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Introduction

These notes have been written after a careful reading of:

1. J. Garnier, S. Méléard, and N. Touzi. Aléatoire. École Polytechnique, 2021.
2. A. Guyader. Statistique. Sorbonne Université, 2021.
3. G.H. Golub and C.F. Van Loan. Matrix Computations. Baltimore, Maryland, The

Johns Hopkins University Press, 2013.
4. L. Wasserman. All of Statistics: A Concise Course in Statistical Inference. New York

Inc., Springer-Verlag, 2004.

I claim no paternity of the content lying in this manuscript, which is mainly a reformulation
of results exposed in the previous works. My poor contribution is only in selecting results
important in my eyes, fixing a consistent notation and articulating arguments.

For the sake of conciseness, results are not proved but rigorous demonstrations can be found
in the previous works.

I am particularly grateful to Arnaud Guyader, whose rigorous work is a daily source of
learning and inspiration.
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Chapter 1

Matrix and functional analysis

1.1 Matrices

1.1.1 Basics of linear algebra
Definition 1.1.1 (Linear independence and subspace).

1. A set of vectors {x1, . . . , xn} ⊂ Rp is linearly independent if

∀α ∈ Rn :
n∑
i=1

αixi = 0 =⇒ α = 0.

In addition, {y1, . . . , yk} ⊂ {x1, . . . , xn} is a maximal linearly independent subset
of {x1, . . . , xn} if it is linearly independent and

∀S ⊂ {x1, . . . , xn}, S linearly independent and S ̸= {y1, . . . , yn} : {y1, . . . , yk} ̸⊂ S.

2. A subspace of Rp is a subset that is also a vector space.
3. Let S1, . . . , Sk ⊂ Rp be subspaces. S = S1 + · · · + Sk is a direct sum, and we note

S = S1 ⊕ · · · ⊕ Sk, if

∀x ∈ S,∃!(x1, . . . , xk) ∈ S1 × · · · × Sk : x = x1 + · · ·+ xk.

Property 1.1.1. Let {x1, . . . , xn} ⊂ Rp.

1. span{x1, . . . , xn} = {
∑n

i=1 αixi : α ∈ Rn} is a subspace of Rp.
2. If {y1, . . . , yk} ⊂ {x1, . . . , xn} is a maximal linearly independent subset of {x1, . . . , xn},

then span{y1, . . . , yk} = span{x1, . . . , xn} and {y1, . . . , yk} is a basis for span{y1, . . . , yk}.
3. Let S be a subspace of Rp. Then there exists {y1, . . . , yk} linearly independent such

that S = span{y1, . . . , yk}, i.e. {y1, . . . , yk} is a basis for S. In addition, all bases
have the same number of elements, called the dimension of S and denoted dim(S).
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Definition 1.1.2. Let A = [a1| . . . |ap] ∈ Rn×p. The range and the kernel (or null space)
of A are respectively

range(A) = {Ax, x ∈ Rp} = span{a1, . . . , ap} and ker(A) = {x ∈ Rp,Ax = 0} .

Moreover, the rank of A is rank(A) = dim(range(A)). It is the maximal number of
linearly independent columns (or rows).

At last, A is said rank-deficient if rank(A) < min(n, p).

Proposition 1.1.2 (Rank-nullity theorem). Let A ∈ Rn×p. Then

rank(A) + dim(ker(A)) = p.

The rank-nullity theorem says that the dimension of the subspace generated by A cannot be
larger than the number of columns and if A is full rank, then ker(A) = {0}, meaning that
x 7→ As is injective.

A direct application of the rank-nullity theorem is that for any basis {x1, . . . , xk} of ker(A)
and basis {Axk+1, . . . ,Axp} of range(A), {x1, . . . , xp} is a basis of Rp.

As another consequence, a square matrix is injective (or surjective) if and only if it is both
injective and surjective, i.e. if and only if it is bijective.

Definition 1.1.3. A square matrix A ∈ Rn×n is said non-singular (also non-degenerate
or invertible) if it has an inverse, i.e. a matrix A−1 ∈ Rn×n such that AA−1 = A−1A =
In.

Property 1.1.3. Let A,B ∈ Rn×n be two non-singular matrices. Then

1. AB is non-singular and (AB)−1 = B−1A−1.
2. A⊤ is non-singular and (A⊤)−1 = (A−1)⊤.
3. B−1 −A−1 = −B−1(B −A)A−1

4. Sherman-Morrison-Woodbury formula (or matrix inversion lemma): let U ∈ Rn×k,
C ∈ Rk×k non-singular, V ∈ Rk×p. Then A + UCV is non-singular if and only
if C−1 + V A−1U is invertible and in this case:

(A+UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1.

We observe that a rank-k correction to a matrix results in a rank-k correction to
the inverse.

5. Sherman–Morrison formula: let u ∈ Rn and v ∈ Rp. Then A+ uv⊤ is invertible if
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and only if 1 + v⊤A−1u ̸= 0 and in this case:

(A+ uv⊤)−1 = A−1 − A−1uv⊤A−1

1 + v⊤A−1u
.

Definition 1.1.4 (Determinant). Let A ∈ Rn×n be a square matrix. Then

det(A) =
∑

σ permutation in J1,nK

sign(σ)
n∏
i=1

aσ(i),i,

where sign(σ) is the sign of the permutation σ, i.e. 1 if σ is built with an even number
of inversions and −1 otherwise.

The determinant of a matrix A has a nice geometric meaning: its the signed volume of the
unit hypercube transformed by the mapping x ∈ Rn 7→ Ax. The sign is negative if an odd
number of axes are flipped by A.

Property 1.1.4. Let A,B ∈ Rn×n be two square matrices. Then

1. if A =

(
a b
c d

)
, det(A) = ad− bc;

2. if A is diagonal, det(A) =
∏n

i=1 aii;
3. det(AB) = det(A) det(B);
4. det(A⊤) = det(A);
5. ∀α ∈ R : det(αA) = αn det(A);
6. det(A) ̸= 0 ⇐⇒ A is non-singular.

Definition 1.1.5 (Orthogonality). A set of vectors {x1, . . . , xn} ⊂ Rp is

⋄ orthogonal if for every i, j ∈ J1, nK, i ̸= j =⇒ x⊤i xj = 0;
⋄ orthonormal if for every i, j ∈ J1, nK, x⊤i xj = δij.

Let S ⊂ Rp be a subspace.

⋄ the orthogonal complement of S is:

S⊥ =
{
y ∈ Rp : y⊤x = 0,∀x ∈ S

}
;

⋄ The vectors x1, . . . , xk ⊂ S form an orthonormal basis of S if they are orthonormal
and if

span{x1, . . . , xk} = S.

In particular, n orthonormal vectors from Rn form an orthonormal basis of Rn.
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A square matrix Q ∈ Rn×n is said orthogonal if

Q⊤Q = In,

or equivalently if its columns (respectively is rows)

A particular case is the set of rotation matrices: they are orthogonal matrices with determi-
nant 1 (i.e. axes are rotated but not flipped).

Property 1.1.5. Let A ∈ Rn×p be a matrix. Then, range(A)⊥ = ker(A⊤).

Property 1.1.6. Let Q ∈ Rn×n be a square matrix. The following statements are
equivalent:

1. Q is orthogonal;
2. Q is non-singular with Q−1 = Q⊤;
3. the columns of Q are orthonormal vectors ( i.e. they form an orthonormal basis of

Rn);
4. the rows of Q are orthonormal vectors ( i.e. they form an orthonormal basis of

Rn).

Proposition 1.1.7 (Basis extension theorem). Let {x1, . . . , xk} ⊂ Rn (with k < n) be
orthonormal vectors. Then, there exists {xk+1, . . . , xn} ⊂ Rn such that {x1, . . . , xn} form
an orthonormal basis of Rn.

As a consequence, if A ∈ Rn×k is a matrix with orthonormal columns, then there exists
B ∈ Rn×(n−k) such that the matrix [A|B] ∈ Rn×n is orthogonal. In addition, range(B) =
range(A)⊥.

1.1.2 Eigendecomposition
Definition 1.1.6 (Eigenvalue and eigenvector). Let A ∈ Rn×n be a square matrix. A
vector u ∈ Rn\{0} is an eigenvector of A if

∃λ ∈ R : Au = λu.

The scalar λ is called the eigenvalue of u.

Property 1.1.8. Let A ∈ Rn×n be a square matrix.

1. A has at most n different eigenvalues (they are the roots of a the degree-n charac-
teristic polynomial of A), with multiplicities summing to n;

2. the rank of A is the number of non-zero eigenvalues;
3. if B ∈ Rn×n is similar to A, i.e. ∃P ∈ Rn×n such that P is non-singular and
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A = PBP−1, then A and B have the same eigenvalues.

Definition 1.1.7 (Diagonalizable matrix). A matrix A ∈ Rn×n is diagonalizable (or
non-defective) if it is similar to a diagonal matrix, i.e. if

∃P ,D ∈ Rn×n,P non-singular and D diagonal, such that A = PDP−1.

D and P are respectively known as the spectral matrix and the modal matrix.

Property 1.1.9 (Eigendecomposition). A matrix A ∈ Rn×n is diagonalizable if and
only if it has linearly independent eigenvectors {v1, . . . , vn}. In this case, denoting
{λ1, . . . , λn} the corresponding eigenvalues, the eigendecomposition of A is:

A = [v1| . . . |vn]

λ1 0 0

0
. . . 0

0 0 λn

 [v1| . . . |vn]−1 .

Property 1.1.10 (Inversion). A square and diagonalizable matrix A = PDP−1 is
non-singular if and only if all the entries of its spectral matrix D are non-zero. In this
case,

A−1 = PD−1P−1.

Property 1.1.11 (Trace and determinant). Let A = PDP−1 be a square and diago-
nalizable n× n matrix. Then det(A) =

∏n
i=1 dii and trace(A) =

∑n
i=1 dii.

Theorem 1.1.12 (Schur decomposition). Let A ∈ Rn×n be a symmetric matrix. Then,
A is diagonalizable by an orthogonal matrix (also called change-of-basis or transition
matrix): {

∃Q ∈ Rn×n,Q orthogonal,
∃D ∈ Rn×n,D diagonal

: A = QDQ⊤.

In addition, the entries of D are uniquely defined:

∃!(λ1, . . . , λn) ∈ Rn : λ1 ≤ · · · ≤ λn and D =

λ1 0 0

0
. . . 0

0 0 λn

 up to a permutation.

{λ1, . . . , λn} are the eigenvalues of A and the columns of Q are its normed eigenvectors.
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Let us remark that by denoting Q = [v1| . . . |vn], the eigendecomposition can be expressed:

A =
n∑
i=1

λiviv
⊤
i ,

where {λ1, . . . , λn} are the eigenvalues and {v1, . . . , vn} are the normed eigenvectors of A.

Property 1.1.13. Let A ∈ Rn×n be a symmetric matrix with eigenvectors {v1, . . . , vn}
and eigenvalues λ1 ≤ · · · ≤ λn. Then

λ1 = min
x∈Rn\{0}

x⊤Ax

x⊤x
=
v⊤1 Av1
v⊤1 v1

,

and

λn = max
x∈Rn\{0}

x⊤Ax

x⊤x
=
v⊤nAvn
v⊤n vn

.

Property 1.1.14 (Projection matrix). Let S ⊂ Rp be a subspace and P ∈ Rn×n its
orthogonal projection matrix. Then

1. P is unique;
2. P = V V ⊤, where V =

[
v1| . . . |vdim(S)

]
and {v1| . . . |vdim(S)} is an orthonormal

basis for S;
3. range(P ) = S;
4. rank(P ) = dim(S);
5. P is symmetric and idempotent;
6. P has dim(S) eigenvalues equal to 1 and p− dim(S) equal to 0;
7. the orthogonal projection matrix onto S⊥ is Ip − P .

1.1.3 Norms
Definition 1.1.8 (Norm). Let V be a vector space. The function x ∈ V 7→ ∥x∥ ∈ R is
a norm on V if it has the following property:

1. non-negativity: ∀x ∈ V , ∥x∥ ≥ 0;
2. definiteness: ∀x ∈ V , ∥x∥ = 0 =⇒ x = 0;
3. triangle inequality: ∀x, y ∈ V , ∥x+ y∥ ≤ ∥x∥+ ∥y∥;
4. absolute homogeneity: ∀x ∈ V ,∀a ∈ R, ∥ax∥ = |a|∥x∥.

Definition 1.1.9 (Vector norms). Let α ≥ 1. These are some norms on Rp:

1. 1-norm: ∀x ∈ Rp, ∥x∥1 =
∑p

i=1 |xi|;
2. 2-norm: ∀x ∈ Rp, ∥x∥2 =

√∑p
i=1 x

2
i ;
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3. α-norm: ∀x ∈ Rp, ∥x∥α = α
√∑p

i=1 x
α
i ;

4. ∞-norm: ∀x ∈ Rp, ∥x∥∞ = max1≤i≤n |xi|;

Proposition 1.1.15 (Hölder and Cauchy-Schwarz inequalities). Let α, β ≥ 1 such that
1
α
+ 1

β
= 1. Then (Hölder inequality),

∀x, y ∈ Rp : |x⊤y| ≤ ∥x∥α∥y∥β.

In particular (Cauchy-Schwarz inequality),

∀x, y ∈ Rp : |x⊤y| ≤ ∥x∥2 ∥y∥2 .

Property 1.1.16. In Rp, all norms are equivalent and in particular:

1. ∥·∥2 ≤ ∥·∥1 ≤
√
p ∥·∥2;

2. ∥·∥∞ ≤ ∥·∥2 ≤
√
p ∥·∥∞;

3. ∥·∥∞ ≤ ∥·∥1 ≤ p ∥·∥∞;
4. ∀α ≥ 1 : ∥·∥∞ ≤ ∥ · ∥α ≤ p1/α ∥·∥∞;
5. ∀x ∈ Rp : limα→∞ ∥x∥α = ∥x∥∞.

Definition 1.1.10 (Matrix norms). Let α ≥ 1 and ∥ · ∥ be a norm. These are some
norms on Rn×p:

1. Frobenius norm: ∀A ∈ Rn×p, ∥A∥F =
√∑

1≤i,j≤n a
2
ij =

√
trace(A⊤A);

2. operator norm: ∀A ∈ Rn×p, ∥A∥ = supx ̸=0
∥Ax∥
∥x∥ ;

3. α-norm: ∀A ∈ Rn×p, ∥A∥α = supx ̸=0
∥Ax∥α
∥x∥α ;

4. 1-norm: ∀A ∈ Rn×p, ∥A∥1 = supx ̸=0
∥Ax∥1
∥x∥1

= max1≤j≤p
∑n

i=1 |aij|;
5. ∞-norm: ∀A ∈ Rn×p, ∥A∥∞ = supx ̸=0

∥Ax∥∞
∥x∥∞

= max1≤i≤n
∑p

j=1 |aij|;

6. 2- or spectral norm: ∀A ∈ Rn×p, ∥A∥2 = supx ̸=0
∥Ax∥2
∥x∥2

=
√
λmax(A

⊤A), where
λmax is the largest eigenvalue. If A is square and diagonalizable, ∥A∥2 = λmax(A);

7. max norm: ∀A ∈ Rn×p, ∥A∥max = max1≤i,j≤n |aij|.

Let us remark that while 1- and ∞- norm can be computed in O(np), this is more challenging
for the spectral norm for it requires to diagonalize the matrix.

Property 1.1.17 (Compatibility). Operator norms are compatible with their vector
norm. In particular,

∀A ∈ Rn×p,∀x ∈ Rp; ∥Ax∥2 ≤ ∥A∥2 ∥x∥2 .
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Property 1.1.18 (Mutual consistency). The operator norms for different sizes of ma-
trices are mutually consistent:

∀A ∈ Rn×k,∀B ∈ Rk×p, ∥AB∥ ≤ ∥A∥∥B∥.

Property 1.1.19. In Rn×p, all norms are equivalent and in particular, for every A ∈
Rn×p with r = rank(A):

1. ∥A∥2 ≤ ∥A∥F ≤
√
r∥A∥2 ≤

√
min(n, p)∥A∥2;

2. ∥A∥max ≤ ∥A∥2 ≤
√
np∥A∥max;

3. 1√
p
∥A∥∞ ≤ ∥A∥2 ≤

√
n∥A∥∞;

4. 1√
n
∥A∥1 ≤ ∥A∥2 ≤

√
p∥A∥1.

Proposition 1.1.20 (Hölder inequality for matrices). Let A ∈ Rn×p. Then,

∥A∥2 ≤
√

∥A∥1 ∥A∥∞.

Property 1.1.21 (Orthogonal invariance). Let A ∈ Rn×p, Q1 ∈ Rn×n and Q2 ∈ Rp×p

two orthogonal matrices. Then,

1. ∥Q1AQ2∥F = ∥A∥F ;
2. ∥Q1AQ2∥2 = ∥A∥2.

1.1.4 Singular value decomposition
Theorem 1.1.22 (The (thin) singular value decomposition). Let A ∈ Rn×p\{0} be a
matrix and denote r = rank(A). Then,

∃U ∈ Rn×r,U⊤U = Ir,

∃V ∈ Rp×r,V ⊤V = Ir,

∃D ∈ Rr×r,D diagonal
: A = UDV ⊤.

In addition, the entries of D are positive and uniquely defined:

∃!(σ1, . . . , σr) ∈ (R∗
+)

n : σ1 ≤ · · · ≤ σr and D =

σ1 0 0

0
. . . 0

0 0 σr

 up to a permutation.

1. {σ1, . . . , σr} are the singular values of A;
2. the columns of U are its normed left singular vectors (and the normed eigenvectors

of AA⊤ with eigenvalues {σ2
1, . . . , σ

2
r});
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3. the columns of V are its normed right singular vectors (and the normed eigenvectors
of A⊤A with eigenvalues {σ2

1, . . . , σ
2
r}).

Besides observing that we have the decomposition:

A =
r∑
i=1

σiuiv
⊤
i ,

the previous theorem states that, for every i ∈ J1, rK, the singular vectors ui and vi (respec-
tively the ith column of U and V ) verify:

A⊤ui = σivi and Avi = σiui.

Property 1.1.23. Let A ∈ Rn×p\{0} be a matrix with singular value decomposition
A = UDV ⊤. With the same notation as before, we have:

1. ∥A∥2 = σr;
2. ∥A∥F =

√∑r
i=1 σ

2
i ;

3. range(A) = range(U);
4. ker(A) = range(V )⊥;
5. UU⊤ is the projection matrix onto range(A);
6. V V ⊤ is the projection matrix onto range(A⊤) = ker(A)⊥;
7. if V is completed by V 0 such that [V |V 0] is orthogonal, V 0V

⊤
0 is the projection

matrix onto ker(A);
8. if U is completed by U 0 such that [U |U 0] is orthogonal, U 0U

⊤
0 is the projection

matrix onto ker(A⊤) = range(A)⊥.

At a last very interesting property of the singular value decomposition, it makes it possible
to define a pseudo-inverse for singular matrices.

Definition 1.1.11 (Pseudo-inverse (or Moore-Penrose inverse)). Let A ∈ Rn×p\{0} be
a matrix with singular value decomposition A = UDV ⊤. The pseudo-inverse of A is

A+ = V D−1U⊤.

Besides, 0+ = 0.

Property 1.1.24. Let A ∈ Rn×p be a rectangular matrix. Then,

1. A+ is the unique minimal Frobenius norm solution in argminB∈Rp×n ∥AB−In∥F ;
2. A+ is the unique p× n-matrix that satisfies the Moore-Penrose conditions:

(a) AA+A = A;
(b) A+AA+ = A+;
(c)

(
AA+

)⊤
= AA+;

(d)
(
A+A

)⊤
= A+A.
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3. AA+ is the projector onto range(A);
4. A+A is the projector onto range(A⊤);
5. A+ = limλ→0+(A

⊤A + λIp)
−1A⊤, and in particular, if rank(A) = p, then A+ is

a left inverse of A and A+ = (A⊤A)−1A⊤;
6. A+ = limλ→0+ A⊤(AA⊤ + λIn)

−1, and in particular, if rank(A) = n, then A+ is
a right inverse of A and A+ = A⊤(AA⊤)−1;

7. in particular, if A is square and non-singular, A+ = A−1;
8. (A+)+ = A;
9. ∀α ̸= 0; (αA)+ = α−1A+;

10. for every x ∈ Rn\{0}, x+ = x⊤

∥x∥22
;

11. for U ∈ Rn×n and V ∈ Rp×p be two orthogonal matrices, (UAV )+ = V −1A+U−1 =
V ⊤A+U⊤;

12. A+ = (A⊤A)+A⊤ = A⊤(AA⊤)+;
13. (A⊤)+ = (A+)⊤;

The pseudo-inverse is particularly useful for expressing solutions to arbitrary linear systems
(see the exercises).

1.1.5 Symmetric positive definite matrices
Definition 1.1.12. A square matrix A ∈ Rn×n is symmetric positive definite if:

1. A = A⊤;
2. ∀x ∈ Rn\{0}, x⊤Ax > 0.

A ∈ Rn×n is symmetric positive semi-definite if:

1. A = A⊤;
2. ∀x ∈ Rn, x⊤Ax ≥ 0.

Property 1.1.25. A square symmetric matrix A ∈ Rn×n is:

1. positive definite if and only if its eigenvalues are positive;
2. positive semi-definite if and only if its eigenvalues are non-negative;
3. positive semi-definite if and only if A = BB⊤ for some B ∈ Rn×k (k ≤ n).

Theorem 1.1.26 (Cholesky decomposition). Let A ∈ Rn×n be a symmetric positive
definite matrix. Then, there exists a unique lower triangular matrix L ∈ Rn×n with
positive diagonal entries such that:

A = LL⊤.

If A is only symmetric positive semi-definite, then the diagonal entries of L are non-
negative.

As for non-negative scalar, it is possible to define the square root of a symmetric positive
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semi-definite matrix A ∈ Rn×n:

1. the most general definition is A1/2 = QD1/2Q⊤, where A = QDQ⊤ is the Schur
decomposition of A and the square root of a diagonal matrix is computed entry-
wise. This provides the unique symmetric positive semi-definite matrix A1/2 such that
A1/22 = A1/2A1/2⊤ = In;

2. less frequently (but in a consistent idea with multivariate normal vectors), A1/2 = L,
where A = LL⊤ is the Cholesky decomposition of A.

With both definitions, considering X ∼ N (0, In), we have V(A1/2X) = A1/2V(X)A1/2⊤ =
A. That is, A1/2X ∼ N (0,A), which is what is of interest when simulating multivariate
Gaussian vectors.

1.2 Functions

1.2.1 Differential calculus
Definition 1.2.1 (Fréchet-differentiability). A function f : Rp → Rn is differentiable at
x ∈ Rn if

∃Jf (x) ∈ Rn×p : lim
h→0

f(x+ h)− f(x)− Jf (x)h

∥h∥2
= 0.

Jf (x) ∈ Rn×p is called the Jacobian matrix of f at x.

f is said differentiable if it is differentiable at all x ∈ Rp.

Property 1.2.1. Let f : Rp → Rn be a differentiable function. Then, for every x ∈ Rp

1. the Jacobian matrix Jf (x) is unique and for every h ∈ Rp,

Jf (x)h = lim
t→0+

f(x+ th)− f(x)

t
;

2. f is continuous at x;
3. the set of differentiable functions is a vector space and the operator f 7→ Jf is

linear on this space (with the notation introduced just below, this means that ∇ is
a linear operator).

In practice, we are mainly interested in scalar-valued functions f : Rp → R. Then, f is
differentiable at x ∈ Rp if there exists Lf (x) ∈ Rp such that

lim
h→0

f(x+ h)− f(x)− Lf (x)
⊤h

∥h∥2
= 0,

where Lf (x) is called the gradient of f at x, denoted ∇f(x) (actually ∇f(x)⊤ = Jf (x)).
In other words, there exists a function εx : R → R such that lim0 εx = 0 and for every
h ∈ Rp\{0},

f(x+ h) = f(x) +∇f(x)⊤h+ ∥h∥2 εx(∥h∥2).
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This leads to a very important interpretation of the gradient: it defines a hyperplan tangent
to the graph of f at x or a first order approximation of f at x. We can even refine this
approximation thanks to the descent lemma.

Proposition 1.2.2 (Descent lemma). Let f : Rn → R be a differentiable function with
L-Lipschitz continuous gradient (L > 0):

∀x, y ∈ Rn : ∥∇f(x)−∇f(y)∥2 ≤ L ∥x− y∥2 .

Then
∀x, y ∈ Rn : f(y) ≤ f(x) +∇f(x)⊤(y − x) +

L

2
∥y − x∥22 .

Definition 1.2.2 (Twice differentiability). A function f : Rp → R is twice differentiable
at x ∈ Rn if f is differentiable at x and ∇f is differentiable at x:

∃Hf (x) ∈ Rp×p : lim
h→0

∇f(x+ h)−∇f(x)−Hf (x)h

∥h∥2
= 0.

Hf (x) is called the Hessian matrix of f at x and is denoted ∇2f(x).

f is said twice differentiable if it is twice differentiable at all x ∈ Rp.

It is essential for us to be able to compute the gradient and the Hessian of a function
f : Rp → R. For this purpose, we establish the link with partial derivatives.

Definition 1.2.3 (Partial derivative). The jth partial derivative of f : Rn → R (j ∈
J1, nK) at x ∈ Rn is:

∂f

∂xj
(x) = lim

t→0

f(x+ tej)− f(x)

t
= Jf (x)ej,

if it exists, where ej = (1j=1, . . . ,1j=n).

The (i, j)th second partial derivative of f (i, j ∈ J1, nK) is:

∂2f

∂xi∂xj
(x) = lim

t→0

∂f
∂xj
f(x+ tei)− f(x)

t
,

if it exists.

In practice, computing a partial derivative ∂f
∂xj

boils down to differentiate f while considering
all variables other than xj fixed. Now, the link between differentiability and the existence of
partial derivatives is not as easy as it seems. This is enlightened in the next two results.
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Proposition 1.2.3. If a function f : Rn → R is differentiable at x ∈ Rn, then it has all
its partial derivatives and

∇f(x) =


∂f
∂x1

(x)
...

∂f
∂xx

(x)

 .

More generally, by denoting (fi)1≤i≤p the p components of f : Rn → Rp,

Jf (x) =


∂f1
∂x1

(x) . . . ∂f1
∂xn

(x)
... . . . ...

∂fp
∂x1

(x) . . . ∂fp
∂xn

(x)

 .

If f : Rn → R is twice differentiable, then it as all its second partial derivatives and

∇2f(x) =


∂2f
∂x21

(x) . . . ∂2f
∂x1∂xn

(x)
... . . . ...

∂2f
∂xn∂x1

(x) . . . ∂2f
∂x2n

(x)

 .

The converse is not true. For example, let us consider the function f : x ∈ R2 7→ x41x2
x61+x

3
2

if x ̸= 0 and f(0) = 0. Then, we get easily that ∂f
∂x1

(0) = 0 and ∂f
∂x2

(0) = 0. However,
limt→0 f((t, t

2)) = limt→0
t4t2

t6+t6
= 1

2
̸= 0 so f is not continuous at 0. Consequently, f cannot

be differentiable at x = 0 while partial derivatives exist.

Theorem 1.2.4. If a function f : Rn → R has all its partial derivatives at x ∈ Rn and
if they are continuous at x, then f is differentiable at x.

If a function f : Rn → R is differentiable, if it has all its second partial derivatives at
x ∈ Rn and if they are continuous at x, then f is twice differentiable at x.

Theorem 1.2.5 (Schwarz’z theorem). Let f : Rn → R be a twice differentiable function
at x ∈ Rn. Then its Hessian matrix at x is symmetric.

Schwarz’s theorem says that the order of differentiation does not matter: ∂2

∂xi∂xj
= ∂2

∂xj∂xi
. Let

us remark that, in a broader view, gradients and Hessian matrices can be defined without
requiring differentiability. In this case, we are not guaranteed to have the good properties
expected when a function is differentiable:

1. the continuity of the function;
2. the tangent space;
3. the symmetry of the Hessian;
4. the Taylor expansion (see thereafter).
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Since the Hessian is symmetric, it is diagonalizable and we have the following characterization
in order to check if the descent lemma hold.

Proposition 1.2.6. Let f : Rn → R be a twice differentiable function. Then ∇f is L-
Lipschitz continuous (for some L > 0) if and only if for every x ∈ Rn, λmax(∇2f(x)) ≤ L,
where λmax denotes the largest eigenvalue of a diagonalizable matrix.

Proposition 1.2.7 (Chain rule). Let f : Rn → R and g : Rp → Rn be two functions. If
g is differentiable at x ∈ Rp and f is differentiable at g(x), then f ◦ g is differentiable at
x and

∇(f ◦ g)(x) = Jg(x)
⊤∇f(g(x)),

where Jg(x) is the Jacobian matrix of g at x.

For n = 1,
∇(f ◦ g)(x) = f ′(g(x))∇g(x).

More generally, if f : Rn → Rm,

Jf◦g(x) = Jf (g(x))Jg(x),

with self-evident notation.

Example 1.2.1 (Gradients of classical functions). Let f : Rn → R. The following
examples are differentiable everywhere the gradient is given.

1. If f is constant, f is differentiable and ∇f(x) = 0, ∀x ∈ Rn.
2. If f(x) = ∥x∥2, ∇f(x) =

x
∥x∥2

,∀x ∈ Rn\{0}.
3. If f(x) = ∥x∥22, ∇f(x) = 2x, ∀x ∈ Rn.
4. If f(x) = x⊤Ax+ b⊤x+ c, ∇f(x) = (A+A⊤)x+ b,∀x ∈ Rn.
5. If f(x) = ∥Ax+ b∥22, ∇f(x) = 2A⊤(Ax+ b),∀x ∈ Rn.

Theorem 1.2.8 (Taylor’s theorem). Let f : Rn → R be a twice differentiable function
at x ∈ Rn. Then, there exists a function εx : R → R such that lim0 εx = 0 and for every
h ∈ Rn\{0}:

f(x+ h) = f(x) +∇f(x)⊤h+
1

2
h⊤∇2f(x)h+ ∥h∥22 εx(∥h∥

2
2).

We end this section with a very useful result for probability.

Definition 1.2.4 (C1-diffeomorphism). Let U and V be two open sets from Rn. A
mapping f : U → V is a C1-diffeomorphism if:
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1. f is bijective;
2. f is differentiable on U with continuous partial derivatives;
3. the inverse of f is differentiable on V with continuous partial derivatives.

Property 1.2.9. Let U and V be two open sets from Rn. A mapping φ : U → V is a
C1-diffeomorphism if and only if:

1. φ is bijective;
2. φ has all its partial derivatives and they are continuous;
3. for every x ∈ U , the Jacobian matrix of φ at x has a non-zero determinant:

det(Jφ(x)) ̸= 0.

In addition, if φ is a C1-diffeomorphism, then for every x ∈ U , denoting y = f(x) ∈ V :

det(Jφ(x)) = det(Jφ−1(y))−1.

Theorem 1.2.10 (Integration by substitution (or change of variables)). Let U and V be
two open sets from Rn, φ : U → V is a C1-diffeomorphism and f : V → R a measurable
function. Then ∫

V

f =

∫
U

(f ◦ φ)| det(Jφ)|,

or saying it in a different manner with the C1-diffeomorphism ψ = φ−1,∫
V

f(x) dx =

∫
U

(f ◦ ψ−1)(y)| det(Jψ−1(y))| dy =

∫
U

(f ◦ ψ−1)(y)
dy

| det(Jψ(ψ−1(y)))|
.

The last formula says that if one sets the change of variables y = ψ(x), then

dy = | det(Jψ(x))| dx, so dx =
dy

| det(Jψ(ψ−1(y)))|
,

since x = ψ−1(y). Starting from this, we also have dx = | det(Jψ−1(y))| dy.

1.2.2 Convex functions
Definition 1.2.5 (Convex function). A function f : Rn → R is convex if for all x, y ∈ Rn

and α ∈ (0, 1),
f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).

In addition, f is strictly convex if for all x, y ∈ Rn and α ∈ (0, 1),

f(αx+ (1− α)y) < αf(x) + (1− α)f(y).

Proposition 1.2.11 (Elementary properties). We consider two convex functions f1 : Rn →
R and f2 : Rn → R.
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1. For any non-negative α and β, αf1 + βf2 is convex.
2. x 7→ max(f1(x), f2(x)) is convex.
3. Let (A, b) ∈ Rd×d′ × Rn, then x ∈ Rd′ 7→ f1(Ax+ b) is convex.
4. For every x, y ∈ Rn and t ≥ 1, denoting zt = x+t(y−x), f1(zt) ≥ f1(x)+t(f1(y)−

f1(x)).
5. Let φ : R → R be convex and nondecreasing and f : Rn → R be a convex function,

then φ ◦ f is convex.
6. The perspective function of f1:

g : (x, t) ∈ Rn × R 7→
{
tf1(

1
t
x) if t > 0

∞ otherwise,

is convex.

Theorem 1.2.12 (Jensen’s inequality). A function f : Rn → R is convex if and only if:
∀n ≥ 2,∀(xi)1≤i≤n ∈ (Rn)n,∀(ti)1≤i≤n such that ti ≥ 0, ∀i ∈ [n] and

∑n
i=1 ti = 1,

f

(
n∑
i=1

tixi

)
≤

n∑
i=1

tif(xi).

Example 1.2.2 (Convex functions).

1. Every norm ∥ · ∥ on Rn is convex (this comes from the triangle inequality and
homogeneity).

2. p-norms for 1 < p <∞ are strictly convex and only convex for p = 1 and p = ∞.
3. For φ : R → R convex nondecreasing and every norm ∥ ·∥ on Rn, φ(∥ ·∥) is convex.

In particular, ∥ · ∥p is convex provided that p ≥ 1.
4. For a positive semidefinite matrix A ∈ Rd×d, f : x ∈ Rn → x⊤Ax is convex. If A

is positive definite, f is strictly convex.

Proposition 1.2.13 (Coordinate supremum). Let Y ⊂ Rp be a non-empty set and
F : (x, y) ∈ Rn × Y → R be a function convex in x (that is, ∀y ∈ Y , F (·, y) is convex).
Then f : x ∈ Rn 7→ supy∈Y F (x, y) is convex.

Proposition 1.2.14 (Coordinate infimum). Let F : (x, y) ∈ Rn×Rp → R be a (jointly)
convex function. Then f : x ∈ Rn 7→ infy∈Rd′ F (x, y) is convex.

Definition 1.2.6 (Strong convexity). Let µ ∈ R∗
+. A function f : Rn → R is µ-strongly

convex if f − µ
2
∥ · ∥22 is convex.
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Proposition 1.2.15 (Characterization of a strongly convex function). Let µ ∈ R∗
+. A

function f : Rn → R is µ-strongly convex if and only if

∀(x, y) ∈ Rn×Rn,∀t ∈ (0, 1) : f(tx+(1−t)y) ≤ tf(x)+(1−t)f(y)− µ

2
t(1−t)∥x−y∥22.

Proposition 1.2.16 (Relation between convexities). Let f : Rn → R be a function.

f strongly convex =⇒ f strictly convex =⇒ f convex.

Proposition 1.2.17 (First-order conditions of convexity). Let f : Rn → R be a differ-
entiable function.

1. f is convex if and only if:

∀x, y ∈ Rn : f(y) ≥ f(x) +∇f(x)⊤(y − x).

2. f is convex if and only if:

∀x, y ∈ Rn : (∇f(y)−∇f(x))⊤(y − x) ≥ 0.

3. f is strictly convex if and only if:

∀x, y ∈ Rn, x ̸= y : f(y) > f(x) +∇f(x)⊤(y − x).

4. Let µ ∈ R∗
+. f is µ-strongly convex if and only if:

∀x, y ∈ Rn : f(y) ≥ f(x) +∇f(x)⊤(y − x) +
µ

2
∥y − x∥22.

Remark 1.2.1. For convex functions,

∀x, y ∈ Rn : f(y) ≥ f(x) +∇f(x)⊤(y − x).

This is perhaps the most important property of convex functions since it shows that from
a local information (∇f(x)), we can derive a global information concerning f (we have
a global underestimator). In particular, if ∇f(x) = 0, then x is a global minimizer.

Proposition 1.2.18 (Second-order conditions of convexity). Let f : Rn → R be a twice
differentiable function. We denote λmin the smallest eigenvalue of a diagonalizable ma-
trix.

1. f is convex if and only if:

∀x ∈ Rn : λmin(∇2f(x)) ≥ 0.
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2. f is strictly convex if and only if:

∀x ∈ Rn : λmin(∇2f(x)) > 0.

3. Let µ ∈ R∗
+. f is µ-strongly convex if and only if:

∀x ∈ Rn : λmin(∇2f(x)) ≥ µ.

1.2.3 Minimization

Let us consider a function f : Rn → R along with the optimization problem

minimize
x∈Rn

f(x). (P1)

Definition 1.2.7 (Minimizers). A point x⋆ ∈ Rn is a global minimizer of Problem (P1)
if

∀x ∈ Rn : f(x⋆) ≤ f(x).

A point x⋆ ∈ Rn is a local minimizer of Problem (P1) if there exists ϵ > 0, N = {x ∈
Rn : ∥x⋆ − x∥2 ≤ ϵ} such that

∀x ∈ N : f(x⋆) ≤ f(x).

Remark 1.2.2. Global minimizers may not exist, as we can see for:

⋄ f(x) = 1
x2

(agreeing that f(0) = ∞);
⋄ f(x) = exp(−x2);
⋄ f(x) = x+ χR∗

+
(x).

As we can see, the existence of minimizers of Problem (P1) is not guaranteed, even though
f is continuous. Consequently, the remaining of this section is devoted to characterizing the
existence of minimizers and their properties. We do so, first, for constrained optimization
problems.

Theorem 1.2.19 (Weierstrass extreme value theorem). Let C ⊂ Rn be a non-empty
compact set and assume that f : Rn → R is continuous. Then argminx∈C f(x) and
argmaxx∈C f(x) are non-empty.

Now, we state an existence result for unconstrained optimization problems.

Definition 1.2.8 (Coercivity). A function f : Rn → R is coercive if for every sequence
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(xn)n∈N such that limn→∞ ∥xn∥ = ∞,

lim
n→∞

f(xn) = ∞.

Theorem 1.2.20 (Existence of a solution for unconstrained problems). Assume that
f : Rn → R is continuous and coercive. Then argminx∈C f(x) is non-empty, i.e. Prob-
lem (P1) admits a global minimizer.

Knowing that continuous1 functions can attain their minima, let us go back to convex func-
tions.

Proposition 1.2.21 (Minimizers of convex functions). Assume that f : Rn → R is
convex. Then

1. a local minimizer of f is a global one;
2. the set of minimizers of f is convex;
3. if f is strictly convex, then f has a unique minimizer.

Remark 1.2.3. When an estimator is built as a minimizer of an optimization problem,
we are interested in a global minimizer. However, in order to verify that a point x⋆ is a
global minimizer, one would have to compare f(x⋆) to every other value f(x), no matter
how far from x⋆, the point x is. The fact that for convex functions, local minimizers
are also global minimizers essentially explains our interest in convex optimization and
the availability of efficient numerical methods. Indeed, local minimizers can be found by
greedy approaches (such as gradient descent).

Differentiability plays a key role in optimization. First because it helps characterizing con-
vexity (see Proposition 1.2.17), second (this is a consequence) because it is inherent in the
mainly used optimality condition: Fermat’s rule.

Theorem 1.2.22 (Fermat’s rule). Let f : Rn → R be a convex and differentiable func-
tion. x⋆ ∈ Rn is a global minimizer of f if and only if

∇f(x⋆) = 0.

1A refined theory makes use of the notion of lower semi-continuous functions.
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1.3 Exercises

1.3.1 Matrices

Exercise 1.1 (Range and null space (proof or Property 1.1.5)). Let A ∈ Rn×p be a matrix.
Prove that range(A)⊥ = ker(A⊤).

Exercise 1.2 (Projection matrix (proof of Property 1.1.14)).

1. Let X ∈ Rn×p. Show that the projection of x ∈ Rn onto range(X) is Xα, with α ∈ Rp

such that X⊤Xα = X⊤x.
2. Let S ⊂ Rp be a subspace and P ∈ Rn×n its orthogonal projection matrix. Prove that

P = V V ⊤, where V =
[
v1| . . . |vdim(S)

]
and {v1| . . . |vdim(S)} is an orthonormal basis

for S.
3. Let A = UDV ⊤ be a matrix and its singular value decomposition. Show that UU⊤

is the projector onto range(A).

Exercise 1.3 (Equivalence of ∥·∥2 and ∥ · ∥1).

1. Prove that ∀x ≥ 0,
√
1 + x2 ≤ 1 + x.

2. Deduce that ∥·∥2 ≤ ∥ · ∥1.
3. Show that ∥ · ∥1 ≤

√
p ∥·∥2 in Rp.

Exercise 1.4 (Solution to linear systems). Let A ∈ Rn×p\{0} and y ∈ Rn.

1. Show that A+y ∈ argminx∈Rp ∥Ax− y∥2.
2. Simplify this solution when rank(A) = p and rank(A) = n.
3. Prove that y ∈ range(A) ⇐⇒ AA+y = y.
4. Characterize a solution, denoted x0, to the linear system Ax = y, where the unknown

quantity is x.
5. Show that for arbitrary z ∈ Rp, x0 + (Ip −A+A)z is also solution.

Exercise 1.5 (Symmetric positive semi-definite matrices (proof of Property 1.1.25)). Let
A ∈ Rn×n be a square symmetric matrix.

1. Show that A is positive semi-definite if and only if its eigenvalues are non-negative.
2. Prove that A is positive semi-definite if and only if A = BB⊤ for some B ∈ Rn×k

(k ≤ n).
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1.3.2 Functions and matrices

Exercise 1.6 (On the chain rule).

1. Compute the gradients of ∥·∥22 and f : x ∈ Rn 7→ x⊤Ax+ b⊤x+ c, where A is a square
symmetric matrix.

2. Show that ∀x ∈ Rn, f(x) = x⊤Ax ≥ 0 ⇐⇒ A is semi-definite positive.
3. For a C1-diffeomorphism φ : Rn → Rn, show that for every x ∈ Rn, det(Jφ(x)) =

det(Jφ−1(y))−1, where y = f(x).

Exercise 1.7. Let A ∈ Rn×p, b ∈ Rn and λ ∈ R. We denote f : x ∈ Rp 7→ ∥Ax− b∥22 +
λ ∥x∥22.

1. Give a condition for f to be convex, or µ-strongly convex (µ > 0).
2. Show that if A ̸= 0, ∇f is Lipschitz continuous.
3. What about g : x ∈ Rp 7→ e−b

⊤Ax?

Exercise 1.8 (The descent lemma (proof of Proposition 1.8)). Let f : Rn → R be a
differentiable function with L-Lipschitz continuous gradient (L > 0). Let x, y ∈ Rn and
g : t ∈ [0, 1] 7→ f(x+ t(y − x)).

1. Show that f(y)− f(x) =
∫ 1

0
∇f(x+ t(y − x))⊤(y − x) dt.

2. Deduce that f(y) ≤ f(x) +∇f(x)⊤(y − x) + L
2
∥y − x∥22.

Exercise 1.9 (Fermat’s rule (proof of Theorem 1.2.22)). Let f : Rn → R be a convex and
differentiable function and x⋆ ∈ Rn.

1. Prove that if ∇f(x⋆) = 0, then x⋆ ∈ Rn is a global minimizer of f .
2. By remarking that ∥∇f(x⋆)∥22 = limt→0

f(x⋆+t∇f(x⋆))−f(x⋆)
t

, show that if x⋆ ∈ Rn is a
global minimizer of f , then ∇f(x⋆) = 0.
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Chapter 2

Probability

2.1 Probability space

2.1.1 First definitions
Definition 2.1.1 (Measurable space). (Ω,A) is a measurable space if A is a σ-algebra
on the set Ω:

⋄ Ω ∈ A;
⋄ A ∈ A =⇒ Ac ∈ A;
⋄ (An)n∈N ⊂ A =⇒ ∪n∈NAn ∈ A.

Definition 2.1.2 (Probability measure). A positive measure µ on a measurable space
(Ω,A) is a function from A to R+.

In addition, µ is a probability measure if:

⋄ µ : A → [0, 1];
⋄ µ(Ω) = 1;
⋄ σ-additivity: µ(∪n∈NAn) =

∑
n∈N µ(An) for any disjoint events (An)n∈N ⊂ A.

The triple (Ω,A, µ) is called a measure space when µ is a positive measure and a proba-
bility space when µ is a probability measure.

From now on, let (Ω,A,P) be a probability space.

Property 2.1.1. One has:

⋄ P(∅) = 0;
⋄ P(A) + P(Ac) = 1 for any A ∈ A;
⋄ P(A ∪B) = P(A) + P(B)− P(A ∩B);
⋄ A ⊂ B =⇒ P(A) ≤ P(B) for any (A,B) ∈ A2.
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Definition 2.1.3 (σ-algebra generated by an event). Let P(Ω) be the set of all subsets
of Ω and C ⊂ P(Ω) be a set of subsets of Ω. The σ-algebra generated by C, denoted
σ(C), is the smallest σ-algebra that contains C:

σ(C) =
⋂

B⊂P(Ω):
B σ-algebra and C⊂B

B.

Two important measures that are not probabilities are:

⋄ the counting measure on (M,P(M)), where M ⊂ R is a countable subset (often M = N)
is µ(A) = |A| for any A ∈ P(M) (µ(A) = ∞ if A is infinite);

⋄ the Lebesgue measure on (R,B), where B is the σ-algebra generated by open sets of R
(also called Borelian σ-algebra), is

µ(A) = inf

{∑
n∈N

(bn − an) : (an)n∈N ⊂ R, (bn)n∈N ⊂ R, A ⊂
⋃
n∈N

(an, bn)

}
,

for any A ∈ B.

2.1.2 Conditioning and independence
Definition 2.1.4 (Conditional probability). Let (A,B) ∈ A2 with P(B) > 0. The
conditional probability of A given B is P(A|B) = P(A∩B)

P(B)
.

Proposition 2.1.2. Let B ∈ A with P(B) > 0. Then A ∈ A 7→ P(A|B) is a probability
measure on (Ω,A), called conditional probability.

In addition, for A ∈ A with P(A) > 0, we have P(A|B)P(B) = P(A∩B) = P(B|A)P(A).

Proposition 2.1.3 (Law of total probability and Bayes’ Theorem). Let (Bi)i∈I ⊂ A be
a finite or countable set of events such that (Bi)i∈I is a partition of Ω and P(Bi) > 0 for
all i ∈ I. Then, for all A ∈ A,

P(A) =
∑
i∈I

P(A ∩Bi) =
∑
i∈I

P(A|Bi)P(Bi).

In addition, if P(A) > 0,

P(Bi|A) =
P(A ∩Bi)

P(A)
=

P(A|Bi)P(Bi)∑
i∈I P(A|Bi)P(Bi)

, ∀i ∈ I.

Definition 2.1.5 (Independent events). Two events A and B from A are independent
if P(A ∩B) = P(A)P(B).
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A sequence of events (Ai)i∈I ⊂ A is independent if P(∩i∈JAi) =
∏

i∈J P(Ai) for every
finite subset J ⊂ I.

Proposition 2.1.4. Let A and B be two independent events from A. Then A and Bc,
Ac and B, Ac and Bc are independent.

In addition, if P(B) > 0, then P(A|B) = P(A).

2.2 Random variables

2.2.1 Univariate distributions

Let (Ω,A,P) = ([0, 1],B[0,1], λ[0,1]) (where B[0,1] is the Borelian σ-algebra of [0, 1] and λ[0,1] is
the Lebesque measure restricted to [0, 1]) and (E, E) be a measurable space (either (M,P(M)),
where M is countable, or (R,B)).

Definition 2.2.1 (Random variable). A real-valued random variable is a measurable
mapping X : Ω → E, that is: ∀B ∈ E , X−1(B) ∈ A.

The distribution P of X is the unique probability measure on (E, E) such that ∀B ∈
E , P (B) = P(X−1(B)) = P(X ∈ B).

From now on, assertions on a random variable X are understood almost surely. For instance,
X ∈ N, could be written X ∈ N a.s., and means P(X ∈ N) = 1.

Proposition 2.2.1. Let P be a probability measure on (E, E). Then, there exists a
random variable X with distribution P .

Definition 2.2.2 (Cumulative distribution function). The cumulative distribution func-
tion of a random variable X is: FX : x ∈ R 7→ P(X ≤ x).

Property 2.2.2. A cumulative distribution function F is:

⋄ non-decreasing: x ≤ y =⇒ F (x) ≤ F (y);
⋄ right-continuous: limx→a+ F (x) = F (a) for any a ∈ R;
⋄ normalized: limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

Proposition 2.2.3. Let F : R → [0, 1] be a non-decreasing right-continuous and nor-
malized function. Then, there exists a unique probability measure P on (R,B) such that
F (x) = P ((−∞, x]) for all x ∈ R.
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Theorem 2.2.4 (Radon–Nikodym theorem). Let ν and µ be two positive and σ-finite
measures on the measurable space (E, E)a (here µ is either the counting or the Lebesgue
measure). If ν is absolutely continuous with respect to µ, i.e.

µ(B) = 0 =⇒ ν(B) = 0 ∀B ∈ E ,

then there exists a measurable function f : E → R+ such that for any B ∈ E,

ν(B) =

∫
B

f dµ =

∫
x∈B

f(x) dµ(x) =

{∫
x∈B f(x) dx if µ is the Lebesgue measure;∑
x∈B∩M f(x) if µ is the counting measure.

The function f is called the density of ν with respect to µ.
aA positive measure ν is σ-finite on (E, E) if there exists (Bn)n∈N ⊂ E such that ν(Bn) < ∞ for all

n ∈ N and E =
⋃

n∈N Bn. This is the case for the counting and the Lebesgue measures.

There are two particular families of random variables:

⋄ X is a discrete random variable if it takes countably many values (supposed in N for
simplicity), equivalently if its cumulative distribution function has countably many
discontinuities or if its distribution P is absolutely continuous with respect to the
counting measure. In this case, the density f of P can be defined by f(x) = P(X = x)
for all x ∈ R and is called the probability mass function of X.

⋄ X is a continuous random variable if it takes uncountably many values and if its cu-
mulative distribution function is absolutely continuous, equivalently if its distribution
P is absolutely continuous with respect to the Lebesgue measure. In this case, the
density f of P is called the probability density function of X and we have, for all
x ∈ R: FX(x) = P(X ≤ x) =

∫ x
−∞ f(t) dt. Conversely, f(x) = F ′(x) whenever F is

differentiable.

In both cases, the density of a distribution P characterizes it completely.

Property 2.2.5. Let X be a random variable on the measure space (E, E , µ) (here µ is
either the counting or the Lebesgue measure) and assume it has density f : E → R+.
Then:

⋄
∫
E
f dµ = 1;

⋄ ∀B ∈ E ,P(X ∈ B) =
∫
x∈B f(x) dµ(x) =

∫
x∈E f(x)1x∈B dµ(x)

2.2.2 Bivariate distributions and independence

Let (E1, E1, µ1) and (E2, E2, µ2) be two measure spaces and X : Ω → E1 and Y : Ω → E2 be
two random variables.

The pair (X, Y ) : Ω → E1 × E2 is a bivariate random variable with the output measure
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space (E1 × E2, E1 × E2, µ1 × µ2)
1 and distribution P defined for every (A,B) ∈ E1 × E2 by

P (A,B) = P(X ∈ A and Y ∈ B) = P(X ∈ A, Y ∈ B) = P(X−1(A) ∩ Y −1(B)).

Property 2.2.6. If X has density fX with respect to µ1 and Y has density fY with respect
to µ2, then (X, Y ) has a density, denoted fX,Y (not necessarily fXfY ), with respect to
µ1 × µ2.

In addition, for every (A,B) ∈ E1 × E2, P (A,B) =
∫∫

(x,y)∈A×B fX,Y (x, y) dµ1(x)dµ2(y).

Proposition 2.2.7 (Marginal and conditional distributions). If (X, Y ) has density fX,Y
with respect to µ1 ×µ2, then X and Y have densities fX and fY respectively with respect
to µ1 and µ2, that are defined by: fX : x ∈ E1 7→

∫
y∈E2

fX,Y (x, y) dµ2(y) and fY : y ∈
E2 7→

∫
x∈E1

fX,Y (x, y) dµ1(x). These densities define the marginal distributions of (X, Y )
respectively for the random variables X and Y .

In addition, let y ∈ E2 with fY (y) > 0. Then the function fX|Y (·, y) : x ∈ E1 7→ fX,Y (·,y)
fY (y)

is a density with respect to µ1 and defines the distribution of the random variable X|Y = y
(called the conditional distribution of X given Y = y).

Proposition 2.2.8. The distribution of the random pair (X, Y ) is characterized by the
marginal distribution for Y and the conditional distribution of X|Y = y for all y ∈ E2

such that fY (y) > 0.

Definition 2.2.3 (Independence). Two random variables X and Y (respectively defined
on (E1, E1) and (E2, E2)) are independent, denoted X ⊥⊥ Y , if for every A ∈ E1 and
B ∈ E2, P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B).

A sequence (Xn)n≥1 of random variables (Xn being defined on En) is said independent
if for every positive integer n, P(X1 ∈ A1, . . . , Xn ∈ An) =

∏
1≤i≤n P(Xi ∈ Ai) for any

events A1 ∈ E1, . . . , An ∈ En.

Proposition 2.2.9 (Coalitions lemma). Let (Xi)1≤i≤n be independent random variables,
p ∈ J1, n − 1K, f : Rp → R and g : Rn−p → R be two measurable functions. Then
f(X1, . . . , Xp) ⊥⊥ g(Xp+1, . . . , Xn).

In particular, two arbitrary random variables in the sequence are independent.

Proposition 2.2.10. Let X and Y be two random variables (respectively defined on
(E1, E1) and (E2, E2)) with joint density fX,Y . X ⊥⊥ Y if and only if fX,Y = fXfY
almost surely or if there exist two functions g : E1 → R+ and h : E2 → R+ such that
fX,Y (x, y) = g(x)h(y) for almost all (x, y) ∈ E1 × E2.

1The product mesure is defined by (µ1 × µ2)(A,B) = µ1(A)µ2(B) for every (A,B) ∈ E1 × E2.
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If X ⊥⊥ Y , then for all y ∈ E2 such that fY (y) > 0, the distribution of X|Y = y is that
of X.

Definitions of joint, marginal and conditional distributions can be extended to random vectors
X = (X1, . . . , Xn) (X is said to have a multivariate distribution). This makes it possible to
define a sample or independent and identically distributed (iid) random variables.

Definition 2.2.4 (iid random variables and samples). Random variables X1, . . . , Xn are
said iid if they are independent and if they have the same marginal distribution.

In addition, a random vector X = (X1, . . . , Xn) is called a sample if X1, . . . , Xn are iid.

2.2.3 Expectation
Definition 2.2.5 (Expectation). Let X be a random variable on the measure space
(E, E , µ) with density f . If ∫

x∈E
|x|f(x) dµ(x) <∞,

X is said to be integrable and we note L1 the set of all integrable random variables
(supposed on the measure space (E, E , µ)).

In this case, we define

E(X) =

∫
x∈E

xf(x) dµ(x).

The expectation E(X) of a random variable X is also called expected value or first order
moment.

Proposition 2.2.11. Let X ∈ L1, Y ∈ L1 and Z be a random variable. Then, one has:

⋄ L1 is a vector space;
⋄ E is a linear function on L1: ∀(a, b) ∈ R2,E(aX + bY ) = aE(X) + bE(Y );
⋄ if ∃C ∈ R : |Z| ≤ C a.s., then Z ∈ L1;
⋄ |E(X)| ≤ E(|X|) and Z ∈ L1 ⇐⇒ |Z| ∈ L1;
⋄ X ≤ Y a.s. =⇒ E(X) ≤ E(Y ).

Theorem 2.2.12 (Transfert theorem). Let X ∈ L1, h be a measurable function and
Y = h(X). If Y ∈ L1, then:

E(Y ) = E(h(X)) =

∫
x∈E

h(x)f(x) dµ(x).

Proposition 2.2.13. Let X and Y be two independent random variables, f and g two
measurable functions such that f(X) ∈ L1 and g(Y ) ∈ L1. Then f(X)g(Y ) ∈ L1 and
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E[f(X)g(Y )] = E[f(X)]E[g(Y )].

Definition 2.2.6 (Square-integrable random variable). A random variable X is square-
integrable if X2 ∈ L1 and we note L2 the set of all square-integrable random variables.

Proposition 2.2.14. ⋄ L2 is a vector space;
⋄ L2 ⊂ L1, that is X ∈ L2 =⇒ X ∈ L1;
⋄ ∀X ∈ L2, |E(X)| ≤ E(|X|) ≤

√
E(X2);

Definition 2.2.7 (Variance and standard deviation). Let X ∈ L2. The variance of X
is V(X) = E[(X − E(X))2)] = E(X2) − E(X)2 and the standard deviation is sd(X) =√
V(X).

Property 2.2.15. For all X ∈ L2, Y ∈ L2 and (a, b) ∈ R2:

⋄ aX + b ∈ L2 and V(aX + b) = a2V(X);
⋄ X ⊥⊥ Y =⇒ V(aX + bY ) = a2V(X) + b2V(Y ).

2.2.4 Conditional expectation
Proposition 2.2.16. Let X and Y be two random variables. If X ∈ L1, then X|Y = y ∈
L1 for every y ∈ E2 such that fY (y) > 0 and E(X|Y = y) =

∫
x∈E1

xfX|Y (x, y) dµ1(x).

In addition, if r : E1 × E2 → R is a measurable function such that r(X, Y ) ∈ L1, then
r(X, Y )|Y = y ∈ L1 for every y ∈ E2 such that fY (y) > 0 and E[r(X, Y )|Y = y] =∫
x∈E1

r(x, y)fX|Y (x, y) dµ1(x).

The last part of the proposition says that given Y = y, Y should be considered “as a constant”.
For instance, E(XY |Y = y) = E(X|Y = y)y.

Definition 2.2.8 (Conditional expectation). Let X and Y be two random variables. If
X ∈ L1, the conditional expectation of X given Y is the random variable E(X|Y ) = h(Y ),
where h : y ∈ E2 7→ E(X|Y = y)1fY (y)>0.

In addition, if r : E1 × E2 → R is a measurable function such that r(X, Y ) ∈ L1,
r(X, Y )|Y = h(Y ), where h : y ∈ E2 7→ E(r(X, Y )|Y = y)1fY (y)>0.

Property 2.2.17. ⋄ E(X|Y ) has a density with respect to µ2;
⋄ for any Z ∈ L1 and (a, b) ∈ R2, E(aX + bZ|Y ) = aE(X|Y ) + bE(Z|Y );
⋄ for a measurable function h, E(Xh(Y )|Y ) = E(X|Y )h(Y );
⋄ E(X|Y ) ≥ 0 a.s. if X ≥ 0 a.s.;
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⋄ E(1|Y ) = 1 a.s..

Theorem 2.2.18 (The rule of iterated expectations). Let X and Y be two random
variables, such that X ∈ L1. Then E(X|Y ) ∈ L1 and E[E(X|Y )] = E(X).

Proposition 2.2.19. Let X and Y be two independent random variables such that X ∈
L1. Then for every y ∈ E2 such that fY (y) > 0, E(X|Y = y) = E(X). In addition,
E(X|Y ) = E(X) a.s..

2.2.5 Transformations of random variables
Proposition 2.2.20. One has:

⋄ any continuous transformation of two random variables X and Y is a random
variable;

⋄ infn∈NXn and supn∈NXn are two random variables, for any sequence of random
variables (Xn)n∈N.

Let X be a random variable and Y = h(X), where h is a measurable function. We give
here some tools in order to determine the distribution of Y . The first method is to make
the cumulative distribution function FY explicit. If FY is piecewise differentiable, Y is a
continuous random variable and it is possible to exhibit its probability density function as
F ′
Y almost everywhere.

Property 2.2.21 (The test function method). If there exists a function g such that
for all continuous and bounded functions φ, E(φ(Y )) =

∫
y∈R φ(y)g(y) dy, then Y is

continuous and has g for probability density function.

In particular, if X has density f with respect to the Lebesgue measure, the transfert theorem
says that E(φ(Y )) = E[φ(h(X))] =

∫
x∈R(φ◦h)(x)f(x) dx, which involves a change of variable

in order to exhibit the probability density function g.

A last method, particularly useful for sum of random variables is using the characteristic
function, that characterizes the distribution of a random variable.

Definition 2.2.9 (Characteristic function). The characteristic function of a random
variable X is

ϕX(t) = E(eıtX), ∀t ∈ R.

Proposition 2.2.22. Let X and Y be two random variables with characteristic functions
ϕX and ϕY . If ϕX = ϕY , then X and Y have the same distribution.

Moreover, if X ⊥⊥ Y , then the characteristic function of X + Y is ϕX+Y = ϕXϕY .
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Name Support Notation Parameters Density f(x),∀x ∈ R Expectation Variance
Point mass
Discrete uniform J1,mK
Bernoulli {0, 1} B(p) p ∈ (0, 1) px(1− p)1−x p p(1− p)
Binomial
Geometric
Poisson
Uniform [0, 1]
Normal
Laplace
Student
Exponential
Chi-square
Fisher
Multinomial
Multivariate normal

Table 2.1: Classical distributions

Theorem 2.2.23 (Universality of the uniform distribution). Let X be a random variable
with cumulative distribution function FX and U ∼ U([0, 1]). Let F−1

X be the generalized
inverse of FX , defined by:

F−1
X : u ∈ [0, 1] 7→ inf {x ∈ R : FX(x) ≥ u} ∈ R ∪ {±∞}.

Then

1. X and F−1
X (U) have same distribution;

2. if FX is continuous, then FX(X) and U have same distribution.

2.3 Famous inequalities

2.3.1 Probability inequalities
Proposition 2.3.1 (Markov’s inequality). Let X ∈ L1 be a non-negative random vari-
able. For any t > 0,

P(X ≥ t) ≤ E(X)

t
.

Proposition 2.3.2 (Bienaymé-Tchebychev’s inequality). Let X ∈ L2. For any t > 0,

P(|X − E(X)| ≥ t) ≤ V(X)

t2
.

As a particular case of Bienaymé-Tchebychev’s inequality, consider X ∈ L2 such that E(X) =
0 and V(X) = 1. Then for any k ∈ N∗, P(|X| ≥ k) ≤ 1

k
.
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Proposition 2.3.3 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random
variables and assume that for each i ∈ J1, nK, ∃(ai, bi) ∈ R2 : ai ≤ Xi ≤ bi. Then,
for any t > 0,

P

(
n∑
i=1

Xi − E

[
n∑
i=1

Xi

]
≥ t

)
≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

In particular, if X1, . . . , Xn are iid, denoting c = b1 − a1 and X̄n = 1
n

∑n
i=1Xi, we have:

P
(∣∣X̄n − E(X1)

∣∣ ≥ t
)
≤ 2 exp

(
−2nt2

c2

)
.

Proposition 2.3.4 (Mill’s inequality). Let Z ∼ N (0, 1). Then, for any t > 0,

P(Z > t) = P(Z < −t) ≤ 1√
2π

e−t
2/2

t
.

A fairly general recipe for obtaining concentration inequalities is Chernoff’s method.

Proposition 2.3.5 (Chernoff’s method). Let X1, . . . , Xn be independent random vari-
ables and assume that for each i ∈ J1, nK, there exists a function ϕi : R∗

+ → R such
that

∀λ > 0, E
(
eλ(Xi−E(Xi))

)
≤ eϕi(λ) .

Then, for any t > 0,

P

(
n∑
i=1

Xi − E

[
n∑
i=1

Xi

]
≥ t

)
≤ inf

λ>0
exp

(
n∑
i=1

ϕi(λ)− λt

)
.

2.3.2 Expectation inequalities
Proposition 2.3.6 (Cauchy-Schwartz inequality). Let X ∈ L2 and Y ∈ L2. Then
XY ∈ L1 and

|E(XY )| ≤ E (|XY |) ≤
√
E(X)2

√
E(Y )2.

In addition, equalities hold if and only if Y = 0 a.s. or ∃α ∈ R : X = αY a.s..

Proposition 2.3.7 (Jensen’s inequality). Let X ∈ L1 and f be a convex function. If
f(X) ∈ L1,

f(E(X)) ≤ E(f(X)).
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In addition, if f is strictly convex,

f(E(X)) < E(f(X)) ⇐⇒ X is not constant a.s..

From the last inequality, we obtain that for X ∈ L1 such that X > 0 a.s., 1
E(X)

≤ E
(

1
X

)
and

E(log(X)) ≤ log(E(X)) (if 1/X ∈ L1 and log(X) ∈ L1).

Markov’s inequality explains how to obtain a probability inequality from an expectation
inequality. Here is how to go in the other side.

Property 2.3.8. Let X be a random variable with Xk ≥ 0 a.s. and k > 0 such that
Xk ∈ L1. Then E(Xk) =

∫∞
0

P(Xk ≥ t) dt.

Proposition 2.3.9. Let X ∈ L2 such that X ≥ 0 a.s. and P(X ≥ t) ≤ C e−αt
2 for some

C > 1 and α > 0 and all t ≥ 0. Then,

E(X) ≤
√

log(C e )

α
.

2.4 Limit theorems
Definition 2.4.1 (Types of convergence). Let (Xn)n≥1 be a sequence of random variables
(with cumulative distribution functions Fn) and X be a random variable (with cumulative
disitrubtion function F ).

1. Almost sure convergence: Xn
a.s.−−−→

n→∞
X if P (limn→∞Xn = X) = 1.

2. Convergence in probability: Xn
P−−−→

n→∞
X if for every ϵ > 0, P (|Xn −X| ≥ ϵ) −−−→

n→∞
0.

3. Convergence in mean (if Xn ∈ L1 and X ∈ L1): Xn
L1

−−−→
n→∞

X if E(|Xn−X|) −−−→
n→∞

0.
4. Convergence in quadratic mean (if Xn ∈ L2 and X ∈ L2): Xn

L2

−−−→
n→∞

X if E((Xn−
X)2) −−−→

n→∞
0.

5. Convergence in distribution: Xn
d−−−→

n→∞
X if Fn(x) −−−→

n→∞
F (x) for all x for which

F is continuous.

Proposition 2.4.1. Let (Xn)n≥1 be a sequence of random variables and X be a random
variable. Then Xn

d−−−→
n→∞

X if and only if for every continuous and bounded function
h : R → R, E(h(Xn)) −−−→

n→∞
E(h(X)).
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Theorem 2.4.2 (Lévy’s theorem). Let (Xn)n≥1 be a sequence of random variables and
X be a random variable. Then Xn

d−−−→
n→∞

X if and only if

∀t ∈ R : ϕXn(t) −−−→
n→∞

ϕX(t).

In addition, if
∀t ∈ R : ϕXn(t) −−−→

n→∞
ϕ(t),

for some function ϕ : R → C, which is continuous at 0, then ϕ is the characteristic
function of a random variable Y and Xn

d−−−→
n→∞

Y .

Proposition 2.4.3. Let (Xn)n≥1 be a sequence of random variables and X be a random
variable.

⋄ Xn
a.s.−−−→

n→∞
X =⇒ Xn

P−−−→
n→∞

X =⇒ Xn
d−−−→

n→∞
X;

⋄ if Xn ∈ L1 and X ∈ L1, Xn
L1

−−−→
n→∞

X =⇒ Xn
P−−−→

n→∞
X;

⋄ if Xn ∈ L2 and X ∈ L2, Xn
L2

−−−→
n→∞

X =⇒ Xn
L1

−−−→
n→∞

X;

⋄ if Xn ∈ L1 and X ∈ L1, Xn
L1

−−−→
n→∞

X =⇒ E(Xn) −−−→
n→∞

E(X).

Proposition 2.4.4. Let (Xn)n≥1 be a sequence of random variables and X be a random
variable.

⋄ if X is constant almost surely, Xn
d−−−→

n→∞
X =⇒ Xn

P−−−→
n→∞

X;

⋄ if (Xn)n≥1 is non-decreasing almost surely, Xn
P−−−→

n→∞
X =⇒ Xn

a.s.−−−→
n→∞

X;

⋄ if ∃C ∈ R+ : |Xn| ≤ C a.s. and X ∈ L1, then Xn ∈ L1 and Xn
P−−−→

n→∞
X =⇒

Xn
L1

−−−→
n→∞

X.

Theorem 2.4.5 (Corollary of Borel-Cantelli’s lemma). Let (Xn)n≥1 be a sequence of
random variables and X be a random variable. If for each ϵ > 0,

∞∑
n=1

P(|Xn −X| ≥ ϵ) <∞,

or if there exists a sequence (ϵn)n≥1 such that ϵn −−−→
n→∞

0 and

∞∑
n=1

P(|Xn −X| ≥ ϵn) <∞,
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then Xn
a.s.−−−→

n→∞
X.

Theorem 2.4.6 (The dominated convergence theorem). Let (Xn)n≥1 be a sequence of
random variables and X be a random variable. If there exists Z ∈ L1 such that |Xn| ≤ Z

and if Xn
a.s.−−−→

n→∞
X, then Xn ∈ L1, X ∈ L1 and Xn

L1

−−−→
n→∞

X.

Theorem 2.4.7 (The continuous mapping theorem). Let (Xn)n≥1 be a sequence of ran-
dom variables and X be a random variable. For every continuous function g : R → R:

⋄ Xn
a.s.−−−→

n→∞
X =⇒ g(Xn)

a.s.−−−→
n→∞

g(X);

⋄ Xn
P−−−→

n→∞
X =⇒ g(Xn)

P−−−→
n→∞

g(X);

⋄ Xn
d−−−→

n→∞
X =⇒ g(Xn)

d−−−→
n→∞

g(X).

In addition, for every Lipschitz continuous (or continuous and bounded) function g :
R → R:

⋄ Xn
L1

−−−→
n→∞

X =⇒ g(Xn)
L1

−−−→
n→∞

g(X);

⋄ Xn
L2

−−−→
n→∞

X =⇒ g(Xn)
L2

−−−→
n→∞

g(X).

Example 2.4.1 (A counterexample by Arnaud Guyader). For every positive integer n,
let Xn be a discrete random variable taking values in {0, n}, such that P(Xn = n) = 1

n3

and P(Xn = 0) = 1− 1
n3 . We have E(X2

n) =
1
n
−−−→
n→∞

0, so Xn
L2

−−−→
n→∞

0. However, taking

now the continuous (but not Lipschitz continuous) function f(x) = x2, E[f(X)2] =

n ̸−−−→
n→∞

0, so g(Xn) ̸
L2

−−−→
n→∞

0.

Proposition 2.4.8 (Convergence of sums and products). Let (Xn)n≥1 and (Yn)n≥1 be two
sequences of random variables and X and Y be two random variables. If Xn converges
to X and Yn converges to Y almost surely (respectively in probability, in mean or in
quadratic mean), then Xn + Yn converges to X + Y and XnYn converges to XY almost
surely (respectively in probability, in mean or in quadratic mean).

Theorem 2.4.9 (Slutsky’s theorem). Let (Xn)n≥1 and (Yn)n≥1 be two sequences of ran-
dom variables, X a random variable and c ∈ R. If Xn

d−−−→
n→∞

X and Yn
P−−−→

n→∞
c, then

Xn + Yn
d−−−→

n→∞
X + c and XnYn

d−−−→
n→∞

cX.
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Theorem 2.4.10 (The law of large numbers). Let (Xn)n≥1 be a sequence of iid random
variables such that Xn ∈ L1 and let X̄n = 1

n

∑n
i=1Xi. Then,

X̄n
a.s. & L1

−−−−−−→
n→∞

E(X1).

This result is often called the strong law of large numbers. In particular,

X̄n
P−−−→

n→∞
E(X1),

which is referred to as the weak law of large numbers.

Theorem 2.4.11 (The central limit theorem). Let (Xn)n≥1 be a sequence of iid random
variables such that Xn ∈ L2 and let X̄n = 1

n

∑n
i=1Xi. Then

√
n
(
X̄n − E(X1)

) d−−−→
n→∞

N (0,V(X1)).

Proposition 2.4.12 (The delta method). Let (Xn)n≥1 be a sequence of random variables,
(an)n≥1 a sequence of real numbers such that an −−−→

n→∞
∞, c ∈ R and Y a random variable.

Suppose that an (Xn − c)
d−−−→

n→∞
Y . Then, for every function g : R → R differentiable in

c, an (g(Xn)− g(c))
d−−−→

n→∞
g(c)Y .

Theorem 2.4.13 (The delta method applied to the central limit theorem). Let (Xn)n≥1

be a sequence of iid random variables such that Xn ∈ L2 and let X̄n = 1
n

∑n
i=1Xi.

Then, for every function g : R → R differentiable in E(X1) such that g′(E(X1)) ̸= 0,
√
n
(
g(X̄n)− g(E(X1))

) d−−−→
n→∞

N (0, g′(E(X1))
2V(X1)).

2.5 The multivariate normal vector
Definition 2.5.1 (Multivariate normal vector). Let X be a d-dimensional random vector.
X is a multivariate normal vector (or Gaussian vector) if for every a ∈ Rd,

∃µ ∈ R : a⊤X ∼ N (µ, σ2) for some σ2 > 0 or a⊤X = µ a.s.,

i.e. a⊤X follows a (potentially degenerated) normal distribution.

Proposition 2.5.1. Let X be a d-dimensional Gaussian vector. Then X ∈ L2 and we
note X ∼ N (µ,Σ), where µ = E(X) and Σ = V(X) = E

[
(X− E(X))(X− E(X))⊤

]
.
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In addition, for every a ∈ Rd, a⊤X is not constant almost surely if and only if Σ is non-
singular. This is equivalent to X having a density with respect to the Lebesgue measure,
which can be expressed:

∀x ∈ Rd : fX(x) =
1

(2π)d/2|Σ|1/2
e−

1
2
(x−µ)⊤Σ−1(x−µ) .

Proposition 2.5.2. Let X be a d-dimensional Gaussian vector with X ∼ N (µ,Σ). Let I
and J be two disjoint sets of indexes from J1, dK and denote XI and XJ the corresponding
subvectors. Then

XI ⊥⊥ XJ ⇐⇒ Cov(XI ,XJ) = E
[
(XI − E(XI))(XJ − E(XJ))

⊤] = 0,

in other words if the items of Σ at the intersection of I and J are 0 outside the diagonal.

In particular, components of X are independent if and only if Σ is diagonal.

Proposition 2.5.3. Let X be a d-dimensional Gaussian vector with X ∼ (µ,Σ). Let
also A ∈ Rk×d for some positive integer k and I be a set of indexes from J1, dK. Then,

⋄ the marginal distribution of XI is N (µI ,ΣI,I);
⋄ AX ∼ N (Aµ,AΣA⊤);
⋄ X has same distribution as µ+ Σ1/2Y, where Y ∼ N (0, Id);
⋄ if Σ is non-sigular, (X− µ)⊤Σ−1(X− µ) ∼ χ2

d;

Theorem 2.5.4 (Cochran’s theorem). Let V ⊂ Rd be a vector subspace of Rd, V ⊥ its
orthogonal space (Rd = V ⊕ V ⊥) and X ∼ N (µ, σ2Id) a d-dimensional multivariate
normal vector. By denoting P and P⊥ = Id−P the orthogonal projectors respectively on
V and V ⊥, we have:

1. PX ∼ N (Pµ, σ2P ) and P⊥X ∼ N (P⊥µ, σ
2P⊥);

2. PX ⊥⊥ P⊥X;
3. 1

σ2∥PX− Pµ∥2 ∼ χ2
dim(V ) and 1

σ2∥P⊥X− P⊥µ∥2 ∼ χ2
dim(V ⊥)

.

Theorem 2.5.5 (The multivariate central limit theorem). Let (Xn)n≥1 be a sequence of
iid random vectors such that Xn ∈ L2 and let X̄n = 1

n

∑n
i=1 Xi. Then

√
n
(
X̄n − E(X1)

) d−−−→
n→∞

N (0,V(X1)).

2.6 Exercises
Exercise 2.1 (Integration by parts). What are the expectation and the variance of the
following distribution:
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1. U([a, b]), where a < b?
2. E(λ), where λ > 0? Deduce that for every positive integer k, E(Xk) = k!

λk
.

3. N (µ, σ2), where µ ∈ R and σ2 > 0?

Exercise 2.2 (The test function method).

1. Let X ∼ E(λ), where λ > 0. What is the distribution of
√
X?

2. Let X be a random variable distributed according to a Cauchy distribution, i.e. with
density x ∈ R 7→ 1

π(1+x2)
with respect to the Lebesgue measure. What is the distribution

of 1/X?
3. Let X ∼ U([0, π]) and Y = sin(X). What is the distribution of Y ?

Exercise 2.3 (Uniform distribution). Let U ∼ U([0, 1]) and X = max(U, 1− U).

1. What is the distribution of X?
2. What is the distribution of Y = min(U, 1− U)?
3. What is the distribution of Z = − log(U)?
4. Let λ > 0. What is the distribution of Z/λ?

Exercise 2.4 (Marginal distributions). Let (X, Y ) be a pair of random variables with joint
density f : (x, y) ∈ R2 7→ 2

π
e−x(1+y

2) 1x,y≥0 with respect to the Lebesgue measure.

1. Show that f is a probability density function.
2. What are the distributions of X and Y .

Exercise 2.5 (Marginal distributions of two pairs). Let (X, Y ) and (X ′, Y ′) be two pairs of
random variables with respective densities (with respect to the Lebesgue measure):

f(x, y) =
1

4
(1 + xy)1[0,1]2(x, y) and g(x, y) =

1

4
1[0,1]2(x, y).

1. Show that f and g are probability density functions.
2. How can we assure that (X, Y ) and (X ′, Y ′) do not have the same distribution?
3. Show that the marginal distributions of the two pairs are the same.

Exercise 2.6 (Convergence in distribution). Let (Xn)n≥1 be a sequence of random variables
and f : R → R a continuous function. Show that if Xn

d−−−→
n→∞

X for some random variable
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X, then f(Xn)
d−−−→

n→∞
f(X).

Exercise 2.7 (Law of large numbers). Let (Xn)n≥1 be a sequence of iid random variables,
each with probability density function (with respect to the Lebesgue measure):

x ∈ R 7→ 2x e−x
2

1R+(x).

1. Compute E(X2
1 ).

2. Show that Yn = 1
n

∑n
i=1X

2
i is convergent almost surely.

3. Same question for Zn = n∑n
i=1X

2
i
.

Exercise 2.8 (Asymptotic normality). Let (Xn)n≥1 be a sequence of iid random variables
such that µ = E(X1) and σ2 = V(X1) exist (with σ2 > 0). Let

X̄n =
1

n

n∑
i=1

Xi and σ̂2
n =

1

n

n∑
i=1

(Xi − X̄n)
2.

1. Show that X̄n is convergent almost surely.
2. Same question for σ̂2

n.
3. Show that

√
n X̄n−µ√

σ̂2
n

is convergent in distribution and exhibit the limit.

Exercise 2.9 (Delta method). Let (Xn)n≥1 be a sequence of iid random variables such that
X1 ∼ U([0, 1]) and let Yn = 1

(
∏n

i=1Xi)1/n
.

1. What is the distribution of Z1 = − log(X1)?
2. Show that

√
n(Yn − e ) is convergent in distribution and exhibit the limit.
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Chapter 3

Statistics

3.1 Inference

3.1.1 Model

Let (E, E) be a measurable space.

Definition 3.1.1 (Statistical model). A statistical model P is a family of distributions
( i.e. of probability measures) on the measurable space (E, E). The model is parametric if
there exists an integer p and Θ ⊂ Rp such that P = {Pθ, θ ∈ Θ}, where for every θ ∈ Θ,
Pθ is a probability measure on (E, E).

In addition, P is a sampling model if there exists a positive integer n such that for every
θ ∈ Θ, Pθ = Q⊗n

θ for some distribution Qθ (in other words, any random vector X ∼ Pθ
is a n-sample).

Here, we will focus on parametric models. Then, in many cases, the parameter θ will reflects
the natural degrees of liberty of the distribution Pθ (think for instance to Pθ = B(θ)⊗n or
to Pµ,σ2 = N (µ, σ2)⊗n). In other cases, θ will be any parameter helping to characterize the
distribution Pθ, thanks to its cumulative distribution function or its density (if there is one).
Thus, since we consider here distributions with densities with respect to the counting or the
Lebesgue measure, a parametric model can also be extended to a family F = {fθ, θ ∈ Θ} of
densities.

Assume that we are provided with some measurements x1, . . . , xn ∈ R. The principle of
statistical modeling is to consider that these measurements are the realizations of some
random variables X1, . . . , Xn and to determine in the best way the distribution of X =
(X1, . . . , Xn) based on the model P . In other words, it is about determining θ ∈ Θ such
that Pθ approximates the best as possible the distribution of X. In order to work only with
parameters (and not also with distributions), we assume that the distribution of X is in
the model, i.e. ∃θ0 ∈ Θ : X ∼ Pθ0 . Now, to emphasize that the value θ0 is unknown,
we will work in broad generality and try to approximate, for every θ ∈ Θ, the value of
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θ based on the knowledge of the observation Xθ = (X1, . . . , Xn) ∼ Pθ. In the forthcoming
discussion, the phrase “of θ” means “of the generic parameter θ indexing the parametric model
P = {Pθ, θ ∈ Θ}” (but nowhere θ is a fixed value).

For ease of explanation, we will also assume that there is a single parameter of interest:
Θ ⊂ R. In addition, we will sometimes only deal with sampling models (which are often the
ones we use in practice), i.e. we will assume X1, . . . , Xn are iid . In this case, with a slight
abuse, Pθ will be the distribution of X1 instead of Xθ = (X1, . . . , Xn).

3.1.2 Estimation
Definition 3.1.2 (Statistic, estimator and estimation). A statistic is a random variable
T = f(Xθ), where f : Rn → R is a measurable function independent of θ.

An estimator θ̂n of the parameter θ is a statistic aimed at approximating θ and with
P(θ̂n ∈ Θ) −−−→

n→∞
1.

An estimation of the value θ0 is the realization f((x1, . . . , xn)) of an estimator θ̂n = f(Xθ)
of θ.

The notation θ̂n for an estimator of θ is clear:

1. “ˆ” indicates that θ̂n is aimed at approximating θ;
2. “n” points out that the approximation depends on the size of the observation;
3. “θ” makes it clear that θ̂n depends on θ (more precisely its distribution is ruled by θ).

Definition 3.1.3 (Bias and mean squared error). Let θ̂n be an estimator of θ.

1. The bias of θ̂n is: B(θ) = E[θ̂n]− θ, ∀θ ∈ Θ.
2. The mean squared error of θ̂n is:

R(θ) = E
[
(θ̂n − θ)2

]
= B(θ)2 + V(θ̂n), ∀θ ∈ Θ.

We should remember here that when θ varies, E[θ̂n] changes too.

Definition 3.1.4. An estimator θ̂n of θ is:

1. consistent if θ̂n
P−−−→

n→∞
θ, ∀θ ∈ Θ;

2. strongly consistent if θ̂n
a.s.−−−→

n→∞
θ, ∀θ ∈ Θ;

3. asymptotically normal if for every θ ∈ Θ, there exists (cθ, σ
2
θ) ∈ R × R∗

+ and a
sequence of real numbers (an)n≥1 with an −−−→

n→∞
∞, such that:

an(θ̂n − cθ)
d−−−→

n→∞
N (0, σ2

θ).
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We say that θ̂n has asymptotic variance σ2
θ and rate of convergence 1/an.

Property 3.1.1. Let θ̂n be an asymptotically normal estimator of θ with

an(θ̂n − θ)
d−−−→

n→∞
N (0, σ2), ∀θ ∈ Θ.

Then θ̂n
P−−−→

n→∞
θ, ∀θ ∈ Θ.

Property 3.1.2. Let θ̂n be an estimator of θ with mean squared error R. If for every
θ ∈ Θ, R(θ) −−−→

n→∞
0, then θ̂n

P−−−→
n→∞

θ, ∀θ ∈ Θ.

3.1.3 Confidence intervals
Definition 3.1.5 (Confidence interval). Let α ∈ (0, 1). A confidence interval with level
1−α for the parameter θ is an interval I1−α = [T1, T2], where T1 and T2 are two statistics
and

P(θ ∈ I1−α) ≥ 1− α, ∀θ ∈ Θ.

A confidence interval with asymptotic level 1 − α for the parameter θ is an interval
I1−α,n = [T1,n, T2,n], where T1,n and T2,n are two statistics such that for every θ ∈ Θ,
limn→∞ P(θ ∈ I1−α) exists and

lim
n→∞

P(θ ∈ I1−α) ≥ 1− α.

There are mainly two manners to build confidence intervals:

1. knowing an estimator θ̂n and its exact or asymptotic distribution (through its asymp-
totic normality for instance);

2. using concentration bounds such as Bienaymé-Tchebychev’s or Hoeffding’s inequality.

3.1.4 Hypothesis testing
Definition 3.1.6 (Hypothesis test). Let {Θ0,Θ1} be partition of Θ and α ∈ (0, 1). A
test of level α for the hypotheses

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1,

is a statistic T = 1Xθ∈Rα (where the rejection region Rα ⊂ E has to be defined), such
that

sup
θ∈Θ0

P(T = 1) ≤ α.
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A test with asymptotic level α is a statistic Tn = 1Xθ∈Rα, such that the limit exists and

lim
n→∞

sup
θ∈Θ0

P(Tn = 1) ≤ α.

We can see a test as an estimator of the unknown quantity 1θ∈Θ1 . The interpretation is the
following : when a realization t of a test T equals 1, we say that we reject the null hypothesis
(i.e. we conclude that θ ∈ Θ1), while when t = 0, we say that we accept the null hypothesis
(i.e. we conclude that θ ∈ Θ0).

Often, a statistical test has the form T = 1S>cα , where S is a test statistic and cα is a critical
value.

Definition 3.1.7 (Power and size). Let T be a hypothesis test for the hypotheses

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1.

1. The power function is β : θ ∈ Θ 7→ P(T = 1).
2. The size is supθ∈Θ0

β(θ) = supθ∈Θ0
P(T = 1).

3. H0 (respectively H1) is said simple if Θ0 (respectively Θ1) is a singleton, and com-
posite otherwise.

4. The test T is one-sided if Θ1 has the form (−∞, A) ∩ Θ or Θ ∩ (A,∞) for some
A ∈ R and two-sided otherwise.

Proposition 3.1.3 (Interval based test). Let {Θ0,Θ1} be partition of Θ, α ∈ (0, 1) and
an interval J1−α = [T1, T2], where T1 and T2 are two statistics such that:

P(θ ∈ J1−α) ≥ 1− α, ∀θ ∈ Θ0.

Then, T = 1Θ0∩J1−α=∅ is a test of level α for the hypotheses

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1.

Let I1−α(θ) be a confidence interval for θ. In practice, we take J1−α = I1−α when H0 is
composite and J1−α to be “a confidence interval only true on H0” when H0 is simple. Let
us remark that choosing such a test is not always a good idea since the construction of the
interval J1−α is a priori independent of Θ0 but. . . there are often many confidence intervals
for θ, all are not equivalent and all provide different tests. . . for the same hypotheses.

Definition 3.1.8 (p-value). Let (Tα)α∈(0,1) be a family of tests of level α for the same
hypotheses. We call p-value

α0 = inf {α ∈ (0, 1) : Tα = 1} .

Proposition 3.1.4 (Interpretation of the p-values). Let (Tα)α∈(0,1) be a family of tests
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of size α for the hypotheses

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1,

(α0(Xθ)) be their p-values and x ∈ Rn be a realization of Xθ such that α0(x) ∈ (0, 1).

If, for every α ∈ (0, 1), Tα = 1S(Xθ)>cα, where S(Xθ) is a statistic and α ∈ (0, 1) 7→ cα
is continuous, then

α0(x) = sup
θ∈Θ0

P(S(Xθ) > S(x)).

Besides being a measure of evidence against H0, the p-value provides an alternative way to
express the test Tα. Indeed, by definition of the p-value, for every θ ∈ Θ:

Tα = 1 =⇒ α0 ≤ α;

Tα = 0 =⇒ α0 ≥ α;

α0 < α =⇒ Tα = 1;

α0 > α =⇒ Tα = 0.

Thus, on the event {α0 ̸= α}, Tα = 1α0>α. The next result exhibit a situation where the
equivalence holds.

Proposition 3.1.5 (Usage of the p-value). Let (Tα)α∈(0,1) be a family of tests of size α
for the hypotheses

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1,

and α0(Xθ) be their p-values.

If P(α0(Xθ) ∈ (0, 1)) = 1 and for every α ∈ (0, 1), Tα = 1S(Xθ)>cα, where S(Xθ) is a
statistic and α ∈ (0, 1) 7→ cα is continuous, then Tα = 1α0(Xθ0

)<α a.s..

Proposition 3.1.6 (Uniformity of the p-value). Let (Tα)α∈(0,1) be a family of tests of
size α for the hypotheses

H0 : θ ∈ Θ0 = {θ0} versus H1 : θ ∈ Θ1,

where θ0 ∈ Θ and α0(Xθ) be their p-values.

If P(α0(Xθ) ∈ (0, 1)) = 1 and for every α ∈ (0, 1), Tα = 1S(Xθ)>cα, where S(Xθ) is a
statistic such that S(Xθ0) has a continuous cumulative distribution function FS(Xθ0

) and
α ∈ (0, 1) 7→ cα is continuous, then α0(Xθ0) ∼ U([0, 1]).

3.2 Parametric estimation

3.2.1 Method of moments
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Definition 3.2.1 (Method of moments estimator). Let k be a positive integer. In a
sampling model with X1 ∈ Lk, a method of moments estimator (MME) of order k is any
estimator

θ̂n = φ

(
1

n

n∑
i=1

Xi,
1

n

n∑
i=1

X2
i , . . . ,

1

n

n∑
i=1

Xk
i

)
,

where φ is a function such that:

θ = φ(E(X1),E(X2
1 ), . . . ,E(Xk

1 )), ∀θ ∈ Θ.

With this definition, the MME may not be defined (assume for instance that ϕ(x) = 1
x
,

E(X1) =
1
θ

and P( 1
n

∑n
i=1Xi = 0) > 0). The next proposition says that this is not a fatality.

Proposition 3.2.1. Let P be a sampling model, k be a positive integer and assume that
X1 ∈ Lk. Let φ be a function such that:

θ = φ(E(Xk
1 )), ∀θ ∈ Θ,

and θ̂n = φ
(
1
n

∑n
i=1X

k
i

)
. Then,

1. if φ is continuous in E(Xk
1 ) for every θ ∈ Θ, θ̂n is well defined with probability

tending to 1 and is consistent;
2. if φ is differentiable in E(Xk

1 ) with φ′(E(Xk
1 )) ̸= 0 for every θ ∈ Θ, θ̂n is asymp-

totically normal with rate 1/
√
n and asymptotic variance φ′(E(Xk

1 ))
2V(Xk

1 ).

3.2.2 Empirical quantiles
Definition 3.2.2 (Empirical cumulative distribution function). Assume that Xθ is a
sample. Its empirical cumulative distribution function is:

Fn : x ∈ R 7→ 1

n

n∑
i=1

1Xi≤x.

Proposition 3.2.2. Assume that Xθ is a sample and let FX1 be the cumulative distri-
bution function of X1. For every x ∈ E:

1. strong consistency: Fn(x)
a.s.−−−→

n→∞
FX1(x), ∀θ ∈ Θ;

2. asymptotic normality:
√
n(Fn(x)−FX1(x))

d−−−→
n→∞

N (0, FX1(x)(1− FX1(x))) , ∀θ ∈
Θ.

Definition 3.2.3 (Quantile). Let α ∈ [0, 1] and assume that Xθ is a sample. The
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α-quantile of X1 is
qα = F−1

X1
(α).

The α-empirical quantile of the sample Xθ is:

qn,α = F−1
n (α).

Proposition 3.2.3. Let α ∈ (0, 1) and assume that Xθ is a sample.

1. If FX1 is strictly increasing at qα, then

qn,α
a.s.−−−→

n→∞
qα.

2. If F is differentiable at qα with F ′(qα) > 0, then

√
n(qn,α − qα)

d−−−→
n→∞

N
(
0,
α(1− α)

F ′(qα)2

)
.

3.2.3 Maximum likelihood
Definition 3.2.4 (Maximum likelihood estimator). Assume that the model P = {Pθ, θ ∈
Θ} is dominated by a measure µ and denote, for every θ ∈ Θ, fθ the density of Pθ with
respect to µ. For every θ ∈ Θ, we call likelihood function

Ln(θ
′) = fθ′(Xθ), ∀θ′ ∈ Θ.

Then, a maximum likelihood estimator (MLE) θ̂n is any random variable verifying:

θ̂n ∈ argmaxθ̂:estimator Ln(θ̂) a.s., ∀θ ∈ Θ.

Theorem 3.2.4. Let us assume that:

1. P = {Pθ, θ ∈ Θ} is a sampling model dominated by a measure µ and let, for every
θ ∈ Θ, fθ be the density of Pθ with respect to µ;

2. the model P is identifiable, i.e. the mapping θ ∈ Θ → Pθ is injective;
3. the log-likelihood converges uniformly to the opposite of the Kullback-Leibler diver-

gence:
sup
θ′∈Θ

|Mn(θ
′)− E(Mn(θ

′))| P−−−→
n→∞

0, ∀θ ∈ Θ,

where Mn(θ
′) = 1

n

∑n
i=1 log

(
fθ′ (Xi)

fθ(Xi)

)
, ∀θ′ ∈ Θ.

Then any MLE θ̂n of θ is consistent, i.e. θ̂n
P−−−→

n→∞
θ, ∀θ ∈ Θ.
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Theorem 3.2.5. Let us assume that:

1. P = {Pθ, θ ∈ Θ} is a sampling model dominated by a measure µ and let, for every
θ ∈ Θ, fθ be the density of Pθ with respect to µ;

2. the model P is regular, i.e.:
(a) for every θ ∈ Θ, the support S = {x ∈ E : fθ(x) > 0} of Pθ, is independent

of θ;
(b) for µ-almost all x ∈ E, the function θ ∈ Θ 7→ fθ(x) is continuously differen-

tiable;
(c) for every θ ∈ Θ, Sθ ∈ L2 and θ ∈ Θ 7→ E(S2

θ ) is continuous, where we have
defined ℓ : θ′ 7→ log fθ′(X1) and Sθ = ℓ′(θ) (Sθ is called the score function).

Then, any MLE θ̂n such that, for a given θ ∈ Θ, θ̂n
P−−−→

n→∞
θ and the Fisher information

I(θ) = E(S2
θ ) = V(Sθ) > 0, we have:

√
n(θ̂n − θ)

d−−−→
n→∞

N
(
0,

1

I(θ)

)
,

and √
nI(θ̂n)(θ̂n − θ)

d−−−→
n→∞

N (0, 1) .

In a nutshell, the previous theorem says that if the model P is regular with a Fisher infor-
mation positive for every θ ∈ Θ and if an MLE θ̂n is consistent, then it is asymptotically
normal. The last statement makes it possible to design confidence intervals.

3.3 Linear model

3.3.1 Multiple linear model

Let (x1, y1), . . . , (xn, yn) ∈ Rp × R be some measurements. We would like to study the
relationship between xi and yi (for ever i ∈ J1, nK) having in mind that it is easier to measure
xi than yi in the future. For this reason, we assume that measurements are the realization of
n iid random pairs (X1, Y 1), . . . , (Xn, Y n), where for every i ∈ J1, nK, X i is a random vector
of covariates (or features) with values in Rp and the response Y i is a real-valued random
variable.

Our goal here (that of regression actually) is to approximate the distribution of Y i|X i = x
(this is the same for every i ∈ J1, nK), denoted Px, for all x ∈ Rp. For the sake of simplicity,
least squares regression (a particular case of regression) focuses only on the regression function
x ∈ Rp 7→ E(Y 1|X1 = x) as a characteristic of Px (having in mind that we would like
to “predict” yi based on the measurement xi for any i ∈ J1, nK). In addition, since we
are interested in conditional distributions (Px)x∈Rp , it is enough to work given that X1 =
x1, . . . , Xn = xn for any values (x1, . . . , xn) ⊂ Rp, i.e. with the random vector (Y 1|X1 =
x1, . . . , Y n|Xn = xn), which is the same as (Y 1, . . . , Y n)|(X1, . . . , Xn) = (x1, . . . , xn). In
other words, we work like if (X1, . . . , Xn) is fixed to (x1, . . . , xn) and (Y 1, . . . , Y n) only is
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random (what is called the fixed design, in opposition to the random design in which we
work with the random vector (X1, . . . , Xn)).

Thus, let (x1, . . . , xn) ⊂ Rp and P be the statistical model:

P =
{
P(β,σ2), (β, σ

2) ∈ Rp × R∗
+

}
,

where for every (β, σ2) ∈ Rp × R∗
+, if (Y1, . . . , Yn) ∼ P(β,σ2), then:

1. Y1, . . . , Yn are independent;
2. for every i ∈ J1, nK, E(Yi) = β⊤xi;
3. for every i ∈ J1, nK, V(Yi) = σ2.

This statistical model (which is not identifiable) actually assumes that the regression function
r(x) = E(Y ) = β⊤x is linear.

Now, let us assume that the true distribution is in the model P :

∃(β0, σ2
0) ∈ Rp × R∗

+ : (Y 1|X1 = x1, . . . , Y n|Xn = xn) ∼ P(β0,σ2
0)
,

and let for every (β, σ2) ∈ Rp × R∗
+,

Y(β,σ2) = (Y1, . . . , Yn) ∼ P(β,σ2).

The random vector Y(β,σ2) is our observation, based on which we have to estimate the generic
parameters β (of the regression function) and σ2 (variance of the noise). Let us remark that
in this modeling, if the random variables Y1, . . . , Yn are independent, they are not iid (the
notation Y different from X is aimed at underlying that Y is not a sample).

Let now X =

x
⊤
1
...
x⊤n

 ∈ Rn×p be the desing matrix. Then, we can characterize the distribution

P(β,σ2) (and so the model P) in the following manner:

Y(β,σ2) = Xβ + ϵ,

where ϵ = (ϵ1, . . . , ϵn) is a random vector such that:

1. ϵ1, . . . , ϵn are independent;
2. for every i ∈ J1, nK, E(ϵi) = 0;
3. for every i ∈ J1, nK, V(ϵi) = σ2.

Definition 3.3.1 (Least squares estimator). A least squares estimator of β is a random
vector β̂ such that

β̂ ∈ argminβ′∈Rp

∥∥Y(β,σ2) − Xβ′∥∥2 , ∀(β, σ2) ∈ Rp × R∗
+.

From now on, we shall assume that rank(X) = p, otherwise, the forthcoming estimator is not
unique.
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Property 3.3.1. The least squares estimator of β is unique and can be expressed as:

β̂ = (X⊤X)−1X⊤Y(β,σ2), ∀(β, σ2) ∈ Rp × R∗
+.

In addition, E(β̂) = β and V(β̂) = σ2(X⊤X)−1.

Proposition 3.3.2. An unbiased estimator of σ2 is

σ̂2 =
∥Y(β,σ2) − Xβ̂∥2

n− p
, ∀(β, σ2) ∈ Rp × R∗

+.

3.3.2 Gaussian linear model

Let us now consider the statistical model

P =
{
P(β,σ2) = N (Xβ, σ2In), (β, σ

2) ∈ Rp × R∗
+

}
,

where In is the identity matrix of size n. We still assume that rank(X) = p, making now
the model P identifiable. Actually, considering this new model boils down to make stronger
assumptions with respect to the previous section, since we now have:

Y(β,σ2) = Xβ + ϵ,

where ϵ ∼ N (0, σ2In). This, however, makes it possible to make the link with maximum
likelihood estimation and to exhibit the exact distributions of the estimators introduced just
before.

Proposition 3.3.3. The MLE of (β, σ2) is

β̃ = (X⊤X)−1X⊤Y(β,σ2) = β̂ and σ̃2 =
∥Y(β,σ2) − Xβ̃∥2

n
=
n− p

n
σ̂2,

for every ∀(β, σ2) ∈ Rp × R∗
+.

The next result is an application of Cochran’s theorem.

Property 3.3.4. For every ∀(β, σ2) ∈ Rp × R∗
+, we have:

1. β̂ ∼ N (β, σ2(X⊤X)−1);
2. β̂ ⊥⊥ σ̂2;
3. n−p

σ2 σ̂
2 ∼ χ2

n−p.

In addition:
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1. for every j ∈ J1, pK,
β̂j − βj

σ̂
√
[(X⊤X)−1]jj

∼ Tn−p;

2.
(β̂ − β)⊤X⊤X(β̂ − β)

pσ̂2
∼ Fp

n−p.

This last property makes it possible to derive confidence intervals for σ2 and the components
of β. We also have access to a confidence hyperellipsoid for β.

We now focus on our initial wish, which is to “predict” an unseen response. To be a bit more
formal, let (xn+1, yn+1

) be a novel measurement (assumed to be a realization of some random
pair (Xn+1, Y n+1) independent from and identically distributed to (X1, Y 1), . . . , (Xn, Y n)),
and suppose that we only know xn+1. We would like to “predict” y

n+1
and a natural way to

do it is to compute β̂⊤
0 xn+1 (where β̂0 is the realization of β̂ based on (x1, y1), . . . , (xn, yn)).

From the beginning, the word “prediction” is quoted because its meaning is unclear. Indeed,
it is not an estimation of y

n+1
since this quantity is a realization of a random variable Y n+1

and not a fixed parameter. With our modeling (based on random variables, which are objects
characterized by their distribution rather than their mapping input→output), the best we
can do is to characterize the distribution of Y n+1 and without the Bayesian theory, there
no best way1 than providing a prediction interval, i.e. an interval containing Y n+1 with
high probability (let us note that this is not a confidence interval since the quantity Y n+1 is
random). This leads to the forthcoming definition of the prediction error and results.

Before proceeding, let us go back to our modeling: let xn+1 ∈ R be any real value and for
every (β, σ2) ∈ Rp × R∗

+, let Yn+1 ∼ N (β⊤xn+1, σ
2) ⊥⊥ Y(β,σ2).

Proposition 3.3.5. For every (β, σ2) ∈ Rp × R∗
+,

1. the distribution of the prediction is: β̂⊤xn+1 ∼ N (β⊤xn+1, σ
2);

2. the distribution of the prediction error is:

Yn+1 − β̂⊤xn+1 ∼ N
(
0, σ2(1 + x⊤n+1(X⊤X)−1xn+1)

)
;

3. for every α ∈ (0, 1), denoting tα the
(
1− α

2

)
-quantile of Tn−p,

P
(
Yn+1 ∈

[
β̂⊤xn+1 ± σ̂

√
1 + x⊤n+1(X⊤X)−1xn+1tα

])
= 1− α.

1Actually, we could think of “prediction” as estimating E(Y n+1|Xn+1 = xn+1) = β⊤
0 xn+1 but this quantity

is of limited interest because there is no reason for y
n+1

or Y n+1 to be close to it.
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3.4 Exercises
Exercise 3.1 (Mean squared error). Let (Xn)n≥1 be a sequence of iid random variables,
such that m = E[X1] and σ2 = V(X1). We assume that σ2 is known but that m is unknown.

1. Show that the estimators X̄n = 1
n

∑n
i=1Xi and Zn = Xn−1+Xn

2
are unbiased.

2. Compute their mean squared error. Which estimtator is better?
3. What do you think of Wn = 0?

Exercise 3.2 (Method of moments). Let (Xn)n≥1 be a sequence of iid random variables.
For the following two distributions, propose an estimator by the method of moments and
show that it is asymptotically normal.

1. X1 ∼ U([0, θ]), for θ > 0.
2. X1 ∼ E(λ), for λ > 0.

Exercise 3.3 (Maximum likelihood). Let (Xn)n≥1 be a sequence of iid random variables.
For the following distributions, compute the maximum likelihood estimator and show that it
is asymptotically normal.

1. X1 ∼ N (µ, 1), for µ ∈ R.
2. X1 ∼ E(λ), for λ > 0.
3. X1 ∼ P(λ), for λ > 0.

Let α ∈ (0, 1). Give confidence intervals of asymptotic level 1 − α for unknown parameters
and propose tests to asses the null hypothesis that the unknown parameter equals 1.

Exercise 3.4 (Empirical mean and median). Let (Xn)n≥1 be a sequence of iid random
variables. We consider two estimators: µ̂ = 1

n

∑n
i=1Xi and µ̃ = qn,1/2 (the empirical median).

For the following distributions, compare the asymptotic variances of µ̂ and µ̃.

1. X1 ∼ N (µ, 1), for µ ∈ R.
2. X1 has density f : x ∈ R 7→ 1

2
e−|x−µ|, for µ ∈ R. Let us remark that we have E[X1] = µ

and V(X1) = 2.
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