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Precision Medicine
I Treatment adapted to the (genetic) features of the patient.
E.g. Trastuzumab for HER2+ breast cancer.

I Identify similarities between patients that exhibit similar
phenotypes: susceptibilities, prognoses, responses to
treatment.
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From genotype to phenotype

Which genomic features explain the phenotype?

p = 105 – 107 genomic features n = 103 – 105 samples.
– 80 000 proteins;
– 200 000 mRNA;

– 10 million SNPs;
– 28 million CpG islands.

High-dimensional (large p), low sample size (small n) data.
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From genotype to phenotype

Which genomic features explain the phenotype?

p = 105 – 107 genomic features n = 103 – 105 samples.
– 10 million Single
Nucleotide Polymorphisms.

Genome-Wide Association Studies.
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Missing heritability
GWAS fail to explain most of the inheritable variability of
complex traits.

Many possible reasons:
– non-genetic / non-SNP factors
– heterogeneity of the phenotype
– rare SNPs
– weak effect sizes
– few samples in high dimension (p� n)
– joint effets of multiple SNPs.
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Integrating prior knowledge:
Network-guided GWAS

Joint work with Dominik Grimm, Yoshinobu Kawahara, Karsten
Borgwardt, and Héctor Climente González.
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Integrating prior knowledge

Use additional data and prior knowledge to constrain the
feature selection procedure.
– Consistant with previously established knowledge;
– More easily interpretable;
– Statistical power.

Prior knowledge can be represented as structure:
– Linear structure of the genome;
– Groups: e.g. pathways;
– Networks (molecular, 3D structure).
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Network-guided biomarker discovery

I Biological networks help understanding disease.
I Goal: Find a set of explanatory features compatible with a
given network structure.

C.-A. Azencott (2016). Network-guided biomarker discovery, LNCS.
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Integrating prior network knowledge
I Network-constrained lasso:

arg min
β∈Rp

1

2

n∑
i=1

(
yi −

p∑
j=1

βjxij

)2

︸ ︷︷ ︸
loss

+ λ
p∑

j=1

|βj|︸ ︷︷ ︸
sparsity

+ η
p∑

j=1

p∑
k=1

βjLjkβk︸ ︷︷ ︸
connectivity

.

I Graph Laplacian L→ β varies smoothly on the network.

Ljk =

1 if j = k

−Wjk/
√
djdj if j ∼ k

0 otherwise.

C. Li and H. Li (2008). Network-constrained regularization and variable selection for
analysis of genomic data, Bioinformatics, 24, 1175–1182.
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Regularized relevance
Set V of p variables.

I Relevance scoreR : 2V → R
Quantifies the importance of any subset of variables for the question
under consideration.
Ex : correlation, HSIC, statistical test of association.

I Structured regularizerΩ : 2V → R
Promotes a sparsity pattern that is compatible with the constraint on the
feature space.
Ex : cardinality Ω : S 7→ |S|.

I Regularized relevance
arg max
S⊆V

R(S)− λΩ(S)
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Network-guided GWAS
I Additive test of association SKAT: [Wu et al. 2011]

R(S) =
∑
j∈S

cj cj = (X>(y − µ))2j .

I Sparse Laplacian regularization:

Ω : S 7→
∑
j∈S

∑
k/∈S

Wjk + α|S|.

I Regularized maximization ofR:

arg max
S⊆V

∑
j∈S

cj︸ ︷︷ ︸
association

− η |S|︸︷︷︸
sparsity

−λ
∑
j∈S

∑
k/∈S

Wjk︸ ︷︷ ︸
connectivity

.

10



Minimum cut reformulation
The graph-regularized maximization of scoreQ(∗) is equivalent to a s/t-min-cut for a
graph with adjacency matrixA and two additional nodes s and t, whereAij = λWij

for 1 ≤ i, j ≤ p and the weights of the edges adjacent to nodes s and t are defined as

Asi =

{
ci − η if ci > η

0 otherwise and Ait =

{
η − ci if ci < η

0 otherwise .

SConES: Selecting Connected Explanatory SNPs.
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Comparison partners
I Univariate linear regression

arg min
βj∈R

1

2
||y − βjxj||22 .

I Lasso
arg min

β∈Rp

1

2
||y −Xβ||22 + η ||β||1 .

I Feature selection with sparsity and connectivity constraints

arg min
β∈Rp

1

2
||y −Xβ)||22 + η ||β||1 + λΩ(β).

– ncLasso: network connected Lasso [Li and Li, Bioinformatics 2008]
– Overlapping group Lasso [Jacob et al., ICML 2009]

– groupLasso: E.g. SNPs near the same gene grouped together.
– graphLasso: 1 edge = 1 group. 12



Runtime
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Experiments: Performance on simulated data
I Arabidopsis thaliana genotypes:

n=500 samples, p=1 000 SNPs,
TAIR Protein-Protein Interaction data≈ 50.106 edges.

I Higher power and lower FDR than comparison partners
except for groupLasso when groups = causal structure.

I Systematically better than relaxed version (ncLasso).
I Fairly robust to missing edges.
I Fails if network is random.

Image source: Jean Weber / INRA via Flickr. 14



Experiments: Performance on real data
I Arabidopsis thaliana genotypes:

n≈ 150 samples, p≈ 170 000 SNPs,
165 candidate genes [Segura et al., Nat Genet 2012].

I SConES selects about as many SNPs as other network-guided
approaches but they tag more candidate genes.

I Predictivity of the selected SNPs:
I In half the cases, lasso outperforms all other approaches;
I In the remaining cases, SConES outperforms all other approaches.

Image source: Jean Weber / INRA via Flickr.
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SConES: Selecting Connected Explanatory SNPs
I selects connected, explanatory SNPs;

I incorporates large networks into GWAS;

I is efficient, effective and robust.

– C.-A. Azencott, D. Grimm, M. Sugiyama, Y. Kawahara and K. Borgwardt (2013) Efficient
network-guided multi-locus association mapping with graph cuts, Bioinformatics 29
(13), i171–i179 doi:10.1093/bioinformatics/btt238.
https://github.com/chagaz/sfan

– H. Climente, C.-A. Azencott (2017). martini: GWAS incorporating networks in R,
doi:10.18129/B9.bioc.martini.
Bioconductor/martini
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Finding interactions between a target
SNP and the rest of the genome.

Joint work with Lotfi Slim, Jean-Philippe Vert,
and Clément Chatelain.
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I p variablesX1, X2, . . . , Xp ∈ {0, 1, 2};
I one target variableA ∈ {−1, 1};
I outcome Y .

Which of the p variables interact withA towards Y ?

I GBOOST: For each j = 1, . . . , p, LRT between
– a full logistic regression model on (Xj, A,A.Xj);
– a main-effect logistic regression model on (Xj, A).

I product Lasso: Lasso on
(X1, X2, . . . , Xp, A,A.X1, A.X2, . . . , A.Xp).
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Modeling epistasis

I Y = E [Y |A = a,X] + ε ε ∼ N (0, σ2).

I Y = µ(X) + A.δ(X) + ε,

– µ(X) = 1
2

(E [Y |A = 1, X] + E [Y |A = −1, X])

– δ(X) = 1
2

(E [Y |A = 1, X]− E [Y |A = −1, X]) .

I SNPs in epsitasis withA = support of δ(X).
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Modified outcome

δ(X) = 1
2 (E [Y |A = 1, X]− E [Y |A = −1, X]) .

I Introduce Ã = 1
2(A+ 1) ∈ {0, 1}.

δ(X) =
1

2
E

[
Y

(
Ã

π(Ã = 1|X)
− 1− Ã
π(A = −1|X)

)∣∣∣∣∣X
]
.

I Modified outcome:

Ỹ = Y

(
Ã

π(Ã = 1|X)
− 1− Ã
π(A = −1|X)

)
.
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Propensity scores

Y = µ(X) + A.δ(X) + ε δ(X) =
1

2
E
[
Ỹ |X

]
.

I Modified outcome was first proposed for clinical trials:
– A: treatment;
– X : clinical covariates;
– Y : clinical trial outcome.
L. Tian et al. (2014). A simple method for estimating interactions between a treatment
and a large number of covariates. JASA 109, 1517–1532.

I In GWAS,A andX are not independent because of linkage
disequilibrium.

⇒ propensity score π(A|X).
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Propensity scores

I Estimate propensity scores π(A|X)

I Use genomic structure⇒ Hidden Markov Model.
– Hidden states: contiguous clusters of phased haplotypes;
– Emission states: SNPs.

I Typically used for
I imputing missing values;
P. Scheet and M. Stephens (2006). A fast and flexible statistical model for large-scale
population genotype data, AJHG 78, 629–44.

I constructing knockoffs for FDR control.
M. Sesia, C. Sabatti and E. J. Candès (2018). Gene hunting with hidden markov model
knockoffs, Biometrika.
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Modified outcome variants

Ỹ = Y

(
Ã

π(Ã = 1|X)
− 1− Ã
π(A = −1|X)

)
.

I Propensity scores tend to be close to 0.

I Shifted modified outcome: π(Ã|X)← π(Ã|X) + ξ.

I Robust modified outcome.
J. M. Robins, A. Rotnitzky, and L. P. Zhao (1994). Estimation of regression coefficients
when some regressors are not always observed, J. Am. Stat. Ass., 427 (89), 846–866.
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Evaluating the support of δ

I δ(X) = 1
2 E[Ỹ |X].

I Use an elastic net regression to relate Ỹ andX :

arg min
β∈Rp

1

n

n∑
i=1

(
Ỹi − β>Xi

)2
+ λ

(
(1− α) ||β||1 + α ||β||22

)
.

α small→ sparsity.

I Add stability selection
I B bootstrap samples;
I rank features based on the area under the stability path.
A.-C. Haury et al. (2012), TIGRESS: Trustful Inference of Gene REgulation using
Stability Selection, BMC Sys. Bio. 6.
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Simulations

πY = β>i,VXV︸ ︷︷ ︸
synergy with A

+ β>WXW︸ ︷︷ ︸
marginal effects

+X>Z1
diag(βZ1,Z2

XZ2
)︸ ︷︷ ︸

quadratic effects

.

πY = logit(P (Y = 1|Ã = i,X)).

– p = 5 000, n = 500.
– |V | = |W | = |Z1| = |Z2| = 8

– |V ∩W | = 2, |V ∩ Z1| = 2.

25



Simulations
πY = β>i,VXV︸ ︷︷ ︸

synergy with A

+ β>WXW︸ ︷︷ ︸
marginal effects

+X>Z1
diag(βZ1,Z2

XZ2
)︸ ︷︷ ︸

quadratic effects

.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

1 − Specificity

S
e

n
s
it
iv

it
y

ROC

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Recall

P
re

c
is

io
n

Precision−Recall

Outcome weighted learning

Modified outcome

Normalized modified outcome

Shifted modified outcome

Robust modified outcome

Product LASSO

GBOOST 26



epiGWAS: Detecting epistasis with a target SNP.

I searches for a sum of quadratic effects with the target SNP;
I accounts for main effects;
I models linkage disequilibrium.

L. Slim, C. Chatelain, C.-A. Azencott, J.-P. Vert. (2018) Novel methods for epistasis
detection in genome-wide association studies, BioRXiv.
CRAN/epiGWAS
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Looking ahead
I Robustness/stability

Stability selection is time consuming.

I Complex interaction patterns
epiGWAS is limited to a sum of quadratic interactions between one
target SNP and the rest of the genome.

I Statistical significance
– Significant pattern mining [Llinares-López et al, Bioinformatics 2018].
– Post-selection inference

– For the lasso [Lee et al., AoS 2016].
– For higher-order interactions [Suzumura et al., ICML 2017].
– Ongoing work with L. Slim on kernel PSI.

– Controlling FDR with knockoffs [Sesia et al., Biometrika 2018].
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source: http://www.flickr.com/photos/wwworks/
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WiMLDS Paris

Paris Women in Machine Learning and Data Science.

I March 12, 19:30
Human body extraction from images – Gül Varol (INRIA Willow).
Data is beautiful, please don’t ruin it – Anne-Marie Tousch (Criteo Lab).
Salary negociation workshop – Natalie Cernecka.

I March 28, 19:00 – Femmes, sciences et société
Femmes, probabilités et finances – Nicole El Karoui.
La féministe, l’économiste et la cité – Hélène Périvier.
Discussion ouverte. 30


