Concomitant Lasso with Repetitions (CLaR): beyond averaging multiple realizations of heteroscedastic noise

Joseph Salmon

http://josephsalmon.eu IMAG, Univ Montpellier, CNRS Montpellier, France

Joint works with: Quentin Bertrand (INRIA, Parietal Team) Mathurin Massias (INRIA, Parietal Team) Olivier Fercoq (Institut Polytechnique de Paris) Alexandre Gramfort (INRIA, Parietal Team)

M/EEG inverse problem for brain imaging

- sensors: magneto- and electro-encephalogram measurements during a cognitive experiment
- sources: brain locations

MEG elements: magnometers and gradiometers

Device

Sensors

Detail of a sensor

Noise is different for EEG / MEG (magnometers and gradiometers)

▶ 3 different sensors \implies 3 different noise structures

Source modeling

 $\mathbf{B}^* \in \mathbb{R}^{p \times q}$

Design matrix - Forward operator

Sparsity assumption: cortical sources produce dipolar patterns well modelled by focal sources

ICA : Blind source separation recovers dipolar patterns⁽¹⁾

http://martinos.org/mne/stable/auto_tutorials/plot_visualize_evoked.html http://martinos.org/mne/stable/auto_tutorials/plot_artifacts_correction_ica.html

⁽¹⁾A. Delorme et al. "Independent EEG sources are dipolar". In: *PloS one* 7.2 (2012), e30135.

The M/EEG inverse problem: modeling

Multiple repetitions structure: r = 5 (top), r = 10 (middle), and r = 50(bottom) repetitions

A multi-task framework

Multi-task regression notation:

- n observations (e.g., number of sensors)
- q tasks (e.g., temporal information)
- ▶ p features
- r number of repetitions

• $Y^{(1)}, \ldots, Y^{(r)} \in \mathbb{R}^{n \times q}$ observation matrices; $\bar{Y} = \frac{1}{r} \sum_{l} Y^{(l)}$

• $X \in \mathbb{R}^{n \times p}$ forward matrix

$$Y^{(l)} = XB^* + SE^{(l)}$$

where

B* ∈ ℝ^{p×q} : true source activity matrix (unknown)
 S ∈ Sⁿ₊₊ co-standard deviation matrix⁽²⁾ (unknown)
 E⁽¹⁾,...,E^(r) ∈ ℝ^{n×q} : white Gaussian noise

Multi-tasks penalties⁽³⁾

Popular convex penalties considered:

$$\hat{\mathbf{B}} \in \mathop{\mathrm{arg\,min}}_{\mathbf{B} \in \mathbb{R}^{p \times q}} \left(\frac{1}{2nq} \left\| \bar{Y} - X\mathbf{B} \right\|^2 + \lambda \Omega(\mathbf{B}) \right)$$

Sparse support: no structure

Penalty: Lasso type

$$\Omega(\mathbf{B}) = \|\mathbf{B}\|_1 = \sum_{j=1}^p \sum_{k=1}^q |\mathbf{B}_{j,k}|$$

Parameter $\hat{\mathbf{B}} \in \mathbb{R}^{p \times q}$

⁽³⁾G. Obozinski, B. Taskar, and M. I. Jordan. "Joint covariate selection and joint subspace selection for multiple classification problems". In: *Statistics and Computing* 20.2 (2010), pp. 231–252.

Multi-tasks penalties⁽³⁾

Popular convex penalties considered: Multi-Task Lasso (MTL)

$$\hat{\mathbf{B}} \in \operatorname*{arg\,min}_{\mathbf{B} \in \mathbb{R}^{p \times q}} \left(\frac{1}{2nq} \left\| \bar{Y} - X\mathbf{B} \right\|^2 + \lambda \Omega(\mathbf{B}) \right)$$

Sparse support: group structure

Penalty: Group-Lasso type

$$\Omega(\mathbf{B}) = \|\mathbf{B}\|_{2,1} = \sum_{j=1}^{p} \|\mathbf{B}_{j,:}\|_{2}$$

where $B_{j,:}$ the *j*-th row of B

⁽³⁾G. Obozinski, B. Taskar, and M. I. Jordan. "Joint covariate selection and joint subspace selection for multiple classification problems". In: *Statistics and Computing* 20.2 (2010), pp. 231–252.

Classical multi-tasks estimator: use averaged signal

$$\hat{\mathbf{B}} \in \mathop{\mathrm{arg\,min}}_{\mathbf{B} \in \mathbb{R}^{p \times q}} \left(\frac{1}{2nq} \left\| \bar{Y} - X\mathbf{B} \right\|_{F}^{2} + \lambda \Omega(\mathbf{B}) \right)$$

How to take advantage of the number of repetitions ?

Classical multi-tasks estimator: use averaged signal

$$\hat{\mathbf{B}} \in \operatorname*{arg\,min}_{\mathbf{B} \in \mathbb{R}^{p \times q}} \left(\frac{1}{2nq} \left\| \bar{Y} - X\mathbf{B} \right\|_{F}^{2} + \lambda \Omega(\mathbf{B}) \right)$$

How to take advantage of the number of repetitions ?
 Intuitive estimator:

$$\hat{\mathbf{B}}^{\mathsf{repet}} \in \operatorname*{arg\,min}_{\mathbf{B} \in \mathbb{R}^{p \times q}} \left(\frac{1}{2nqr} \sum_{l=1}^{r} \left\| Y^{(l)} - X\mathbf{B} \right\|_{F}^{2} + \lambda \Omega(\mathbf{B}) \right)$$

Classical multi-tasks estimator: use averaged signal

$$\hat{\mathbf{B}} \in \operatorname*{arg\,min}_{\mathbf{B} \in \mathbb{R}^{p \times q}} \left(\frac{1}{2nq} \left\| \bar{Y} - X\mathbf{B} \right\|_{F}^{2} + \lambda \Omega(\mathbf{B}) \right)$$

How to take advantage of the number of repetitions ?
Intuitive estimator:

$$\hat{\mathbf{B}}^{\mathsf{repet}} \in \underset{\mathbf{B} \in \mathbb{R}^{p \times q}}{\arg\min} \left(\frac{1}{2nqr} \sum_{l=1}^{r} \left\| Y^{(l)} - X\mathbf{B} \right\|_{F}^{2} + \lambda \Omega(\mathbf{B}) \right)$$

▶ It's a fail! $\hat{B}^{\text{repet}} = \hat{B}$ (because of data-fitting loss $\|\cdot\|_F^2$)

Classical multi-tasks estimator: use averaged signal

$$\hat{\mathbf{B}} \in \operatorname*{arg\,min}_{\mathbf{B} \in \mathbb{R}^{p \times q}} \left(\frac{1}{2nq} \left\| \bar{Y} - X\mathbf{B} \right\|_{F}^{2} + \lambda \Omega(\mathbf{B}) \right)$$

How to take advantage of the number of repetitions ?
Intuitive estimator:

$$\hat{\mathbf{B}}^{\mathsf{repet}} \in \underset{\mathbf{B} \in \mathbb{R}^{p \times q}}{\arg\min} \left(\frac{1}{2nqr} \sum_{l=1}^{r} \left\| Y^{(l)} - X\mathbf{B} \right\|_{F}^{2} + \lambda \Omega(\mathbf{B}) \right)$$

► It's a fail! $\hat{B}^{\text{repet}} = \hat{B}$ (because of data-fitting loss $\|\cdot\|_F^2$)

A priori $\hat{B}^{\text{repet}} \neq \hat{B}$ if the data-fitting is not $\|\cdot\|_{F}^{2}$, for instance $\|\cdot\|_{F}$ or $\|\cdot\|_{s,1}$ (Schatten-1 norm = trace / nuclear norm)

Classical multi-tasks estimator: use averaged signal

$$\hat{\mathbf{B}} \in \operatorname*{arg\,min}_{\mathbf{B} \in \mathbb{R}^{p \times q}} \left(\frac{1}{2nq} \left\| \bar{Y} - X\mathbf{B} \right\|_{F}^{2} + \lambda \Omega(\mathbf{B}) \right)$$

How to take advantage of the number of repetitions ?
Intuitive estimator:

$$\hat{\mathbf{B}}^{\mathsf{repet}} \in \underset{\mathbf{B} \in \mathbb{R}^{p \times q}}{\arg\min} \left(\frac{1}{2nqr} \sum_{l=1}^{r} \left\| Y^{(l)} - X\mathbf{B} \right\|_{F}^{2} + \lambda \Omega(\mathbf{B}) \right)$$

It's a fail! B^{repet} = B (because of data-fitting loss ||·||²_F)
A priori B^{repet} ≠ B if the data-fitting is not ||·||²_F, for instance ||·||_F or ||·||_{s,1} (Schatten-1 norm = trace / nuclear norm)
However ||·||_F and ||·||_{s,1} are non-smooth

Classical multi-tasks estimator: use averaged signal

$$\hat{\mathbf{B}} \in \operatorname*{arg\,min}_{\mathbf{B} \in \mathbb{R}^{p \times q}} \left(\frac{1}{2nq} \left\| \bar{Y} - X\mathbf{B} \right\|_{F}^{2} + \lambda \Omega(\mathbf{B}) \right)$$

How to take advantage of the number of repetitions ?
Intuitive estimator:

$$\hat{\mathbf{B}}^{\mathsf{repet}} \in \underset{\mathbf{B} \in \mathbb{R}^{p \times q}}{\arg\min} \left(\frac{1}{2nqr} \sum_{l=1}^{r} \left\| Y^{(l)} - X\mathbf{B} \right\|_{F}^{2} + \lambda \Omega(\mathbf{B}) \right)$$

It's a fail! B^{repet} = B̂ (because of data-fitting loss ||·||²_F)
A priori B^{repet} ≠ B̂ if the data-fitting is not ||·||²_F, for instance ||·||_F or ||·||_{s,1} (Schatten-1 norm = trace / nuclear norm)
However ||·||_F and ||·||_{s,1} are non-smooth

Need for smoothing!

Classical multi-tasks estimator: use averaged signal

$$\hat{\mathbf{B}} \in \operatorname*{arg\,min}_{\mathbf{B} \in \mathbb{R}^{p \times q}} \left(\frac{1}{2nq} \left\| \bar{Y} - X\mathbf{B} \right\|_{F}^{2} + \lambda \Omega(\mathbf{B}) \right)$$

How to take advantage of the number of repetitions ?
Intuitive estimator:

$$\hat{\mathbf{B}}^{\mathsf{repet}} \in \underset{\mathbf{B} \in \mathbb{R}^{p \times q}}{\arg\min} \left(\frac{1}{2nqr} \sum_{l=1}^{r} \left\| Y^{(l)} - X\mathbf{B} \right\|_{F}^{2} + \lambda \Omega(\mathbf{B}) \right)$$

▶ It's a fail! $\hat{B}^{repet} = \hat{B}$ (because of data-fitting loss $\|\cdot\|_F^2$)

- ▶ A priori $\hat{B}^{\text{repet}} \neq \hat{B}$ if the data-fitting is not $\|\cdot\|_{F}^{2}$, for instance $\|\cdot\|_{F}$ or $\|\cdot\|_{s,1}$ (Schatten-1 norm = trace / nuclear norm)
- However $\|\cdot\|_F$ and $\|\cdot\|_{s,1}$ are non-smooth
- Need for smoothing!

Table of Contents

Calibrating $\boldsymbol{\lambda}$ and noise level estimation

Multi-task case and noise structure

Experiments

Step back on the Lasso case (q = 1)

Sparse Gaussian model: $y = X\beta^* + \sigma_*\varepsilon$

- $y \in \mathbb{R}^n$: observation
- $X \in \mathbb{R}^{n \times p}$: design matrix
- $\beta^* \in \mathbb{R}^p$: signal to recover; **unknown**
- $\|\beta^*\|_0 = s^*$: sparsity level (small w.r.t. p); s^* unknown

•
$$\varepsilon \sim \mathcal{N}(0, \sigma_*^2 \operatorname{Id}_n); \sigma_*$$
 unknown

Lasso reminder :

$$\hat{\beta}^{(\lambda)} \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^{p}} \frac{1}{2n} \left\| y - X\beta \right\|^{2} + \lambda \left\| \beta \right\|_{1}$$

Lasso theory^{(4), (5)}

Theorem

For Gaussian noise model and X satisfying the "Restricted Eigenvalue" property, for $\lambda = 2\sigma_* \sqrt{\frac{2\log(p/\delta)}{n}}$, then $\frac{1}{n} \left\| X\beta^* - X\hat{\beta}^{(\lambda)} \right\|^2 \leq \frac{18}{\kappa_{s^*}^2} \frac{\sigma_*^2 s^*}{n} \log\left(\frac{p}{\delta}\right)$

with probability $1 - \delta$, where $\hat{\beta}^{(\lambda)}$ is a Lasso solution

<u>Rem</u>: optimal rate in the minimax sense (up to constant/log term) <u>Rem</u>: $\kappa_{s^*}^2$ controls the conditioning of X when extracting the s^* columns of X associated to the true support

BUT σ_* is <u>unknown</u> in practice !

⁽⁴⁾P. J. Bickel, Y. Ritov, and A. B. Tsybakov. "Simultaneous analysis of Lasso and Dantzig selector". In: Ann. Statist. 37.4 (2009), pp. 1705–1732.

⁽⁵⁾A. S. Dalalyan, M. Hebiri, and J. Lederer. "On the Prediction Performance of the Lasso". In: Bernoulli 23.1 (2017), pp. 552–581.

Lasso theory^{(4), (5)}

Theorem

For Gaussian noise model and X satisfying the "Restricted Eigenvalue" property, for $\lambda = 2\sigma_* \sqrt{\frac{2\log(p/\delta)}{n}}$, then $\frac{1}{n} \left\| X\beta^* - X\hat{\beta}^{(\lambda)} \right\|^2 \leq \frac{18}{\kappa_{s^*}^2} \frac{\sigma_*^2 s^*}{n} \log\left(\frac{p}{\delta}\right)$

with probability $1 - \delta$, where $\hat{\beta}^{(\lambda)}$ is a Lasso solution

<u>Rem</u>: optimal rate in the minimax sense (up to constant/log term) <u>Rem</u>: $\kappa_{s^*}^2$ controls the conditioning of X when extracting the s^* columns of X associated to the true support

BUT σ_* is <u>unknown</u> in practice !

⁽⁴⁾P. J. Bickel, Y. Ritov, and A. B. Tsybakov. "Simultaneous analysis of Lasso and Dantzig selector". In: Ann. Statist. 37.4 (2009), pp. 1705–1732.

⁽⁵⁾A. S. Dalalyan, M. Hebiri, and J. Lederer. "On the Prediction Performance of the Lasso". In: Bernoulli 23.1 (2017), pp. 552–581.

Joint estimation of β and σ

How to calibrate (theoretically) λ when σ_* is unknown?

Intuitive idea: initialize λ

- lacktriangleright run Lasso with λ ; get β
- estimate σ , *e.g.*, with residual $\sigma \leftarrow \frac{\|y X\beta\|}{\sqrt{n}}$

• re-scale $\lambda \propto \sigma$, and run Lasso with it

iterate (until convergence)

 $\underline{\textit{N.B.}}$: exactly the Concomitant ${\sf Lasso}^{(6)}$ / Scaled-Lasso $^{(7)}$ implementation

⁽⁷⁾T. Sun and C.-H. Zhang. "Scaled sparse linear regression". In: Biometrika 99.4 (2012), pp. 879-898.

⁽⁶⁾A. B. Owen. "A robust hybrid of lasso and ridge regression". In: Contemporary Mathematics 443 (2007), pp. 59–72.

Concomitant Lasso

$$\left(\beta^{(\lambda)}, \sigma^{(\lambda)}\right) \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^{p}, \sigma > 0} \left(\frac{\|y - X\beta\|^{2}}{2n\sigma} + \frac{\sigma}{2} + \lambda \left\|\beta\right\|_{1}\right)$$

- $\frac{\sigma}{2}$: penalty on noise level, roots in robust estimation^{(8), (9)}
- ▶ jointly convex program: $(a, b) \mapsto a^2/b$ is convex

⁽⁸⁾P. J. Huber and R. Dutter. "Numerical solution of robust regression problems". In: Compstat 1974 (Proc. Sympos. Computational Statist., Univ. Vienna, Vienna, 1974). Physica Verlag, Vienna, 1974, pp. 165–172.
 ⁽⁹⁾P. J. Huber. Robust Statistics. John Wiley & Sons Inc., 1981.

Concomitant performance

For Gaussian noise model and X satisfying the "Restricted Eigenvalue" property and $\lambda = 2\sqrt{\frac{2\log(p/\delta)}{n}}$, then $\frac{1}{n} \|X\beta^* - X\hat{\beta}^{(\lambda)}\|^2 \leq \frac{18}{\kappa_{**}^2} \frac{\sigma_*^2 s_*}{n} \log\left(\frac{p}{\delta}\right)$

with high probability, where $\hat{\beta}^{(\lambda)}$ is a Concomitant Lasso solution

<u>Rem</u>: provide same rate as Lasso, without knowing σ_*

<u>Rem</u>: λ has no dimension, but calibration still needed in practice...

 ⁽¹⁰⁾ T. Sun and C.-H. Zhang. "Scaled sparse linear regression". In: *Biometrika* 99.4 (2012), pp. 879–898.
 (11) C. Giraud. Introduction to high-dimensional statistics. Vol. 138. CRC Press, 2014.

Link with $\sqrt{Lasso}^{(12)}$

▶ Independently, $\sqrt{\text{Lasso}}$ analyzed to get " σ free" choice of λ

$$\hat{\beta}_{\sqrt{\text{Lasso}}}^{(\lambda)} \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^{p}} \left(\frac{1}{\sqrt{n}} \left\| y - X\beta \right\| + \lambda \left\| \beta \right\|_{1} \right)$$

• Connections with Concomitant Lasso: $\left(\hat{\beta}_{\sqrt{\text{Lasso}}}^{(\lambda)}, \hat{\sigma}_{\sqrt{\text{Lasso}}}^{(\lambda)}\right)$ is solution of the Concomitant Lasso when $\hat{\sigma}_{\sqrt{\text{Lasso}}}^{(\lambda)} = \frac{\left\|y - X\hat{\beta}_{\sqrt{\text{Lasso}}}^{(\lambda)}\right\|}{\sqrt{n}} \neq 0$

Rem: non-smooth data fitting term with non-smooth regularization

⁽¹²⁾ A. Belloni, V. Chernozhukov, and L. Wang. "Square-root Lasso: pivotal recovery of sparse signals via conic programming". In: *Biometrika* 98.4 (2011), pp. 791–806.

The Smoothed Concomitant Lasso⁽¹⁴⁾

$$(\hat{\beta}^{(\lambda)}, \hat{\sigma}^{(\lambda)}) \! \in \! \mathop{\arg\min}_{\beta \in \mathbb{R}^{p}, \sigma \geq \underline{\sigma}} \frac{\|y - X\beta\|^{2}}{2n\sigma} + \frac{\sigma}{2} + \lambda \, \|\beta\|_{1}$$

 \blacktriangleright useful for optimization with small λ

with prior information on the minimal noise level, one can set <u>a</u> as this bound (recovers Concomitant Lasso)

▶ setting $\underline{\sigma} = \epsilon$, smoothing theory asserts that $\frac{\epsilon}{2}$ -solutions for the smoothed problem provide ϵ -solutions for the $\sqrt{\text{Lasso}}^{(13)}$

⁽¹³⁾Y. Nesterov. "Smooth minimization of non-smooth functions". In: Math. Program. 103.1 (2005), pp. 127–152.

 $^{^{(14)}\}mathsf{E}.$ Ndiaye et al. "Efficient Smoothed Concomitant Lasso Estimation for High Dimensional Regression". In: NCMIP. 2017.

Smoothing aparté^{(15),(16)}

<u>Motivation</u>: smooth a non-smooth function f to ease optimization Smoothing: for $\mu > 0$, a "smoothed" version of f is f_{μ}

$$f_{\mu} = \mu \omega \left(\frac{\cdot}{\mu}\right) \Box f$$
, where $f \Box g(x) = \inf_{u} \{f(u) + g(x-u)\}$

• ω is a predefined smooth function (s.t. $\nabla \omega$ is Lipschitz)

	Fourier: $\mathcal{F}(f)$	Fenchel/Legendre: f^*
	convolution: *	inf-convolution:
Kernel smoothing analogy:	$\mathcal{F}(f \star g) = \mathcal{F}(f) \cdot \mathcal{F}(g)$	$(f \Box g)^* = f^* + g^*$
	$Gaussian : \ \mathcal{F}(g) = g$	$\omega = \frac{\ \cdot\ ^2}{2}: \omega^* = \omega$
	$f_h = \frac{1}{h}g\left(\frac{\cdot}{h}\right) \star f$	$f_{\mu} = \mu \omega \left(rac{\cdot}{\mu} ight) \Box f$

(15)Y. Nesterov. "Smooth minimization of non-smooth functions". In: *Math. Program.* 103.1 (2005), pp. 127–152.
(16)A. Beck and M. Teboulle. "Smoothing and first order methods: A unified framework". In: *SIAM J. Optim.* 22.2 (2012), pp. 557–580.

Smoothing aparté^{(15),(16)}

<u>Motivation</u>: smooth a non-smooth function f to ease optimization Smoothing: for $\mu > 0$, a "smoothed" version of f is f_{μ}

$$f_{\mu} = \mu \omega \left(\frac{\cdot}{\mu}\right) \Box f$$
, where $f \Box g(x) = \inf_{u} \{f(u) + g(x-u)\}$

• ω is a predefined smooth function (s.t. $\nabla \omega$ is Lipschitz)

	Fourier: $\mathcal{F}(f)$	Fenchel/Legendre: f^*
	convolution: *	inf-convolution: 🗆
Kernel smoothing analogy:	$\mathcal{F}(f \star g) = \mathcal{F}(f) \cdot \mathcal{F}(g)$	$(f \Box g)^* = f^* + g^*$
	$Gaussian:\ \mathcal{F}(g)=g$	$\omega = \frac{\ \cdot\ ^2}{2}: \omega^* = \omega$
	$f_h = \frac{1}{h}g\left(\frac{\cdot}{h}\right) \star f$	$f_{\mu} = \mu \omega \left(rac{\cdot}{\mu} ight) \Box f$

(15) Y. Nesterov. "Smooth minimization of non-smooth functions". In: Math. Program. 103.1 (2005), pp. 127–152.

(16) A. Beck and M. Teboulle. "Smoothing and first order methods: A unified framework". In: SIAM J. Optim. 22.2 (2012), pp. 557–580.

Huber function (bis): $\omega(t) = \frac{t^2}{2} + \frac{1}{2}$

Huber function (bis): $\omega(t) = \frac{t^2}{2} + \frac{1}{2}$

Huber function (bis): $\omega(t) = \frac{t^2}{2} + \frac{1}{2}$

Huber function (bis): $\omega(t) = \frac{t^2}{2} + \frac{1}{2}$

Huberization of the \sqrt{Lasso}

"Huberization":
$$f(z) = \|z\|$$
, $\mu = \underline{\sigma}$, $\omega(z) = rac{\|z\|^2}{2} + rac{1}{2}$

$$\|\cdot\| \Box \underline{\sigma} \omega \left(\frac{\cdot}{\underline{\sigma}}\right)(z) = \begin{cases} \frac{\|z\|^2}{2\underline{\sigma}} + \frac{\underline{\sigma}}{2}, & \text{if } \|z\| \le \underline{\sigma} \\ \|z\|, & \text{if } \|z\| > \underline{\sigma} \end{cases} \\ = \min_{\underline{\sigma} \ge \underline{\sigma}} \left(\frac{\|z\|^2}{2\sigma} + \frac{\sigma}{2}\right) \end{cases}$$

Leads to the Smoothed Concomitant Lasso formulation:

$$(\hat{\beta}^{(\lambda)}, \hat{\sigma}^{(\lambda)}) \in \underset{\beta \in \mathbb{R}^{p}, \sigma \geq \underline{\sigma}}{\operatorname{arg\,min}} \left(\frac{\|y - X\beta\|^{2}}{2n\sigma} + \frac{\sigma}{2} + \lambda \, \|\beta\|_{1} \right)$$

Solving the Smooth Concomitant Lasso

$$(\hat{\beta}^{(\lambda)}, \hat{\sigma}^{(\lambda)}) \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^{p}, \sigma \geq \underline{\sigma}} \frac{\|y - X\beta\|^{2}}{2n\sigma} + \frac{\sigma}{2} + \lambda \|\beta\|_{1}$$

Jointly convex formulation : can be optimized by alternate minimization w.r.t. β and σ (gradient Lipschitz)

Alternate iteratively:

Fix σ : (approximatively) solve a Lasso problem to update β $\hat{\beta} \in \underset{\beta \in \mathbb{R}^p}{\operatorname{arg\,min}} \frac{\|y - X\beta\|^2}{2n} + \lambda \sigma \|\beta\|_1$ (Lasso step)

Solving the Smooth Concomitant Lasso

$$(\hat{\beta}^{(\lambda)}, \hat{\sigma}^{(\lambda)}) \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^{p}, \sigma \geq \underline{\sigma}} \frac{\|y - X\beta\|^{2}}{2n\sigma} + \frac{\sigma}{2} + \lambda \|\beta\|_{1}$$

Jointly convex formulation : can be optimized by alternate minimization w.r.t. β and σ (gradient Lipschitz)

Alternate iteratively:

Fix
$$\sigma$$
: (approximatively) solve a Lasso problem to update β
 $\hat{\beta} \in \underset{\beta \in \mathbb{R}^p}{\operatorname{arg\,min}} \frac{\|y - X\beta\|^2}{2n} + \lambda \sigma \|\beta\|_1$ (Lasso step)

Fix
$$\beta$$
: closed form solution to update σ
 $\hat{\sigma} = \max\left(\frac{\|y - X\beta\|}{\sqrt{n}}, \underline{\sigma}\right)$ (Noise estimation step)

Solving the Smooth Concomitant Lasso

$$(\hat{\beta}^{(\lambda)}, \hat{\sigma}^{(\lambda)}) \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^{p}, \sigma \geq \underline{\sigma}} \frac{\|y - X\beta\|^{2}}{2n\sigma} + \frac{\sigma}{2} + \lambda \|\beta\|_{1}$$

Jointly convex formulation : can be optimized by alternate minimization w.r.t. β and σ (gradient Lipschitz)

Alternate iteratively:

Fix
$$\sigma$$
: (approximatively) solve a Lasso problem to update β
 $\hat{\beta} \in \underset{\beta \in \mathbb{R}^p}{\operatorname{arg\,min}} \frac{\|y - X\beta\|^2}{2n} + \lambda \sigma \|\beta\|_1$ (Lasso step)

Fix
$$\beta$$
: closed form solution to update σ
 $\hat{\sigma} = \max\left(\frac{\|y - X\beta\|}{\sqrt{n}}, \underline{\sigma}\right)$ (Noise estimation step)

Table of Contents

Calibrating λ and noise level estimation

Multi-task case and noise structure

Experiments

Back to multi-task : $Y^{(l)} = XB^* + SE^{(l)}$

<u>General case</u>: $Y \in \mathbb{R}^{n \times q}$, $B \in \mathbb{R}^{p \times q}$, and the noise $E \in \mathbb{R}^{n \times q}$ might have some structure evolving along the *n* samples (sensors)

"Huberization of the Frobenius norm"

$$\begin{aligned} \|\cdot\|_{F} \Box \underline{\sigma} \omega \left(\frac{\cdot}{\underline{\sigma}}\right) (Z) &= \begin{cases} \frac{\|Z\|_{F}^{2}}{2\underline{\sigma}} + \frac{\underline{\sigma}}{2}, & \text{if } \|Z\| \leq \underline{\sigma} \\ \|Z\|_{F}, & \text{if } \|Z\| > \underline{\sigma} \end{cases} \\ &= \min_{\sigma \geq \underline{\sigma}} \left(\frac{\|Z\|_{F}^{2}}{2\sigma} + \frac{\sigma}{2}\right) \end{aligned}$$

Leads to the Smoothed Concomitant Lasso formulation:

$$(\hat{\mathbf{B}}^{(\lambda)}, \hat{\sigma}^{(\lambda)}) \in \underset{\mathbf{B} \in \mathbb{R}^{p}, \sigma \geq \underline{\sigma}}{\operatorname{arg\,min}} \left(\frac{\|Y - X\mathbf{B}\|_{F}^{2}}{2n\sigma} + \frac{\sigma}{2} + \lambda \, \|\mathbf{B}\|_{2,1} \right)$$

and similar efficient algorithms.

Back to multi-task : $Y^{(l)} = XB^* + SE^{(l)}$

<u>General case</u>: $Y \in \mathbb{R}^{n \times q}$, $B \in \mathbb{R}^{p \times q}$, and the noise $E \in \mathbb{R}^{n \times q}$ might have some structure evolving along the n samples (sensors)

"Huberization of the Frobenius norm"

$$\begin{aligned} \|\cdot\|_F \,\Box \underline{\sigma} \omega \left(\frac{\cdot}{\underline{\sigma}}\right)(Z) &= \begin{cases} \frac{\|Z\|_F^2}{2\underline{\sigma}} + \frac{\underline{\sigma}}{2}, & \text{if } \|Z\| \le \underline{\sigma} \\ \|Z\|_F, & \text{if } \|Z\| > \underline{\sigma} \\ &= \min_{\sigma \ge \underline{\sigma}} \left(\frac{\|Z\|_F^2}{2\sigma} + \frac{\sigma}{2}\right) \end{aligned}$$

Leads to the Smoothed Concomitant Lasso formulation:

$$(\hat{\mathbf{B}}^{(\lambda)}, \hat{\sigma}^{(\lambda)}) \in \underset{\mathbf{B} \in \mathbb{R}^{p}, \sigma \geq \underline{\sigma}}{\operatorname{arg\,min}} \left(\frac{\|Y - X\mathbf{B}\|_{F}^{2}}{2n\sigma} + \frac{\sigma}{2} + \lambda \, \|\mathbf{B}\|_{2,1} \right)$$

and similar efficient algorithms.

What about other norms ?

Huber-like formula for the Frobenius norm

$$\|\cdot\|_{F} \Box \underline{\sigma} \omega \left(\frac{\cdot}{\underline{\sigma}}\right) (Z) = \begin{cases} \frac{\|Z\|_{F}^{2}}{2\underline{\sigma}} + \frac{\underline{\sigma}}{2}, & \text{if } \|Z\|_{F} \leq \underline{\sigma} \\ \|Z\|_{F}, & \text{if } \|Z\|_{F} > \underline{\sigma} \end{cases} \\ = \min_{\underline{\sigma} \geq \underline{\sigma}} \left(\frac{\|Z\|_{F}^{2}}{2\sigma} + \frac{\sigma}{2}\right) \end{cases}$$

What about other norms ?

What about other norms ?

Huber-like formula for the Frobenius norm

$$\|\cdot\|_F \Box \underline{\sigma} \omega \left(\frac{\cdot}{\underline{\sigma}}\right) (Z) = \begin{cases} \frac{\|Z\|_F^2}{2\underline{\sigma}} + \frac{\underline{\sigma}}{2}, & \text{if } \|Z\|_F \le \underline{\sigma} \\ \|Z\|_F, & \text{if } \|Z\|_F > \underline{\sigma} \end{cases} \\ = \min_{\underline{\sigma} \ge \underline{\sigma}} \left(\frac{\|Z\|_F^2}{2\sigma} + \frac{\sigma}{2}\right) \end{cases}$$

What about other norms ?

Huber-like formula for the nuclear/trace norm

$$\begin{aligned} \|\cdot\|_{s,1} \Box \,\omega_{\underline{\sigma}}(Z) &= \begin{cases} \frac{1}{2\underline{\sigma}} \sum_{i} \gamma_{i}^{2} - (\gamma_{i} \wedge \underline{\sigma} - \gamma_{i})^{2}, & \text{if } \|Z\|_{s,1} \leq \underline{\sigma} \\ \|Z\|_{F}, & \text{if } \|Z\|_{s,1} > \underline{\sigma} \\ &= \min_{S \succeq \underline{\sigma}} \frac{1}{2} \|Z\|_{S^{-1}}^{2} + \frac{1}{2} \operatorname{Tr}(S) \end{aligned}$$

 γ_i : singular values of Z $\|Z\|_{S^{-1}}^2 := \operatorname{Tr}(Z^{\top}S^{-1}Z)$ Mahalanobis distance

What about other norms ?

Huber-like formula for the Frobenius norm

$$\begin{aligned} \|\cdot\|_F \,\Box\underline{\sigma}\omega\left(\frac{\cdot}{\underline{\sigma}}\right)(Z) &= \begin{cases} \frac{\|Z\|_F^2}{2\underline{\sigma}} + \frac{\underline{\sigma}}{2}, & \text{if } \|Z\|_F \leq \underline{\sigma}\\ \|Z\|_F, & \text{if } \|Z\|_F > \underline{\sigma} \end{cases}\\ &= \min_{\underline{\sigma} \geq \underline{\sigma}} \left(\frac{\|Z\|_F^2}{2\sigma} + \frac{\sigma}{2}\right) \end{aligned}$$

What about other norms ? Huber-like formula for the nuclear/trace norm

$$\begin{split} \|\cdot\|_{s,1} \,\Box\,\omega_{\underline{\sigma}}(Z) &= \begin{cases} \frac{1}{2\underline{\sigma}}\sum_{i}\gamma_{i}^{2}-(\gamma_{i}\wedge\underline{\sigma}-\gamma_{i})^{2}, & \text{ if } \|Z\|_{s,1} \leq \underline{\sigma} \\ \|Z\|_{F}, & \text{ if } \|Z\|_{s,1} > \underline{\sigma} \\ &= \min_{S \succeq \underline{\sigma}} \frac{1}{2} \,\|Z\|_{S^{-1}}^{2} + \frac{1}{2} \operatorname{Tr}(S) \end{split}$$

 $\gamma_i:$ singular values of Z $\|Z\|_{S^{-1}}^2:=\mathrm{Tr}(Z^\top S^{-1}Z)$ Mahalanobis distance

Smoothing of the nuclear/trace norm

Smoothed Generalized Concomitant Lasso (SGCL)⁽¹⁷⁾:

$$(\hat{\mathbf{B}}^{\mathrm{SGCL}}, \hat{S}^{\mathrm{SGCL}}) \in \underset{\substack{\mathbf{B} \in \mathbb{R}^{p \times q} \\ S \in \mathbb{S}^{n}_{++}, S \succeq \underline{\sigma}}}{\operatorname{arg\,min}} \quad \frac{\left\| \overline{\mathbf{Y}} - X\mathbf{B} \right\|_{S^{-1}}^{2}}{2nq} + \frac{\operatorname{Tr}(S)}{2n} + \lambda \left\| \mathbf{B} \right\|_{2,1}$$

Concomitant Lasso with Repetitions (CLaR)⁽¹⁸⁾:

$$(\hat{\mathbf{B}}^{\text{CLaR}}, \hat{S}^{\text{CLaR}}) \in \underset{\substack{\mathbf{B} \in \mathbb{R}^{p \times q}\\ S \in \mathbb{S}^{n}_{++}, S \succeq \underline{\sigma}}}{\operatorname{arg\,min}} \quad \frac{\sum_{l=1}^{r} \left\| \boldsymbol{Y}^{(l)} - \boldsymbol{X} \mathbf{B} \right\|_{S^{-1}}^{2}}{2nqr} + \frac{\operatorname{Tr}(S)}{2n} + \lambda \left\| \mathbf{B} \right\|_{2,1}}$$

(17) M. Massias et al. "Generalized Concomitant Multi-Task Lasso for Sparse Multimodal Regression". In: AISTATS. vol. 84. 2018, pp. 998–1007.

⁽¹⁸⁾Q. Bertrand et al. Concomitant Lasso with Repetitions (CLaR): beyond averaging multiple realizations of heteroscedastic noise. Tech. rep. 2019. arXiv: 1902.02509.

Efficient solvers for SGCL and CLaR

<u>General case</u>: $Y^{(l)} \in \mathbb{R}^{n \times q}$, $B \in \mathbb{R}^{p \times q}$, and the noise $E^{(l)} \in \mathbb{R}^{n \times q}$

⁽¹⁹⁾S. van de Geer. Estimation and testing under sparsity. Vol. 2159. Lecture Notes in Mathematics. Lecture notes from the 45th Probability Summer School held in Saint-Four, 2015, École d'Été de Probabilités de Saint-Flour. Springer, 2016, pp. xiii+274.

Efficient solvers for SGCL and CLaR

<u>General case</u>: $Y^{(l)} \in \mathbb{R}^{n \times q}$, $B \in \mathbb{R}^{p \times q}$, and the noise $E^{(l)} \in \mathbb{R}^{n \times q}$

$$\begin{split} & \text{SGCL:} \\ & (\hat{B}^{\text{SGCL}}, \hat{S}^{\text{SGCL}}) \in \operatornamewithlimits{arg\,min}_{\substack{B \in \mathbb{R}^{p \times q} \\ S \in \mathbb{S}_{++}^n, S \succeq \sigma}} \quad \frac{\left\| \bar{Y} - XB \right\|_{S^{-1}}^2}{2nq} + \frac{\operatorname{Tr}(S)}{2n} + \lambda \left\| B \right\|_{2,1} \\ & \text{CLaR:} \\ & (\hat{B}^{\text{CLaR}}, \hat{S}^{\text{CLaR}}) \in \operatornamewithlimits{arg\,min}_{\substack{B \in \mathbb{R}^{p \times q} \\ S \in \mathbb{S}_{++}^n, S \succeq \sigma}} \quad \frac{\sum_{l=1}^r \left\| Y^{(l)} - XB \right\|_{S^{-1}}^2}{2nqr} + \frac{\operatorname{Tr}(S)}{2n} + \lambda \left\| B \right\|_{2,1} \\ & \text{with} \left\| Z \right\|_{S^{-1}}^2 := \operatorname{Tr}(Z^\top S^{-1}Z) \text{ (Mahalanobis distance)} \end{split}$$

⁽¹⁹⁾ S. van de Geer. Estimation and testing under sparsity. Vol. 2159. Lecture Notes in Mathematics. Lecture notes from the 45th Probability Summer School held in Saint-Four, 2015, École d'Été de Probabilités de Saint-Flour. Springer, 2016, pp. xiii+274.

Efficient solvers for SGCL and CLaR

<u>General case</u>: $Y^{(l)} \in \mathbb{R}^{n \times q}$, $B \in \mathbb{R}^{p \times q}$, and the noise $E^{(l)} \in \mathbb{R}^{n \times q}$

SGCL:

$$(\hat{B}^{SGCL}, \hat{S}^{SGCL}) \in \underset{\substack{B \in \mathbb{R}^{p \times q} \\ S \in \mathbb{S}^{n}_{++}, S \succeq \underline{\sigma}}}{\operatorname{arg\,min}} \frac{\left\| \overline{Y} - XB \right\|_{S^{-1}}^{2}}{2nq} + \frac{\operatorname{Tr}(S)}{2n} + \lambda \left\| B \right\|_{2,1}$$

$$(\hat{\mathbf{B}}^{\text{CLaR}}, \hat{S}^{\text{CLaR}}) \in \underset{\substack{\mathbf{B} \in \mathbb{R}^{p \times q} \\ S \in \mathbb{S}^{n}_{++}, S \succeq \sigma}}{\operatorname{arg\,min}} \frac{\sum_{l=1}^{r} \left\| Y^{(l)} - X\mathbf{B} \right\|_{S^{-1}}^{2}}{2nqr} + \frac{\operatorname{Tr}(S)}{2n} + \lambda \left\| \mathbf{B} \right\|_{2,1}}$$

with $||Z||_{S^{-1}}^2 := \operatorname{Tr}(Z^{\top}S^{-1}Z)$ (Mahalanobis distance)

▶ jointly convex formulation (=nuclear norm smoothing⁽¹⁹⁾)

• noise penalty on the sum of the eigenvalues of $S(S^* = \Sigma^{*\frac{1}{2}})$

⁽¹⁹⁾ S. van de Geer. Estimation and testing under sparsity. Vol. 2159. Lecture Notes in Mathematics. Lecture notes from the 45th Probability Summer School held in Saint-Four, 2015, École d'Été de Probabilités de Saint-Flour. Springer, 2016, pp. xiii+274.

SGCL and CLaR computations: ${\rm B}$ update

Jointly convex formulation: alternate minimization still converging

B Update - S fixed:

"smooth + non-smooth" optimization; use Block Coordinate Descent (Iterative Block Soft-Thresholding) to update ${\rm B}$ row-wise

Possible refinements:

- ▶ (Gap) safe screening rules^{(20), (21)}
- ► Stong rules⁽²²⁾
- ► Active sets methods⁽²³⁾ etc.

⁽²⁰⁾L. El Ghaoui, V. Viallon, and T. Rabbani. "Safe feature elimination in sparse supervised learning". In: J. Pacific Optim. 8.4 (2012), pp. 667–698.

⁽²¹⁾E. Ndiaye et al. "Gap Safe screening rules for sparsity enforcing penalties". In: J. Mach. Learn. Res. 18.128 (2017), pp. 1–33.

^{(&}lt;sup>22)</sup>R. Tibshirani et al. "Strong rules for discarding predictors in lasso-type problems". In: J. R. Stat. Soc. Ser. B Stat. Methodol. 74.2 (2012), pp. 245–266.

⁽²³⁾T. B. Johnson and C. Guestrin. "BLITZ: A Principled Meta-Algorithm for Scaling Sparse Optimization". In: ICML. 2015, pp. 1171–1179.

SGCL and CLaR computations: ${\rm B}$ update

Jointly convex formulation: alternate minimization still converging

B Update - S fixed:

"smooth + non-smooth" optimization; use Block Coordinate Descent (Iterative Block Soft-Thresholding) to update ${\rm B}$ row-wise

Possible refinements:

- ▶ (Gap) safe screening rules^{(20), (21)}
- Stong rules⁽²²⁾
- ► Active sets methods⁽²³⁾ etc.

⁽²⁰⁾ L. El Ghaoui, V. Viallon, and T. Rabbani. "Safe feature elimination in sparse supervised learning". In: J. Pacific Optim. 8.4 (2012), pp. 667–698.

⁽²¹⁾E. Ndiaye et al. "Gap Safe screening rules for sparsity enforcing penalties". In: J. Mach. Learn. Res. 18.128 (2017), pp. 1–33.

⁽²²⁾ R. Tibshirani et al. "Strong rules for discarding predictors in lasso-type problems". In: J. R. Stat. Soc. Ser. B Stat. Methodol. 74.2 (2012), pp. 245–266.

⁽²³⁾T. B. Johnson and C. Guestrin. "BLITZ: A Principled Meta-Algorithm for Scaling Sparse Optimization". In: *ICML*. 2015, pp. 1171–1179.

SGCL and CLaR computations: S update

S Update - B fixed:

For SGCL and CLaR the problem can be reformulated as

$$\hat{S} = \operatorname*{arg\,min}_{S \in \mathbb{S}^n_{++}, S \succeq \underline{\sigma} \operatorname{Id}_n} \, \left(\frac{1}{2n} \operatorname{Tr}[Z^\top S^{-1} Z] + \frac{1}{2n} \operatorname{Tr}(S) \right)$$

 $\underline{Rem}:$ as in the classical concomitant Lasso, at each step CLaR and SGCL estimate alternatively B and S

SGCL and CLaR computations: S update

S Update - B fixed:

For SGCL and CLaR the problem can be reformulated as

$$\hat{S} = \operatorname*{arg\,min}_{S \in \mathbb{S}^n_{++}, S \succeq \underline{\sigma} \, \operatorname{Id}_n} \, \left(\frac{1}{2n} \operatorname{Tr}[Z^\top S^{-1} Z] + \frac{1}{2n} \operatorname{Tr}(S) \right)$$

<u>Closed-form solution</u> (Spectral clipping):

if $U^{\top} \operatorname{diag}(s_1, \ldots, s_n) U$ is the spectral decomposition of ZZ^{\top} :

$$\hat{S} = U^{\top} \operatorname{diag}(\max(\underline{\sigma}, \sqrt{s_1}), \dots, \max(\underline{\sigma}, \sqrt{s_n}))U$$

 $\underline{\rm Rem}:$ as in the classical concomitant Lasso, at each step CLaR and SGCL estimate alternatively $\rm B$ and S

Main drawbacks

• Statistically⁽²⁴⁾: $\mathcal{O}(n^2)$ parameters to estimate for S

- SGCL case: only nq observations (need q large w.r.t. n)
- CLaR case: only *nqr* observations
- Computationally: S update cost is $O(n^3)$ too slow in general (SVD computation) <u>Rem</u>: fine for MEG/EEG problems ($n \approx 300$)

More structure can easily be incorporated to estimate S, *e.g.*, block diagonal, etc.

⁽²⁴⁾ not to mention that the original model is not identifiable

Main drawbacks

• Statistically⁽²⁴⁾: $\mathcal{O}(n^2)$ parameters to estimate for S

- SGCL case: only nq observations (need q large w.r.t. n)
- CLaR case: only *nqr* observations
- Computationally: S update cost is $O(n^3)$ too slow in general (SVD computation) <u>Rem</u>: fine for MEG/EEG problems ($n \approx 300$)

More structure can easily be incorporated to estimate S, *e.g.*, block diagonal, etc.

⁽²⁴⁾not to mention that the original model is not identifiable

Table of Contents

Calibrating λ and noise level estimation

Multi-task case and noise structure

Experiments

Simulated scenarios

Simulated design:

▶ n = 150

▶
$$p = 500$$

- ▶ q = 100
- X Toeplitz-correlated: $Cov(X_i, X_j) = \rho^{|i-j|}, \rho_X \in]0, 1[$
- ► S Toeplitz matrix: $S_{i,j} = \rho^{|i-j|}$, $\rho_S \in]0,1[$
- ▶ $SNR = ||XB^*|| / ||Y XB^*||$ Signal to Noise Ratio

Computational comparison between estimators

- CLaR: Concomitant Lasso with Repetitions
- SGCL: Smoothed Generalized Concomitant Lasso
- MTLR: Multi-Task Lasso with Repetitions
- MTL: Multi-Task Lasso

Algorithms cost

Computational comparison between estimators

- CLaR: Concomitant Lasso with Repetitions
- SGCL: Smoothed Generalized Concomitant Lasso
- MTLR: Multi-Task Lasso with Repetitions
- MTL: Multi-Task Lasso

	CD epoch	gap computation
CLaR	$\mathcal{O}(\frac{n^3 + qn^2}{f} + pn^2 + pnq)$	$\mathcal{O}(rnq+p)$
SGCL	$\mathcal{O}(\frac{n^3 + qn^2}{f} + pn^2 + pnq)$	$\mathcal{O}(nq+p)$
MTLR	$\int \mathcal{O}(npqr)$	$\mathcal{O}(rnq+p)$
MTL	$\mathcal{O}(npq)$	$\mathcal{O}(nq+p)$

Algorithms cost

Support recovery: ROC curve w.r.t. λ , $\rho_X = 0.6$, r = 50, SNR = 0.03

Support recovery: ROC curve w.r.t. λ , $\rho_X = 0.6$, $\rho_S = 0.6$, r = 50

Support recovery: ROC curve w.r.t. λ , $\rho_X = 0.6$, $\rho_S = 0.6$, SNR = 0.03

Semi-real data: real X and S

New insights for handling (structured) noise in multi-task

 Handling refined noise structure benefits: improve support identification (and prediction)

- New insights for handling (structured) noise in multi-task
- Handling refined noise structure benefits: improve support identification (and prediction)
- Numerical cost equivalent to classical Multi-Task Lasso for "simple" noise structure (*e.g.*, block homoscedastic)

- New insights for handling (structured) noise in multi-task
- Handling refined noise structure benefits: improve support identification (and prediction)
- Numerical cost equivalent to classical Multi-Task Lasso for "simple" noise structure (*e.g.*, block homoscedastic)

Future work: non-convex penalties, statistical analysis, etc.

- New insights for handling (structured) noise in multi-task
- Handling refined noise structure benefits: improve support identification (and prediction)
- Numerical cost equivalent to classical Multi-Task Lasso for "simple" noise structure (*e.g.*, block homoscedastic)
- Future work: non-convex penalties, statistical analysis, etc.

Merci!

"All models are wrong but some come with good open source implementation and good documentation so use those."

A. Gramfort

- Paper: arXiv / personnal webpage^{(25), (26)}
- Python code online for CLaR https://github.com/QB3/CLaR
- Python code online for SHCL https://github.com/mathurinm/SHCL

Powered with MooseTeX

(25) M. Massias et al. "Generalized Concomitant Multi-Task Lasso for Sparse Multimodal Regression". In: AISTATS. vol. 84. 2018, pp. 998–1007.

⁽²⁶⁾Q. Bertrand et al. Concomitant Lasso with Repetitions (CLaR): beyond averaging multiple realizations of heteroscedastic noise. Tech. rep. 2019. arXiv: 1902.02509.

References I

- Beck, A. and M. Teboulle. "Smoothing and first order methods: A unified framework". In: SIAM J. Optim. 22.2 (2012), pp. 557–580.
- Belloni, A., V. Chernozhukov, and L. Wang. "Square-root Lasso: pivotal recovery of sparse signals via conic programming". In: *Biometrika* 98.4 (2011), pp. 791–806.
- Bertrand, Q. et al. Concomitant Lasso with Repetitions (CLaR): beyond averaging multiple realizations of heteroscedastic noise. Tech. rep. 2019. arXiv: 1902.02509.
- Bickel, P. J., Y. Ritov, and A. B. Tsybakov. "Simultaneous analysis of Lasso and Dantzig selector". In: Ann. Statist. 37.4 (2009), pp. 1705–1732.
- Dalalyan, A. S., M. Hebiri, and J. Lederer. "On the Prediction Performance of the Lasso". In: *Bernoulli* 23.1 (2017), pp. 552–581.
References II

- Delorme, A. et al. "Independent EEG sources are dipolar". In: *PloS* one 7.2 (2012), e30135.
- El Ghaoui, L., V. Viallon, and T. Rabbani. "Safe feature elimination in sparse supervised learning". In: J. Pacific Optim. 8.4 (2012), pp. 667–698.
- Giraud, C. Introduction to high-dimensional statistics. Vol. 138. CRC Press, 2014.
- Huber, P. J. Robust Statistics. John Wiley & Sons Inc., 1981.
- Huber, P. J. and R. Dutter. "Numerical solution of robust regression problems". In: Compstat 1974 (Proc. Sympos. Computational Statist., Univ. Vienna, Vienna, 1974). Physica Verlag, Vienna, 1974, pp. 165–172.
- Johnson, T. B. and C. Guestrin. "BLITZ: A Principled Meta-Algorithm for Scaling Sparse Optimization". In: ICML. 2015, pp. 1171–1179.

References III

- Massias, M. et al. "Generalized Concomitant Multi-Task Lasso for Sparse Multimodal Regression". In: *AISTATS*. Vol. 84. 2018, pp. 998–1007.
- Ndiaye, E. et al. "Efficient Smoothed Concomitant Lasso Estimation for High Dimensional Regression". In: NCMIP. 2017.
- Ndiaye, E. et al. "Gap Safe screening rules for sparsity enforcing penalties". In: J. Mach. Learn. Res. 18.128 (2017), pp. 1–33.
- Nesterov, Y. "Smooth minimization of non-smooth functions". In: Math. Program. 103.1 (2005), pp. 127–152.
- Obozinski, G., B. Taskar, and M. I. Jordan. "Joint covariate selection and joint subspace selection for multiple classification problems". In: *Statistics and Computing* 20.2 (2010), pp. 231–252.
- Owen, A. B. "A robust hybrid of lasso and ridge regression". In: Contemporary Mathematics 443 (2007), pp. 59–72.

References IV

- Sun, T. and C.-H. Zhang. "Scaled sparse linear regression". In: Biometrika 99.4 (2012), pp. 879–898.
- Tibshirani, R. et al. "Strong rules for discarding predictors in lasso-type problems". In: J. R. Stat. Soc. Ser. B Stat. Methodol. 74.2 (2012), pp. 245–266.
- van de Geer, S. Estimation and testing under sparsity. Vol. 2159. Lecture Notes in Mathematics. Lecture notes from the 45th Probability Summer School held in Saint-Four, 2015, École d'Été de Probabilités de Saint-Flour. Springer, 2016, pp. xiii+274.