into account the performance of the
model built at the previous iteration. The way this information is considered leads to several variants of
boosting, the most famous of them being Adaboost [Freund and Schapire, 1997] and gradient boosting
[Friedman, 2001].

The reason of the success of boosting is twofold: i) from the statistical point of view, boosting
is an additive model with an iteratively growing complexity. It is thus possible to reduce the bias
of the risk while controlling its variance. This is a noticeable advantage over very complex models
such as nonparametric methods. ii) from the data science perspective, fitting a boosting model is
computationally cheap, making it possible to be used on large datasets. In contrast, it can quickly
achieve sufficiently complex models to be able to perform accurately on difficult learning task. As an
ultimate feature, the iterative process makes finding the frontier between under and overfitting quite
easy. In particular, gradient boosting combined with decision trees (often referred to as gradient tree
boosting) is currently regarded as one of the best off-the-shelf learning techniques for tabular data
in several real-world situations ranging from data challenges to tangible applications in urbanization
[Ikeagwuani et al., 2021, Rajendran et al., 2021], renewable energy [Tyralis and Papacharalampous,
2021, Chen et al., 2022] and medical care [Ahamad et al., 2020, Awal et al., 2021, Santana et al., 2021].

As explained by Biau et al. [2019], gradient boosting has its roots in Freund and Schapire’s work on
combining classifiers, which resulted in the Adaboost algorithm [Freund and Schapire, 1997, Schapire,
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1990, Freund, 1995, Freund and Schapire, 1996]. Later, Friedman and colleagues developed a novel
boosting procedure inspired by the numerical optimization literature, and nicknamed gradient boosting
[Friedman, 2001, Friedman et al., 2000, Friedman, 2002]. Such a connection of boosting to statistics and
optimization was already stated in several previous analyses by Breiman [Breiman, 1997, 1998, 1999,
2000, 2004] and reviewed as functional optimization [Mason et al., 2000b,a, Meir and Rätsch, 2003,
Bühlmann and Hothorn, 2007]: boosting can be seen as an optimization procedure (similar to gradient
descent), aimed at minimizing an empirical risk over the set of linear combinations of weak learners.
In this respect, a few theoretical studies prove the convergence, from an optimization point of view,
of boosting procedures [Zhang, 2002, 2003, Wang et al., 2015] and particularly of gradient boosting
[Temlyakov, 2014, Biau and Cadre, 2021]. Let us remark that rates of convergence of gradient boosting
are known for smooth and strongly convex risks [Grubb and Bagnell, 2011, Rätsch et al., 2002].

Since the invention of gradient boosting, several variants have been emerging (see for instance
[Bühlmann and Yu, 2003, Zhang and Yu, 2005, Gao and Koller, 2011, Wang et al., 2019] to cite only
a few) up to very recent studies concerning large-scale regression with boosted histograms [Cai et al.,
2020, Cui et al., 2021, Hang et al., 2021]. The statistical properties of boosting algorithms have been
addressed many times (for instance in [Bühlmann and Yu, 2003, Park et al., 2009, Lin et al., 2019])
and are still under consideration as a modern topic of statistical learning [Cai et al., 2020, Cui et al.,
2021, Hang et al., 2021, Zeng et al., 2022].

In practice, the number of weak learners used in gradient boosting (and variants) controls the
statistical complexity of the final predictor but also the number of optimization steps performed in
order to minimize the empirical risk. While controlling the latter is a natural way to regularize the
method and to enhance its generalization properties, tuning the former makes it possible to stop the
optimization algorithm before convergence, which is known in many areas as early stopping. This
technique can be seen as an iterative regularization mechanism also used to prevent overfitting [Lin
et al., 2016]. As a consequence, besides its approximation capability, the statistical performance of
gradient boosting deeply relies on the algorithm employed.

That being said, one may wonder if gradient descent is really a good option. Following this
direction, several alternatives have been proposed, such as replacing gradient descent by the Frank-
Wolfe algorithm [Wang et al., 2015], incorporating second order information [Chen and Guestrin, 2016],
and applying Nesterov’s acceleration [Biau et al., 2019, Lu et al., 2020]. While all these variants rely
on differentiable loss functions, Grubb and Bagnell [2011] discusses the limitations of boosting with
gradient descent in the non-differentiable setting, and tackle these issues by proposing two modified
versions of (sub)gradient boosting, consisting in reprojecting the error made when approximating the
subgradients by weak learners. The contribution of the work described here is to go a step forward by
proposing novel procedures to efficiently learn boosted models with non-differentiable loss functions.

To go into details, Section 2 reviews boosting with respect to the empirical risk minimization
principle and illustrates the flaw of the current learning procedure in a simple non-differentiable case:
least absolute deviations. Building upon a background on non-smooth optimization, Section 3 en-
closes the main contribution of this paper: adapting the proximal point algorithm [Nesterov, 2004]
to boosting. The proposed method is nicknamed proximal boosting and comes with a variant, called
residual proximal boosting, inspired by Grubb and Bagnell [2011]. A second contribution is to prove
convergence rates (from an optimization perspective) of proximal and residual proximal boosting un-
der different hypotheses on the loss function (see Section 4). Finally, the numerical study described
in Section 5 shines a light on advantages and limitations of the proposed boosting procedures. As a
by-product, we also consider adapting Nesterov’s acceleration to proximal boosting, such as in acceler-
ated gradient boosting [Biau et al., 2019]. Even though our proposed algorithm performs better than
that of [Biau et al., 2019], we observe divergence on the training set (as this is the case for accelerated
gradient boosting [Biau et al., 2019, Lu et al., 2020]) and no particular gain in accuracy.
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2 Problem and notation

Let X be an arbitrary input space and Y ⊆ R an output space. Given a pair of random variables
(X,Y ) ∈ X × Y, supervised learning aims at explaining Y given X, thanks to a measurable function
f0 : X → R. In this context, f0(X) may represent several quantities, depending on the task at hand,
for which the most notable examples are the conditional expectation x ∈ X 7→ E[Y |X = x] and the
conditional quantiles of Y given X for regression, as well as the regression function x ∈ X 7→ P(Y =
1|X = x) for ±1-classification. Often, this target function f0 is a minimizer of the risk E(ℓ(Y, f(X)))
over all measurable functions f , where ℓ : R × R → R is a suitable convex loss function (respectively
the square function and the pinball loss in the regression examples previously mentioned).

Since the distribution of (X,Y ) is generally unknown, the minimization of the risk is out of reach.
One would rather deal with its empirical version instead. Let {(Xi, Yi)}1≤i≤n ⊆ X × Y be a training
sample of pairs (Xi, Yi) independent and identically distributed according to the distribution of (X,Y ),
FX the set of functions from X to R and F ⊆ FX a class of functions. In this work, we consider
estimating f0 by means of an additive model f⋆ (that is f⋆ =

∑T
t=0 wtgt, where T is an unknown

integer and (wt, gt)t ⊆ R × F is an unknown sequence of weights and weak learners) by solving the
following optimization problem:

minimize
f∈spanF

C(f), (P1)

where

C(f) =
1

n

n∑
i=1

ℓ(Yi, f(Xi))

is the empirical risk and

spanF =

{
m∑
t=1

wtgt : w ∈ Rm, (g1, . . . , gm) ∈ Fm,m ∈ N

}

is the set of all linear combinations of functions in F (N being the set of non-negative integers).
As a simple example, let us consider the regression model Y = sin(2πX) + sin(32πX) + ϵ, where

X is uniformly distributed on [0, 1] and ϵ is normally distributed and independent of X. We aim at
solving:

minimize
f∈spanF

1

n

n∑
i=1

|Yi − f(Xi)|,

with F being the set of regression trees of depth less than 3.
Two boosting machines fT =

∑T
t=0 wtgt are learned (with T fixed to 500): a traditional one with

a subgradient-type method (Algorithm 1, Section 3.2), and another with the proposed proximal-based
procedure (Algorithm 2, Section 3.3). Figure 1 depicts the prediction of fT (left) and the training
error C(ft) =

1
n

∑n
i=1 |Yi − ft(Xi)| along the iterations t (right, green curve).

From an optimization perspective, it appears clearly that the subgradient method fails to minimize
the empirical risk (prediction is far from the data and the training error attains a plateau at 1.2 ·
10−1) while the proximal-based procedure constantly improves the objective. The subgradient method
faces a flaw in convergence, in all likelihood due to non-differentiability of the absolute function | ·
|. This simple example illustrates, inside the boosting paradigm, a well-known fact in numerical
optimization: proximal-based algorithms prevail over subgradient techniques for non-differentiable
objective functions.

Beyond optimization, proximal boosting also outperforms gradient boosting from a statistical per-
spective since it achieves a lower test error (red curve in the right side of Figure 1).
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Figure 1: Predicted values and training error of a boosting machine trained with a subgradient (top)
and a proximal-based method (bottom).

3 Algorithms

There is an ambiguity in (P1) , since it is a functional optimization problem but, in practice, we do
not necessarily have the mathematical tools to apply standard optimization procedures (in particular
concerning differentiation of C). For this reason, C is often regarded as a function from Rn to R,
considering that it depends on f only through the vector f(Xn

1 ) = (f(X1), . . . , f(Xn)) ∈ Rn. To
make this remark more precise, let, for all z ∈ Rn, D(z) = 1

n

∑n
i=1 ℓ(Yi, zi). Then, for any f ∈ FX ,

C(f) = D(f(Xn
1 )).

Having this remark in mind helps solving (P1) , for instance considering that taking the gradient
of C with respect to f is roughly equivalent to differentiating C with respect to f(x) (for all observed
x ∈ {X1, . . . , Xn}), thus taking in fact the usual gradient of D. Doing so, the only requirement is
to match the vectors appearing in standard optimization procedures with functions from FX . In
particular, given a vectorial gradient ∇D(f(Xn

1 )) (f ∈ FX ), one has to find a function g ∈ FX that
correctly represents it, i.e. such that g(Xn

1 ) ≈ ∇D(f(Xn
1 )). This principle is at the heart of functional

optimization methods such that the ones used in boosting [Mason et al., 2000b].
From now on, all necessary computations of C with respect to f can be forwarded to D. For

instance, if ℓ is differentiable with respect to its second argument, we can define, for all f ∈ FX , the
functional gradient of C as ∇nC(f) = ∇D(f(Xn

1 )). On the contrary, if ℓ is not differentiable, we may

consider a subgradient of C at f , denoted ∇̃nC(f) and defined as any subgradient of D at f(Xn
1 ).

In the forthcoming sections, a common first order optimization algorithm is reviewed. Then, it is
explained how to build different procedures for solving (P1) , according to the properties of the loss
function ℓ. For the sake of readability, the algorithms introduced in the next sections are recapped in
Table 1.

3.1 The proximal gradient method

Let us assume for a while that we want to minimize the function g + h, where g : Rd → R is convex
and differentiable (with L-Lipschitz continuous gradient, L > 0), and h : Rd → R ∪ {+∞} is convex
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AlgorithmDescription
1 Gradient boosting with convergence rate O(1/t) for smooth losses
2 Proximal boosting with convergence rate O(1/t) for smooth losses

3 Proximal boosting with convergence rate O(1/
√
t) for non-smooth losses

4 Proximal boosting with Nesterov’s acceleration
5 Numerical implementation of Algorithms 1, 2 and 3 with shrunk step size
6 Abstract algorithm for the proof of Theorem 2
7 Abstract algorithm for the proof of Theorem 3
8 Numerical implementation of Algorithm 4 with shrunk step size

Table 1: Summary of algorithms.

and lower semi-continuous. Besides, let us define the proximal operator of h by:

proxh(x) = argminu∈Rd

{
h(u) +

1

2
∥u− x∥22

}
, ∀x ∈ Rd,

where ∥·∥2 is the Euclidean norm. This operator is well defined by convexity and lower semi-continuity
of h [Combettes and Wajs, 2005]. Then, the iterative procedure defined by choosing any x0 ∈ Rd and
by setting for all t ∈ N:

xt+1 = proxγt+1h(xt − γt+1∇g(xt)),

where γt+1 ∈ (0, 2/L), is known as the proximal gradient method, and converges to a minimizer
of g + h in O(1/t) [Nesterov, 2004]. More formally, assuming that g + h has a minimizer x⋆, then
(g + h)(xt)− (g + h)(x⋆) = O(1/t).

Depending on the properties of the objective function to minimize, the procedure described before
leads to two simple algorithms:

• the gradient method (h = 0):
xt+1 = xt − γt+1∇g(xt),

minimizes a single function g as soon as it is convex and differentiable with Lipschitz continuous
gradient;

• the proximal point algorithm (g = 0):

xt+1 = proxγt+1h(xt) = xt − γt+1

[
1

γt+1

(
xt − proxγt+1h(xt)

)]
, (1)

minimizes a single function h, which is only required to be convex and lower semi-continuous (in
this case, there is no restriction on the step size γt+1, except being positive).

The proximal gradient method (as well as its two special cases) has the asset to be a descent
method: at each iteration, the objective function monotonically decreases, meaning that (g+h)(xt+1) ≤
(g + h)(xt), with convergence rate O(1/t). In particular, this is true when minimizing a single convex
and lower semi-continuous function h : Rd → R, even if it is not differentiable, with the iteration given
in Equation (1).

This has to be put in contrast with the subgradient method:

xt+1 = xt − γt+1∇̃h(xt), (2)

where γt+1 > 0 and ∇̃h(xt) is any subgradient of h at xt. This procedure, which is very similar to the
gradient descent but replacing the gradient by any subgradient, has a convergence rate O(1/

√
t) in the

best case [Nesterov, 2004]. In addition, this rate is tight for this optimization procedure: it cannot be
improved without extra assumptions on h [Nesterov, 2004, Theorem 3.2.1].
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This remark motivates the use of procedures different from the subgradient method when minimiz-
ing a non-differentiable function h, such as the proximal point algorithm (described in Equation (1)).
This motivation is emphasized by the fact that moving from the subgradient to the proximal point
method only requires to replace the update direction ∇̃h(xt) by

1
γt+1

(xt − proxγt+1h(xt)). This obser-

vation is the cornerstone of the boosting algorithms proposed in Section 3.3.

3.2 Gradient boosting

Let F0 be the set of constant functions on X and assume that F0 ⊆ F . Then, a simple procedure
to approximately solve (P1) is gradient boosting, described in Algorithm 1 [Friedman, 2001, Mason
et al., 2000a]. It builds the requested additive model in an iterative fashion, by imitating a gradient
method (or subgradient method if ℓ is not differentiable with respect to its second argument). At each
iteration t, Algorithm 1 finds a function gt+1 that approximates the opposite of a subgradient of C
(also called pseudo-residuals) and adds it to the model ft with a positive weight wt+1 = γt+1. At the

end of the procedure, the proposed estimator of f0 is fT =
∑T

t=0 wtgt, with w0 = 1.

Algorithm 1 Gradient boosting.

Input: γ1, . . . , γT > 0 (gradient steps).
1: Set f0 ∈ argming∈F0

C(g) (initialization).
2: for t = 0 to T − 1 do
3: Compute r ← −∇̃nC(ft) (pseudo-residuals).
4: Compute gt+1 ∈ argming∈F ∥g(Xn

1 )− r∥2.
5: Set ft+1 ← ft + γt+1gt+1. (update).
6: end for

Output: fT .

There are several manners to schedule the gradient steps γt+1, including being adaptively fixed
thanks to a line search. This is discussed in Section 5.

3.3 Boosting with non-differentiable loss functions

When the function ℓ is not differentiable with respect to its second argument, gradient boosting just
uses a subgradient ∇̃nC(ft) instead of the gradient ∇nC(ft). This is, of course, convenient but
as explained previously, far from leading to interesting convergence behaviors in practice. For this
reason, we propose a new procedure for non-differentiable loss functions ℓ, which consists in adapting
the proximal point algorithm [Nesterov, 2004] to functional optimization.

For any f ∈ FX , let Proxλn C(f) = 1
λ (f(Xn

1 )− proxλD(f(Xn
1 ))), where λ > 0 is a parameter.

The simple idea underlying the proposed algorithm, nicknamed proximal boosting, is that the only
difference between subgradient and proximal point methods is the update direction of the optimization
variable, which is respectively ∇̃nC(ft) or Proxλt+1

n C(ft), where λt+1 > 0 is a proximal step. Thus,

proximal boosting computes the pseudo-residuals based on Proxλt+1
n C(ft) instead of ∇̃nC(ft) and

leaves the rest unchanged, as described in Algorithm 2.
While Algorithm 2 is very intuitive and proved to converge at the expected rate for differentiable

loss functions (see Section 4), a rate of convergence cannot be exhibited for non-differentiable loss
functions. To remedy this limitation, we now introduce a variant of Algorithm 2, named residual
proximal boosting (see Algorithm 3) and inspired by [Grubb and Bagnell, 2011], which incorporates a
mechanism making it possible to control the approximation error made at each iteration and to obtain
a convergence rate under weak assumptions (see Section 4). In practice, it consists in augmenting
the pseudo-residuals with the approximation error ∆t of the previous iteration, also called residual.

As a by-product and along the same line as accelerated gradient boosting [Biau et al., 2019], we
remark that this is possible to incorporate Nesterov’s acceleration [Nesterov, 1983, Beck and Teboulle,
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Algorithm 2 Proximal boosting.

Input: λ1, . . . , λT > 0 (proximal steps).
1: Set f0 ∈ argming∈F0

C(g) (initialization).
2: for t = 0 to T − 1 do
3: Compute r ← −Proxλt+1

n C(ft) (pseudo-residuals).
4: Compute gt+1 ∈ argming∈F ∥g(Xn

1 )− r∥2.
5: Set ft+1 ← ft + λt+1gt+1.
6: end for

Output: fT .

Algorithm 3 Residual proximal boosting.

Input: λ1, . . . , λT > 0 (proximal steps).
1: Set f0 ∈ argming∈F0

C(g), ∆0 ← 0 (initialization).
2: for t = 0 to T − 1 do
3: Compute r ← −Proxλt+1

n C(ft) (pseudo-residuals).
4: Compute gt+1 ∈ argming∈F ∥g(Xn

1 )− (r +∆t)∥2.
5: Set ft+1 ← ft + λt+1gt+1.
6: Set ∆t+1 ← r +∆t − gt+1(X

n
1 ).

7: end for
Output: fT .

2009] to proximal boosting, in order to speed up the convergence and to aggregate less weak learners.
In practice, Algorithm 4 is similar to Algorithm 2 but computes the proximal step at the auxiliary
function ht instead of ft. ht+1 is then obtained by a momentum tuned by the coefficient αt, defined
recursively by 

β0 = 0

βt+1 =
1+
√

1+4β2
t

2 , t ∈ N
αt+1 = βt−1

βt+1
, t ∈ N.

(3)

Algorithm 4 returns an estimator fT =
∑T

t=0 wtgt where the weights w0, . . . , wT are now given by a
recursive formula (see Appendix C).

The convergence rate of the accelerated proximal point method is O(1/t2), which prevails over that
of the vanilla version of the proximal point method from an optimization point of view. However, as
it will be observed in Section 5, the boosting procedure proposed in Algorithm 4 inherits the same
drawbacks as accelerated gradient boosting and does not seem reliable. Importantly, it is prone to
divergence.

Algorithm 4 Accelerated proximal boosting.

Input: λ1, . . . , λT > 0 (proximal steps).
1: Set f0 = h0 ∈ argming∈F0

C(g) (initialization).
2: for t = 0 to T − 1 do
3: Compute r ← −Proxλt+1

n C(ht) (pseudo-residuals).
4: Compute gt+1 ∈ argming∈F ∥g(Xn

1 )− r∥2.
5: Set ft+1 ← ht + λt+1gt+1.
6: Set ht+1 ← ft+1 + αt+1(ft+1 − ft).
7: end for

Output: fT .
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4 Convergence results

This section is dedicated to the theoretical convergence of the two proposed algorithms: proximal
boosting (Algorithm 2) and residual proximal boosting (Algorithm 3).

A preliminary result on the convergence of the proximal boosting technique can be easily derived
upon previous work by Rockafellar [1976]: it requires to control the error introduced by considering
an approximated direction of optimization instead of the true proximal step, and could be stated as
follows in the case of Algorithm 2.

Theorem 1 ([Rockafellar, 1976, Theorem 1]). Let (ft)t be any sequence generated by Algorithm 2 and
define for any iteration t:

εt+1 =
∥∥∥gt+1(X

n
1 ) + Proxλt+1

n C(ft)
∥∥∥
2
.

Suppose that (ft(X
n
1 ))t is bounded and that

+∞∑
t=0

εt < +∞. (4)

Then,
lim
t→∞

C(ft) = inf
f∈spanF

C(f).

Theorem 1 states that as soon as the approximation errors (εt)t converge to 0 quicker than 1/t,
then the sequence (C(ft))t converges to a minimum of C. However, with a better control of the
approximation errors (εt)t, a rate of convergence can be derived for Algorithm 2. This is the role of
the following assumption, which is common in the boosting literature to characterize the approximation
capacity of the class F [Grubb and Bagnell, 2011].

(A) There exists ζ ∈ (0, 1] such that:

∀r ∈ Rn, ∃g ∈ F : ∥g(Xn
1 )− r∥22 ≤ (1− ζ2) ∥r∥22 .

A set of weak learners F satisfying Assumption (A) is said to have edge ζ.
Now, we provide a convergence result for Algorithm 2, based on smoothness properties: a functional

C of the form C(f) = D(f(Xn
1 )), for all f ∈ FX , is said L-smooth (for some L > 0) ifD is differentiable

and for all x, x′ ∈ Rn,

D(x′) ≤ D(x) + ⟨∇D(x), x′ − x⟩ + L

2
∥x′ − x∥22 ,

and κ-strongly convex (for some κ > 0) if

D(x′) ≥ D(x) + ⟨∇D(x), x′ − x⟩ + κ

2
∥x′ − x∥22 ,

where ⟨·, ·⟩ refers to the inner product. The convergence rate stated hereafter is based on an original
result presented and proved in Appendix A.

Theorem 2. Assume that (A) is granted, C is L-smooth and κ-strongly convex for some L > 0
and κ > 0. Let (ft)t be any sequence generated by Algorithm 2 and assume that there exists f⋆ ∈
argminf∈spanF C(f). Then, choosing λt =

ζ2

8L leads to:

C(fT )− C(f⋆) ≤
(
1− ζ4κ

21L

)T

(C(f0)− C(f⋆)) .
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Proof. Given that ∀f ∈ FX : C(f) = D(f(Xn
1 )) and Assumptions (E), (SM) and (SC) are granted for

D (respectively by Assumption (A), L-smoothness and κ-strong convexity of C), this is an application
of Theorem 4 (see Appendix A) to the function D.

Theorem 2 states that proximal boosting has a linear convergence rate under smoothness and strong
convexity assumptions. This result was expected since gradient boosting has the same convergence
rate under these assumptions [Grubb and Bagnell, 2011].

Admittedly, these two assumptions are restrictive for an algorithm designed for non-differentiable
loss functions. However, our analysis revealed that they seem necessary to control the impact of
the approximation error on the convergence. Consequently, proving convergence for proximal boosting
under weaker assumptions on the objective function C (see thereafter) requires to modify Algorithm 2.
This is the role of Algorithm 3, as introduced in Section 3.

A functional C of the form C(f) = D(f(Xn
1 )), for all f ∈ FX , is said to be G-Lipschitz continuous

(for some G > 0) if for all x, x′ ∈ Rn,

|D(x)−D(x′)| ≤ G ∥x− x′∥2 .

A convergence rate for residual proximal boosting (Algorithm 3) can be derived from this weak prop-
erty, as stated in Theorem 3 (which is based on an original result presented and proved in Appendix A).

Theorem 3. Assume that (A) is granted, C is convex and G-Lipschitz continuous for some G > 0.
Let (ft)t be any sequence generated by Algorithm 3 and fbest ∈ argmin1≤t≤T C(ft). Assume that there
exists f⋆ ∈ argminf∈spanF C(f) and that ∥ft(Xn

1 )∥2 ≤ R and ∥f⋆(Xn
1 )∥2 ≤ R for some R > 0 and all

t. Then, choosing λt =
1√
t
leads to:

C(fbest)− C(f⋆) ≤ 2R2

√
T

+
40G2

ζ4
√
T

+
2G2

ζ4T
3
2

.

Proof. Given that ∀f ∈ FX : C(f) = D(f(Xn
1 )) and Assumptions (E) and (L) are granted for D

(respectively by Assumption (A) and G-Lipschitz continuity of C), this is an application of Theorem 6
(see Appendix A) to the function D.

Theorem 3 states that the best aggregation returned by residual proximal boosting has sublinear
convergence rate (more precisely O(1/

√
t)) under Lipschitz continuity assumption. On the one hand,

this rate is similar to that of residual gradient boosting [Grubb and Bagnell, 2011], showing that our ap-
proach is theoretically competitive with the state-of-the art regarding boosting with non-differentiable
cost functions. On the other hand, this result is quite pessimistic regarding the empirical performance
of Algorithm 3: Section 5 will show that, in practice, linear convergence (as stated by Theorem 2)
is often observed numerically, even though the loss function is not differentiable. This is perfectly
consistent with our initial intuition: boosting better handles the non-differentiability of the objective
function by using the proximal operator instead of any subgradient.

Remark 4.1. Since the convergence rate of the proximal point method for non-smooth functions
is O(1/t) (respectively O(1/

√
t) for the subgradient method), one may expect that proximal boosting

converges in O(1/t) (while subgradient boosting is in O(1/
√
t) [Grubb and Bagnell, 2011]) but the

previous result states a worst case convergence rate in O(1/
√
t).

The latter is in fact not that surprising: for L-smooth and κ-strongly convex objectives, gradient

descent converges in O
((

1− κ
L

)t)
while gradient boosting converges in O(1/t). This highlights that

the approximation step (represented by the operator P below) used in boosting iterations is prone to
damage the convergence rate.

More formally, consider an objective function f and two iterations xtheo
t+1 = xt − γtdt and xt+1 =

xt − γtP (dt), where P is an approximation operator. The rate in O(1/t) for gradient descent and
the proximal point method is linked to the capability to control the error ε(∇̃f(xtheo

t+1 ), dt) between a

subgradient at xtheo
t+1 , denoted ∇̃f(xtheo

t+1 ), and the direction of descent at xt, denoted dt.
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The error ε(∇̃f(xtheo
t+1 ), dt) is (i) controlled under the assumption of Lipschitz continuous gradients

in the case of gradient descent; (ii) equal to 0, (ε(∇̃f(xtheo
t+1 ), dt) = 0) for the proximal point method (the

proximal direction of descent is exactly a subgradient at xtheo
t+1 ). If this error cannot be controlled tightly,

we may end up with a O(1/
√
t) convergence rate. This is exactly the case for the subgradient method,

for which ε(∇̃f(xtheo
t+1 ), dt) = ε(∇̃f(xtheo

t+1 ), ∇̃f(xt)) (which is a difference between two subgradients) is
only bounded by a constant.

In proximal and subgradient boosting (second iteration as defined above), this error can be decom-
posed into three parts:

ε(∇̃f(xt+1), P (dt)) = ε(∇̃f(xt+1), ∇̃f(xtheo
t+1 )) + ε(∇̃f(xtheo

t+1 ), dt) + ε(dt, P (dt)).

1. Without strong assumptions on f , the first term (being a difference between two subgradients) is
of the order of O(1/

√
t).

2. The second term can be controlled by O(1/
√
t) when dt = ∇̃f(xt) (subgradient boosting) and 0 if

dt is the proximal direction (proximal boosting).

3. The third term usually requires the edge hypothesis (as used in the literature and in this paper)
and a specific mechanism inside the algorithm to be controlled, such as the residual inspired by
[Grubb and Bagnell, 2011].

Overall, even if proximal boosting benefits from the cancellation of the second error term, the first
and the third ones remain limiting, resulting in an O(1/

√
t) rate, as in the case of subgradient boosting.

5 Numerical analysis

In Section 3, proximal boosting algorithms have been introduced in a fairly general way. However,
the empirical results presented in this section are based on an implementation (See Algorithm 5)
incorporating some modifications that have made the success of gradient boosting.

First of all, the proximal step is fixed to some positive value: λt = λ > 0; and the update rule
ft+1 ← ft + λt+1gt+1 is replaced by ft+1 ← ft + νγt+1gt+1, where

γt+1 ∈ argminγ∈R C(ft + γgt+1).

In other words, the step size is tuned by a shrinkage coefficient (or learning rate) ν ∈ (0, 1] and a line
search producing the largest decrease of the objective function.

The learning rate is known to be a key element of boosting machines in order to obtain a good
generalization performance. To understand that fact, let us remark that the number of iterations
T acts on two regularization mechanisms. The first one is statistical (T controls the complexity of
the subspace in which fT lies) and the second one is numerical (T controls the precision to which
the empirical risk C is minimized). The shrinkage coefficient ν tunes the balance between these two
regularization mechanisms.

Besides the learning rate, the step size is controlled by a line search, that simply scales the weak
learner gt+1 by a constant factor. Actually, since the class of weak learners F is in practice a set of
regression trees (implemented in Scikit-learn [Pedregosa et al., 2011]), a multiple line search is used, as
proposed by Friedman [2001]: a line search is performed sequentially for each leaf of the decision tree,
such that each level of the piecewise constant function gt+1 is scaled with its own factor. All variants
of proximal and gradient boosting are implemented based on Algorithm 5 in the Scikit-learn fashion
[Pedregosa et al., 2011] and are freely available in the Python package optboosting1.

1https://github.com/msangnier/optboosting
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Algorithm 5 Meta-algorithm for boosting.

Input: ν ∈ (0, 1] (shrinkage coefficient), λ > 0 (proximal step).
1: Set f0 ∈ argming∈F0

C(g), ∆0 ← 0 (initialization).
2: for t = 0 to T − 1 do
3: Pseudo-residuals (see Appendix B):{

r ← −∇̃nC(ft) for gradient boosting,

r ← −Proxλn C(ft) for proximal boosting.

4: Regression of the vector r +∆t ∈ Rn onto (X1, . . . , Xn):

gt+1 ∈ argming∈F ∥g(Xn
1 )− (r +∆t)∥2 .

5: Residual: {
∆t+1 ← 0 for vanilla boosting,

∆t+1 ← r +∆t − gt+1(X
n
1 ) for residual boosting.

6: Line-search (see Appendix B):

γt+1 ∈ argminγ∈R C(ft + γgt+1).

7: Update:
ft+1 ← ft + νγt+1gt+1.

8: end for
Output: fT .

5.1 Behavior of proximal boosting

Based on synthetic data, this section aims at numerically illustrating the performance of proximal
boosting compared to gradient boosting. For this purpose, two synthetic models are studied, both
coming from Biau et al. [2019, 2016]:

Regression: ∥∥∥∥ n = 800, d = 100;

Y = − sin(2X(1)) +X(2)2 +X(3) − exp(−X(4)) + Z0.5,

Classification: ∥∥∥∥∥∥∥
n = 1500, d = 50;

Y =

{
1 if X(1) +X(4)3 +X(9) + sin(X(12)X(18)) + Z0.1 > 0.38;

−1 otherwise,

where Zσ2 is a random variable independent from X, following a normal distribution with zero mean
and variance σ2.

The first model covers an additive regression problem, while the second covers a binary classification
task with covariate interactions. In both cases, we consider an input random variable X ∈ Rd, the
covariate of which, denoted (X(j))1≤j≤d, are normally distributed with zero mean and covariance
matrix Σ =

(
2−|i−j|)

1≤i,j≤d
. Moreover, in these synthetic models of regression and classification, an

additive and independent noise is embodied by the random variable Zσ2 .
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Loss Parameter ℓ(y, y′) Type
Least squares - (y − y′)2/2 Regression
Least absolute
deviations

- |y − y′| Regression

Pinball τ ∈ (0, 1) max(τ(y − y′), (τ − 1)(y − y′)) Regression
Exponential β > 0 exp(−βyy′) Classification
Logistic - log2(1 + exp(−yy′)) Classification
Hinge - max(0, 1− yy′) Classification

Table 2: Loss functions.

Four different losses are considered (see Table 2 for a brief description): least squares and least
absolute deviations for regression; exponential (with β = 1) and hinge for classification. Computations
for the corresponding (sub)gradients and proximal operators are detailed in Appendix B. On that
occasion, it can be remarked that the direction of descent Proxλn C(ft) of proximal boosting applied
with the least squares loss is the same as that of gradient boosting, ∇nC(ft), up to a constant factor
(see Appendix B). In other words, proximal and gradient boosting are exactly equivalent.

In addition, note that we also considered other kind of losses such as the pinball loss for regression
and the logistic loss for classification (see Table 2). Nevertheless, since the numerical behaviors are
respectively very close to the least absolute deviations and the exponential cases, the results are not
reported.

In the following numerical experiments, the random sample generated based on each model is
divided into a training set (50%) to fit the method and a test set (50%). The performance of the
methods are appraised through several curves representing the training and test losses along the T =
1000 iterations of boosting.

5.1.1 Convergence

As a first numerical experiment, we aim at illustrating the convergence of proximal boosting (see
Section 4) for two classes F of weak learners: regression trees with maximal depth 3 (in blue in
Figure 2) and with maximal depth 15 (in red in Figure 2). This last class of weak learners is supposed
to make almost no error in approximating the directions of descent, thus leading to quasi-standard
optimization algorithms.

For the purpose of the analysis, parameters λ and ν are set to standard values: λ = 1, ν = 5 ·10−2,
which does not hurt the generality of the forthcoming interpretations. Moreover, gradient boosting
and its variant proposed by Grubb and Bagnell [2011], residual gradient boosting, are included as
references.

Let us analyze the top panels of Figure 2: for differentiable losses (least squares and exponential),
proximal and gradient descents behave exactly the same (curves with symbols P and G are mixed
up). Moreover, as theoretically analyzed in Theorem 2, the rate of convergence of proximal boosting
is linear with a slope that increases with the capacity of the class of weak learners (even though the
exponential loss is not strongly convex).

Still for differentiable losses, the use of the residual originally introduced to derive a convergence
rate under weak assumptions (represented with dotted lines and symbols RP and RG in Figure 2)
does not seem to help convergence neither with a large class of weak learners (in red, the residual is
in fact always almost null), nor with a restricted class (in blue).

Concerning non-differentiable losses (least absolute deviations and hinge on the bottom panels of
Figure 2), proximal boosting converges faster than gradient boosting, which does not seem to converge
for the hinge loss. In addition, it is noticeable to observe that convergence of proximal boosting seems
almost linear while the empirical risk violates the assumptions of smoothness required for Theorem 2.

For non-differentiable losses, the use of the residual helps gradient boosting to converge. Yet, we
remark that residual proximal boosting behaves similarly to proximal boosting (curves with symbols
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Figure 2: Training losses for two values of maximal depth (3 in blue, 15 in red) vs number of iterations
on the horizontal axis.
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Figure 3: Training losses for two values of maximal depth (3 in blue, 15 in red) vs clock time (seconds)
on the horizontal axis.

RP and P are mixed up), suggesting that, from a convergence point of view, this mechanism is more
needed for a theoretical purpose than for a practical one.

As a last piece of evidence, Figure 3 depicts the same experiment as the previous one but with
the clock time on the horizontal axis. We can remark that the behavior of algorithms is similar when
convergence is analyzed with respect to the number of iterations or to the time elapsed. This shows
that computing a proximal direction of descent is not more expensive than computing a (sub)gradient,
which is in favor of proximal boosting.

Overall, this numerical experiment confirms the initial intuition that proximal boosting behaves
better than gradient boosting and residual gradient boosting in the non-differentiable cases. Keeping
in mind that behaviors are similar for differentiable losses, we carry on the study only with least
absolute deviations and hinge losses.

5.1.2 Proximal step

We aim at illustrating the impact of the proximal step λ intervening in proximal boosting as a new
parameter. For this purpose, Figure 4 depicts the trend of training (top) and test (bottom) losses of
proximal boosting for λ ∈ {10−2, 10−1, . . . , 102} (see the different colors) and decision trees of maximal
depth 3 as weak learners. Compared algorithms include proximal (Algorithm 2), residual proximal
(Algorithm 3) and accelerated proximal (Algorithm 4) boosting, as well as their gradient counterparts
(in black, independent of λ).

Figure 4 shines a light of the tie between the proximal step and the convergence rate: the bigger λ,
the faster the convergence of the training and test losses. As a consequence (see the top panel), proximal
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Figure 4: Training (top) and test (bottom) losses of proximal boosting algorithms for several values
of the proximal step λ vs number of iterations on the horizontal axis.
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boosting prevails over gradient boosting from an optimization perspective because it converges faster
for sufficiently large λ. Regarding the training loss, the advantage of using the residual is not clear since
proximal boosting offers similar convergence rates than residual proximal boosting for large values of
λ, and converges faster than residual gradient boosting.

Analyzing the test loss, proximal and residual proximal boosting achieve lower errors than gradient
and residual gradient boosting for intermediate values of λ (between 0.1 and 10). In addition, their
behavior is quite stable with respect to the parameters from our experience.

From all points of view, using a proximal direction of descent is a real advantage over subgradient.
Besides, from a global perspective, proximal boosting helps to build more accurate models than gradient
boosting.

This numerical experiment is also a place for studying the benefit of incorporating Nesterov’s
acceleration into boosting. For proximal as well as gradient boosting, acceleration speeds up the
decrease of the training and test losses, and thus it makes it possible to build boosted models with
very few weak learners. Nevertheless, both accelerated boosting approaches suffer from instabilities
leading to divergence, on the training and on the test sets. Regarding the test error, they do not
seem to be capable to produce very accurate models (on the bottom panel of Figure 4, non-accelerated
methods offer a lower test error than accelerated ones). Remark that, accelerated proximal boosting
performs definitely better than its accelerated gradient counterpart. We guess that

1. the procedure is diverging because Nesterov’s extrapolation intensifies the boosting approxima-
tion error made at each iteration;

2. the acceleration makes the method very sensitive and dependent on a fine tuning procedure in
order to perform well in generalization.

Even though divergence on the training error seems to always occur in the overfitting regime (i.e. after
the minimal test error, see Figure 4), these observations are not in line with a statistically reliable
learning technique. As a consequence, such methods are only recommended to build models with very
few trees, for instance because of hardware constraints.

5.2 Generalization in real world cases

This section aims at comparing the generalization ability of the proposed boosting estimators with
respect to variants of gradient boosting, as well as extreme gradient boosting (XGBoost) [Chen and
Guestrin, 2016] and random forests [Breiman, 2001]. The last two methods are introduced in the
numerical comparison only as benchmarks. Indeed, random forests aggregate weak learners but with
equal weights, and XGBoost is a boosting method based on second order optimization. From a
strict optimization point of view, second order optimization is not applicable to non-differentiable loss
functions, nevertheless, given the liberty taken with Nesterov’s acceleration, XGBoost is applied as a
black box for minimizing the empirical loss. It is important to point out that, up to our knowledge,
there is no convergence result for XGBoost with non-differentiable losses.

Comparison is based on nine datasets (available on the UCI Machine Learning repository), the
characteristics of which are described in Table 3. The first six are univariate regression datasets, while
the three others relate to binary classification problems. In both situations, the sample is split into
a training set (50%), a validation set (25%) and a test set (25%). The parameters of the methods
(number of weak classifiers T ∈ [1, 1000], maximal depth of decision trees varying in [1, 3, 5], learning
rate ν ∈ {5 · 10−2, 10−1, 3 · 10−1, 5 · 10−1, 1} and proximal step λ ∈ {10−3, 10−2, . . . , 102} for boosting,
completed with the maximal number of features for random forests) are selected as minimizers of the
loss computed on the validation set for models fitted on the training set. Then, models are refitted on
the training and the validation sets with selected parameters. Finally, the generalization ability of the
methods is estimated by computing the loss (and the misclassification rate for classification models)
on the test set. These quantities are reported through statistics computed on 20 random splits of the
datasets.
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Dataset n d Type
Whitewine 4898 11 Regression
Redwine 1599 11 Regression
BostonHousing 506 13 Regression
Crabs 200 4 Regression
Engel 235 1 Regression
Sniffer 125 4 Regression
Adult 30162 13 Classification
Advertisements 2359 1558 Classification
Spam 4601 57 Classification

Table 3: Real-world datasets (n: sample size, d: number of attributes).

The losses considered in these experiments are least squares, least absolute deviations and pinball
(with τ = 0.9) for the regression problems, as well as exponential (with β = 1) and hinge for the
classification tasks (see Table 2 for a quick definition and Appendix B for the details). Since random
forests are not explicitly designed for minimizing theses losses, only the least squares test loss and the
classification error are reported.

5.2.1 Regression problems

Test losses for the least squares (top), least absolute deviations (middle) and pinball (bottom) losses
are described in Figure 5. ∆ Test loss refers to the increment of the loss from that of gradient boosting.

Regarding the least squares setting, let us remind that gradient and proximal boosting boil down
to be the same method (the directions of descent are exactly the same). We observe that they achieve
a performance comparable to extreme gradient boosting and better than random forests. Moreover,
even though residual boosting was not designed for differentiable losses, it provides the most accurate
models for 3 datasets out of 6.

Looking now at least absolute deviations and pinball losses, we observe that proximal boosting
always achieves better predictions than gradient boosting. In addition, in the bulk of the situations,
the most accurate method is either proximal or residual proximal boosting. This confirms our intuition
concerning the need for optimization techniques suited for non-differentiable loss functions.

Regarding accelerated versions of boosting, as expected they do not produce more accurate models
than vanilla boosting, very likely because convergence is so fast that tuning parameters becomes exces-
sively tricky. Incidentally, we remark that accelerated proximal boosting offers better generalization
performances than accelerated gradient boosting for non-differentiable losses (except for the dataset
Engel).

5.2.2 Classification problems

Losses and misclassification rates computed on the test datasets are depicted respectively in Fig-
ure 6 and in Figure 7 for the exponential (top) and the hinge (bottom) losses. Besides ∆ Test
loss/error, referring to the increment of the loss or misclassification rate from that of gradient boosting,
Hinge-Exponential in Figure 7 represents the increment of the misclassification rate of hinge loss-based
boosting from that obtained with the exponential loss.

Regarding both indicators (loss in Figure 6 and error in Figure 7), four methods share the winners’
podium: proximal boosting (blue), residual proximal boosting (orange), residual gradient boosting
(red) and XGBoost (pink). For the hinge loss, proximal or residual proximal boosting are always
better than gradient and residual gradient boosting. Moreover, accelerated proximal boosting (purple)
always gives better loss and accuracy than gradient and accelerated gradient boosting (brown). Both
observations confirm the interest of proximal-based boosting for non-differentiable losses.

It is remarkable that XGBoost performs quite well with the hinge loss, while it was not originally
designed for non-differentiable losses. Nevertheless, the bottom panel of Figure 7 shows that, overall
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Figure 5: Losses on test datasets for the least squares (top), least absolute deviations (middle) and
pinball (bottom) losses. ∆ Test loss refers to the increment of the loss from that of gradient boosting.
The methods proposed in this article are in blue, orange and green.
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Figure 6: Losses on test datasets for the exponential (top) and hinge (bottom) losses. ∆ Test loss
refers to the increment of the loss from that of gradient boosting. The methods proposed in this article
are in blue, orange and green.
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Figure 7: Misclassification rates on test datasets for the exponential (top) and hinge (bottom) losses. ∆
Test error and Hinge-Exponential refer to the increment of the misclassification rate respectively from
that of gradient boosting and from that obtained with the exponential loss. The methods proposed in
this article are in blue, orange and green.
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using a hinge loss instead of an exponential loss is rarely a big advantage, except to obtain sporadically
a marginal gain in accuracy.

6 Conclusion

Building upon the proximal point method for convex and non-smooth optimization, this paper has in-
troduced two novel boosting algorithms, nicknamed proximal boosting and residual proximal boosting,
which have appeal for non-differentiable loss functions ℓ. A theoretical study demonstrates conver-
gence of proximal and residual proximal boosting from an optimization point of view (under different
hypotheses on the loss function). Numerical experiments on synthetic data confirm the theoretical
convergence results and show a significant impact of the newly introduced parameter λ. Correctly
tuned, this parameter provides a noticeable improvement of proximal-based boosting over gradient-
based boosting for non-differentiable loss function, from both the optimization and the statistical points
of view. Moreover, in real-world regression and classification situations, proximal or residual proxi-
mal boosting often achieve the best test loss and are, overall, very competitive with state-of-the-art
boosting approaches.

As a by-product, we have also studied incorporating Nesterov’s acceleration to proximal boosting,
as done with gradient boosting in [Biau et al., 2019]. Numerically, we observe instabilities in both
algorithms, leading to divergence on the training and the test sets. Our experience is that accelerated
boosting is very sensitive to hyperparameters and thus tricky to tune. Despite the fact that these
procedures rarely provide good generalization results, accelerated proximal boosting seems to perform
better than its gradient counterpart for non-differentiable losses.

Going further in the theoretical analysis of accelerated proximal boosting is also an exciting per-
spective. In particular, Lu et al. [2020] recently proposed a variant of accelerated gradient boosting
[Biau et al., 2019] with guaranteed convergence for differentiable and smooth losses. Establishing simi-
lar results for accelerated proximal boosting constitutes an important challenge both from a numerical
and a theoretical point of view.

On another note, we believe that the connection between boosting and functional optimization can
be much more investigated. In particular, advances in optimization theory can spread to boosting,
just like the Frank-Wolfe algorithm has impacted boosting [Wang et al., 2015, Jaggi, 2013]. This may
also hold true for non-differentiable and non-convex optimization (see for instance [Ochs et al., 2014]).
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A Analysis of the approximated proximal point method

A.1 Setting

Let us consider the optimization problem

minimize
x∈Rn

F (x), (P2)

where F : Rn → R is convex.
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For an operator P : Rn → Rn, we consider the approximated proximal point method, described
in Algorithm 6, as well as the approximated proximal point method with accumulation, described in
Algorithm 7. Both are similar to the proximal point iteration but makes use of a modified direction
of update (P (gt) or P (gt + ∆t) instead of gt). In particular, let us remark that when P (x) = x,
Algorithms 6 and 7 recover the original proximal point method.

Algorithm 6 Approximated proximal point method.

Input: T (number of iterations), λ0, . . . , λT−1 > 0 (proximal steps), P : Rn → Rn (approximation
operator).

1: Set x0 ∈ Rn (initialization).
2: for t = 0 to T − 1 do
3: gt ← 1

λt

(
xt − proxλtF (xt)

)
.

4: xt+1 ← xt − λtP (gt).
5: end for

Output: xT .

Algorithm 7 Approximated proximal point method with accumulation.

Input: T (number of iterations), λ0, . . . , λT−1 > 0 (proximal steps), P : Rn → Rn (approximation
operator).

1: Set x0 ∈ Rn and ∆0 = 0 (initialization).
2: for t = 0 to T − 1 do
3: gt ← 1

λt

(
xt − proxλtF (xt)

)
.

4: xt+1 ← xt − λtP (gt +∆t).
5: ∆t+1 = gt +∆t − P (gt +∆t).
6: end for

Output: xT .

The forthcoming sections prove convergence of Algorithm 6 for strongly convex functions with
Lipschitz continuous gradient (linear rate exhibited in Theorem 4) and of Algorithm 7 for Lipschitz
continuous functions (sublinear rate exhibited in Theorem 6). To be more formal, the following as-
sumptions will be used:

(SM) F is L-smooth (for some L > 0): F is differentiable and

∀x, x′ ∈ Rn, F (x′) ≤ F (x) + ⟨∇F (x), x′ − x⟩ + L

2
∥x′ − x∥22 .

(SC) F is κ-strongly convex (for some κ > 0):

∀x, x′ ∈ Rn,∀η ∈ ∂F (x), F (x′) ≥ F (x) + ⟨η, x′ − x⟩ + κ

2
∥x′ − x∥22 .

(L) F is G-Lipschitz continuous (for some G > 0):

∀x ∈ Rn,∀η ∈ ∂F (x), ∥η∥2 ≤ G.

In any case, it is assumed that:

(E) There exists ζ ∈ (0, 1] such that for all g ∈ Rn, ∥g − P (g)∥22 ≤ (1− ζ2) ∥g∥22.
Assumption (E) is often referred to as the edge property and is quite standard in the literature

[Grubb and Bagnell, 2011]. It measures the error of the approximated operator P on the direction of
descent gt.
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A.2 Strongly convex function with smooth gradient

Theorem 4. Let (xt)t be a sequence generated by Algorithm 6. Assume that Assumptions (E), (SM)

and (SC) hold. Let {x⋆} = argminx∈Rn F (x) (well defined by strong convexity), and choose λt =
ζ2

8L .
Then,

F (xT )− F (x⋆) ≤
(
1− ζ4κ

21L

)T

(F (x0)− F (x⋆)) .

Proof. First of all, let us remark that:

1. Assumption (SM) implies L-Lipschitz continuity of the gradient ∇F [Nesterov, 2004, Theo-
rem 2.1.5]:

∀x, x′ ∈ Rn, ∥∇F (x)−∇F (x′)∥2 ≤ L ∥x− x′∥2 ; (5)

2. Assumption (SC) leads to the upper bound [Nesterov, 2004, Theorem 2.1.10]:

∀x ∈ Rn, 2κ (F (x)− F (x⋆)) ≤ ∥∇F (x)∥22 . (6)

Then, from Assumption (SM) and by the update rule for xt+1 in Algorithm 6:

F (xt+1) ≤ F (xt) + ⟨∇F (xt),−λtP (gt)⟩+
Lλ2

t

2
∥P (gt)∥22

= F (xt)− λt⟨gt, P (gt)⟩ − λt⟨∇F (xt)− gt, P (gt)⟩+
Lλ2

t

2
∥P (gt)∥22 . (7)

Now, from Assumption (E):

−λt⟨gt, P (gt)⟩ =
λt

2

(
∥gt − P (gt)∥22 − ∥gt∥

2
2 − ∥P (gt)∥22

)
≤ λt

2

[
(1− ζ2) ∥gt∥22 − ∥gt∥

2
2 − ∥P (gt)∥22

]
= −λtζ

2

2
∥gt∥22 −

λt

2
∥P (gt)∥22 . (8)

Besides, given that gt = ∇F (proxλtF (xt)) by definition of the proximal operator, one has:

∥∇F (xt)− gt∥2 =
∥∥∇F (xt)−∇F

(
proxλtF (xt)

)∥∥
2

≤ L
∥∥xt − proxλtF (xt)

∥∥
2

(Equation (5))

≤ λtL ∥gt∥2 (definition of gt). (9)

So,

−λt⟨∇F (xt)− gt, P (gt)⟩ ≤ λt ∥∇F (xt)− gt∥2 ∥P (gt)∥2 (Cauchy-Schwarz)

≤ λ2
tL ∥gt∥2 ∥P (gt)∥2 (Equation (9))

≤ 2λ2
tL ∥gt∥

2
2 , (10)

since ∥P (gt)∥2 ≤ 2 ∥gt∥2, by Assumption (E).
Combining Equations (7), (8) and (10):

F (xt+1) ≤ F (xt)−
λtζ

2

2
∥gt∥22 −

λt

2
∥P (gt)∥22 + 2λ2

tL ∥gt∥
2
2 +

Lλ2
t

2
∥P (gt)∥22

= F (xt)− λt

(
ζ2

2
− 2λtL

)
∥gt∥22 −

λt

2
(1− Lλt) ∥P (gt)∥22 .
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Now, choosing λt =
ζ2

8L , one has λt

(
ζ2

2 − 2λtL
)
= ζ4

32L on one hand and −λt

2 (1− Lλt) ∥P (gt)∥22 ≤ 0

on the other, leading to:

F (xt+1) ≤ F (xt)−
ζ4

32L
∥gt∥22 . (11)

Let us remark that, by Equation (6):

2κ (F (xt)− F (x⋆)) ≤ ∥∇F (xt)∥22
≤ (∥∇F (xt)− gt∥2 + ∥gt∥2)

2

≤ (1 + λtL)
2 ∥gt∥22 (Equation (9))

≤
(
1 +

ζ2

8

)2

∥gt∥22

(
λt =

ζ2

8L

)
,

that is,

∥gt∥22 ≥
128κ

(8 + ζ2)2
(F (xt)− F (x⋆)) .

So, from Equation (11),

F (xt+1)− F (x⋆) ≤ F (xt)− F (x⋆)− ζ4

32L
∥gt∥22

≤
(
1− ζ4

32L

128κ

(8 + ζ2)2

)
(F (xt)− F (x⋆))

=

(
1− 4ζ4

(8 + ζ2)2
κ

L

)
(F (xt)− F (x⋆))

≤
(
1− ζ4

21

κ

L

)
(F (xt)− F (x⋆)) (⋆)

≤
(
1− ζ4κ

21L

)t+1

(F (x0)− F (x⋆)) (by induction),

where we have used (⋆) that ∀x ∈ [0, 1], 4x2

(8+x)2 ≥
x2

21 .

A.3 Lipschitz continuous convex function

Lemma 5. Let (xt)t be a sequence generated by Algorithm 7. Assume that Assumptions (E), (SC)
and (L) hold and that there exists x⋆ ∈ argminx∈Rn F (x). Then,

min
1≤t≤T

F (xt)− F (x⋆)

≤ 1

2T

(
1

λ0
− κ

)
∥x0 − x⋆∥22 +

1

2T

T−1∑
t=1

(
1

λt
− 1

λt−1
− κ

)
∥xt − x⋆∥22

+
1

T

T−1∑
t=0

λt

(
1

2
∥P (gt +∆t)∥22 −

(
1 +

κλt

2

)
∥gt∥22 + κ ⟨gt, xt − x⋆⟩

+ ⟨∆t+1, P (gt +∆t)⟩ +G ∥gt − P (gt +∆t)∥2

)
+

λT−1

2T
∥∆T ∥22 .

In addition, the result still holds if κ = 0.
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Lemma 5. For any non-negative integer t < T , let

yt+1 = xt − λtgt = proxλtF (xt).

By construction, gt ∈ ∂F (yt+1), so

F (x⋆) ≥ F (yt+1) + ⟨gt, x⋆ − yt+1⟩ +
κ

2
∥yt+1 − x⋆∥22

= F (yt+1) + ⟨gt, x⋆ − (xt − λtgt)⟩ +
κ

2
∥(xt − λtgt)− x⋆∥22

= F (yt+1) + ⟨gt, x⋆ − xt⟩ + λt ∥gt∥22 +
κ

2
∥xt − x⋆∥22 +

κλ2
t

2
∥gt∥22

− κλt ⟨gt, xt − x⋆⟩

= F (yt+1) + ⟨P (gt +∆t), x
⋆ − xt⟩ +

(
λt +

κλ2
t

2

)
∥gt∥22 +

κ

2
∥xt − x⋆∥22

− κλt ⟨gt, xt − x⋆⟩ + ⟨gt − P (gt +∆t), x
⋆ − xt⟩ . (12)

Now, let us analyze the potential ∥xt+1 − x⋆∥22:

∥xt+1 − x⋆∥22 = ∥xt − λtP (gt +∆t)− x⋆∥22
= ∥xt − x⋆∥22 + λ2

t ∥P (gt +∆t)∥22 − 2λt ⟨P (gt +∆t), xt − x⋆⟩ .

Thus,

⟨P (gt +∆t), xt − x⋆⟩ = 1

2λt

(
∥xt − x⋆∥22 − ∥xt+1 − x⋆∥22

)
+

λt

2
∥P (gt +∆t)∥22 . (13)

Combining Equation (12) and Equation (13), we obtain:

F (yt+1)− F (x⋆) ≤ ⟨P (gt +∆t), xt − x⋆⟩ −
(
λt +

κλ2
t

2

)
∥gt∥22 −

κ

2
∥xt − x⋆∥22

+ κλt ⟨gt, xt − x⋆⟩ + ⟨gt − P (gt +∆t), xt − x⋆⟩

≤ 1

2λt

(
∥xt − x⋆∥22 − ∥xt+1 − x⋆∥22

)
− κ

2
∥xt − x⋆∥22

+
λt

2
∥P (gt +∆t)∥22 −

(
λt +

κλ2
t

2

)
∥gt∥22

+ κλt ⟨gt, xt − x⋆⟩ + ⟨gt − P (gt +∆t), xt − x⋆⟩ . (14)

Now, remark that:

T−1∑
t=0

((
1

λt
− κ

)
∥xt − x⋆∥22 −

1

λt
∥xt+1 − x⋆∥22

)

=

(
1

λ0
− κ

)
∥x0 − x⋆∥22 +

T−1∑
t=1

(
1

λt
− κ

)
∥xt − x⋆∥22 −

T−2∑
t=0

1

λt
∥xt+1 − x⋆∥22

− 1

λT−1
∥xT − x⋆∥22

=

(
1

λ0
− κ

)
∥x0 − x⋆∥22 +

T−1∑
t=1

(
1

λt
− 1

λt−1
− κ

)
∥xt − x⋆∥22

− 1

λT−1
∥xT − x⋆∥22 , (15)
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and

T−1∑
t=0

⟨gt − P (gt +∆t), xt − x⋆⟩

=

T−1∑
t=0

⟨gt +∆t − P (gt +∆t), xt+1 + λtP (gt +∆t)− x⋆⟩ −
T−1∑
t=0

⟨∆t, xt − x⋆⟩

=

T−1∑
t=0

⟨∆t+1, xt+1 − x⋆⟩ −
T−1∑
t=0

⟨∆t, xt − x⋆⟩ +
T−1∑
t=0

λt ⟨∆t+1, P (gt +∆t)⟩

= ⟨∆T , xT − x⋆⟩ − ⟨∆0, x0 − x⋆⟩ +
T−1∑
t=0

λt ⟨∆t+1, P (gt +∆t)⟩

= ⟨∆T , xT − x⋆⟩ +
T−1∑
t=0

λt ⟨∆t+1, P (gt +∆t)⟩ , (16)

since ∆0 = 0.
Then, by summation of Equation (14) and using Equation (15),

T−1∑
t=0

(F (yt+1)− F (x⋆))

≤ 1

2

T−1∑
t=0

((
1

λt
− κ

)
∥xt − x⋆∥22 −

1

λt
∥xt+1 − x⋆∥22

)

+

T−1∑
t=0

λt

(
1

2
∥P (gt +∆t)∥22 −

(
1 +

κλt

2

)
∥gt∥22 + κ ⟨gt, xt − x⋆⟩

)

+

T−1∑
t=0

⟨gt − P (gt +∆t), xt − x⋆⟩

=

(
1

2λ0
− κ

2

)
∥x0 − x⋆∥22 +

1

2

T−1∑
t=1

(
1

λt
− 1

λt−1
− κ

)
∥xt − x⋆∥22

+

T−1∑
t=0

λt

(
1

2
∥P (gt +∆t)∥22 −

(
1 +

κλt

2

)
∥gt∥22 + κ ⟨gt, xt − x⋆⟩

)

+

T−1∑
t=0

⟨gt − P (gt +∆t), xt − x⋆⟩ − 1

2λT−1
∥xT − x⋆∥22 .
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Now, using Equation (16),

T−1∑
t=0

(F (yt+1)− F (x⋆))

≤
(

1

2λ0
− κ

2

)
∥x0 − x⋆∥22 +

1

2

T−1∑
t=1

(
1

λt
− 1

λt−1
− κ

)
∥xt − x⋆∥22

+

T−1∑
t=0

λt

(
1

2
∥P (gt +∆t)∥22 −

(
1 +

κλt

2

)
∥gt∥22 + κ ⟨gt, xt − x⋆⟩

+ ⟨∆t+1, P (gt +∆t)⟩
)
+ ⟨∆T , xT − x⋆⟩ − 1

2λT−1
∥xT − x⋆∥22

≤
(

1

2λ0
− κ

2

)
∥x0 − x⋆∥22 +

1

2

T−1∑
t=1

(
1

λt
− 1

λt−1
− κ

)
∥xt − x⋆∥22

+

T−1∑
t=0

λt

(
1

2
∥P (gt +∆t)∥22 −

(
1 +

κλt

2

)
∥gt∥22 + κ ⟨gt, xt − x⋆⟩

+ ⟨∆t+1, P (gt +∆t)⟩
)
+

λT−1

2
∥∆T ∥22 ,

where the last line comes from bx− ax2 ≤ b2

4a for any a > 0 and b ∈ R.
To conclude,

min
1≤t≤T

F (xt)− F (x⋆)

≤ 1

T

T−1∑
t=0

(F (yt+1)− F (x⋆)) +
1

T

T−1∑
t=0

(F (xt+1)− F (yt+1))

≤ 1

T

T−1∑
t=0

(F (yt+1)− F (x⋆)) +
1

T

T−1∑
t=0

G ∥(xt − λtP (gt +∆t))− (xt − λtgt)∥2

≤ 1

2T

(
1

λ0
− κ

)
∥x0 − x⋆∥22 +

1

2T

T−1∑
t=1

(
1

λt
− 1

λt−1
− κ

)
∥xt − x⋆∥22

+
1

T

T−1∑
t=0

λt

(
1

2
∥P (gt +∆t)∥22 −

(
1 +

κλt

2

)
∥gt∥22 + κ ⟨gt, xt − x⋆⟩

+ ⟨∆t+1, P (gt +∆t)⟩ +G ∥gt − P (gt +∆t)∥2

)
+

λT−1

2T
∥∆T ∥22 .

Theorem 6. Let (xt)t be a sequence generated by Algorithm 7. Assume that Assumptions (E) and
(L) hold. Assume also that there exists a minimizer x⋆ ∈ argminx∈Rn F (x) and that ∥xt∥2 ≤ R and
∥x⋆∥2 ≤ R (for some R > 0 and all t). Then, choosing λt =

1√
t+1

leads to:

min
1≤t≤T

F (xt)− F (x⋆) ≤ 2R2

√
T

+
2G2

ζ4
√
T

(
20 +

1

T

)
.
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Proof. By Lemma 5 with κ = 0 and λt =
1√
t+1

, we have:

min
1≤t≤T

F (xt)− F (x⋆) ≤ 1

2λ0T
∥x0 − x⋆∥22 +

1

2T

T−1∑
t=1

(
1

λt
− 1

λt−1

)
∥xt − x⋆∥22

+
1

T

T−1∑
t=0

λt

(
1

2
∥P (gt +∆t)∥22 − ∥gt∥

2
2

+ ⟨∆t+1, P (gt +∆t)⟩ +G ∥gt − P (gt +∆t)∥2

)
+

λT−1

2T
∥∆T ∥22

≤ 1

2T

T−1∑
t=0

(√
t+ 1−

√
t
)
∥xt − x⋆∥22

+
1

T

T−1∑
t=0

1√
t+ 1

(
1

2
∥P (gt +∆t)∥22 + ⟨∆t+1, P (gt +∆t)⟩

+G ∥gt − P (gt +∆t)∥2

)
+

1

2T
3
2

∥∆T ∥22

≤ 2R2

√
T

+
1

T

T−1∑
t=0

1√
t+ 1

(
1

2
∥P (gt +∆t)∥22

+ ⟨∆t+1, P (gt +∆t)⟩ +G ∥gt − P (gt +∆t)∥2

)
+

1

2T
3
2

∥∆T ∥22 .

Now, since gt ∈ ∂F (yt+1), ∥gt∥2 ≤ G. In addition, since ∆0 = 0, by Assumption (E),

∥∆T+1∥2 ≤
√

1− ζ2 ∥gT +∆T ∥2
≤
√

1− ζ2 ∥gT ∥2 +
√
1− ζ2 ∥∆T ∥2

≤
T∑

t=0

√
1− ζ2

T+1−t
∥gt∥2

≤ G

T+1∑
t=1

√
1− ζ2

t

≤
√
1− ζ2

1−
√
1− ζ2

G

≤ 2

ζ2
G,
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where we have used that 1

1−
√

1−ζ2
≤ 2

ζ2 . Moreover,

∥P (gt +∆t)∥2 ≤ ∥P (gt +∆t)− (gt +∆t)∥2 + ∥gt +∆t∥2
≤ (
√
1− ζ2 + 1) ∥gt +∆t∥2

≤ (
√
1− ζ2 + 1)G+ (

√
1− ζ2 + 1)

√
1− ζ2

1−
√
1− ζ2

G

≤ (1− (1− ζ2)) + (
√
1− ζ2 + 1)

√
1− ζ2

1−
√
1− ζ2

G

≤ ζ2 + (1− ζ2) +
√
1− ζ2

1−
√
1− ζ2

G

≤ 1 +
√
1− ζ2

1−
√
1− ζ2

G

≤ 4

ζ2
G.

At last,

∥gt − P (gt +∆t)∥2 ≤ ∥gt +∆t − P (gt +∆t)∥2 + ∥∆t∥2
≤
√
1− ζ2 ∥gt +∆t∥2 + ∥∆t∥2

≤
√
1− ζ2 ∥gt∥2 + (

√
1− ζ2 + 1) ∥∆t∥2

≤
√
1− ζ2G+ (

√
1− ζ2 + 1)

√
1− ζ2

1−
√
1− ζ2

G

≤ (
√

1− ζ2 − (1− ζ2)) + (1− ζ2 +
√
1− ζ2)

1−
√
1− ζ2

G

≤ 2
√
1− ζ2

1−
√
1− ζ2

G

≤ 4

ζ2
G.

To conclude,

min
1≤t≤T

F (xt)− F (x⋆) ≤ 2R2

√
T

+
1

T

T−1∑
t=0

1√
t+ 1

(
1

2

(
4

ζ2
G

)2

+
2

ζ2
G

4

ζ2
G+

4

ζ2
G2

)

+
1

2T
3
2

4

ζ4
G2

≤ 2R2

√
T

+
2G2

ζ4
√
T

(
20 +

1

T

)
,

where we have used that
∑T−1

t=0
1√
t+1
≤ 2
√
T and 1

ζ2 ≤ 1
ζ4 .

B Implementation details

This section provides detailed calculations for each step of Algorithm 5 applied to Problem (P1) and
for all losses presented in Table 2.

32



It is possible that a step has no closed-form expression but is the root of an equation. In this case
(which is indicated by ⋆ below), the Newton-Raphson iteration is provided. In practice, less than 10
iterations of the Newton-Raphson method are enough to obtain a good approximation.

For now on, let us note, for all x ∈ R,

sign(x) =


−1 if x < 0

1 if x > 0

0 otherwise.

B.1 Least squares loss

Definition: ℓ(y, y′) = (y − y′)2/2.

Initial estimator: f0 = 1
n

∑n
i=1 Yi.

Subgradient: ∇̃nC(ft) =
(

ft(Xi)−Yi

n

)
1≤i≤n

.

Proximal direction: Proxλn C(ft) =
(

ft(Xi)−Yi

λ+n

)
1≤i≤n

.

Line search: γt+1 =

{∑n
i=1(Yi−ft(Xi))gt+1(Xi)∑n

i=1 gt+1(Xi)2
if
∑n

i=1 gt+1(Xi)
2 > 0

0 otherwise.

B.2 Least absolute deviations loss

Definition: ℓ(y, y′) = |y − y′|.

Initial estimator: f0 is the empirical median of the sample {Y1, . . . , Yn}.

Subradient: ∇̃nC(ft) =
(

sign(ft(Xi)−Yi)
n

)
1≤i≤n

.

Proximal direction:

Proxλn C(ft) =

(
ft(Xi)− Yi

max (λ, n|ft(Xi)− Yi|)

)
1≤i≤n

=

({
sign(ft(Xi)−Yi)

n if |ft(Xi)− Yi| > λ
n

ft(Xi)−Yi

λ otherwise

)
1≤i≤n

.

Line search: γt+1 = argmin
γ∈{0}∪

{
Yi−ft(Xi)

gt+1(Xi)
:gt+1(Xi) ̸=0

} C(ft + γgt).

B.3 Pinball loss

Definition: ℓ(y, y′) = max(τ(y − y′), (τ − 1)(y − y′)), τ ∈ (0, 1).

Initial estimator: f0 is the τ -quantile of the sample {Y1, . . . , Yn}.

Subradient: ∇̃nC(ft) =



− τ

n if Yi − ft(Xi) > 0
1−τ
n if Yi − ft(Xi) < 0

0 otherwise


1≤i≤n

.
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Proximal direction:

Proxλn C(ft) =



− τ

n if Yi − ft(Xi) >
λτ
n

1−τ
n if Yi − ft(Xi) <

λ(τ−1)
n

ft(Xi)−Yi

λ otherwise


1≤i≤n

.

Line search: γt+1 = argmin
γ∈{0}∪

{
Yi−ft(Xi)

gt+1(Xi)
:gt+1(Xi) ̸=0

} C(ft + γgt).

B.4 Exponential loss

Definition: ℓ(y, y′) = exp(−βyy′), β > 0.

Initial estimator: f0 =
log( p

n−p )
2β , where p =

∑
1≤i≤n
Yi=1

1.

Subgradient: ∇̃nC(ft) =
(

−βYie
−Yift(Xi)

n

)
1≤i≤n

.

Proximal direction⋆: Proxλn C(ft) =
(

ft(Xi)−ui

λ

)
1≤i≤n

, with Newton-

Raphson iteration ui ← ui +
ft(Xi)−ui+

λβYi
n e−βYiui

1+λβ2

n e−βYiui
.

Line search⋆: Newton-Raphson iteration

γt+1 ← γt+1 +

∑n
i=1 Yigt+1(Xi) e

−βYi(ft(Xi)+γt+1gt+1(Xi))

β
∑n

i=1 gt+1(Xi)2 e−βYi(ft(Xi)+γt+1gt+1(Xi))
.

B.5 Logistic loss

Definition: ℓ(y, y′) = log2(1 + exp(−yy′)).

Initial estimator: f0 = log
(

p
n−p

)
, where p =

∑
1≤i≤n
Yi=1

1.

Subgradient: ∇̃nC(ft) =
(

−Yie
−Yift(Xi)

n log 2(1+e−Yift(Xi))

)
1≤i≤n

.

Proximal direction⋆: Proxλn C(ft) =
(

ft(Xi)−ui

λ

)
1≤i≤n

, with Newton-

Raphson iteration ui ← ui +
ft(Xi)−ui+

λ
n log 2

Yi e−Yiui

1+e−Yiui

1+ λ
n log 2

e−Yiui

(1+e−Yiui)
2

.

Line search⋆: Newton-Raphson iteration

γt+1 ← γt+1 +

∑n
i=1

Yigt+1(Xi) e
−Yi(ft(Xi)+γt+1gt+1(Xi))

1+e−Yi(ft(Xi)+γt+1gt+1(Xi))∑n
i=1

gt+1(Xi)2 e−Yi(ft(Xi)+γt+1gt+1(Xi))

(1+e−Yi(ft(Xi)+γt+1gt+1(Xi)))
2

.

B.6 Hinge loss

Definition: ℓ(y, y′) = max(0, 1− yy′).

Initial estimator: f0 = sign (
∑n

i=1 Yi).
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Subgradient: ∇̃nC(ft) =

({
−Yi

n if Yift(Xi) < 1

0 otherwise

)
1≤i≤n

.

Proximal direction:

Proxλn C(ft) =



−Yi

n if Yift(Xi) < 1− λ
n

0 if Yift(Xi) > 1
ft(Xi)−Yi

λ otherwise


1≤i≤n

.

Line search: γt+1 = argmin
γ∈{0}∪

{
1−Yift(Xi)

Yigt+1(Xi)
:gt+1(Xi )̸=0

} C(ft + γgt).

C Accelerated proximal boosting in practice

Algorithm 8 describes a practical version of accelerated proximal boosting (Algorithm 4), which holds
true also for accelerated gradient boosting [Biau et al., 2019]. In accordance with the practice, the
proximal steps are chosen adaptively by a line search (Line 8 of Algorithm 8) and a shrinkage coefficient
is introduced.

Algorithm 8 Accelerated proximal/gradient boosting in practice.

Input: ν ∈ (0, 1] (shrinkage coefficient), λ > 0 (proximal step).
1: Set g0 ∈ argming∈F0

C(g) (initialization).
2: x0 ← g0(X

n
1 ) ∈ Rn (predictions).

3: v0 = x0 (interpolated point).

4: (w
(0)
0 , . . . , w

(0)
T )← (1, 0, . . . , 0) (weights of weak learners).

5: for t = 0 to T − 1 do
6: Compute (see Appendix B){

r ← −∇̃nC(ft) for gradient boosting,

r ← −Proxλn C(ft) for proximal boosting.

7: Compute gt+1 ∈ argming∈F ∥g(Xn
1 )− r∥2.

8: Compute γt+1 ∈ argminγ∈R C(ft + γgt+1) (see Appendix B).
9: Set xt+1 ← vt + νγt+1gt+1(X

n
1 ) (which corresponds to xt+1 = ft+1(X

n
1 )).

10: Set vt+1 ← xt+1 + αt+1(xt+1 − xt).

11: Update weights (w
(t+1)
0 , . . . , w

(t+1)
t+1 ) according to Property 8.

12: end for
Output: fT =

∑T
t=0 w

(T )
t gt.

As an additive model, it is of interest to express fT with respect to the base learners (g0, . . . , gT )

and their weights wt: fT =
∑T

t=0 wtgt. For this purpose, the weights of the final model have to be
tracked despite the recursive update of ft+1 (Line 5 in Algorithm 4 and Line 9 in Algorithm 8):

ft+1 = ft + αt(ft − ft−1) + νγt+1gt+1.

Property 7 gives the closed-form expression of the weights of fT in this case.
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Property 7. The weights of fT are:
w0 = 1

w1 = νγ1

wt =
(
1 +

∑T−1
j=t

∏j
k=t αk

)
νγt,∀t ∈ {2, . . . , T − 1}

wT = νγT .

Proof. The update rule in Line 5 in Algorithm 4 is:

ft′+1 = (1 + αt′)ft′ − αt′ft′−1 + νγt′+1gt′+1,

for all positive integers t′ ≤ T−1. Let us denote, for each iteration t′ ∈ {1, . . . , T−1}, ft′ =
∑t′

t=0 w
(t′)
t gt

the expansion of ft′ . Then

ft′+1 =

t′−1∑
t=0

(
(1 + αt′)w

(t′)
t − αt′w

(t′−1)
t

)
gt + (1 + αt′)w

(t′)
t′ gt′ + νγt′+1gt′+1.

First, we see that the weights of gt′ and gt′+1 in the expansion of ft′+1 are respectively:{
w

(t′+1)
t′ = (1 + αt′)w

(t′)
t′

w
(t′+1)
t′+1 = νγt′+1.

Second, for each t ∈ {0, . . . , t′ − 1}, the weight of gt in the expansion of ft′+1 is defined by:

w
(t′+1)
t = (1 + αt′)w

(t′)
t − αt′w

(t′−1)
t .

Therefore, considering that weights take value 0 before being defined, i.e.

w
(t−1)
t = 0, we have:

w
(t′+1)
t − w

(t′)
t = αt′(w

(t′)
t − w

(t′−1)
t )

=

 t′∏
k=t

αk

 (w
(t)
t − w

(t−1)
t )

=

 t′∏
k=t

αk

w
(t)
t .

It follows that:

w
(t′+1)
t = w

(t′)
t +

 t′∏
k=t

αk

w
(t)
t

= w
(t)
t +

t′∑
j=t

(
j∏

k=t

αk

)
w

(t)
t

=

1 +

t′∑
j=t

j∏
k=t

αk

w
(t)
t .
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Then, for k ≤ 1, one has αk = 0, so w
(t′+1)
0 = w

(0)
0 = 1 and w

(t′+1)
1 = w

(1)
1 = νγ1. Now, remarking

that, for all t ≥ 2, w
(t)
t = νγt, we can conclude that the weights of fT are:

w0 = 1

w1 = νγ1

wt =
(
1 +

∑T−1
j=t

∏j
k=t αk

)
νγt, ∀t ∈ {2, . . . , T − 1}

wT = νγT .

In addition, Property 8 provides a recursive update suitable for implementing Algorithm 8. Let
us remark that, Property 8 is also valid for accelerated gradient boosting as proposed by Biau et al.
[2019]. This paves the way to efficient implementations of both accelerated proximal and accelerated
gradient boosting, as done in the Python package optboosing2.

Property 8. Let ft =
∑t

j=0 w
(t)
j gj be the expansion of ft at iteration t ∈ {1, . . . , T − 1}. Then, the

weights can be updated according to the following recursion:

w
(0)
0 = 1

w
(0)
1 = νγ1

w
(1)
1 = νγ1

w
(t+1)
j = (w

(t)
j − w

(t−1)
j )(1 + αt) + w

(t−1)
j ,∀j ∈ {1, . . . , t}

w
(t+1)
t+1 = νγt+1.

(17)

Proof. See proof of Property 7.

2https://github.com/msangnier/optboosting
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